
Professional XML

Bill Evjen,
Kent Sharkey,

Thiru Thangarathinam,
Michael Kay,

Alessandro Vernet,
Sam Ferguson

01_777779 ffirs.qxp 3/1/07 11:41 PM Page i

Professional XML
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-471-77777-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data:

Professional XML / Bill Evjen . . . [et al.].
p. cm.

Includes index.
ISBN-13: 978-0-471-77777-9 (paper/website)
ISBN-10: 0-471-77777-3 (paper/website)

1. XML (Document markup language) I. Evjen, Bill.
QA76.76.H94P7638 2007
006.7'4—dc22

2007006214

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN THEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within
the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respec-
tive owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

01_777779 ffirs.qxp 3/1/07 11:41 PM Page ii

www.wiley.com

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
Sydney Jones

Technical Editors
Alexei Gorkov
Steve Danielson
Cody Reichenau

Production Editor
William A. Barton

Copy Editors
Mary Lagu
Kathryn Duggan

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Jonelle Burns
Carrie A. Foster
Brooke Graczyk
Denny Hager
Jennifer Mayberry
Barbara Moore
Rashell Smith
Alicia B. South

Quality Control Technicians
Laura Albert
Christy Pingleton

Proofreading and Indexing
Aptara

Anniversary Logo Design
Richard J. Pacifico

01_777779 ffirs.qxp 3/1/07 11:41 PM Page iii

To my three little ones—Sofia, Henri, and Kalle.—Bill Evjen

To Babi, for keeping me alive, and putting up with me. Hopefully for a long
time to come.—Kent Sharkey

Thanks to my beautiful wife Jacquie for her patience, my cat Peggy for her
company (and technical input), and to all my colleagues at API who

continue to inspire and challenge me.—Sam Ferguson

01_777779 ffirs.qxp 3/1/07 11:41 PM Page iv

About the Authors

Lead Authors
Bill Evjen is an active proponent of .NET technologies and community-based learning initiatives for
.NET. He has been actively involved with .NET since the first bits were released in 2000. In the same
year, Bill founded the St. Louis .NET User Group (www.stlnet.org), one of the world’s first such
groups. Bill is also the founder and former executive director of the International .NET Association
(www.ineta.org), which represents more than 450,000 members worldwide.

Based in St. Louis, Missouri, USA, Bill is an acclaimed author (more than 13 books to date) and speaker
on ASP.NET and XML Web services. He has written or co-written Professional C# 2005; Professional VB
2005; and the best-selling Professional ASP.NET 2.0, as well as ASP.NET Professional Secrets, XML Web
Services for ASP.NET, Web Services Enhancements: Understanding the WSE for Enterprise Applications, Visual
Basic .NET Bible, and more. In addition to writing, Bill is a speaker at numerous conferences, including
DevConnections, VSLive, and TechEd. Along with these items, Bill works closely with Microsoft as a
Microsoft Regional Director and he has received the Microsoft MVP designation for many years.

Bill is the Technical Architect for Lipper (www.lipperweb.com), a wholly-owned subsidiary of Reuters,
the international news and financial services company. He graduated from Western Washington
University in Bellingham, Washington, with a Russian language degree. When he isn’t tinkering on the
computer, he can usually be found at his summer house in Toivakka, Finland. You can reach Bill at
evjen@yahoo.com. He presently keeps his weblog at www.geekswithblogs.net/evjen.

Kent Sharkey is an independent consultant who lives and codes in the midst of the wilds of Vancouver
Island. Before going solo, Kent worked at Microsoft as a Technical Evangelist and Content Strategist,
promoting the use of .NET technologies. When not coding or writing, he’s off hiking, biking, or canoeing
(or exploring the wilds of Azeroth). He shares his house with his wife, Margaret, and two “children,”
Squirrel and Cica.

Contributing Authors
Thiru Thangarathinam is a Microsoft MVP who specializes in architecting, designing, and developing
distributed enterprise class applications using .NET-related technologies. He is the author of the books
Professional ASP.NET 2.0 XML and Professional ASP.NET 2.0 Databases from Wrox press and has coau-
thored a number of books on .NET-related technologies. He is a frequent contributor to leading
technology-related online publications.

Michael Kay is widely known in the XML world as the developer of the Saxon XSLT and XQuery pro-
cessor, and as the editor of the XSLT 2.0 specification. His Wrox books XSLT 2.0 Programmer’s Reference
and XPath 2.0 Programmer’s Reference are regarded as the definitive guides to these languages. Michael
runs his own company, Saxonica, which develops the Saxon technology and provides support and con-
sultancy for XSLT and XQuery users. His background is as a software designer creating database prod-
ucts for a mainframe manufacturer. He is a Fellow of the British Computer Society and a Visiting Fellow
at the University of Reading (UK). In his spare time he sings and plays croquet.

01_777779 ffirs.qxp 3/1/07 11:41 PM Page v

vi

About the Authors

Alessandro Vernet co-founded Orbeon in 1999, which makes Orbeon Forms, an open source product to
build and deploy sophisticated forms on the Web. He is one of the authors of Professional Web 2.0
Programming and is a member of two W3C Working Groups: the XForms and XML Processing
Model Working Groups. Before co-founding Orbeon, Alessandro was at Symantec as part of the
VisualCafé team, working on their next-generation RAD for web applications. He holds an MS/CS from
the Swiss Institute of Technology (EPFL) in Lausanne, Switzerland, and since 1998 lives in the incredibly
energetic Silicon Valley.

Sam Ferguson is a Project Manager with API Software, a Microsoft Gold Certified Partner, based in
Glasgow, Scotland. Sam, who lives in Ayrshire, specializes in SQL Server, Microsoft Office Server System
2007, .NET, and all XML-related technologies. In what little spare time he has, Sam enjoys playing golf
and is an avid fan of the Glasgow Rangers.

01_777779 ffirs.qxp 3/1/07 11:41 PM Page vi

Acknowledgments

This book, like most, took an entire team to get out the door. First and foremost, I would like to thank
Jim Minatel for providing me the opportunity to write this book. Big thanks go to Sydney Jones, the
book’s development editor who kept this book together despite numerous delays.

Thanks to my family for putting up with this second job. I love you all greatly.—Bill Evjen

01_777779 ffirs.qxp 3/1/07 11:41 PM Page vii

01_777779 ffirs.qxp 3/1/07 11:41 PM Page viii

Contents

Acknowledgments vii
Introduction xxiii

PPaarrtt II:: XXMMLL BBaassiiccss 11

Chapter 1: XML Syntax 3

The Purpose of XML 3
XML Syntax and Rules 6

XML Parsers 7
XML Elements and Tags 7
XML Text 12
The XML Document 17
Attributes 26

XML Namespaces 29
Summary 32

Chapter 2: XML Editors 33

Visual Studio .NET 2003 33
Basic Editing in Visual Studio .NET 2003 34
Schema Development in Visual Studio .NET 2003 35
Other Features 35

Visual Studio 2005 35
Basic Editing in Visual Studio 2005 35
Schema Development in Visual Studio 2005 38
XSLT Development in Visual Studio 2005 38

Altova XMLSpy 2006 39
Basic Editing in Altova XMLSpy 2006 40
Schema Development in XMLSpy 44
XSLT Development in XMLSpy 46
Other Features in XMLSpy 46

02_777779 ftoc.qxp 3/1/07 11:41 PM Page ix

x

Contents

Stylus Studio 2006 47
Basic Editing in Stylus Studio 2006 47
Schema Development in Stylus Studio 2006 50
XSLT Development in Stylus Studio 51
Other Features in Stylus Studio 54

Oxygen XML Editor 6.2 55
Basic Editing in Oxygen XML Editor 6.2 55
Schema Development in Oxygen XML Editor 6.2 57
Converting between Schema Types in Oxygen XML Editor 6.2 58
XSLT Development in Oxygen XML Editor 6.2 60
Other Features in Oxygen XML Editor 6.2 61

Other XML Tools 62
Summary 63

PPaarrtt IIII:: PPrreesseennttaattiioonn 6655

Chapter 3: XHTML and CSS 67

Understanding XHTML 67
The Evolution of Markup 67
The Basics of XHTML 68
Validating XHTML 69

Understanding CSS 81
Basics of CSS 81
CSS Examples 88
Validating CSS 94

Using Microformats 94
Elemental Microformats 95
Compound Microformats 96

Summary 99
Resources 100

Chapter 4: XSL-FO 101

The Composition of XSL 102
XSL-FO Overview 103

Page Templates 105
fo:simple-page-master 105

XSL-FO Basics 108
Hello World for XSL-FO 109
Basic Formatting 111
A Working Example 117

Summary 131

02_777779 ftoc.qxp 3/1/07 11:41 PM Page x

xi

Contents

PPaarrtt IIIIII:: DDeeffiinniinngg SSttrruuccttuurree 113333

Chapter 5: Document Type Definitions (DTDs) 135

Why Document Type Definitions? 135
Internal DTDs 138
External DTDs 140
Building Your Own DTD 142

Document Type Declaration 144
Element Declarations 147
Attribute Declarations 158
Entity Declarations 163
Notation Declarations 165

Using XML Tools to Create the DTD 166
DTD Validation 166
Summary 167

Chapter 6: XML Schemas 169

The Issues with DTDs 169
Building the Root XML Schema Document 171

The XML Declaration 172
The Root Element 172

Declaring Elements 176
Simple Types 176
Complex Types 180
Element Types 184
Groups and Choices 189
Element Restrictions 192
Defining Attributes 198

Putting XML Schema Document Together 203
<import> 203
<include> 204

Commenting XML Schemas 205
Standard XML Comments 205
<annotation > 206

XML Schema Tools 207
Microsoft’s Visual Studio 2005 207
Altova’s XMLSpy 209

Summary 210

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xi

xii

Contents

Chapter 7: RELAX NG 211

Why Another Schema Language? 211
Defining a RELAX NG Schema 212
Declaring Elements 214

Simple Elements 214
Attributes 219
Order of Elements 220
Defining Grammar 223
Reusing Types 224
Merging Schemas 226
Namespaces and Name Classes 229
Annotating Schemas 231

RELAX NG Tools 232
Oxygen 232
Trang 233

RELAX NG Compact 236
Summary 238
Resources 238

PPaarrtt IIVV:: XXMMLL aass DDaattaa 223399

Chapter 8: XSLT 241

What Is XSLT? 241
XSLT Syntax 242

Required Items 242
Templates 247
Retrieving Values 248
Conditional Processing 251
Looping 252
Variables and Parameters 255
Other Functions and Expressions 256
Extending XSLT 257

Executing XSLT 258
Executing XSLT at the Command-line 258
Executing XSLT via Code 259
Executing XSLT in a Browser 262

Changes with XSLT 2.0 263
Generating Output with XSLT 268

Generating HTML with XSLT 268
Converting between XML Syntaxes with XSLT 272

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xii

xiii

Contents

Debugging XSLT 274
Summary 276
Resources 276

Chapter 9: XPath 277

Major Features of XPath 277
Nodes 278
Tree Structure 278
Path Expressions 279
Predicates 279
Axes 281
Sequences 282

Lessons from the Trenches 282
When A != B Is Different from not(A = B) 282
The Many Faces of a Document 283
Tuning Your XPath Expressions 284
Function Calls in Path Expressions 285
Using Comments and Nested Comments 286
Using Regular Expressions 287
The unordered() Function: Quite an Oddity 288
Union and Sequence Operators 289
//h1[1] Different Than (//h1)[1] 289
Reverse Axis — Evil at Times 291
Debugging with trace() 292

XPath in Java, .NET, and PHP 293
XPath in Java 293
XPath on .NET 295
XPath in PHP 296

Tools for XPath 296
Online XPath Sandbox 296
XPath in Your Browser 297
XML Editors 299
Eclipse and IntelliJ 300

Summary 300
References 301

Chapter 10: XQuery 303

What Is XQuery? 303
XQuery Use Cases 304
Advantages of XQuery 304
Structure of an XQuery Expression 304

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xiii

xiv

Contents

A Simple XQuery Example 305
Enclosed Expressions 306
FLWOR Expressions 306

A Simple FLWOR Expression 307
An In-Depth Look at FLWOR Expressions 308
FLWOR Expressions Versus XPath Expressions 310

XQuery Functions 311
XQuery Built-In Functions 311
XQuery User-Defined Functions 313

XQuery in Java 314
Pre-requisites 314
Selecting XML with XQuery 314

XQuery in Relational Databases 318
XQuery in SQL Server 2005 318
XML Data Type Query and Data Modification 319

Summary 322

Chapter 11: XML in the Data Tier 323

XML and Databases 323
Retrieving Data as XML 323
Storing XML 324

Relational Databases 325
Microsoft SQL Server 2005 325
Oracle 10g 340

XML Databases 345
Xindice 345

Other Databases 349
Summary 349
Resources 350

PPaarrtt VV:: PPrrooggrraammmmiinngg XXMMLL 335511

Chapter 12: XML Document Object Model (DOM) 353

What Is DOM? 353
Why Client-Side XML Processing? 354
XML DOM Object Model 354
Using the Document Interface 357
Loading an XML Document 358
Using the Element Interface 360
Creating a New Element 361

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xiv

xv

Contents

Using the Node Interface 361
Using the NodeList Interface 365
Using the NamedNodeMap Interface 366
Using the Attr Interface 366
Creating Attributes 367
Using the CharacterData Interface 368
Using the Comment Interface 369
Using the Text Interface 369
Using the CDATASection Interface 369
Handling Errors in XML DOM 370
XML Transformation Using XSL 371

XML Validation Using XML DOM 373
Summary 376

Chapter 13: Simple API for XML (SAX) 377

Introducing XML Parsing 377
Tree-Based APIs 378
A Simple API for XML (SAX) 378
Installing SAX 378

SAX Architecture 380
Basic SAX Application Flow 380

SAX Packages and Classes 381
The SAXParser Class 381
The XMLReader Interface 382
Receiving SAX Events 382
Using the XMLReader Interface 384
DefaultHandler Class 385
Handling Errors and Warnings 392

Searching in an XML File 393
Writing XML Contents Using SAX 396
XML Validation Using SAX 399
Advantages and Disadvantages of SAX 403
Summary 403

Chapter 14: Ajax 405

Adding JavaScript to a Web Page 406
Data Types in JavaScript 407

XMLHttpRequest 410
The DOM 415

Objects in the DOM 416
Events in the DOM 417

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xv

xvi

Contents

Putting It All Together 418
Ajax Libraries 427

Using the Microsoft AJAX Library to Add Ajax Functionality 428
Using Prototype to Add Ajax Functionality 432

Ajax Resources 434
Summary 434

Chapter 15: XML and .NET 435

The Serialization of XML 435
Serializing Using the XmlSerializer Class 436
Changing the Output of the Serialized Object 438

Deserializing XML 444
XmlWriter 447

Writing XML Using XmlTextWriter 447
Writing XML Using XmlWriter 450
Writing XML Programmatically Using XmlWriter 452

XmlReader 454
Reading XML with a Schema Validation 457
Casting XML Types to .NET-Compliant Types 459

Reading XML Using XPathDocument 460
XML in ASP.NET 2.0 461

The XmlDataSource Server Control 462
The XmlDataSource Control’s Namespace Problem 466
The Xml Server Control 467

Summary 469

Chapter 16: XML and Java 471

Reading and Writing XML 472
Parsing from Java 472
Writing XML (Serialization) 477

XML Tree Models 480
Alternatives to DOM 481
Java/XML Data Binding 486
Controlling XSLT, XQuery, and XPath Processing from Java 491

Summary 500

Chapter 17: Dynamic Languages and XML 501

Perl 502
Reading and Writing XML 502
Support for Other XML Formats 509

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xvi

xvii

Contents

Python 509
Reading and Writing XML 510
Support for Other XML Formats 516

Ruby 516
Reading and Writing XML 517
Support for Other XML Formats 526

Summary 526
Resources 527

Perl Resources 527
Python Resources 527
Ruby Resources 527

PPaarrtt VVII:: XXMMLL SSeerrvviicceess 552299

Chapter 18: RSS and Atom 531

What Is RSS? 532
Specifications 535

RSS 2.0 535
RSS 1.0 540

What Is Atom? 543
Reading RSS and Atom 548

Reading with .NET 550
Reading RSS with Java 556

Writing RSS and Atom 559
Writing with .NET 559
Writing with Java 560
Class Libraries Available for Processing RSS and Atom 562

Summary 563
Resources 563

Chapter 19: Web Services 565

Why Web Services? 565
The Composition of Web Services 567

Representing and Communicating Data in Web Services 568
Describing Web Services 568
Discovering Web Services 570

Building Web Services with C# 571
Using the Microsoft Web Services Test Page 575
Testing the WebMethod 576
Altering the Protocols Used by the Web Service 578

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xvii

xviii

Contents

Building Web Services with Java 579
Introduction to Axis and Tomcat 580
Setting Up Axis and Tomcat 580
Publishing Web Services Using Axis 582

Consuming Web Services with C# 587
Consuming Web Services Using ASP.NET 587
Consuming Web Services Using Windows Forms 591

Consuming Web Services with Java 594
Consuming the HelloWorld Service 594
Running the Client Application 596
Consuming the ProductService 597
Running the Client Application 599

Caching Web Services 599
Asynchronous Consumption of Web Services 601

Building a Slow Web Service 602
Consuming the TakeLongTime() WebMethod Asynchronously 603

Summary 605

Chapter 20: SOAP and WSDL 607

SOAP Speak 607
The Basics of SOAP 608

Remember: SOAP Is XML! 609
Transport Protocols for SOAP 609

Looking Closely at the SOAP Specification 610
The SOAP Message 610
The SOAP Envelope 611
The SOAP Body 612
The SOAP Header 614
SOAP 1.1 Faults 617
SOAP 1.2 Faults 619
SOAP Encoding of Data Types 621

Tracing SOAP Messages 621
The Microsoft Trace Utility 622
XMLSpy’s SOAP Debugging 624

Working with SOAP Headers 629
Creating SOAP Messages Using SOAP Headers 630
Consuming SOAP Messages Using SOAP Headers 631

Defining Web Services Using WSDL 633
The Structure of WSDL Documents 637
<definitions> 638

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xviii

xix

Contents

<types> 640
<message> 641
<portType> 642
<binding> 643
<service> 645
<import> 645
<documentation> 647

Summary 648

Chapter 21: Advanced Web Services 649

Expanding on a Foundation 649
Web Services Framework — The Paper 650

Message Envelope and Controlled Extensibility 650
Binary Attachments 650
Message Exchange aka Routing 650
Message Correlation 651
Guaranteed Message Exchange 651
Digital Signature 651
Encryption 651
Transactions and Activities 651
Service Description 651
Process Flow Contract Description 651
Inspection 651
Discovery 652

WS-I.org 652
Extending XML Web Services 653

SOAP Basics 653
SOAP Headers 655
SOAP Extensions 655

WS-* Specifications 656
WS-Security 657
WS-Addressing 657
WS-Attachments 658
WS-Coordination 658
WS-MetadataExchange 658
Core Specifications 659

Looking at Microsoft’s Web Services Enhancements 3.0 663
The WSE 1.0 Contents 664
The WSE 2.0 Contents 664
The WSE 3.0 Contents 664

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xix

xx

Contents

Functionality Provided by the WSE 664
How the WSE Works 665
Building a WSE 3.0 Example — The Server 666
Building a WSE 3.0 Example — The Client Application 676
The Result of the Exchange 679

Summary 681

Chapter 22: REST 683

Introducing the Basics of REST 683
Pure REST 683
Just-enough REST 684

Accessing REST Services 685
Accessing REST Service Examples 685

Creating REST Services 700
Just-enough REST Service Example 700
A Pure REST Service Example 713

Summary 717
Resources 718

PPaarrtt VVIIII:: AAppppllyyiinngg XXMMLL 771199

Chapter 23: XML Form Development 721

Creating Forms 721
XForms Model 722
Binding Instance Data 737
XForms Submit Protocol 741

XForms Logic 743
Events 743
Actions 744

XForms Sample 745
Alternatives to XForms 750

Microsoft InfoPath 750
Comparing XForms and InfoPath 754

Summary 755
Resources 755

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xx

xxi

Contents

Chapter 24: The Resource Description Framework (RDF) 757

The Core Structure of RDF 757
The RDF Graph Model 760
Using Altova’s SemanticWorks 762
The RDF XML Schema 769
Summary 771

Chapter 25: XML in Office Development 773

Using XML with Microsoft Excel 773
Using XML with Microsoft Word 782
Using XML in Other Office Applications 792

Microsoft Access 792
Microsoft InfoPath 798

Office 2007 — Open XML Format 799
OpenOffice — The Open Document Format 802
Summary 805
Resources 806

Chapter 26: XAML 807

Thin or Thick? 808
One More Application Style — Windows Presentation Foundation 809

WPF Within Visual Studio 2005 812
Nesting Controls 812
Case Study: Building a Document Viewer Using XAML 815

Summary 829

Index 831

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xxi

02_777779 ftoc.qxp 3/1/07 11:41 PM Page xxii

II nn tt rr oodduucc tt ii oonn

As many people predicted, XML has changed the world! When XML was introduced, many considered
it a revolutionary leap forward in how we look at data representation. Since then, XML has grown con-
siderably and many new technologies have been introduced. The number of new technologies based
upon XML is staggering. From Web services, to blogging, to alerts and notifications—there is so much
coming out today completely based upon this technology.

This book covers not just the basics of XML and the XML specification, but it also takes a look at the
technologies based on XML that are driving the tech industry forward. This book not only introduces
these technologies to you, but it also shows you examples of these new technologies in action. So sit
back, pull up that keyboard, and let’s have some fun!

What You Need for This Book
This book is vendor agnostic as XML can be utilized on any major operating system out there. But this
book is also about various technologies that are based upon XML, and for this reason, you will some-
times need specific vendor tools to complete the examples provided in the chapters. In these cases, the
locations of the tools or technologies and where you can acquire them are called out in the chapter.

You will find that this book focuses on both Microsoft- and Java-based technologies, and therefore, you
are sometimes asked to work with that vendor’s specific development tools and environments to com-
plete the examples.

Who Should Read This Book?
This book was written to provide you with the latest and greatest information on XML, and to look at
the new technologies and capabilities being built on XML today. We assume you have a general under-
standing of programming technologies, such as C# or Java. If you understand the basics of these pro-
gramming languages, then you shouldn’t have much trouble following along with this book’s content.

If you are brand new to XML, be sure to check out Beginning XML by David Hunter and others (pub-
lished by Wrox; ISBN: 978-0-7645-7077-3) to help you understand the basics.

You may also be wondering whether this book is focused on the Microsoft developer or the Java devel-
oper. We’re happy to say that it’s for both! You will find that there are chapters focused on each of these
programming technologies.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxiii

xxiv

Introduction

What This Book Covers
This book spends its time reviewing the big changes that have occurred in the 2.0 release of ASP.NET.
Each major new feature included in ASP.NET 2.0 is covered in detail. The following list tells you some-
thing about the content of each chapter.

❑ Chapter 1, “XML Syntax.” This first chapter gives a good grounding in the XML specification.
This chapter looks at the reasoning to include XML and its related technologies within an appli-
cation’s architecture. In addition to this introduction, this chapter will also look at the syntacti-
cal rules of the XML markup language.

❑ Chapter 2, “XML Editors.” This chapter takes a look at the XML tools that can be used for work-
ing with XML and its related technologies. These are also tools used in the chapters throughout
the book. This chapter introduces you to the various tools out there, where they can be found, as
well as some basics for working with them.

❑ Chapter 3, “XHTML and CSS.” The next set of chapters looks at presenting XML and XML-
based presentation technologies. This first chapter focuses on the popular XHTML specification
and how it can be used to present content within a browser. In continuing on with the presenta-
tion theme, this chapter looks at how to present XML documents visually in a browser using
Cascading Style Sheets.

❑ Chapter 4, “XSL-FO.” This chapter takes a look at presenting XML using an XML-based presen-
tation markup language—Extensible Stylesheet Language Formatting Objects (XSL-FO), also
known as simply XSL.

❑ Chapter 5, “Document Type Definitions (DTDs).” This chapter takes a look at defining an
XML structure using DTDs which have been around for quite awhile. Though it is preferred to
use XML Schema today, DTDs should still be understood as developers may encounter legacy
XML documents.

❑ Chapter 6, “XML Schemas.” XML Schemas are the latest and most preferred way to define the
structure and data types of an XML document. This is an important topic to understand as it is
referenced throughout the book. This chapter takes a deep look into XML Schemas and how to
build them.

❑ Chapter 7, “RELAX NG.” RELAX NG is a new XML specification that allows you to validate an
XML structure as well as make a link to datatype libraries. This standard was born to simplify
what was perceived as difficult and complicated about XML Schema. This chapter looks at how
to work with RELAX NG.

❑ Chapter 8, “XSLT.” This chapter looks at transforming XML documents in a multitude of ways
using XSLT. Starting with the basics of XSLT, this chapter gives you an understanding of how
and when to use this technology.

❑ Chapter 9, “XPath.” XPath allows for the searching and manipulation of particular subsets of an
XML document. This chapter takes a look at this popular technology and will focus on the latest
release of XPath—version 2.0.

❑ Chapter 10, “XQuery.” XQuery is another search and manipulation technology that often com-
petes with XPath. This chapter takes a look at XQuery and what makes it different than XPath.
By the end of chapters 9 and 10, you should have a good understanding of both XPath and
XQuery and when to use which technology.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxiv

xxv

Introduction

❑ Chapter 11, “XML in the Data Tier.” In the continuing look at XML as data, this chapter focuses
on the use of XML in the data tier. With focuses on Microsoft’s SQL Server 200 and SQL Server
2005, as well as Oracle, MySQL, and more, this chapter shows what XML capabilities there are
for working with the various data storage technologies.

❑ Chapter 12, “XML Document Object Model (DOM).” This chapter will take a look at using
the XML-DOM to program your XML documents. Included in this chapter is an introduction
to the XML Document Object Model as well as information about how to parse XML using the
XML-DOM.

❑ Chapter 13, “Simple API for XML (SAX).” Another method to use to program your XML docu-
ments is through the use of SAX. By the end of this chapter, you should understand the differ-
ences between working with the XML-DOM and SAX and when to use which technology.

❑ Chapter 14, “Ajax.” One of the more talked about programming technologies of 2005 and 2006
has been programming using XMLHTTP, also known as Ajax. Google has made this program-
ming style popular through its use in various Google applications; the use of this asynchronous
JavaScript and XML programming technique is now a sought after feature. This chapter takes a
look at XMLHTTP and how to use this object to build truly unique applications.

❑ Chapter 15, “XML and .NET.” This chapter takes a look at using the System.Xml namespace
and other XML capabilities that are provided with Microsoft’s .NET Framework. Also covered is
XML in the Microsoft development space and reading and writing XML using the classes pro-
vided via the .NET Framework 2.0.

❑ Chapter 16, “XML and Java.” This chapter takes a look at using XML with the Java language
and what XML documents can do within a Java application environment.

❑ Chapter 17, “Dynamic Languages and XML.” This chapter takes a look at how to use XML
with a PHP application. Also reviewed will be XML with Perl and Ruby.

❑ Chapter 18, “RSS and Atom.” One big use of XML as of late has been in regards to content
syndication. Both RSS and Atom (competing standards) offer the ability to expose content for
aggregation purposes. This chapter takes a close look at both of these technologies and how
they can be effectively used.

❑ Chapter 19, “Web Services.” Getting beyond the hype, this chapter takes an introductory look
at Web services and what it actually means to expose content and logic as SOAP in this dis-
parate world.

❑ Chapter 20, “SOAP and WSDL.” Digging deeper into Web services, this chapter takes a look at
the main specification in the Web services world—SOAP. This chapter will focus on SOAP docu-
ments including looking at SOAP headers and SOAP faults. Furthering the discussion around
SOAP-based Web services, this chapter looks at the WSDL and UDDI specifications. WSDL is
used to define a SOAP interface, whereas UDDI is used to locate services. Both of these specifi-
cations will be discussed in detail.

❑ Chapter 21, “Advanced Web Services.” This chapter takes a look at these advanced specifica-
tions and what they do for your Web services. In addition to examining the specifications, this
chapter also describes implementing these specifications in your applications today.

❑ Chapter 22, “REST.” REST, a competing standard to SOAP, is heavily used in the UNIX world.
In fact, companies such as Amazon have seen considerable success in using REST compared
to using SOAP. This chapter will take a look at exposing data and services using “the other”
standard.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxv

xxvi

Introduction

❑ Chapter 23, “XML Form Development.” Forms, as popular as they are on the Web, can now be
defined using XForms. This chapter takes a close look at XForms and how it can be used, along
with other XML-based technologies, to produce various types of forms.

❑ Chapter 24, “The Resource Description Framework (RDF).” The RDF specification allows for
the relation of metadata to presentation content. RDF is a framework for describing and inter-
changing metadata and is introduced in this chapter as well as demonstrated through some
examples.

❑ Chapter 25, “XML in Office Development.” This chapter takes a close look at using XML in
Office development with a particular focus on Microsoft Office.

❑ Chapter 26, “XAML.” This chapter takes a look at XAML—the new way Microsoft is promoting
the presentation of a GUI. XAML provides for presentation that is fluid and enriching. This
chapter takes a look at the basics of XAML and how to build some basic XAML applications.

Conventions
This book uses a number of different styles of text and layout to help differentiate among various types
of information. Here are examples of the styles used and an explanation of what they mean:

❑ New words being defined are shown in italics.

❑ Keys that you press on the keyboard, such as Ctrl and Enter, are shown in initial caps and
spelled as they appear on the keyboard.

❑ File and folder names, file extensions, URLs, and code that appear in regular paragraph text are
shown in a monospaced typeface.

When we show a block of code that you can type as a program and run, it’s shown on separate lines,
like this:

<?xml version=”1.0” encoding=”UTF-8” ?>
<Employee>

<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>
<JobTitle>Technical Architect</JobTitle>
<Company>Lipper</Company>
<StartDate>10/04/2001</StartDate>
<WorkLocation>St. Louis, Missouri</WorkLocation>
<NumberOfDependents>3</NumberOfDependents>

</Employee>

or like this:

<?xml version=”1.0” encoding=”UTF-8” ?>
<Employee>

<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>
<JobTitle>Technical Architect</JobTitle>
<Company>Lipper</Company>
<StartDate>10/04/2001</StartDate>

03_777779 flast.qxp 3/1/07 11:42 PM Page xxvi

xxvii

Introduction

<WorkLocation>St. Louis, Missouri</WorkLocation>
<NumberOfDependents>3</NumberOfDependents>

</Employee>

Sometimes you see code in a mixture of styles, like this:

<?xml version=”1.0” encoding=”UTF-8” ?>
<Employee>

<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>
<JobTitle>Technical Architect</JobTitle>
<Company>Lipper</Company>
<StartDate>10/04/2001</StartDate>
<WorkLocation>St. Louis, Missouri</WorkLocation>
<NumberOfDependents>3</NumberOfDependents>

</Employee>

When mixed code is shown like this, the code with no background represents code that has been shown
previously and that you don’t need to examine further. Code with the gray background is what you
should focus on in the current example.

We demonstrate the syntactical usage of methods, properties, and so on using the following format:

<?[target] [data]?>

Here, the italicized parts indicate placeholder text: object references, variables, or parameter values that
you need to insert.

Most of the code examples throughout the book are presented as numbered listings that have descriptive
titles, like this:

LLiissttiinngg 11--88:: CCrreeaattiinngg aann XXMMLL ffiillee

Each listing is numbered (for example: 1-8) where the first number represents the chapter number and
the number following the hyphen represents a sequential number that indicates where that listing falls
within the chapter. Downloadable code from the Wrox Web site (www.wrox.com) also uses this number-
ing system so that you can easily locate the examples you are looking for.

Source Code
As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code files that accompany the book. All the source code used in this book is available
for download at www.wrox.com. When you get to the site, simply locate the book’s title (either by using
the Search box or one of the topic lists) and click the Download Code link. You can then choose to down-
load all the code from the book in one large zip file or download just the code you need for a particular
chapter.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-77777-9.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxvii

xxviii

Introduction

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books. Remember, you can easily find the code
you are looking for by referencing the listing number of the code example from the book, such as
“Listing 1-8.” We used these listing numbers when naming the downloadable code files.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful if you’d tell us about it. By sending in errata, you may spare
another reader hours of frustration; at the same time, you are helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that have been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error already on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and technologies and to interact with other readers
and technology users. The forums offer a subscription feature that enables you to receive e-mail on top-
ics of interest when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are represented in these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Supply the information required to join, as well as any optional information you want to
provide, and click Submit.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxviii

xxix

Introduction

You will receive an e-mail with information describing how to verify your account and complete the
joining process.

You can read messages in the forums without joining P2P, but you must join in order to post messages.

After you join, you can post new messages and respond to other users’ posts. You can read messages at
any time on the Web. If you would like to have new messages from a particular forum e-mailed to you,
click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how the forum software works, as well as answers to many common ques-
tions specific to P2P and Wrox books, be sure to read the P2P FAQs. Simply click the FAQ link on any
P2P page.

03_777779 flast.qxp 3/1/07 11:42 PM Page xxix

03_777779 flast.qxp 3/1/07 11:42 PM Page xxx

Part I

XXMMLL BBaass ii cc ss

Chapter 1: XML Syntax

Chapter 2: XML Editors

04_777779 pt01.qxp 3/1/07 11:42 PM Page 1

04_777779 pt01.qxp 3/1/07 11:42 PM Page 2

XX MM LL SS yy nn tt aa xx

Extensible Markup Language (XML) is now in widespread use. Many applications on the Internet or
residing on individual computers use some form of XML to run or manage the processes of an
application. Earlier books about XML commented that XML was to be the “next big thing.” Now, it
is “the big thing.” In fact, there really isn’t anything bigger.

For this reason, you want to understand XML and its various applications. This book focuses on
some of the more common ways to apply XML to the work you are doing today. Whether you
need Web services, searching, or application configuration, you can find immediate uses for XML.
This book shows you how to apply this markup language to your work.

This first chapter looks at the basics of XML, why it exists, and what makes it so powerful. Finally,
this chapter deals with XML namespaces and how to properly apply them to XML instance docu-
ments. If you are already pretty familiar with the basics of XML, feel free to skim this chapter
before proceeding.

The Purpose of XML
Before you actually get into the basics of XML, you should understand why this markup language
is one of the most talked about things in computing today. To do this, look back in time a bit.

During the days of mainframes, information technology might have seemed complicated, but it
actually got a heck of a lot more complicated when we moved from the mainframes and started
working in a client-server model. Now the users were accessing information remotely instead of
sitting at the same machine where the data and logic were actually stored. This caused all sorts of
problems — mainly involving how to visually represent data that was stored on larger mainframes
to remote clients. Another problem was application-to-application communication. How was one
application sitting on one computer going to access data or logic residing on an entirely different
computer?

05_777779 ch01.qxp 3/1/07 11:42 PM Page 3

Two problems had to be resolved. One dealt with computer-to-human communications of data and
logic; another dealt with application-to-application communications. This is illustrated in Figure 1-1.

Figure 1-1

The first problem of computer-to-human communication of data and logic was really solved in a large
way with the advent of HTML (also known as HyperText Markup Language). This markup language pack-
aged data and logic in a way that allowed users to view it via applications specifically designed to pre-
sent it (the birth of the browser as we know it). Now with HTML and browser applications in place, end
users could work through data and logic remotely without too much of a problem.

With that said, it really isn’t all about humans is it? There was also a need for other servers, processes,
applications, and whatnot to access and act upon data and logic stored elsewhere on a network or across
the planet. This created a pursuit to find the best way of moving this data and logic from point A to
point B.

End user consumerMain server

Consuming server

End user consumer

4

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 4

It was a tough task. The varying sources of data were often not compatible with the platform where the
data was to be served up. A common way to structure and represent the data was needed. Of course,
many solutions were proposed — some of which were pretty exciting.

The idea was to mark up a document in a manner that enabled the document to be understood across
working boundaries. Many systems existed to mark up documents so that other applications could eas-
ily understand them. Applying markup to a document means adding descriptive text around items con-
tained in the document so that another application or another instance of an application can decipher
the contents of the document.

For instance, Microsoft Word provides markup around the contents of document. What markup is really
needed? Well, as you type words into Microsoft Word, you are also providing data to be housed in the
document. The reason you don’t simply use Microsoft Notepad is that Word gives you the extra capabil-
ity to change the way in which the data is represented. What this really means is that you can apply
metadata around the data points contained in the document. For instance, you can specify whether a
word, paragraph, or page is bolded, italicized, or underlined. You can specify the size of the text and the
color. You can actually alter the data quite a bit. Word takes your instructions and applies a markup lan-
guage around the data.

Like Word, XML uses markup to provide metadata around data points contained within the document
to further define the data element. XML provides such an easy means of creating and presenting markup
that it has become the most popular way to apply metadata to data.

In its short lifetime, XML has become the standard for data representation. XML came into its own when
the W3C (The World Wide Web Consortium) realized that it needed a markup language to represent data
that could be used and consumed regardless of the platform. When XML was created in 1998, it was
quickly hailed as the solution for data transfer and data representation across varying systems.

In the past, one way to represent data was to place the data within a comma-, tab-, or pipe-delimited text
file. Listing 1-1 shows an example of this:

Listing 1-1: An example of a pipe-delimited data representation

Bill|Evjen|Technical Architect|Lipper|10/04/2001|St. Louis, Missouri|3

These kinds of data representations are in use today. The individual pieces of data are separated by
pipes, commas, tabs, or any other characters. Looking at this collection of items, it is hard to tell what the
data represents. You might be able to get a better idea based on the file name, but the meaning of the
date and the number 3 is not that evident.

On the other hand, XML relates data in a self-describing manner so that any user, technical or otherwise,
can decipher the data. Listing 1-2 shows how the same piece of data is represented using XML.

Listing 1-2: Representing the data in an XML document

<?xml version=”1.0” encoding=”UTF-8” ?>
<Employee>

<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>

(continued)

5

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 5

Listing 1-2 (continued)

<JobTitle>Technical Architect</JobTitle>
<Company>Lipper</Company>
<StartDate>10/04/2001</StartDate>
<WorkLocation>St. Louis, Missouri</WorkLocation>
<NumberOfDependents>3</NumberOfDependents>

</Employee>

You can now tell, by just looking at the data in the file, what the data items mean and how they relate to
one another. The data is laid out in such a simple format that is quite possible for even a non-technical
person to understand the data. You can also have a computer process work with the data in an auto-
matic fashion.

When you look at this XML file, you may notice how similar XML is to HTML. Both markup languages
are related, but HTML is used to mark up text for presentation purposes whereas XML is used to mark
up text for data representation purposes.

Both XML and HTML have their roots in the Standard Generalized Markup Language (SGML), which
was created in 1986. SGML is a complex markup language that was also used for data representation.
With the explosion of the Internet, however, the W3C realized that it needed a universal way to repre-
sent data that would be easier to use than SGML. That realization brought forth XML.

XML has a distinct advantage over other forms of data representation. The following list represents
some of the reasons XML has become as popular as it is today:

❑ XML is easy to understand and read.

❑ A large number of platforms support XML and are able to manage it through an even larger set
of tools available for XML data reading, writing, and manipulation.

❑ XML can be used across open standards that are available today

❑ XML allows developers to create their own data definitions and models of representation.

❑ Because a large number of XML tools are available, XML is simpler to use than binary formats
when you want to represent complex data structures.

XML Syntax and Rules
Building an XML document properly means that you have to follow specific rules that have been estab-
lished for the structure of the document. These rules of XML are defined by the XML specification found
at w3.org/TR/REC-xml. If you have an XML document that follows the rules diligently, it is a well-
formed XML document.

You want to make sure that the rules are followed closely because if the rules defined in the XML specifi-
cation are observed, you can use various XML processors (or parsers) to work with your documents in an
automatic fashion.

6

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 6

XML Parsers
You might not realize it, but you probably already have an XML parser on your computer. A number of
computer vendors have provided XML parsers and have even gone as far as to include these parsers in
applications that you use each and everyday. The following is a list of some of the main parsers.

❑ Microsoft’s Internet Explorer XML Parser — The most popular XML parser on the market is
actually embedded in the number-one browser on the market. Microsoft’s Internet Explorer
comes with a built-in XML parser — Microsoft’s XML Parser. Internet Explorer 5.5 comes with
Microsoft’s XML Parser 2.5 whereas Internet Explorer 6.0 comes with the XML Parser 3.0. This
parser includes a complete implementation of XSL Transformations (XSLT) and XML Path
Language (XPath) and incorporates some changes to work with Simple API for XML (SAX2).
You can get the XML Parser 3.0 via an Internet Explorer download, or you can download the
parser directly from microsoft.com/downloads/details.aspx?familyid=4A3AD088-
A893-4F0B-A932-5E024E74519F&displaylang=en

❑ Mozilla’s XML Parser (also the Firefox XML Parser) — Like Internet Explorer, Mozilla includes
support for XML parsing. Mozilla has the built-in capability to display XML with CSS.*

❑ Apache Xerces — This open source XML parser can be found online at http://xerces
.apache.org/ and comes under the Apache Software License. This parser is available for Java,
C++, and a Perl implementation that makes use of the C++ version. Apache Xerces was origi-
nally donated to Apache by IBM in 1999. Until 2004, Apache Xerces was a subproject of the
Apache XML Project found at http://xml.apache.org/.

❑ IBM’s XML Parser for Java — Also known as Xml4j, this parser has become the Apache Xerces2
Java Parser found at http://xerces.apache.org/xerces2-j/.

❑ Oracle XML Parser — Oracle provides XML parsers for Java, C, C++, and PL/SQL through its
Oracle XML Developer’s Kit 10g found at oracle.com/technology/tech/xml/xdkhome.html.

❑ Expat XML Parser — Written by James Clark, the tech-lead of the W3C’s XML activity that cre-
ated the XML 1.0 Specification, you can find the Expat parser as a SourceForge project found at
http://expat.sourceforge.net/. Expat is currently in version 2.0.

XML Elements and Tags
When reading and conversing about XML, you come across the terms element and tag quite often. What’s
the difference between the two? Many individuals and organizations incorrectly use these terms inter-
changeably. Each term has a distinct meaning.

An XML element is the means to provide metadata around text to give it further meaning. For instance,
you might be presented with the following bit of XML:

<City>Saint Charles</City>

In this case, the element is the entire item displayed. XML uses tags to surround text in order to provide
the appropriate metadata. Figure 1-2 shows the pieces of this bit of code.

7

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 7

Figure 1-2

From this, you can see that everything from the starting <City> to the ending </City> is the XML ele-
ment. An XML element is made up a start tag, which precedes the text to be defined, as well as an end
tag, which comes at the end of the text to be defined. In this case, the start tag is <City> and the end tag
is </City>.

Element Syntax
If there is text to be marked up with XML, then an XML element must contain start and end tags. XML is
very strict about its rules, and you must follow them just as strictly if you want to ensure that your XML
document is well-formed.

XML Elements Must Have a Start and End Tag
Unlike HTML, where you can bend the rules of the syntax utilized, XML requires a start and end tag if
an element contains any text. The following shows two XML elements together.

<City>Saint Charles</City>
<State>Missouri</State>

Naming Conventions for Elements
You can choose any name that suits your fancy for the elements of your XML document. With that said
however, certain rules do restrict the names that you can use for elements.

Element names must start with a letter from an alphabet of one of the languages of the world or an
underscore. You cannot start an element name with a number or a special character (such as !, @, #, $, %,
and so on).

Examples of improper naming of XML elements include the following:

❑ <123Industries></123Industries>

❑ <#Alpha></#Alpha>

❑ <!Yellow></!Yellow>

Element

<City>Saint Charles</City>

Tag TagText

8

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 8

Examples of well-formed XML elements include these:

<StLouisCardinals></StLouisCardinals>

<Item123></Item123>

<_Wowzer></_Wowzer>

<__></__>

Element names cannot contain spaces. This means that the following XML element name is improper
and not well-formed:

<Bill Evjen></Bill Evjen>

Element names cannot start with the word XML in any case. For example, the following element names
are improper and not well-formed:

<xml></xml>

<XML></XML>

<XmlLover></XmlLover>

<XML_Element1></XML_Element1>

After you have defined the first character of your XML element, you can subsequently use numbers,
periods, underscores, or hyphens. The following are examples of well-formed XML:

<St.Louis_Cardinals></St.Louis_Cardinals>

<Item1></Item1>

<Address-Present></Address-Present>

Immediately after the opening < and </ of the XML tags, you must start the element name. You cannot
have a space first. This means that the following XML element is improper:

< Item1></ Item>

Although a space is not allowed preceding the element name, you can have a space trailing the element
name before the closing of the tag. This use is illustrated in the following example:

<Item1 ></Item1 >

9

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 9

XML Elements Must Be Properly Nested
When XML documents contain more than one XML element (which they invariably do), you must prop-
erly nest the XML elements. You are required to open and close these elements in a logical order. When
looking at the preceding XML fragment, you can see that the <City> tag is closed with a </City> tag
before the <State> opening tag is utilized. The following fragment is not well-formed.

<City>Saint Charles
<State></City>Missouri</State>

However, you are not required to always close an element before starting another one. In fact, the oppo-
site is true. XML allows for a hierarchical view of the data that it represents. This means that you can
define child data of parent data directly in your XML documents; this enables you to show a relationship
between the data points.

<Location>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Location>

The indenting of the XML file is done for readability and is not required for a well-formed document.

This XML fragment starts with the opening XML element <Location>. Before the <Location> element
is closed however, three other XML elements are defined — thereby further defining the item. The
<Location> element here contains three subelements —<City>, <State>, and <Country>. Being
subelements, these items must also be closed properly before the <Location> element is closed with a
</Location> tag.

You can also continue the nesting of these elements so that they are aligned hierarchically as deep as you
wish. For instance, you can use the following structure for your nested XML fragment.

<Person>
<Name>Bill Evjen</Name>
<Location>

<City>Saint Charles</City>
<State>

<Name>Missouri</Name>
<StateCode>MO</StateCode>

</State>
<Country>USA</Country>

</Location>
</Person>

In this case, the <Person> element contains two child elements or subelements — <Name> and
<Location>. The <Name> element is a simple element, whereas the <Location> element is further
nested two more times with additional subelements.

10

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 10

Empty Elements
If the text or item you want to define in your XML document is null or not present for some reason, you
can represent this item through the use of an empty XML element. An empty XML element takes the fol-
lowing format:

<Age/>

In this case, the XML element is still present, but is represented as an empty value through a single XML
tag. When representing an empty element, you do not need an opening and closing tag, but instead just
a single tag which ends with />.

In addition to the empty element representation shown here, you can also have a space between the
word used to define the tag and the closing of the tag.

<Age />

In addition to using a single tag to represent an empty element, you can also use the standard start and
end tags with no text to represent an empty element. This is illustrated here:

<Person>
<Name>Bill Evjen</Name>
<Age></Age>
<Location>

<City>Saint Charles</City>
<State>

<Name>Missouri</Name>
<StateCode>MO</StateCode>

</State>
<Country>USA</Country>

</Location>
</Person>

Tag Syntax
Tags are defined using greater-than/less-than signs (<Tag>). A start tag has a textual name preceded
with a < and ending with a >. An end tag must have the same textual name as its start tag, but it is pre-
ceded by a </ as opposed to a <. The end tag is finalized with a > just as the start tag is.

The words you use for tag names are entirely up to you, but some basic rules govern how you build
tags. The first rule is that the case used for the start tag and the end tag must be the same. Therefore, the
<Location> tag is not the same as <location>. For instance, this is considered improper or malformed
XML:

<Country>USA</country>

Because XML is case-sensitive, the tags shown here are actually completely different tags and, therefore,
don’t match. For your XML to be well-formed, the XML tags must be of the same case.

<Country>USA</Country>

11

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 11

Because XML does understand case, you could, theoretically, have the following XML snippet in your
XML document:

<Name>Bill Evjen</Name>
<name>Bill</name>

Although completely legal, you shouldn’t actually implement this idea because it causes confusion and
can lead to some improper handling of your XML documents. Remember that you want to build XML
documents that are easily understandable by the programmers who will build programs that process
these documents.

XML Text
The text held within an XML element can be whatever you wish. The entire point of the XML document
is to hold information using XML elements as markup. Remember a few rules, however, when you are
representing content within your XML elements.

Text Length
You have no rules on the length of the text contained within your XML documents. This means that the
content can be of any length you deem necessary.

<Message>
This can go on and on and on and on and on and on and on and on and on and on
and on and on ...

</Message>

Content
You might think that the content of an XML element is just text for humans to read, but an XML element
really can contain just about anything. For instance, you can use binary code to represent an image or
other document and then stick this item in your XML document. This is illustrated here with a partial
element:

<base64Binary>/9j/4AAQSkZJRgABAAgEASABIAAD/7RNoGUGhvdG9ZaG9wIDMuMAA4QklNAAQBIAAAAAQ
ABOEJJTQQNAAAAAAEAAAAAeDhCSu0D8 ...
</base64Binary>

Spoken Languages
Of course, XML is for the world, and this means that you can write content in any language you want.
Here are some examples of proper XML:

<Message> </Message>

<Message>_ ______ __ ______ _____.</Message>

<Message>Estoy hablando otra lengua.</Message>

<Message> </Message>

12

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 12

When working with an XML file that contains a fragment such as this, notice that the XML parser has no
problem working with the content. See Figure 1-3.

Figure 1-3

Whitespace
Whitespace is a special character in its own right. Whitespace is the space, line feeds, tabs, and carriage
returns within your XML document. An example XML document containing various whitespace ele-
ments is presented here:

<Movies>
<Favorites>

<Title>Happy Gilmore</Title>
<Title>Grease</Title>
<Title>Lawrence

of
Arabia</Title>

<Title>Star Wars - The Empire Strikes Back</Title>
</Favorites>

</Movies>

HTML parsers do a good job of ignoring the whitespace contained within a document. In fact, in HTML,
if you want to force the HTML parsers to interpret the whitespace contained within an HTML document,
you have to put <pre> tags around the text.

XML works in the opposite manner. All whitespace is preserved in XML documents. This means that if
there are two spaces between two words, these spaces are maintained by any XML parser and, conse-
quently, they pass to the consuming application. The consuming application can choose whether to pro-
cess the whitespace. Certain applications or processes strip the whitespace from the document, and
others do not.

For example, Microsoft’s Internet Explorer receives whitespace from the XML document and then strips it
out in the consumption process. The previous XML document produces the results shown in Figure 1-4
when it is viewed in Internet Explorer.

13

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 13

Figure 1-4

Entity References
Although you can put about just anything in the text part of an XML element, some characters cannot be
contained as a value within an XML element. Take a look at the following code to see if you can tell
where a problem might occur.

Incorrect usage of text within an XML element
<Value>Do if 5 < 3</Value>

You should be able to tell right away that a processing error will occur because of the character directly
after the 5. The greater than sign is used to close an XML tag; but here it is used as a textual value within
an XML element, and so it will confuse the XML parser. In fact, if you run this in Internet Explorer,
you are presented with the error directly. See Figure 1-5.

Figure 1-5

14

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 14

You can see that a parsing error is automatically thrown because the XML parser thinks that the less than
sign is actually the start of the closing tag of the element. The space behind the character causes the
parser to throw an error because it sees a whitespace problem.

The trick is to encode this character so that the XML parser can treat it in the appropriate manner. Five
characters that cause an error and, therefore, must be encoded are shown in the following table with
their encoded values.

Character Entity

< <

> >

“ "

‘ '

& &

With this knowledge, you can now write the XML element as follows:

<Value>Do if 5 < 3</Value>

If you run this element in Internet Explorer, you get the correct output as presented in Figure 1-6.

Figure 1-6

The XML with the encoded character was passed to the XML parser used by Internet Explorer, and the
XSL stylesheet then converts the encoded character to the format in which it should be represented
visually.

15

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 15

CDATA Sections
One way to work with some of the character entities that XML parsers can’t easily interpret is to encode
the character.

<Value>Do if 5 < 3</Value>

When you have a lot of items that need this type of encoding (especially if you are representing computer
code within your XML document), you should check out the CDATA section capability found in XML.

Creating a CDATA section within the text value of your XML element allows you, with little work on
your part, to use as many difficult characters as you wish. Representing the previous code within a
CDATA section is accomplished in the following manner:

<Value><![CDATA[Do if 5 < 3]]></Value>

You can use this method to represent large content sets that might require a lot of escape sequences. This
method is shown in Listing 1-3.

Listing 1-3: Representing text using the CDATA section

<?xml version=”1.0” encoding=”UTF-8” ?>
<Value>

<![CDATA[
<script runat=”server”>
protected void DropDownList1_SelectedIndexChanged(object sender, EventArgs e)
{

string[] CarArray = new string[4] {“Ford”, “Honda”, “BMW”, “Dodge”};
string[] AirplaneArray = new string[3] {“Boeing 777”, “Boeing 747”,

“Boeing 737”};
string[] TrainArray = new string[3] {“Bullet Train”, “Amtrack”, “Tram”};

if (DropDownList1.SelectedValue == “Car”) {
DropDownList2.DataSource = CarArray; }

else if (DropDownList1.SelectedValue == “Airplane”) {
DropDownList2.DataSource = AirplaneArray; }

else {
DropDownList2.DataSource = TrainArray;

}

DropDownList2.DataBind();
DropDownList2.Visible = true;

}

protected void Button1_Click(object sender, EventArgs e)
{

Response.Write(“You selected ” +
DropDownList1.SelectedValue.ToString() + “: “ +
DropDownList2.SelectedValue.ToString() + “”);

}
</script>
]]>

</Value>

16

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 16

The start of the CDATA section is defined with <![CDATA[. After this entry, you can place as much text
as you wish. The XML parser looks for a closing]]> before ending the CDATA section. To make this
work, be careful that you don’t have this sequence of characters in your text. The previous XML docu-
ment displayed in IE is shown in Figure 1-7.

Figure 1-7

The XML Document
Now that you have studied the pieces that make up an XML document, you can turn your attention to
the entire XML document.

Creating an .xml File
Like all files, XML files have a file extension. In many cases, XML files have an .xml file extension, but
this is not the only one used. Certain XML files have their own file extensions. For instance, if you have
the .NET Framework installed on your computer, it includes many configuration files with a .config
file extension. If you look at one of these .config files within Microsoft’s Notepad, you see that they are
indeed XML files. (See Figure 1-8.)

XML file are created in a number of ways. Many outstanding tools are out there to help you with the
construction and creation of XML files. Tools such as Altova’s XMLSpy or Microsoft’s Visual Studio 2005
give you what you need to get the job done. Because this is the first XML file you are working with, this
example concentrates on building the XML file using Microsoft’s Notepad.

17

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 17

Figure 1-8

XML tools are covered in Chapter 2.

Now, open Notepad and type the XML shown in Listing 1-4.

Listing 1-4: Creating an XML file

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

18

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 18

After your have typed this small XML document into Notepad, save it as myXMLfile.xml. Make sure
you save it as presented in Figure 1-9.

Figure 1-9

Put the name of the file along with the file extension .xml in quotes within the Filename text box of the
Save As dialog. This ensures that the file won’t be saved with a .txt file extension. You also want to
change the encoding of the file from ANSI to UTF-8 because this is the format used for many XML files.
This enables any XML parsers to interpret a larger character base than otherwise.

After you do this, click the Save button and you can then double-click on the new .xml file. This opens
up in Internet Explorer if you are using a Windows operating system. You might be wondering why
Internet Explorer is the default container for XML files. You can actually manually change this yourself
by going into the Properties dialog of one of your XML files. Figure 1-10 shows the Properties dialog of
the newly created myXMLfile.xml.

From the Properties dialog, you can see in the first section that the Opens with property is set to Internet
Explorer. You can easily change the application used to open the file by clicking the Change button.

Internet Explorer produces the results presented in Figure 1-11.

19

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 19

Figure 1-10

Figure 1-11

You can see that XML files are color-coded for easy viewing. IE is using the Microsoft XML parser and
then applies an XSL stylesheet to beautify the results. The interesting part of the XML document as it is
presented in IE is that you can expand and collapse the child nodes for easy readability. By default, the
XML document is presented with the entire document expanded, but you can start collapsing nodes by
clicking the minus button next to nodes that have children associated with them. Figure 1-12 shows vari-
ous nodes collapsed in IE.

20

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 20

Using Mozilla’s Firefox for the same XML file produces the results presented in Figure 1-13.

Figure 1-12

Figure 1-13

21

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 21

As you can see from Figure 1-13, Firefox also allows you to expand and collapse the nodes of the XML
document.

Now that you understand a little more about the XML document, the next sections review the construc-
tion of the XML document.

The XML Declaration
Typically, you place a declaration at the top of your XML file stating that this is an XML file. It is called
the XML declaration. It is recommended, but not required, that you use an XML declaration. The XML
should be written in the following format:

<?xml version=”1.0” ?>

In this case, the XML declaration starts with a <?xml and ends with a ?>. Within the declaration, you can
include a couple of different key/value pairs to further define the XML document to help parsers under-
stand how to process the forthcoming XML document.

If you include the XML declaration, the only required attribute is the version attribute. The other possi-
ble attributes are encoding and standalone. One difference between this set of attributes in the XML
declaration and normal attributes that you would find in any other XML element is that version,
encoding, and standalone are required in this particular order when other attributes have no such
requirements.

The version Attribute
The version attribute allows you to specify the version of the XML used in the XML document.

<?xml version=”1.0” ?>

This preceding XML declaration signifies that version 1.0 of XML is used in the XML document. All val-
ues defined by the version and other attributes in the XML declaration must be placed within quotes. It
is important to note that at present, the only version you can use is 1.0.

The encoding Attribute
encoding explains how a computer interprets 1’s and 0’s. These 1’s and 0’s are put together to represent
various characters, and the computer can interpret these digits in a number of different ways.

The United States and its computer encoding formats evolved around an encoding technology called
ANCII. ANCII, American Standard Code for Information Interchange, is very limiting in that it only allows
256 possible values. It works with the English language, but it is less effective when working with multi-
ple languages with their many characters.

Because XML was developed by an international organization, it is uses Unicode for encoding an XML
document. So far, you have seen the use of UTF-8 used for encoding some of the XML documents in this
chapter.

<?xml version=”1.0” encoding=”UTF-8” ?>

22

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 22

The more common encoding formats used for XML documents are UTF-8 and UTF-16. The difference
between the two is that UTF-8 can result in smaller file size because it can use either a single byte
(mostly for English characters) or a double byte for other characters. UTF-16 uses a double-byte for all
characters.

XML parsers must understand at least UTF-8 and UTF-16. If no encoding directive is provided, then
UTF-8 is assumed. Some common character sets are presented in the following table.

Character Set Code Name Coverage

US-ASCII English

UTF-8 Compressed Unicode

UTF-16 Compressed UCS

windows-1252 Microsoft Windows Western European

windows-1250 Microsoft Windows Central European

windows-1251 Microsoft Windows Cyrillic

windows-1253 Microsoft Windows Greek

ISO-8859-1 Latin 1, Western European

ISO-8859-2 Latin 2, Eastern European

ISO-8859-3 Latin 3, Southern European

ISO-8859-4 Latin 4, Northern European

ISO-2022-JP Japanese

The standalone Attribute
Another optional attribute that can be contained within the XML declaration is the standalone
attribute. The standalone attribute signifies whether the XML document requires any other files in
order to be understood or whether the file can be completely understood as a standalone file. By default,
the value of this attribute is set to no.

<?xml version=”1.0” standalone=”no” ?>

If the document does not depend upon other documents in order to be complete, set the standalone
attribute to reflect this.

<?xml version=”1.0” standalone=”yes” ?>

XML Comments
As in HTML, you can easily place XML comments inside your XML documents. Comments placed
inside the XML document are ignored by any XML parser. Listing 1-5 shows how you can add com-
ments to the XML document displayed in Listing 1-4.

23

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 23

Listing 1-5: Adding comments to the previous XML document

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<!-- Be sure to check name against customer database later -->
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

An XML comment starts with a <!-- and ends with a -->. Anything found in between these two items
is considered the comment and is ignored by the XML parser. You are not required to put XML com-
ments on a single line. You can break them up in multiple lines if you wish. This is illustrated in
Listing 1-6.

Listing 1-6: Adding comments on multiple lines

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<!--
Be sure to
check name against
customer database later

-->
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

If you open the XML document in IE, you see that the Microsoft XML parser did indeed interpret the
XML comment as a comment because it is shown in gray, unlike the other XML elements. This is illus-
trated in Figure 1-14.

24

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 24

Figure 1-14

XML Processing Instructions
An XML processing instruction lets you direct computer process reactions. You won’t see XML process-
ing instructions used in the XML documents you interact with mainly because they are not accepted by
all parsers and are often difficult to deal with. An example of an XML processing instruction is illus-
trated in Listing 1-7.

Listing 1-7: Using XML processing instructions

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<?CustomerInput INPUT:Evjen?>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

In this case, the CustomerInput application that interprets this XML document can use the INPUT instruc-
tion and accomplish something with the Evjen value as provided by the XML processing instruction.

25

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 25

You would use the following syntax for processing instructions:

<?[target] [data]?>

The target part of the statement is a required item and it must be named in an XML-compliant way.
The data item itself can contain any character sequence except for the ?> set of characters, which signify
the closing of a processing instruction.

Attributes
So far, you have seen the use of XML elements and tags and how they work within an XML document.
One item hasn’t yet been discussed — XML attributes. XML elements provide values via an attribute that
is basically a key/value pair contained within the start tag of an XML element. The use of an XML
attribute is presented in Listing 1-8.

Listing 1-8: Creating an XML file

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address type=”Home”>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order count=”1”>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

In this case, this XML document has two attributes —type and count. All attributes must include the
name of the attribute followed by an equal sign and the value of the attribute contained within quotes
(single or double). It is illegal not to include the quotes.

Illegal XML Element
<Address type=Home>123 Main Street</Address>

Naming Attributes
The names you give your attributes must follow the same rules that you follow when naming XML ele-
ments. This means that the following attributes are illegal.

Illegal Attribute Names
<myElement 123type=”Value”></myElement>

<myElement #type=”Value”></myElement>

<myElement .type=”Value”></myElement>

Empty Attributes
If an attribute doesn’t have a value, you can represent this empty or null value as two quotes next to
each other as illustrated here:

26

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 26

<Address type=””>123 Main Street</Address>

Attribute Names Must Be Unique
All attribute names must be unique within an XML element. You cannot have two attributes with the
same name in the same element (as presented here):

<Address type=”Home” type=”Mail”>123 Main Street</Address>

If you use this XML element, you would get an error when parsing the XML document — as illustrated
in Figure 1-15.

Figure 1-15

This only applies to attributes that are contained within the same XML element. You can have similar
attribute names if they are contained within different XML elements. This scenario is shown in Listing 1-9.

Listing 1-9: Creating an XML file

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address type=”Home”>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order type=”Express”>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

In this case, you can see that there are two attributes that use the name type, but because they are con-
tained within different XML elements, you won’t encounter any errors in their use.

27

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 27

The xml:lang Attribute
Two built-in XML element attributes can be used in XML documents —xml:lang and xml:space. The
first of these, xml:lang, allows you to specify the language of the item represented as the value in the
XML element.

You can use as a value either the ISO 639 standard (found at http://ftp.ics.uci.edu/pub/ietf/http/
related/iso639.txt), the ISO 3166 standard (found at http://ftp.ics.uci.edu/pub/ietf/http/
related/iso3166.txt), or the IANA language codes (found at iana.org/assignments/lang-tags/).

Listing 1-10 shows how you might represent the earlier XML fragment when using the xml:lang
attribute with the ISO 639 standard.

Listing 1-10: Using ISO 639 with the xml:lang attribute

<?xml version=”1.0” encoding=”UTF-8” ?>
<TranslatedMessages>

<Message xml:lang=”jp”> </Message>
<Message xml:lang=”ru”>_ ______ __ ______ _____.</Message>
<Message xml:lang=”es”>Estoy hablando otra lengua.</Message>
<Message xml:lang=”zh”> </Message>

</TranslatedMessages>

You can see that the ISO 639 standard is simply a two-letter code that signifies the language to use. The
problem with this standard is that it really only allows for 676 languages to be represented and a signifi-
cant number more than that are used in the world. The ISO 3166 standard has a similar problem, but
represents a country as well as a language (as presented in Listing 1-11).

Listing 1-11: Using ISO 3166 with the xml:lang attribute

<?xml version=”1.0” encoding=”UTF-8” ?>
<TranslatedMessages>

<Message xml:lang=”jp-JP”> </Message>
<Message xml:lang=”ru-RU”>_ ______ __ ______ _____.</Message>
<Message xml:lang=”es-ES”>Estoy hablando otra lengua.</Message>
<Message xml:lang=”zh-CN”> </Message>

</TranslatedMessages>

The xml:space Attribute
When you really want to preserve your whitespace, one option is to also include the attribute
xml:space within your XML elements where whitespace needs to be maintained. For instance, Listing
1-12 shows using the xml:space attribute for maintaining whitespace.

Listing 1-12: Using the xml:space attribute

<?xml version=”1.0” encoding=”UTF-8” ?>
<Movies>

<Favorites>
<Title xml:space=”default”>Happy Gilmore</Title>
<Title>Grease</Title>
<Title xml:space=”preserve”>Lawrence

28

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 28

of
Arabia</Title>

<Title xml:space=”preserve”>Star Wars - The Empire Strikes Back</Title>
</Favorites>

</Movies>

Two possible values exist for the xml:space attribute —default and preserve. A value of default
means that the whitespace should not be preserved, and a value of preserve means that the whitespace
should remain intact.

Notice that the XML parsers do not strip whitespace or act upon the whitespace in any manner because
of these attribute settings. Instead, the xml:space attribute is simply an instruction to the consuming
application that is can choose to act upon if desired.

XML Namespaces
Because developers create their own tag names in XML, you must use namespaces to define particular
elements. If you are using two XML files within your application and the two files use some of the same
tags, namespaces become very important. Even though the tags have the same name, they might have
different meanings. For instance, compare the two XML files in Listings 1-13 and 1-14.

Listing 1-13: Book.xml

<?xml version=”1.0” encoding=”UTF-8” ?>
<Book>

<Title>Professional ASP.NET 2.0</Title>
<Price>49.99</Price>
<Year>2005</Year>

</Book>

Now take a look at the second XML file. You should be able to see where the problem lies.

Listing 1-14: Author.xml

<?xml version=”1.0” encoding=”UTF-8” ?>
<Author>

<Title>Mr.</Title>
<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>

</Author>

A conflict exists with the <Title> tag. If you are using both these XML files, you might be able to tell the
difference between the tags by just glancing at them; but computers are unable to decipher the difference
between two tags with the same name.

The solution to this problem is to give the tag an identifier that enables the computer to tell the differ-
ence between the two tags. Do this is by using the XML namespace attribute, xmlns. Listing 1-15 shows
how you would differentiate between these two XML files by using XML namespaces.

29

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 29

Listing 1-15: Revised Book.xml using an XML namespace

<?xml version=”1.0” encoding=”UTF-8” ?>
<Book xmlns=”http://www.xmlws101.com/xmlns/book”>

<Title>Professional ASP.NET 2.0</Title>
<Price>49.99</Price>
<Year>2005</Year>

</Book>

Notice that you now have added the XML namespace attribute to your root element <Book>. Now look
at the second file (Listing 1-16).

Listing 1-16: Revised Author.xml using an XML namespace

<?xml version=”1.0” encoding=”UTF-8” ?>
<Author xmlns=”http://www.xmlws101.com/xmlns/author”>

<Title>Mr.</Title>
<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>

</Author>

In this example, the <Author> element contains an XML namespace that uniquely identifies this XML
tag and all the other tags that are contained within it. Note that you could have put an XML namespace
directly in the <Title> tag if you wished. By putting the xmlns attribute in the root element, not only
do you uniquely identify the root element, but you also identify all the child elements contained within
the root element.

The value of the xmlns attribute is the Universal Resource Identifier (URI). It is not required that the URI
be a Web site URL as shown in the example, but this is usually a good idea. The URI can be anything
that you wish it to be. For example, it could just as easily be written as xmlns=”myData” or
xmlns=”12345”. But with this kind of URI, you are not guaranteed any uniqueness because another
URI in another file may use the same value. Therefore, it is common practice to use a URL, and this prac-
tice serves two purposes. First, it is guaranteed to be unique. A URL is unique, and using it as your URI
ensures that your URI won’t conflict with any other. The other advantage to using a URL as the URI is
that it also identifies where the data originates.

You don’t have to point to an actual file. In fact, it is usually better not to do that, but instead to use
something like the following:

xmlns=”http://www.xmlws101.com/[Namespace Name]”

If the XML file has an associated XSD file, another option is to point to this file. The XSD file defines the
schema of the XML file.

The style of XML namespaces used thus far is referred to as a default namespace. The other type of XML
namespaces that is available for your use is a qualified namespace. To understand why you need
another type of XML namespace, take a look at the example in Listing 1-17.

30

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 30

Listing 1-17: Author.xml using multiple XML namespaces

<?xml version=”1.0” encoding=”UTF-8” ?>
<Author xmlns=”http://www.firstserver.com/xmlns/author”>

<Title xmlns=”http://www.secondserver.com/title”>Mr.</Title>
<FirstName xmlns=”http://www.thirdserver.com/fn”>Bill</FirstName>
<LastName xmlns=”http://www.thirdserver.com/ln”>Evjen</LastName>

</Author>

As you can see in this example, you use a number of different XML namespaces to identify your tags.
First, your <Author> tag is associated with the XML namespace from the first server. The <Title> tag is
associated with the second server, and the <FirstName> and <LastName> tags are associated with the
third server. XML allows you to associate your tags with more than one namespace throughout your
document.

The problem is that you might have hundreds or thousands of nodes within your XML document. If one
of the namespaces that is repeated throughout the document changes, you have a lot of changes to make
throughout the document.

Using qualified namespaces enables you to construct the XML document so that if you need to make a
change to a namespace that is used throughout the document, you only have to do it in one spot. The
change is reflected throughout the document. Look at Listing 1-18 to see an XML document that uses
qualified namespaces.

Listing 1-18: Author.xml using qualified XML namespaces

<?xml version=”1.0” encoding=”UTF-8” ?>
<AuthorNames:Author
xmlns:AuthorNames=”http://www.firstserver.com/xmlns/author”
xmlns:AuthorDetails=”http://www.secondserver.com/xmlns/details”>
<AuthorNames:Title>Mr.</AuthorNames:Title>
<AuthorNames:FirstName>Bill</AuthorNames:FirstName>
<AuthorNames:LastName>Evjen</AuthorNames:LastName>
<AuthorDetails:Book>Professional ASP.NET 2.0</AuthorDetails:Book>

</AuthorNames:Author>

In this document, you use an explicit declaration of the namespace. Explicit declarations of namespace
prefixes use attribute names beginning with xmlns: followed by the prefix. So in the first node, you
have explicitly declared two namespaces that you use later in the document.

xmlns:AuthorNames=”http://www.firstserver.com/xmlns/author”
xmlns:AuthorDetails=”http://www.secondserver.com/xmlns/details”

Notice that the declaration name follows a colon after xmlns. In this example, you declare two qualified
namespaces: AuthorNames and AuthorDetails. Later, when you want to associate an element with one
of these explicit declarations, you can use the shorthand (or prefix) to substitute for the full namespace.
In your document, you do this by using <AuthorNames:LastName> and <AuthorDetails:Book>.

31

Chapter 1: XML Syntax

05_777779 ch01.qxp 3/1/07 11:42 PM Page 31

Summary
This chapter is a simple review of XML. It is meant to serve as a primer for you to get up to speed in
dealing with the technologies that use XML. These technologies are covered throughout the rest of this
book.

This chapter looked at the basics of XML, its syntax, and the rules that go into building XML documents.
In addition, this chapter reviewed how to build an XML document and to view it in the IE or Firefox.

Finally, this chapter explained how to use namespaces with XML documents. The next chapter covers
building and working with XML documents using a number of different developer tools.

32

Part I: XML Basics

05_777779 ch01.qxp 3/1/07 11:42 PM Page 32

XXMMLL EEdd ii tt oo rrss

Although it is certainly possible to work with XML using only a text editor (such as emacs, vi, or
even Windows Notepad), having a tool specifically designed or expanded for working with XML
can make your life much easier. Beyond creating XML files, these tools add validation, schema cre-
ation, mapping, and even advanced features such as XSLT debugging to the mix; making you
more productive and more successful when working with XML. In short, you want a dedicated
XML editor to make working with XML easier.

This chapter will survey some of the more popular tools available for working with XML, along
with the advantages and disadvantages of each.

The XML editors described in this chapter include:

❑ Microsoft Visual Studio .NET 2003

❑ Microsoft Visual Studio 2005

❑ Altova XMLSpy

❑ Oxygen

❑ Stylus

Visual Studio .NET 2003
Many developers spend a lot of their time in Microsoft Visual Studio .NET 2003, so it makes sense
that it should also provide XML functionality. The XML features of Visual Studio .NET 2003 are
somewhat basic, but utilizing them may reduce your need to purchase and learn additional tools.

06_777779 ch02.qxp 3/1/07 11:43 PM Page 33

Basic Editing in Visual Studio .NET 2003
By basic editing, I do mean basic. Editing XML with Visual Studio .NET 2003 is pretty much the same
experience as editing XML with a text editor, with a few notable exceptions. The first is the addition of
IntelliSense when working with XML files using a known schema. (See Figure 2-1) IntelliSense is the
term for the drop down list that appears as you type. This list provides a list of the valid text at any
point. The benefit here is that you get feedback as to what is valid, and in many cases, the IntelliSense
features also save you many keystrokes. For example, in Figure 2-1, you can see the dropdown includes
the valid children of the channel element.

Figure 2-1

IntelliSense helps guarantee a more accurate document in two ways:

❑ The drop-down list displays only elements that are available while you are typing. This reduces
the chance of adding elements at an incorrect location, based on the schema.

❑ The validation marks (the infamous squiggles) show any items in the XML file that would not
validate based on the current schema. They provide a means of detecting these errors without
requiring additional external tools or a validation step.

34

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 34

Although Visual Studio .NET 2003 is a capable editor, if you need a lot of advanced functionality for
editing or creating XML documents, especially for formats that do not have an XML schema, you might
want to look elsewhere.

Schema Development in Visual Studio .NET 2003
In addition to creating simple XML files, Visual Studio .NET 2003 supports the creation of W3C XML
schemas using either a standard text editor or a graphical designer (see Figure 2-2). Visual Studio .NET
2003 does not support the creation of DTDs, Relax NG, or Schematron schemas.

Figure 2-2

Other Features
Visual Studio .NET 2003, however, provides great XML support in the creation and accessing of SOAP-
based Web Services. See Chapters 20-22 for more details on these features.

The following table provides a summary of Visual Studio .NET 2003’s capabilities as an XML editor.

Benefit Disadvantage

If you develop for Windows, odds Fairly basic XML editing support
are you have it installed already.

Excellent support for creating Schema support limited to W3C XML schema.
and accessing Web Services

No support for XSLT debugging.

Limited support for many XML grammars, such as
DocBook, SVG or XQuery.

Visual Studio 2005
Although the XML features of Visual Studio .NET 2003 are a step in the right direction, the features of
Visual Studio 2005 clearly show that some people at Microsoft know how to spell XML.

Basic Editing in Visual Studio 2005
Although the core editing experience for Visual Studio 2005 hasn’t been improved much from Visual
Studio .NET 2003, there are some welcome additions — notably, improved validation aids and the XML
visualizers feature.

35

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 35

The squiggles of Visual Studio .NET 2003 told you if a non-validating item was present in your XML file.
Visual Studio 2005 adds extra information by providing a ToolTip for the invalid item. Rather than sim-
ply identifying the invalid item, Visual Studio 2005 adds suggested changes (see Figure 2-3). This can
speed development by reducing the number of trips you need to re-read the schema.

Figure 2-3

36

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 36

In addition to the improved IntelliSense in the main XML editors, Visual Studio 2005 makes working
with XML in the core part of your application easier as well. Visualizers are tools that are displayed
when debugging code to reveal the current value of variables. If the variable is storing XML, the XML
visualizer (see Figure 2-4) enables you to explore the variable and the structure of the XML.

Figure 2-4

37

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 37

Schema Development in Visual Studio 2005
The schema design features of Visual Studio 2005 are similar to those in Visual Studio .NET 2003. They
enable developers to create W3C XML schemas using either a text editor or a graphical tool (see Figure 2-5).

Figure 2-5

XSLT Development in Visual Studio 2005
Although Visual Studio .NET 2003 enabled the creation of XSLT files, Visual Studio 2005 allows you to
debug them, too. This debugging (see Figure 2-6) enables you to create breakpoints, step through the
templates in the XSLT, and query variables. These features are identical to the features available in nor-
mal code debugging using Visual Studio 2005. When you are working with complex templates, this can
be an invaluable aid to understanding the flow of the templates.

38

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 38

Figure 2-6

The following table summarizes Visual Studio 2005’s XML editing capabilities.

Benefit Disadvantage

Improved support for creating valid documents Schema creation support limited to W3C XML
through improvements in IntelliSense. schema

XSLT debugging supported, including No support for XQuery
breakpoints and inspecting values.

Great support for creating, accessing, No support for XSL:FO
and debugging Web Services.

XML visualizers help you view XML
structure when working with XML
throughout the application.

Altova XMLSpy 2006
XMLSpy from Altova GmbH is not just one tool, but an entire suite of products for working with XML
in many of its forms. In addition, you can extend the capabilities of XMLSpy by adding on one or more
of Altova’s other products, such as Authentic (graphical XML editor for non-technical people),
SchemaAgent (XML Schema repository), MapForce (data and Web services integration), and StyleVision
(graphical form/report designer). These tools integrate into XMLSpy, providing additional capabilities
beyond its already long list of features.

39

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 39

Basic Editing in Altova XMLSpy 2006
As you would expect from a tool designed for XML editing, XMLSpy has great support for editing new
or existing XML documents. As with many other tools described here, you can edit XML documents in
either text or a graphical view. You can access these views either via the View menu, or by selecting the
appropriate item at the bottom of the editor window.

❑ Text: A basic editing experience. However, the XMLSpy editing window also includes such
niceties as auto-completion (if you have an assigned schema), code folding (see Figure 2-7). This
can be useful to hide sections of the document you’re working on.

Figure 2-7

40

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 40

❑ Grid: A hierarchical editing surface that shows the logical structure of the XML file in a series of
nested grids. This can be a useful editing surface either when you are first working with an
XML document, when you want to learn the structure of the document, or when you are work-
ing on one area of a document and want to hide the remaining parts of the document. (See
Figure 2-8.)

Figure 2-8

41

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 41

❑ Schema/WSDL: This view is only available when working with XML schemas or WSDL docu-
ments. It shows one of two views. For the document itself, it shows a list of all the global struc-
tures (element definitions, complex and simple types, and so on) in the document. (See Figure 2-9.)
The second view, shown when an element or complex type is selected, shows a graphical node-
based view of that section of the schema. (See Figure 2-10.) Both of these views provide a graphical
view of the structure of the schema, but also allow you to graphically design the schema or WSDL.
For more details on this view, see the Schema Development section later in this chapter.

Figure 2-9

Figure 2-10

42

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 42

❑ Authentic: A view specific to XMLSpy, this displays the XML using a StyleVision stylesheet. A
StyleVision stylesheet is a graphical overlay on an XML file. It can include controls, validation,
and graphics to make working with XML easier for those not used to dealing with angle brack-
ets. See Figure 2-11.

❑ Browser: Displays the XML document using Internet Explorer (requires IE 5 or above). This can
be useful when you are creating XHTML files or XML files with an embedded stylesheet. It can
confirm what the files might look like in a browser window. (See Figure 2-12.)

Figure 2-11

43

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 43

Figure 2-12

Schema Development in XMLSpy
Schema development in XMLSpy is done with either DTDs or W3C XML schema. It does not directly
support Relax NG or Schematron schemas. You can, however, create these schemas using either a text
editor (see Figure 2-13) or their graphical editor (see Figure 2-14). You can navigate between the two edi-
tors by selecting either the Text or Schema/WSD buttons at the bottom of the editor window, or via the
View menu. A number of entry helpers are available when you are working with either mode to ensure
that you generate a valid schema, including statement completion. These entry helpers change to show
the valid options at each point in the document.

44

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 44

Figure 2-13

Figure 2-14 45

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 45

XSLT Development in XMLSpy
XMLSpy has strong XSLT support, including support for XSLT 2.0. In addition to the capability to create
basic XSLT files, XMLSpy also has support for mapping between two XML schemas using MapForce or
generating documents via XSL:FO using StyleVision. However, these features require you to have those
products installed.

When generating XSLT documents, XMLSpy has an integrated debugger (see Figure 2-15), accessed by
selecting Start Debugger ➪ Go from the XSL/XQuery menu. This debugger enables you to step through
your XSLT file, watch for specific variables or XPath statements, and set breakpoints. These can be
invaluable assists when you are trying to interpret the sometimes-Byzantine interplay between XPath,
individual XSLT templates, and XML.

Figure 2-15

Other Features in XMLSpy
One potentially useful feature of XMLSpy is the inclusion of a script editor, accessed via the Switch to
Scripting Environment from the Tools menu. This script editor allows you to edit and run macros to
extend the environment using either VB Script or JavaScript. You can also create forms that run within
XMLSpy, enabling you to add new dialogs. (See Figure 2-16.)

46

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 46

Figure 2-16

The following table summarizes the XML editing features in XMLSpy.

Benefit Disadvantage

Incredibly full-featured toolset for working Because of the scope, can be difficult to
with XML, schemas, XSLT and more. learn all the features.

Includes macro engine for extending Some features require purchasing
the environment. additional software.

Can be used as a code generator (C#, Java, or C++) Does not directly support Relax NG or
Schematron schemas.

Includes XSLT, XQuery and SOAP debugging.

Stylus Studio 2006
Stylus Studio is a product of the DataDirect Technologies division of Progress Software is a flexible,
extensible tool for working with XML. It is strongest at opening XML from a variety of sources and
enabling conversion of many formats into XML.

Basic Editing in Stylus Studio 2006
Stylus Studio supports basic XML editing, but also provides a number of advanced and unique features for
working with XML documents. The first feature you notice when you attempt to open an XML file is the

47

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 47

incredible number of sources available for opening XML (see Figure 2-17). Stylus Studio can open XML
files directly from a number of file systems, as well as relational or object databases. In addition, you can
convert nonXML files into XML as you load them by adding a converter or adapter between the source and
Stylus Studio. This enables you to convert CSV, delimited, or EDI files directly as you load them.

In addition to opening existing XML files, you can create new XML files using a basic template or an existing
data source. Figure 2-18 shows some of the available document wizards that can convert or create XML files.

Figure 2-17

Figure 2-18

Stylus Studio has different views for working with your XML files. In addition to the normal text-based
view of your XML, Stylus Studio also includes two graphical views. You can switch between these views
via the tabs at the bottom of the editor window. Figure 2-19 shows the tree view. Using this view, you
can quickly view and navigate the structure of a document.

48

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 48

In addition, a grid view (as seen in Figure 2-20) adds to the capabilities of the tree view by providing a
surface where you can navigate and edit an XML document using a grid at each level in the document.
This is very useful when working with documents that contain repeating structures, such as those
extracted from databases.

Figure 2-19

Figure 2-20
49

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 49

Stylus Studio certainly has all the core XML features you need for typical XML work. The grid and tree
views make exploring and editing XML files easier. Where Stylus really shines is in its import and con-
version capabilities.

Schema Development in Stylus Studio 2006
As you would expect from an editor that is as capable as Stylus is for opening and transforming XML,
the schema support is extensive. Stylus allows for creating and editing both DTDs and XML schemas. In
addition, it has support for converting between these two formats. Figure 2-21 shows the schema editor
window, with both the graphical and text views of the schema.

Figure 2-21

After the schema has been created, Stylus can create a set of documentation pages for the schema. This
creates a number of HTML pages (see Figure 2-22) based on the schema structure, as well as any annota-
tions available. This can be quite useful when sharing a schema between developers because users can
more rapidly learn how to structure their documents.

50

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 50

Figure 2-22

XSLT Development in Stylus Studio
Like many of the other editors in this chapter, Stylus Studio supports debugging XSLT (see Figure 2-23).
You can set breakpoints in the templates, step through the code, and query values while the transforma-
tion is in process. You start the debugger using the commands in the Debug menu.

This debugger can also be used when working with XQuery documents. In addition to debugging XSLT
or XQuery statements, you can also generate a profile report of the transformation. This can highlight
slow points in the query or transformation by showing the relative timings at each step (see Figure 2-24).

51

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 51

Figure 2-23

One unique capability among these editors is the capability of Stylus to create an XSLT template with a
graphical mapper. This enables you to align two similar XML documents or visually define how the
XML can be used when generating HTML output. Figure 2-25 shows this mapper in action. Notice how
the XSLT is built in the lower window as the tags are mapped between the source and destination files.
The transformation can even include additional processing on the elements using Java extensions.

52

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 52

Figure 2-24

Figure 2-25

53

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 53

Other Features in Stylus Studio
You can debug SOAP calls directly from Stylus Studio by creating a new Web Service call file. You assign
the WSDL for the call. You can then directly call the SOAP endpoint. The resulting SOAP request and
response files are created, enabling you to save them for later use or documentation (see Figure 2-26).

Figure 2-26

Stylus Studio also supports code generation. If you work in Java, Stylus can generate classes that wrap
Xalan or Saxon processor calls for XSLT transformations or XQuery queries, as shown in Figure 2-27.

The following table summarizes the editing capabilities of Stylus Studio.

Benefit Disadvantage

Can convert CSV, delimited, EDI, or other formats Schema support limited to DTD and W3C
to XML when loading. XML schema. No support for Relax NG or

Schematron.

Has support for opening and closing files from a
number of sources, including relational and object
databases.

Document Wizards enable conversion of files from
CSV, tab-delimited, or databases into XML.

Integrated XSLT mapper allows for visually designing
XSLT transformation.

54

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 54

Benefit Disadvantage

Support for XQuery, including debugging.

Can generate Java source code for XSLT or XQuery. No support for .NET or C++ code
generation.

Figure 2-27

Oxygen XML Editor 6.2
Oxygen from SyncRO Soft Ltd. is a Java-based XML editor that works on a variety of platforms, includ-
ing Windows, Mac OS X, and Linux. In addition, it can work in concert with Eclipse, providing all its
functionality as a plug-in to Eclipse. One other unique feature of this editor is that it can be deployed
and started using Java WebStart technology. This enables you to have a single deploy point for all users,
presented as a Web link. Clicking the link downloads the latest version of the application, reducing the
need to deploy updates to all users.

Basic Editing in Oxygen XML Editor 6.2
XML editing in Oxygen is capable. It includes both statement completion (Figure 2-28) and Tag insight.
Tag insight displays a ToolTip containing any annotations in the schema. This can be a handy reminder
of the purpose of each element and is a nice addition.

55

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 55

Figure 2-28

Rather than providing multiple views of the XML document in the main window, Oxygen provides the
bulk of the graphical views of the document in side windows (see the outline and model windows in
Figure 2-29). However, these are not editable views, and they display only a reflection of the existing text
view. The graphical Tree editor is opened in a separate window if you’d rather edit the XML document
using a graphical model (see Figure 2-29). However, this editor is not as capable as the graphical editor
in other products such as XMLSpy or Stylus Studio.

56

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 56

Figure 2-29

Schema Development in Oxygen XML Editor 6.2
Oxygen supports creation of schemas based on DTD, W3C XML Schema, Relax NG (full and compact),
or Schematron. In addition, it supports converting between these schema formats using the integrated
Trang converter.

Oxygen has the broadest set of available schema formats, including DTD, W3C XML schemas, Relax
NG, and Schematron. However, only Relax NG and W3C XML schemas support graphical schema edi-
tors (see Figure 2-30). In addition, the graphical view is a static view. Changes can be made only in the
text editor window.

57

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 57

Figure 2-30

Converting between Schema Types
in Oxygen XML Editor 6.2

Oxygen is fairly unique in that it gives you a selection of editors to provide support for converting
between many of the standard schema formats (see Figure 2-31). This support is added by the integra-
tion of the Trang schema converter, which is capable of converting between DTD, XML schema, and
Relax NG schema formats.

After your schema is complete, you can generate documentation for the schema. This documentation
includes diagrams of each global element and type (see Figure 2-32).

58

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 58

Figure 2-31

Figure 2-32
59

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 59

The output from this generation can now be viewed by all team members in any browser (see Figure 2-33).

Figure 2-33

XSLT Development in Oxygen XML Editor 6.2
Oxygen supports debugging XSLT templates as do many of the other editors described in this chapter.
This includes breakpoints, stepping through the templates, and probing values at runtime. However,
Oxygen goes one step further, enabling profiling (see Figure 2-34) of the transformation. This can be a
great resource for tuning a slow transformation, highlighting just which templates or section of code is
causing the processing to be slow. Oxygen can also use multiple XSLT processors, notably Xalan and
versions of Saxon, including XSLT 2.0 processors. These can be used to select the particular XSLT engine
you want to use in your development.

60

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 60

Figure 2-34

Other Features in Oxygen XML Editor 6.2
When you are working with SVG (see Chapter 5), it can sometimes be difficult to visualize the resulting
graphic. Oxygen includes an SVG viewer, allowing you to see SVG graphics from within the editor (see
Figure 2-35).

Figure 2-35

61

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 61

The following table summarizes the XML editing capabilities of Oxygen XML Editor 6.2.

Benefit Disadvantage

Support for Java WebStart makes deployment Limited viewer support for visualizing XML
and upgrading easier. structure.

Support for Relax NG and Schematron Debugging only with XSLT, no XQuery
schemas as well as W3C XML Schema debugging.
and DTDs.

Supports XSLT debugging and profiling. Graphical views are read-only.

Supports XSL:FO, including many common
output formats, such as PDF and HTML.

Can work within Eclipse as a plug-in.

Other XML Tools
Many other tools exist for working with XML. These include other editors not covered here, as well as
special-purpose tools for working with various XML dialects. The following list discusses some of the
available editors.

❑ Cooktop — Available at http://www.xmlcooktop.com/, this is a free Windows XML editor.
The main benefits of this editor (beyond the cost) are the size (full install is about 3MB) and the
inclusion of Code Bits. These are common snippets for various XML dialects, such as common
XSLT templates, XML programming instructions, or namespace declarations. In addition, you
can add your own Code Bits to the list.

❑ Eclipse — Although not a dedicated XML editor, Eclipse has a strong plug-in model, enabling
third parties to add XML support to the main editor. Oxygen, for example, can work as an
Eclipse plug-in as well as a standalone.

❑ XMetaL — The latest iteration of the tool that used to be known as HoTMetaL, now owned by
BlastRadius (xmetal.com). Probably due to its roots in SGML editing, XMetal is strongest at
creating valid XML documents based on XML schemas.

❑ Emacs — Emacs is one of the more popular text editors and is available for almost every plat-
form. It has a strong programmatic platform and has many add-on modes available for editing
XML documents such as nXML. nXML adds statement completion, validation, and schema edit-
ing (for Relax NG).

❑ Vi — The other popular text editor, vi, has been around seemingly forever and is available for
almost every platform. A recent version, Vim, supports add-ins, including many for XML, such
as XmlEdit.

62

Part I: XML Basics

06_777779 ch02.qxp 3/1/07 11:43 PM Page 62

Summary
XML is not difficult to create; it is only text after all. Still, creating XML and schemas can be made easier
through the use of one of these tools. They reduce the overall amount of typing, make visualizing the
XML or schema easier, and reduce the chance for errors or invalid files. Each have their own strengths
and target scenarios.

Visual Studio supports the creation of XML and schema files, but it is at its heart a programming envi-
ronment. Therefore, it is not as strong a tool as some of the dedicated XML tools. However, if you are
already using Visual Studio, its XML features may be enough for your needs.

Altova XMLSpy is only one of a family of tools from Altova. It provides solid XML editing features,
XSLT/XQuery debugging and more in a single package. In addition, XMLSpy can integrate into com-
mon programmer environments such as Visual Studio or Eclipse. This means that you gain the benefit of
XMLSpy’s functionality within the environment you are familiar with. XMLSpy can support any XML
developer, but is best suited for environments that do not need Schematron or Relax NG support.

While Stylus Studio is a powerful Swiss army knife of XML editors, it shines when it comes to its import
functionality. Many common data formats, such as CSV, EDI or databases can easily be imported into
Stylus Studio and converted into XML. Once in, Stylus Studio continues to provide support in terms of
XSLT/XQuery debugging, schema mapping and even code generation. Stylus Studio can support any XML
developer, but is best suited for organizations that must deal with a lot of EDI or other file processing.

Oxygen XML editor’s main strength is breadth. While most of the other editors described here support
DTDs or W3C Schemas, Oxygen includes support for Schematron and Relax NG. While the other editors
run on Windows, Oxygen provides OS X and Linux versions. Performance and memory usage may be
an issue, however. Oxygen is best suited for organizations that need to support multiple platforms.

63

Chapter 2: XML Editors

06_777779 ch02.qxp 3/1/07 11:43 PM Page 63

06_777779 ch02.qxp 3/1/07 11:43 PM Page 64

Part II

PP rr eesseenn ttaa tt ii oonn

Chapter 3: XHTML and CSS

Chapter 4: XSL-FO

07_777779 pt02.qxp 3/1/07 11:43 PM Page 65

07_777779 pt02.qxp 3/1/07 11:43 PM Page 66

XXHHTTMMLL aanndd CCSSSS

Although many people think of XML as a data format, many of the important uses for XML are
in layout. Of these, one of the most significant is XHTML, or the Extensible HyperText Markup
Language. XHTML is the “XML-ized” version of HTML, cleaning up many of the sloppier features
of HTML and creating a more standardized, more easily validated document format. The Cascading
Stylesheets (CSS) feature, although not an XML format, is widely viewed as important for XHTML
development. CSS is a formatting language that can be used with either HTML or XHTML. It is
generally viewed as a cleaner replacement for the Font tag and other similar devices that force a
particular view. When used in combination with XHTML, the model is that the XHTML document
carries all the content of the page, whereas CSS is used to format it. This chapter looks at these two
sets of specifications, as well as some validation tools that help ensure your code is valid. In addi-
tion, this chapter looks at microformats, a relatively recent set of uses for both XHTML and CSS.

Understanding XHTML
When people hear that XHTML is the XML version of HTML, the first question is usually, “Isn’t
HTML already XML?” or “What’s wrong with HTML that it has to be XML-ized?” I hope that I’ll
be able to answer both these questions and more in this chapter. For those who are planning on
skipping this chapter or who want the answers now, the answers are, “sort of, but not exactly” and
“a few fairly major things.”

The Evolution of Markup
Markup is information added to text to describe the text. In HTML and XHTML, these are the tags
(for example,) that are added around the text. However, markup isn’t just HTML and its
family. Rich Text Format (RTF) is another example of a markup language. The text, “This is bold,
and this isn’t” could be marked up in RTF as {\b\insrsid801189\charrsid801189 This is
bold}{\insrsid13238650\charrsid13238650 , and this isn’t}. Other markup languages

08_777779 ch03.qxp 3/1/07 11:44 PM Page 67

include TeX and ASN.1. Markup, therefore, is just a way of adding formatting and semantic information.
Formatting information includes identifiers such as bold, italic, first level of heading, or beginning of a table.
Semantic information includes identifiers such as beginning of a section, a list item or similar notations.

The idea of markup is quite old — separate the content from the description of that content. A number of
implementations using this concept arose back in the stone ages of computing (the 1960s), including
Standard Generalized Markup Language (SGML). SGML was strategy for defining markup. That is, you
used SGML to define the tags and attributes that someone else could use to markup a document. This notion
was powerful, enabling the production of documents that could be rendered easily in a number of formats.

SGML begat HTML, and it was good. HTML was a markup language loosely defined on the concepts of
SGML. It lifted the tagging concept, but simplified it greatly because HTML was intended solely as a
means of displaying text on computer screens. Later versions attempted to increase the rigor of the stan-
dard, for example, creating a Document Type Description (DTD — the format SGML used as the means
of defining a markup language). HTML slowly evolved in a fairly organic fashion: first adding tags and
then becoming a standard (4.01). Meanwhile, on an almost parallel track, SGML begat XML, and it was
good. XML was an attempt to simplify SGML, creating a technology that provided many of the same
capabilities of language definition. Although it wasn’t necessarily inevitable, these two cousins decided
to get together and produce an offspring, XHTML. XHTML has XML’s eye for rigor: XHTML documents
must be well-formed XML documents first, and rules around formatting are specific. However, XHTML
still has HTML’s looks and broad appeal.

The Basics of XHTML
Unfortunately, no one XHTML standard exists. In fact, there are currently six flavors or versions of
XHTML:

❑ XHTML 1.0 Transitional: Intended to be a transitional move from HTML 4.01 to XHTML. This
flavor included support for some of the newer features of XHTML, while retaining some of the
older HTML features (such as <u>, <strike> or <applet>).

❑ XHTML 1.0 Frameset: Another transitional flavor that included support for HTML frameset tags.

❑ XHTML 1.0 Strict: The “real” XHTML. This version included strict rules (see the following sec-
tion) for formatting the markup in a document.

❑ XHTML Basic: An attempt at creating the smallest possible implementation of XTHML.
XHTML Basic is intended for mobile applications that are not capable of rendering complex
documents or supporting the full extensibility of XHTML 1.1.

❑ XHTML 1.1: The current version of XHTML. This is an attempt at defining XHTML in a modu-
lar fashion, enabling the addition of new features through extension modules (for example,
adding MathML or frameset support).

❑ XHTML 2.0: As of this writing, this is still a gleam in the eyes of the committee. It will likely end
up being a major new version; it will also break compatibility with a number of XHTML docu-
ments. Because of this, I expect that it will be some time before it is in broad usage.

This chapter focuses mostly on XHTML 1.0 Strict and XHTML 1.1 — primarily 1.1. The remaining cur-
rent versions are primarily compatibility versions, meant to assist developers in migrating older code.
XHTML 2.0 is still in the future, and even the planned broken compatibility may change before it
becomes a standard.

68

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 68

Validating XHTML
The one main improvement of XHTML over HTML is in enforcement of what constitutes a valid docu-
ment. XHTML requires that a document follow these rules:

❑ No overlapping elements: Although it was a horrid practice, some people wrote their HTML so
that one element started before another was finished, or so that a tag closed before its child tag
did. Even worse, some HTML editors created this kind of markup. The result was something
that looked like the following:

Bold<i>and italic</i>

As you can see, the bold tag () is closed before the child italics tag (<i>). Although most
browsers were capable of interpreting this code, it did not lend itself to building a parse tree
correctly. XHTML does not consider this valid.

❑ No unclosed elements: Some of the HTML elements, such as
, <hr>, and , were gen-
erally used without closing tags. In XHTML, you must either add a close tag (such as </br>) or
use the empty element form (<hr />) of the element. Note the space before the slash character.
Although not absolutely necessary, it is highly recommended. For certain tags (such as a para-
graph element or table cell) that are empty but that should contain information, do not use this
form; instead include the close element, such as <p> </p>.

❑ All elements and attributes are written in lowercase: HTML is not case-sensitive regarding ele-
ments and attributes, therefore <table>, <TABLE> and <Table> are all equivalent. However,
XML is case-sensitive, meaning that these three elements are different, and only one can be the
real table element. Fortunately for my own personal style, all lowercase was defined as the stan-
dard, so the real element is <table>.

❑ All attributes are quoted: Another code formatting practice used by some authors and HTML
editors is quotes around attributes. One argument is that including quotes around attributes, as
in adds two additional characters, bloat-
ing the document. Some users prefer the slightly less bandwidth intensive, <img src=http://
some.url.com/image.png>. However, this practice (especially when included without a closing
element, as shown here) makes it more difficult to parse the attribute correctly.

❑ All attributes require values: A few attributes are typically used standalone in HTML, such as
the checked attribute for the Checkbox control or selected for options in a list.

<input type=”checkbox” checked />
<select>

<option selected>One</option>
<option>Two</option>

</select>

In XHTML, attributes must have a value. Therefore, the correct way of writing these ele-
ments should be:

<input type=”checkbox” checked=”checked” />
<select>

<option selected=”selected”>One</option>
<option>Two</option>

</select>

69

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 69

❑ IDs are id: In later versions of HTML, two ways of naming elements co-existed; both id and
name were used, and often both in the same document. This lead to a great deal of confusion,
because users thought each had a unique purpose or meaning. With XHTML, name is now con-
sidered invalid, and id should be used when naming elements (all lowercase).

❑ Script blocks should be wrapped: Because XHTML documents are primarily XML documents,
normal XML rules apply to the content. Blocks such as CSS or JavaScript may include XML
markers (such as <), possibly breaking the document. Because of this, these blocks should be
wrapped in CDATA blocks (see Listing 3-1) to ensure they do not affect the validity of the
XHTML. Better yet, use an external document and one of the tags that imports that file (see
Listing 3-9 later in this chapter).

LLiissttiinngg 33--11:: UUssiinngg CCDDAATTAA wwiitthh eemmbbeeddddeedd ssccrriipptt

<script type=”text/JavaScript”>
<![CDATA[
//JavaScript content here

]]>
</script>

The next major set of changes you need to make to convert your HTML pages to XHTML is to remove
some of the deprecated HTML tags. XHTML 1.0 (especially the Transitional and Frameset varieties) still
permits these elements, but they are invalid in future versions, including XHTML 1.1. (See the following
table for more discussion of the deprecated elements.) Most of these elements were removed because
they caused an intermixing of content and specific layout. The recommended method of adding layout is
now with CSS, as you learn later in this chapter. See Listing 3-2 for a simple XHTML 1.1 file.

Deprecated Replacement Discussion
Element

applet object Applet, object, and embed were all methods for including
embed content such as Java Applets and ActiveX objects. Rather

than maintain these three elements, the object element is
used for embedding any external objects.

dir ul Dir and Menu were little-used elements that provided
menu much of the same functionality as unordered lists (ul).

font CSS These elements enforced a particular view on the content of
basefont a page and merged the content with layout. This functionality
blockquote is now superseded by CSS, and you should use that
i technology instead. Browsers (such as screen readers for u
strike the sight impaired) are free to ignore the CSS, if necessary,
center leaving the content usable.

layer CSS A Netscape/Mozilla-specific tag that was used to create
dynamic HTML pages. The functionality is roughly replace-
able with div and span tags.

isindex input type=”” This ancient tag (that I haven’t seen for a while) was used to
create a search field on a page. This should be replaced with
a form containing search fields and “real” server-side
search functionality.

70

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 70

Deprecated Replacement Discussion
Element

style (attribute) CSS With XHTML 1.1, the style attribute is also considered dep-
recated. Although it is not yet removed from the standard,
it should be avoided. Instead, use id or class attributes and
CSS to apply style to individual elements.

Finally, to ensure your document is processed in the format you intend, you should include a reference
to the DTD of the desired level of XHTML. This provides information to the browser or parser, which
should then treat your document appropriately. The following table shows the expected DTD.

XHTML Level DocType Declaration

XHTML 1.0 Transitional <!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0

Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd”>

XHTML 1.0 Frameset <!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

frameset.dtd”>

XHTML 1.0 Strict <!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd”>

XHTML Basic <!DOCTYPE html
PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-

basic10.dtd”>

XHTML 1.1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML
1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

LLiissttiinngg 33--22:: AA ssiimmppllee XXHHTTMMLL 11..11 ffiillee

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”

“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” >
<head>
<title>Some Title</title>

</head>
<body>
<p>Page Content</p>

</body>
</html>

71

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 71

How can you ensure your documents are valid? By validating them, of course. That seems to be a circu-
lar argument, doesn’t it? A number of XHTML validation services and applications are available to
ensure the documents you create are both well-formed and valid, most notably the W3C Validation
service and Tidy.

W3C Validation Service
As the standards body responsible for HTML and XHTML, it seems appropriate that the W3C has a
service available for validating XHTML documents. This service (see Figure 3-1) is available at
http://validator.w3.org, and enables checking a document by URL, file upload, or text input.

Figure 3-1

72

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 72

Tidy
Tidy is an application that was initially developed at the W3C, but later was taken over by the broader
development community. It is a command-line application (see Figure 3-2 for some of the command-line
arguments) that can validate a document, return a list of errors, or correct the errors. In addition, a num-
ber of wrappers are available that provide direct access to the functionality from the programming lan-
guage of your choice.

Figure 3-2

The two most common uses for Tidy are to create new, compliant versions of your Web pages, and to
clean up errors and formatting. Listing 3-3 shows an HTML file that contains a number of issues.
Although this file would still be valid in a browser (see Figure 3-3), you can use Tidy to clean up its
problems and convert the document to XHMTL.

73

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 73

Figure 3-3

LLiissttiinngg 33--33:: NNoott vveerryy vvaalliidd HHTTMMLL

<head>
<title>Lorem ipsum dolor sit amet, consectetuer adipiscing elit</title></head>
<body lang=EN-US BGCOLOR=white text=black link=blue vlink=purple>
<p><i>Lorem ipsum dolor sit amet</i>, consectetuer adipiscing elit.
Suspendisse sit amet odio. Duis porta pulvinar arcu. Curabitur pellentesque,
neque id hendrerit volutpat, ante nulla mattis lacus, sit amet varius augue
orci a enim. Suspendisse ornare purus ac nunc. Maecenas cursus congue libero.
Aliquam erat volutpat. Nulla interdum dui. Ut purus. Donec pellentesque lorem
vitae purus. Pellentesque ultricies consectetuer nisl. Nulla facilisi. Etiam
aliquam adipiscing sem. Nam metus ipsum, nonummy eget, vestibulum quis,
fringilla non, nulla. Suspendisse placerat tempor tortor. Mauris tortor dolor,
sollicitudin eget, gravida rhoncus, vestibulum vel, eros. Proin vitae nunc vel
metus mattis viverra. Pellentesque at turpis vel quam laoreet dapibus. Maecenas
interdum metus nec eros. Nam ut elit eu nisl ullamcorper tincidunt. Praesent
faucibus pede in risus feugiat viverra.</p>
<hr>
<p>Integer vulputate nibh. Mauris convallis
nisi vitae magna. Sed varius, velit eu pretium porta, enim tellus ornare ipsum,
vel interdum nisi tellus vitae massa.</p>
<p>Maecenas imperdiet nunc sed ipsum.</p>
Cras euismod, lorem et rhoncus placerat, felis nibh

lobortis lorem, id eleifend felis eros rutrum dolor.
Nunc euismod, nunc viverra porttitor imperdiet, nibh

tellus convallis erat, sit amet laoreet neque nunc ac purus.

74

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 74

<Center>
<table border=1>
<tr>
<td width=197 valign=top style=’width:2.05in;border:solid windowtext 1.0pt;
padding:0in 5.4pt 0in 5.4pt’>
<p>Ut ut lectus</p>
<td width=197 valign=top style=’width:2.05in;border:solid windowtext 1.0pt;
border-left:none;padding:0in 5.4pt 0in 5.4pt’>
<p> Nunc velit dui, fermentum quis, condimentum viverra, adipiscing
quis, nisl</p>
<td><p> Curabitur feugiat</p></tr><tr><td><p> Aliquam libero</p>
<td>
<p> Maecenas at enim</p>
<td><p>Nunc non nulla a nulla molestie ornare©</p>

</table>
</CENTER>
</body>

In the preceding code, a number of errors are present in the HTML (such as a missing root html tag,
missing close tags for the last tr, and so on). Also, a number of items that are valid HTML items are not
valid in XHTML. For example, the hr tag is an empty tag; therefore, it should be written <hr />. In addi-
tion, many unquoted attributes are present, and the center tag is written in mixed case in one place and
in all uppercase elsewhere.

Converting a document as shown in Listing 3-3 is not an uncommon task, but it can be quite difficult to
do manually. HTML editing software and users have found just too many ways to hide bad code in Web
pages. Running Tidy with the following command-line generates the list of warnings in Listing 3-4. As
you can see, it detected many of the expected errors, as well as a few others.

tidy -o c:\temp\fixed.htm -f errors.txt -i -w 79 -c -b -asxhtml -utf8 Invalid.htm

Note: The options set are:

❑ Output file is c:\temp\fixed.htm

❑ Send errors to errors.txt

❑ Indent output

❑ Wrap output to 79 characters or less per line

❑ Replace deprecated font, center, and nobr tags with CSS

❑ Strip out smart quotes, em dashes, and other formatting characters

❑ Output should be XHTML

❑ Output should be encoded as UTF-8

Many other command-line options exist. In addition, many other configuration settings alter the output
of Tidy. See the documentation for more details. If you want a common set of parameters, it would be
easier to create a configuration file for running Tidy. This is a text file, with the configuration elements
listed one per line. With this in place, the previous command-line could be simplified to:

tidy –config myconfig.txt Invalid.htm

75

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 75

Listing 3-4 shows the result of running Tidy on the sample file.

LLiissttiinngg 33--44:: WWaarrnniinnggss ggeenneerraatteedd

line 1 column 1 - Warning: missing <!DOCTYPE> declaration
line 4 column 7 - Warning: replacing unexpected b by
line 4 column 4 - Warning: replacing unexpected i by </i>
line 3 column 1 - Warning: isn’t allowed in <body> elements
line 21 column 2 - Warning: inserting implicit
line 25 column 1 - Warning: discarding unexpected
line 21 column 2 - Warning: missing before <center>
line 27 column 1 - Warning: <table> lacks “summary” attribute
Info: Document content looks like HTML 4.01 Transitional
8 warnings, 0 errors were found!

Although the cleaned document may not reflect all the intent of the original (an inappropriate change
sometimes occurs), it should be much easier to clean up. Listing 3-5 shows the output of the previous code.

LLiissttiinngg 33--55:: CClleeaanneedd XXHHTTMMLL oouuttppuutt

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta name=”generator” content=
“HTML Tidy for Windows (vers 1 September 2005), see www.w3.org” />

<title>Lorem ipsum dolor sit amet, consectetuer adipiscing elit</title>
<style type=”text/css”>
/*<![CDATA[*/
body {
background-color: white;
color: black;
}
:link { color: blue }
:visited { color: purple }
div.c4 {text-align: center}
td.c3 {width:2.05in;border:solid windowtext 1.0pt; border-left:none;padding:0in
5.4pt 0in 5.4pt}
td.c2 {width:2.05in;border:solid windowtext 1.0pt; padding:0in 5.4pt 0in 5.4pt}
p.c1 {font-family: arial; font-size: 80%}
/*]]>*/
</style>
</head>

<body lang=”EN-US” xml:lang=”EN-US”>
<p><i>Lorem ipsum dolor sit amet</i>, consectetuer adipiscing elit.
Suspendisse sit amet odio. Duis porta pulvinar arcu. Curabitur pellentesque,
neque id hendrerit volutpat, ante nulla mattis lacus, sit amet varius augue
orci a enim. Suspendisse ornare purus ac nunc. Maecenas cursus congue
libero. Aliquam erat volutpat. Nulla interdum dui. Ut purus. Donec
pellentesque lorem vitae purus. Pellentesque ultricies consectetuer nisl.
Nulla facilisi. Etiam aliquam adipiscing sem. Nam metus ipsum, nonummy eget,

76

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 76

vestibulum quis, fringilla non, nulla. Suspendisse placerat tempor tortor.
Mauris tortor dolor, sollicitudin eget, gravida rhoncus, vestibulum vel,
eros. Proin vitae nunc vel metus mattis viverra. Pellentesque at turpis vel
quam laoreet dapibus. Maecenas interdum metus nec eros. Nam ut elit eu nisl
ullamcorper tincidunt. Praesent faucibus pede in risus feugiat viverra.</p>
<hr />

<p class=”c1”>Integer vulputate nibh. Mauris convallis nisi vitae magna. Sed
varius, velit eu pretium porta, enim tellus ornare ipsum, vel interdum nisi
tellus vitae massa.</p>

<p>Maecenas imperdiet nunc sed ipsum.</p>

Cras euismod, lorem et rhoncus placerat, felis nibh lobortis lorem, id
eleifend felis eros rutrum dolor.

Nunc euismod, nunc viverra porttitor imperdiet, nibh tellus convallis
erat, sit amet laoreet neque nunc ac purus.

<div class=”c4”>
<table border=”1”>
<tr>
<td width=”197” valign=”top” class=’c2’>
<p>Ut ut lectus</p>

</td>

<td width=”197” valign=”top” class=’c3’>
<p> Nunc velit dui, fermentum quis, condimentum viverra, adipiscing
quis, nisl</p>

</td>

<td>
<p> Curabitur feugiat</p>

</td>
</tr>

<tr>
<td>
<p> Aliquam libero</p>

</td>

<td>
<p> Maecenas at enim</p>

</td>

<td>
<p>Nunc non nulla a nulla molestie ornare(c)</p>

</td>
</tr>

</table>
</div>

</body>
</html>

77

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 77

Tidy UI
For those less than comfortable with the command-line, Charles Reitzel created a Windows application
to enable working visually with Tidy (see Figure 3-4). This is a handy utility if you have only a small
amount of HTML to convert. For larger quantities, the command-line (or one of the code wrappers) is a
better solution.

Figure 3-4

Just as with the command-line version, you can easily see the errors and warnings your document gener-
ates (see Figure 3-5). Double-clicking the warning or error selects the appropriate line in the edit window.

Figure 3-5

78

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 78

The functionality of Tidy has also been exposed through a number of language wrappers. This allows you
to integrate the functionality into your own applications. Wrappers are available for COM, .NET, Java,
Perl, Python, and many other languages. See the Tidy home page (http://tidy.sourceforge.net/)
for the full list.

The included project is a simple text editor that includes the capability to run Tidy (using the .NET
wrapper) on the content. It is intentionally simple, but shows how you can integrate the Tidy functional-
ity directly in an application.

First, create a new Windows Forms project. The sample project contains three tabs. The first is an edit
window, the second a read-only text box containing the tidied XHTML, and the last is a Web browser
window for viewing the resulting content. Next, add a reference to the .NET wrapper (see Figure 3-6). If
you receive an error while adding the reference, it may be because the TidyATL.dll is not registered (the
.NET wrapper is actually a .NET wrapper of the COM wrapper). Register the TidyATL.dll file using the
command-line regsvr32 tidyatl.dll and try adding the reference again.

Figure 3-6

Most of the code in the included project is involved in the menus and file handling. The only code that
actually calls the Tidy wrapper is in the TidyText function (see Listing 3-6). This takes a block of HTML,
processes it with Tidy, and returns the result (see Figure 3-7). Each of the command-line properties of Tidy
is exposed in an enumeration (TidyOptionId). You use the SetOptBool, SetOptInt and SetOptValue
methods to set the desired settings. Alternatively, you can load the settings from a configuration file. This
file is simply a list containing one parameter per line, along with the value, in the format:

property: value

For Boolean values, yes/no, true/false or 1/0 can be used for the value. ParseString loads the HTML,
and SaveString returns the cleaned XHTML. You could alternatively use ParseFile and SaveFile to
process files on disc or CleanAndRepair to clean a file in place.

79

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 79

LLiissttiinngg 33--66:: UUssiinngg tthhee ..NNEETT TTiiddyy wwrraappppeerr

Private Function TidyText(ByVal text As String) As String
Dim result As String = String.Empty
Dim t As New Tidy.Document
With t

‘set options
.SetOptBool(TidyOptionId.TidyIndentContent, 1)
.SetOptBool(TidyOptionId.TidyXhtmlOut, 1)
.SetOptBool(TidyOptionId.TidyMakeClean, 1)
.SetOptBool(TidyOptionId.TidyIndentContent, 1)
.SetOptInt(TidyOptionId.TidyIndentSpaces, 2)
.SetOptValue(TidyOptionId.TidyCharEncoding, “utf8”)
‘or .LoadConfig(“tidyconfig.txt”)

‘parse and return tidy’d html
.ParseString(text)
result = .SaveString()

End With

Return result
End Function

Figure 3-7

The functionality of Tidy and its availability for multiple languages and platforms means you never
have an excuse for invalid XHTML pages. Try to develop the habit of running it regularly on your
XHTML to ensure it conforms.

80

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 80

Understanding CSS
Cascading Style Sheets (CSS) is a technology for defining layout or formatting for documents. Although

not an XML technology, it is most useful when used in combination with XHTML, and, therefore, it is
included here. CSS separates the style information from the actual content. In addition, CSS can save
you time when generating pages. Rather than add font, color, or other styling information on every tag
of a particular group (for example, making each h1 tag red and Arial), you apply the CSS style informa-
tion to a selector and then add that selector to the elements you want formatted that way. That is, rather
than sprinkling Some
text throughout your Web pages, you add something like Some
text. The emphasis style is defined elsewhere in one spot. Should the appearance of your
emphasis text need changing, you no longer need to search through all your documents looking for
items to change. Finally, CSS can save bandwidth. By having all your documents refer to the same file(s)
containing style information, you save the bandwidth that would be used if this information were scat-
tered throughout your documents. One upcoming benefit of CSS is that you will be able to apply differ-
ent CSS files based on the desired output (for example, screen vs. printer) for your page.

Basics of CSS
CSS could easily fill a book, such as Wrox Professional CSS: Cascading Style Sheets for Web Design,
ISBN: 0-7645-8833-8 (wrox.com/WileyCDA/WroxTitle/productCd-0764588338.html). Now,
however, I’ll cover only the basics and let you refer to other material as needed.

Two active levels of CSS exist: CSS 1 (originally ratified in 1996) and CSS 2.1 (as of this writing still a
Working Draft that expands on CSS 2.0, originally ratified in 1998). CSS 3.0 is currently a standard in
progress; it adds a number of properties that will be useful, such as column layout. However, because it
will likely be some time before these properties will be supported by most browsers, I won’t cover them
here. If you want your CSS to work in the broadest range of browsers, you should stick with CSS 1.0.
Some of the CSS 2.0 and 2.1 features are either unsupported or supported using nonstandard extensions
in the various browsers.

81

Chapter 3: XHTML and CSS

The Evil Font Tag
When I first learned HTML, it was a fairly primitive formatting tool. You had your
choice of bold, italics, or one of six headline levels. (“And we liked it!”) Going further
than this meant using the element. Using this element, you could change the
look of your Web sites, getting them to look closer to a corporate or other brand, or to
make them look more like offline documentation.

However, like a lot of other gifts of technology, things were waiting to bite in this
Pandora’s Box. Using the element meant that you were hard-coding huge
amounts of information directly in the page. Maintaining information as it
changed was a chore. In addition, this information was repeated frequently through
the document, causing page bloat and slow response times. Fortunately, around the
time of HTML 4, CSS came along. As you will soon see, CSS is a way of applying the
same type of information as you could using the element (and more), but in a
better way. Therefore, the tag has been deprecated, and support for it in
browsers will eventually go the way of the <blink> and other extinct HTML elements.

08_777779 ch03.qxp 3/1/07 11:44 PM Page 81

CSS consists of a number of properties that can be applied to areas on a page. These properties have val-
ues that affect how they are rendered, and include such items as color, margins, padding, and text for-
matting. The following table lists some of the more commonly used properties. Note: This is hardly a
comprehensive list; see Professional CSS (ISBN: 0-7645-8833-8) for more details.

Property Description

border Sets a border around an item. Also border-left, border-top, border-right, and
border-bottom set each border individually. Value is a three-part string of
style line-width color. Style determines how the line is drawn (for example,
solid, dashed, dotted). Line-width can be an actual length (with units) or one
designated thin, medium, or thick. Color can be a named color or the RGB
value (with a # preceding it). Each of these properties can also be individu-
ally enhanced with its own properties, such as border-right-style, border-top-
color, and border-left-width.

margin Sets the margin around the item. This differs from padding in that padding sets
the margin between the edge of the item and the content itself. Margins sets the
margin between the edge of the item and its container. You can also use margin-
left, margin-top, margin-right, and margin-bottom to set each margin indi-
vidually. Value is an actual length (with units) or a percentage of available
space (ending with %)

padding Sets the spacing around the content of the item. This differs from margin in
that margin sets the spacing around the entire item, whereas padding adds
spacing between the item’s edge, and the content. You can also use padding-
top, padding-right, padding-bottom, and padding-left to set each side indi-
vidually. Value is an actual length (with units) or a percentage of the
available space (ending with %).

color Sets the foreground or background color of an item. Value is either a named
background-color color or the RGB value (with a # preceding it). Although not absolutely neces-

sary, if you set one of these, you should set the other as well.

background Sets a number of the properties of the background, including color, image,
and how the image interacts with the page. The value is a five-part string
containing the color, image url, the repeat settings for the image, whether the
image is fixed or whether it scrolls as the user scrolls the page, and the posi-
tion of the image. Each of these properties can be set individually as well
with the background-color, background-image, background-repeat, back-
ground-attachment, and background-position properties.

display Sets how the item is displayed. The most common example of this is dis-
play:none, which hides the content (that is, nothing is created on the page for
it). However, a number of options exist for this property, including block,
inline-block, inline, and list-item.

text-align Sets how the text is aligned within the borders of the item.

text-decoration Adds decoration to the item. The decoration consists of underlining, overlin-
ing, blinking and striking through the item.

82

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 82

Property Description

font-style Sets the text as italic or oblique (angled like italics, but the other way).

font Sets all the font properties for an item. Value is a five-part string containing
the setting for the style (currently normal, italic, or oblique), variant (cur-
rently the only option is small-caps), weight (boldness), size (either a specific
size, or a name that describes the size, for example: xx-small, larger), and font
family (for example, Arial). Alternatively, but more rarely, the value can be
the name of a system font (for example, caption, message-box, menu). Each
of the properties can be set individually as well, such as font-family, font-
style, font-weight, and font-size.

list-style Sets how each list item is displayed. Value is a three-part string containing the
symbol type to use as a bullet (for example, disc, square, or none), an optional
URL to an image to use for the bullets, and the position of the bullet relative to
the item. Each of these properties can be set individually as well, with the list-
style-image, list-style-position, and list-style-type properties.

height Sets the size of items. Value is either an actual size (with units) or a percentage
width of the available space (ending with ‘%’). The min- and max- versions control
min-height the minimum and maximum dimensions of an item if the browser window is
min-width resized. They are not supported by Internet Explorer (up to version 6.0).
max-height
max-width

float Removes an item from the normal flow of items on a page and moves it to
either the left or right of the screen. Other content flows around this item. See
an explanation of multicolumn layout with CSS (in the following section) for
one common use of this property.

position Changes how the item is positioned on the page. Values include static (nor-
mal behavior), relative, fixed, and absolute. With relative or absolute, you
should also include left and top properties in the selector. When using rela-
tive, these values are used to adjust the position of the item relative to where
it should appear in the flow of the page. When you use absolute, these values
enable you to place the item exactly.

cursor Sets the mouse pointer when the cursor is placed over it. Value is one of the
standard shapes for a mouse pointer (crosshair, wait, move, default, help) or
an URL pointing to a custom cursor.

overflow Sets the behavior used if the content is larger than the assigned size. Values
include visible (meaning the content continues beyond the assigned size),
hidden (meaning the content is cut off at the margin), scroll (meaning the
content is cut off at the margin but a scroll bar is added to view the remaining
content) and auto (implementation-dependant behavior). This property can
be a useful property when adding a large block of content to a page, such as
when adding code samples. You can fix the size of the content and add a
scroll bar if the size is larger than the requested space.

83

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 83

You group these properties in selectors. Each selector is applied to one of the following types of items:

❑ All elements of a named type, for example: h1 { color: red; }

❑ All elements with a particular id or all elements of one type with a particular id, for example:
#doc-body { font-size:0.78em; } or h1#headline { color: red; }

❑ All elements with a particular class attribute or all elements of one type with a particular class
attribute, for example: .emphasis {font-weight: bold;color:navy; } or div.fineprint
{ font-size: xx-small; }

❑ All elements that are contained by another element (descendant selectors), for example div a {
text-decoration: none; }. This would be when one tag is contained within another tag,
such as <div><a></div>. The a element descends from the div element. A elements not
within div elements would not be affected.

❑ All elements adjacent to one another (adjacent sibling selectors), for example h1+div { margin-
top: 1.5em; }. This would be when one tag immediately follows another; in this case a div
immediately follows an h1 tag. Adjacent sibling selectors are not frequently encountered, but
can provide a powerful formatting tool for some documents.

❑ All elements with a particular attribute or all elements of one type with a particular attribute,
for example: h1[title] {font-size:2.2em; color:navy; }.

❑ Specific “pseudo” classes and elements. Certain tags, most notably the a tag, support pseudo-
classes to identify specific states for the anchor. These include hover, active, link, visited. Each of
these classes can have CSS applied to them for styling. In addition, elements support the lang
class to style different languages. Some clients also support pseudo-elements such as before,
first-line, first-letter and more. Consult a CSS reference for the complete list of pseudo-elements
and selectors, but be aware that many of these have poor support by some browsers.

Listing 3-7 shows examples of these three types of selectors. Selectors are made up of one or more
named items and the properties associated with those items surrounded by braces ({}).

LLiissttiinngg 33--77:: CCSSSS sseelleeccttoorrss

body {
margin: 0;
padding: 0;
border: 0;
text-align: center;
color: #554;
background: #692 url(images/background.gif) top center repeat-y;
font: small tahoma, “Bitstream Vera Sans”, “Trebuchet MS”,
“Lucida Grande”, lucida, helvetica, sans-serif;
}

#main {
width: 400px;
float: left;
}

#sidebar ul li {

84

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 84

list-style: disc url(images/bullet.gif) inside;
vertical-align: top;
padding: 0;
margin: 0;
}

.content-body {
line-height: 140%;
}

h3.content-title {
margin-top: 5px;
font-size: medium;
}

The sample CSS in Listing 03-7 includes five selectors. The first is associated with the body tag of the
page, but you create element-associated selectors using this format. The selector sets the margins,
padding, and border to 0, meaning the content will appear flush with the edges of the browser window.
The background property sets the color and assigns an image for the background. The image is set to the
top of the page, and it repeats down the page. If the browser window is too wide, the graphic is not
repeated.

The second and third selectors show the id form of naming a selector. The first creates a named selector
called main. Any tag that includes the attribute id=”main” has this selector associated with it, setting
the width and floating it to the left margin. The second form of the id selector is applied to all li tags
that are within a ul element that is within an area marked with the id=”sidebar” attribute. This form
of the selector is very useful in blocking off sections of your page. For example, you might break down
your page into navigation, main, sidebar, and footer sections to define areas of the page, and then create
selectors that include that information. This causes tags to appear differently depending on their location
on the page.

<div id=”sidebar”>
<h2>List Title</h2>

Item 1
Item 2

</div>

The fourth and fifth selectors show the class form of naming a selector. The first creates a selector called
content-body. Any tag that has the attribute class=”content-body” has this selector applied to it,
setting the line height to 140% of normal. The second form applies only to h3 tags with a class of con-
tent-title. This form of the tag is useful as a means of precisely formatting a block of content. In addition,
if you had multiple h3 tags, you could format some of them by including the class attribute.

You can include selectors either directly within the file or as an external file. When adding style informa-
tion directly to the page, you should identify the style block as CSS and provide an id for reference (see
Listing 3-8). In addition, if your styles include any characters significant to XML, such as < and &, you
should wrap them in a CDATA block.

85

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 85

LLiissttiinngg 33--88:: SSttyyllee iinnffoorrmmaattiioonn iinn aann XXHHTTMMLL ddooccuummeenntt

<?xml-stylesheet href=”#internalStyle” type=”text/css”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
<title>Title</title>
<style type=”text/css” id=”internalStyle”>
<![CDATA[
body {
margin: 0;
padding: 0;
border: 0;
text-align: center;
color: #554;
background: #692 url(images/background.gif)
top center repeat-y;

font: small tahoma, “Bitstream Vera Sans”, “Trebuchet MS”,
“Lucida Grande”, lucida, helvetica, sans-serif;

}

#main {
width: 400px;
float: left;

}

#sidebar ul li {
list-style: disc url(images/bullet.gif) inside;
vertical-align: top;
padding: 0;
margin: 0;

}

.content-body {
line-height: 140%;

}

h3.content-title {
margin-top: 5px;
font-size: medium;

}

]]>
</style>

</head>

<body>
<div id=”main”>
<h3 class=”content-title”>Some Title</h3>
<div class=”content-body”>Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.</div>

</div>

<div id=”sidebar”>

86

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 86

<h2>List Title</h2>

Item 1
Item 2

</div>

</body>
</html>

Because of the issues around the & and < characters, it is generally best to include CSS information in
external files and reference them in your pages. In addition, including the CSS information in a separate
file means that the file needs to be downloaded only once, reducing bandwidth requirements. The two
ways of including an external style sheet with a document are the XML way and the HTML way. You
can use either method, although the XML way is preferred.

The XML way of including an external CSS reference is to use a processing instruction (see Listing 3-9).
The xml-stylesheet processing instruction takes the URL of the CSS file and identifies it as the MIME
type text/css.

LLiissttiinngg 33--99:: AAnn eexxtteerrnnaall CCSSSS rreeffeerreennccee uussiinngg pprroocceessssiinngg iinnssttrruuccttiioonnss

<?xml version=”1.0” encoding=”utf-8” ?>
<?xml-stylesheet href=”sample.css” type=”text/css”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
<title>External CSS Reference using PI</title>

</head>

<body>
...

</body>
</html>

The HTML way of including an external CSS reference, shown in Listing 3-10, still works with XHTML.
This method uses a link element. The link includes the URL of the CSS, the MIME type, and an identifi-
cation of it as the stylesheet using the rel attribute.

LLiissttiinngg 33--1100:: AAnn eexxtteerrnnaall CCSSSS rreeffeerreennccee uussiinngg tthhee lliinnkk eelleemmeenntt

<?xml version=”1.0” encoding=”utf-8” ?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en” xml:lang=”en”>
<head>
<title>External CSS Reference using PI</title>
<link href=”sample.css” type=”text/css” rel=”stylesheet” />

</head>

<body>
...

</body>
</html>

87

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 87

By this point, I would expect you are more than a little curious about where the Cascading part of the
name comes from. The name comes from the way CSS is applied to an item when multiple selectors
apply and when multiple sources of CSS are included in a document. CSS selectors cascade or flow from
more local to more general. That is, selectors deemed more important take precedence. The rules govern-
ing the application of CSS in these situations are basically as follows:

1. If only a single selector applies to the item, that selector is applied.

2. If two or more selectors apply to an item and they do not conflict, both are applied. That is, they
“cascade” together.

3. If two or more selectors apply to an item, and one or more properties conflict, the more specific
property is applied. Therefore, if you had a generic h2 selector, and h2 class=”foo” to apply to
an item, the properties of h2 class=”foo” would override the conflicting value in the generic
h2 selector.

4. If a property is assigned to an item in both an external and internal stylesheet, the properties of
the internal (more local) stylesheet are applied.

CSS Examples
In addition to simply applying a few styles to a document, CSS is frequently used to perform certain
tasks. For example, although many people create their overall page layout with a mixture of tables, they
could create a multicolumn layout very simply using CSS. In addition, because you can easily change
the CSS for your pages, why not allow your users to select their personal favorites?

Box Layout and Cross-Browser Compatibility
Although Internet Explorer was the first browser to support CSS, even before it was a standard, Explorer
has fallen a little behind the standard. Some aspects of CSS 2 are currently unsupported, and even some
areas of CSS 1.x are implemented differently in Internet Explorer than in other browsers (or the stan-
dards). The most significant of these is the Box model (see Figure 3-8). The Box Model is the way that the
margins, padding, and borders are constructed around a piece of content.

Figure 3-8

margin

padding Content

border

88

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 88

Older versions (4.0-5.5) of Internet Explorer are notorious for interpreting the Box Model incorrectly.
Figure 3-9 shows this in action, with Internet Explorer 5.0 depicted in the top version, and Firefox 1.5 in
the lower. The red line beneath the two grey boxes represents 300 pixels, whereas the green shows 344
pixels. The content box width is set by the combination of the width, margin, border, and padding. In
versions of Internet Explorer before 6.0, width meant the total width of all these values. Therefore,
adding margin, padding, and border made the text area narrower. Internet Explorer 6.0, Firefox, and
Opera interpret the width correctly, adding margin, padding, and border to the outside of the width
value. This leads to the total width of 344 pixels. The page with its CSS is shown in Listing 3-11.

Figure 3-9

LLiissttiinngg 33--1111:: BBooxx MMooddeell ddiiffffeerreenncceess bbeettwweeeenn bbrroowwsseerrss

Page:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Box Model</title>

(continued)

89

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 89

Listing 3-11 (continued)

<link href=”BoxModel.css” rel=”stylesheet” type=”text/css” />
</head>
<body>

<div class=”border”>Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Suspendisse sit amet odio.
Duis porta pulvinar arcu. Curabitur pellentesque,
neque id hendrerit volutpat,
ante nulla mattis lacus, sit amet varius augue orci a enim. </div>
<div class=”rulerIE”> </div>
<div class=”rulerCSS”> </div>
</body>
</html>

CSS:
div.border
{

border: solid 2px black;
padding:20px;
width: 300px;
background-color: #ccc;

}

div.rulerIE
{

width:300px;
background-color: Red;

}
div.rulerCSS
{

width: 344px;
background-color: Green;

}

Solving the Box Model problem with older versions of IE is a bit of a cottage industry: a number of solu-
tions have been proposed. Most involve adding extra information to the CSS file. This information is
ignored by most browsers but interpreted by earlier versions of IE. Some of the more popular ones
include:

❑ The Box Model Hack: First proposed by Tantek Çelik of Technorati, this method involves
adding a second selector with a false ending. In the following code, the second div.border
selector overrides the width set in the first. The odd looking line “voice-family: “\”}\””;”
uses the rarely set voice-family property. Most browsers ignore this line because it is not
valid. However, versions of Internet Explorer (5.5 and earlier) interpret it as, “voice-family:
}”. That is, IE 5.5 and earlier see this line as the end of the selector and ignore the next two lines.
Other browsers ignore this line, and interpret the following two lines, setting the width as
appropriate and resetting the voice-family to the default.

div.border
{

border: solid 2px black;

90

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 90

padding:20px;
background-color: #ccc;
width: 300px;

}
div.border {
width:344px;
voice-family: “\”}\””;
voice-family:inherit;
width:300px;

}

❑ The Simplified Box Model Hack: First proposed by Andrew Clover, this method leverages the
string escape method of CSS to include multiple copies of the width. CSS-aware browsers read
the correct value, whereas browsers that improperly handle the escapes have the value overrid-
den later in the file.

div.border
{

border: solid 2px black;
padding:20px;
background-color: #ccc;
width: 300px;

}
div.border
{

\width: 344px;
w\idth: 300px;

}

❑ The Modified Simple Box Model Hack: This method, also known as the Star HTML Hack, was
proposed by Edwardson Tan and includes a selector for the invalid * html before the desired
tag. This, like the other hacks, is ignored as invalid by browsers such as Firefox or Opera and
processed by older versions of Internet Explorer (5.5 or earlier).

div.border
{

border: solid 2px black;
padding:20px;
width: 300px;
background-color: #ccc;

}

* html div.border
{

width: 344px;
}

One or all these hacks will likely work for you. Personally, I’ve found the Simplified Box Model Hack
works quite well, and it is simple enough to implement. In general, you should include these hacks in
separate CSS files, and use import statements to include them in your normal CSS. That way, you need
to change only one line to remove them when you no longer need the hack.

91

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 91

Multicolumn Layout with CSS
Most, if not all, Web sites involve multiple column layouts. The content itself may be in multiple
columns, or columns may be used for navigation or other page elements. The classic method of laying
out a page like this is to use a combination of tables and 1-pixel transparent graphics to position items on
the page. As you can imagine, this technique has a number of problems — it can be difficult to manage,
particularly if you’ve got nested tables. All those tags bulk up the document, increasing download times;
and this technique is definitely not accessible to those who read the page using screen readers or similar
technologies. Because of this, it’s a good idea to replace these pages with CSS to create the multiple col-
umn layout. However, doing so has its own problems, most notably browser compatibility with some of
the CCS techniques. Even if you ignore older browsers (pre-Internet Explorer 4 or Netscape Navigator 3)
that do not support CSS, a few compatibility issues still exist because each browser tends to interpret the
CSS standards differently. Some comply only with CSS 1.x, whereas others are compatible CSS 2.x. As
with any CSS technique, it is a good idea to validate your pages and to view them in a variety of
browsers and platforms to ensure your pages work properly.

Figure 3-10 shows a simple two-column layout using CSS. As you can see, the left Menu Area does not
change in size as the browser window is increased. Instead, the main content area expands and contracts
to fit the available space. This is the simplest way of creating a page layout with a banner, left navigation
area, and main area.

Figure 3-10

92

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 92

Creating this two column layout is a simple matter. The CSS and HTML used are shown in Listing 3-12.
The only important selectors are the two highlighted ones setting the width of the menu area, and
float:left. The float selector causes the area to be removed from the normal processing of the page
and positioned at the left margin. Remaining content wraps around this area, so if the main content
area’s content is longer than the menu area (which it likely will be); you should adjust the padding-
bottom to prevent this.

LLiissttiinngg 33--1122:: TTwwoo ccoolluummnn llaayyoouutt wwiitthh CCSSSS

CSS:
body
{

background-color: #0000cc;
color:#000;

}
#banner
{

background-color:#00cc00;
color:#000;
padding:20px;
border: solid 1px #000;

}
#leftColumn
{

float:left;
width:300px;
background-color:#fff;
color:#000;
border: solid 1px #000;
padding-left: 20px;
padding-right:20px;
padding-bottom:200px;

}

#mainContent
{

background-color: #ccc;
color:#000;
border: solid 1px #000;

}

XHTML:
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<title>Two Column Layout</title>
<link href=”TwoColumn.css” rel=”stylesheet” type=”text/css” />

</head>
<body>

<div id=”banner”>Banner Area</div>
<div id=”leftColumn”>

<h3>Menu area</h3>

(continued)

93

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 93

Listing 3-12 (continued)

<div>
Lorem</div>

<div>
ipsum</div>

<div>
dolor</div>

</div>
<div id=”mainContent”>

<h3>Main Content Area</h3>
<div>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Suspendisse sit amet odio.
Duis porta pulvinar arcu. Curabitur pellentesque, neque id
hendrerit volutpat, ante
nulla mattis lacus, sit amet varius augue orci a enim.</div>

</div>
</body>
</html>

Validating CSS
Just as with XHTML, it is best if you validate your CSS before releasing it into the wild. You have at least
two main means of validating your CSS. First, you should run your style sheets through a mechanical
validator, such as the online one at http://jigsaw.w3.org/css-validator. This identifies any major
errors you may have, as well as shows you any items that aren’t covered in the version of the standard
you are targeting.

The second and much more important means of validating your CSS is to look at the resulting page in as
many browsers as you think may be used to view your site. Generally, this means Internet Explorer,
Netscape Navigator, Firefox, Opera, and any others that appear regularly in your Web server logs. In
addition, you probably want to use multiple versions of those programs, and probably also some ver-
sions running on multiple platforms. Using virtualization software, such as Microsoft Virtual PC or
VMWare, makes it easy to keep all these versions available when you need to test a page.

Using Microformats
Microformats are an interesting new development in the use of XHTML. Rather than propose new XML
grammars for items such as contacts, lists, or calendar elements, microformat users recommend using
standard XHTML tags, with CSS for formatting for those elements. Among many benefits of this tech-
nique are the following:

❑ You don’t need to learn a new XML grammar or to get a standards body to approve it.

❑ No additional code is required to display microformats in existing browsers and applications.

❑ Existing XHTML validators can validate the pages produced using microformats by using exist-
ing XHTML tags.

❑ The microformat is human-readable, and at the same time it provides information to software,
such as search engines.

94

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 94

There are three basic sets of microformats — simple, elemental microformats, and compound microformats.

Elemental Microformats
Elemental microformats are minimal solutions to a specific XHTML problem (often a single element or
an attribute). They provide additional semantic information to the content of the XHTML page. Some of
the more notable elemental microformats include:

❑ RelNoFollow: An attribute used to change the way search engines treatlinking tags.

❑ Rel-Tag: An attribute used to identify the topic of a link, page, or other item.

RelNoFollow
The most-used elemental microformat is the RelNoFollow microformat. This microformat recommends
the addition of the attribute rel=”nofollow” to some hyperlinks, typically in the comment section of a
weblog or forum. The end user does not see the effect of this change in the hyperlink, but it becomes an
informational marker for search engines. Typically, search engines follow hyperlinks and apply weighting
to the association between the destination page and the linking page. Therefore, if the link is coming from
a popular site about some technology, the target page may likely be about that technology as well.
However, this relationship has been used by a number of spam groups to increase their status in popular
search engines, typically by commenting on popular blogs or news sites. The RelNoFollow microformat
is a marker for search engines to ignore the target page, reducing the value of such comment spam. You
can get more information on the RelNoFollow microformat at http://microformats.org/wiki/
relnofollow.

Rel-Tag
Rel-Tag is intended to be metadata added to an article, blog post, or other block of information, that
provides the topic of the item. The intent is that the tag points to an aggregation of similar items, a defi-
nition of the item, or similar collection. For example, Rel-Tag could be used in a weblog post or article
to identify that the content involves XHTML by adding the following tag to the content.

XHTML

An application reading this would realize (because of the rel=”xhtml” attribute) that the post was about
XHTML. Users then click on the link to discover more links about XHTML. Note that the link doesn’t
have to point to Technorati, but it could instead point at some other tag aggregation site, such as
Delicious (e.g. http://del.icio.us/tag/xhtml), Wikipedia (for example, http://en.wikipedia
.org/wiki/Xhtml), or even the specification itself (for example, http://www.w3.org/TR/xhtml11/).
Rel-Tag suggests the presence of the rel=”xhtml” attribute, and requires href to point to something
useful and appropriate for that attribute.

In one sense, Rel-Tags are similar to the META tags that some people add to the head section of XHTML
pages. However, they are slightly different in that they are visible. Their visibility makes them a more
honest attempt at identifying the content. In the past, many sites have abused META tags by adding
them excessively or falsely, in the hope that search engines would misidentify the site as highly relevant
to a search subject. For this reason, many of the major search engines have stopped using META tags
completely. By adding Rel-Tags to appropriate links on your XHTML pages, you provide this
metadata, but in a way that is less prone to abuse. You can get more information on Rel-Tag at
http://microformats.org/wiki/reltag.

95

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 95

Compound Microformats
Compound microformats are XHTML versions of other formats, built using XHTML elements and ele-
mental microformats. The intent is to embed them in XHTML pages. They provide information to both
users and applications viewing the page. Three of the most significant compound microformats include:

❑ hCard: An XHTML representation of the vCard standard for contact information.

❑ hCalendar: An XHTML representation of the iCalendar standard for calendaring and events
information.

❑ hReview: An XHTML representation for review (as in movie, book, or music reviews) information.

hCard
hCard is a proposed structure for contact information in XHTML, based on the vCard format. Although
vCard is text-based, it is not XML. hCard is a combination of recommended structure and class names.
The class names provide hooks to provide for additional styling, as well as metadata about the content.
Listing 3-13 shows a sample hCard block.

LLiissttiinngg 33--1133:: hhCCaarrdd

<div class=”vcard”>

John
J. Bull

<div class=”org”>Example Corp.</div>
<div class=”adr”>
<div class=”street-address”>123 Any Drive</div>
Springfield,
KY
40069
</div>

<div class=”tel”>+1(859) 555-1212</div>
Home Page
Contact
</div>

The hCard information is wrapped in a div with an attribute of vcard. Within the hCard, the individual
elements of the contact item are created in a mixture of div, span, and a tags. The class of these tags
clarifies the information’s true meaning. The applications processing this block of XHTML can process
the data. Humans looking at this block without any style information can still read it (see Figure 3-11).
Addition of a simple style sheet can greatly alter the view for humans (see Figure 3-12), without chang-
ing the data available for applications processing the hCard.

96

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 96

Figure 3-11

Figure 3-12

hCalendar
hCalendar is a proposed structure for date and event information using XHTML. It is based on the
iCalendar standard of the IETF made popular by Apple with their iCal product. It is an excellent way of
including event information within XML that is not directly associated with a specific calendaring appli-
cation. Listing 3-14 shows an example of hCalendar.

LLiissttiinngg 33--1144:: hhCCaalleennddaarr

<div class=”vevent”>
<abbr class=”dtstart” title=”20060104T0900-0800”>
January 4, 2006 - 09:00

</abbr> -
<abbr class=”dtend” title=”20060104T1500-0800”>
15:00
</abbr>

-
Meeting Planning Meeting

 - at

Room 13

<div class=”description”>

We need to use this time to plan an upcoming meeting.
Lunch will not be provided.

</div>
</div>

The entire calendar item is wrapped in a div tag, with a class of vevent. Within the div, spans, and
additional divs provide the information. The most notable aspect of the hCalendar format is how dates
are written. The abbr tag is used to identify the start and end dates (and times) of the event. The title

97

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 97

attribute of the element contains the ISO 8601 version of the date and time (in the previous example,
January 4, 2006, 9:00 am in the US Pacific time zone), whereas the content is a more user-friendly render-
ing of the date and time. This provides useful information to any application processing the hCalendar
data, without forcing users to employ that format.

Internet Explorer (version 6.0 and below) does not have support for the abbr element. Or rather, it
supports it, but does nothing with it. Other browsers, such as Netscape, Firefox, and Opera render the
tag with a dotted underline (as seen in Figure 3-13). Safari behaves intermediately — the tooltip
works, but the text is not rendered with the dotted underline.

Figure 3-13

hReview
hReview is a proposed structure for product reviews on Web pages. It is a combination of a recom-
mended structure, along with recommended class names. A simple hReview block looks like the code in
Listing 3-15 (from the specification).

LLiissttiinngg 33--1155:: hhRReevviieeww

<div class=”hreview”>
5 out of 5 stars
<h4 class=”summary”>Crepes on Cole is awesome</h4>
Reviewer: Tantek -
<abbr class=”dtreviewed” title=”20050418T2300-0700”>April 18, 2005</abbr>
<blockquote class=”description”><p>
Crepes on Cole is one of the best little creperies in San Francisco.
Excellent food and service. Plenty of tables in a variety of sizes
for parties large and small. Window seating makes for excellent
people watching to/from the N-Judah which stops right outside.
I’ve had many fun social gatherings here, as well as gotten
plenty of work done thanks to neighborhood WiFi.
</p></blockquote>
<p>Visit date: April 2005</p>
<p>Food eaten: Florentine crepe</p>
</div>

The entire hReview is enclosed in a div tag, with a class of hreview. In addition, appropriate span tags
are identified in the block with the addition of class attributes. The review itself is enclosed in a block-
quote tag with a class of description. Finally, the date and time of the review are included using an
abbreviation (abbr) tag that includes the date and time in ISO 8601 format (year month day T time
timezone). For example, May 4, 2006 at 3:02 AM in the Pacific Time Zone would be written as
20060504T0302-700. Even without an added stylesheet, this is perfectly readable (see Figure 3-14). In
addition, applications can extract useful information from the page, including the reviewer, the item
reviewed, the rating, and the text of the review. You can get more information about hReview at
microformats.org/wiki/hreview.

98

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 98

Figure 3-14

Summary
By migrating your HTML development to make it fully XHTML, you gain a number of benefits. It
becomes easier for you and your applications to validate and parse XHTML. You can also use all the
XML tools and technologies for processing your pages. For example, if your content is valid XML, you
can more easily perform XSLT or XQuery with the content. Processing becomes simpler as well because
you no longer have to worry about empty tags, case insensitivity, or unquoted attributes.

By changing your formatting to use CSS throughout, you are reducing the bandwidth needs of your
XHTML (or HTML) pages and making your site easier to maintain. Rather than scanning through all
your pages, you now change selectors in one place and have that change applied to all pages. CSS also
provides more flexibility in formatting than other technologies.

Microformats are an intriguing development for embedding semantic information directly in XHTML
pages (or other XML files). Although not a standard or even proposed to any standards body, many
microformats are based on standards, and a number of people are working to maintain consistency in
their use. Future developments may make them easier to include in your pages, and future search
engines may extract the information they provide, making searches more valid and accurate.

99

Chapter 3: XHTML and CSS

08_777779 ch03.qxp 3/1/07 11:44 PM Page 99

Resources
This section includes some useful resources when working with XHTML and CSS.

❑ World Wide Web Consortium (w3.org): The W3C is responsible for standardizing many XML-
related technologies, including XHTML and CSS.

❑ Tidy (http://tidy.sourceforge.net): Download the current source or binaries for Tidy for
a variety of platforms. In addition, this contains links to documentation and many language
wrappers.

❑ Charlie’s Tidy Add-ons (http://users.rcn.com/creitzel/tidy.html): Tidy UI for
Windows and language wrappers for COM, .NET, C++ and Perl.

❑ Online XHTML Validator (http://validator.w3.org): Handy online way to quickly check
a page or block of text to determine if it is XHTML and to identify problems with the code.

❑ Online CSS Validator (http://jigsaw.w3.org/css-validator/): Online validator to
quickly check a CSS file for conformance with the standards.

❑ CSS Zen Garden (csszengarden.com): An amazing example of what can be done with CSS.
Many designers have created style sheets that are applied to the same XHTML, radically alter-
ing the resulting view.

100

Part II: Presentation

08_777779 ch03.qxp 3/1/07 11:44 PM Page 100

XXSSLL -- FFOO

This chapter presents a reference and detailed examples of using the features of XSL-FO (eXtensible
Stylesheet Language - Formatting Objects). It is used to specify the formatting semantics of docu-
ments using an XML format.

XSL-FO is used to produce formatted output from an XML data source. One problem of Web
based applications has been the difficulty of producing quality printable output to create presenta-
tion quality documents available from the browser. XSL-FO, in conjunction with Scalable Vector
Graphics (Chapter 5), gives you the tools to provide this service to users in common Web formats.

XSL-FO builds on the other Web based styling technologies like Cascading Style Sheets (CSS(2)),
Document Style Semantics and Specification Language (DSSSL). The W3C used these technolo-
gies, which were aimed primarily for browser rendering to produce a specification for paginated
output not solely targeted to the Web browser. This led to the W3C specification for XSL, which
includes XSL-FO and for eXtensible Stylesheet Language Transformation (XSLT).

Although this chapter concentrates on producing output documents for printing, the XSL-FO
specification provides for other mediums of electronic communication such as text to speech. XSL-
FO also includes multilingual support including options for right-to-left, bottom-to-top languages.

At the moment, Web browsers cannot directly display pages marked up with XML-FO objects. To
produce output from XSL-FO documents, you use an XSL-FO processor. Examples of the common
output supported by free-to-download processors include PDF, Text, PCL and PS.

If you wish to work through the examples presented in this chapter, you need several prerequi-
sites. The applications required for the examples plus alternative applications are listed and exam-
ined later in the chapter.

Initially, I present a detailed overview of XSL, where XSL-FO fits in to the XML family, examples of
where XSL-FO can be used and a detailed overview of the syntax and properties of the key areas
of the XSL-FO implementation.

09_777779 ch04.qxp 3/1/07 11:44 PM Page 101

The Composition of XSL
XSL is a W3C standard developed to allow for the application of stylesheets to XML data. There are three
parts to XSL as shown in Figure 4-1.

Figure 4-1

Some consider XSL to be composed of only XSLT and XSL-FO but XPath was also required to satisfy the
requirements of a transformation and formatting standard. The list that follows gives a short explanation
of each of the components.

❑ Transformation (XSLT) — Applying transformations to XML data. This can be used to create
other data formats, sort existing data, or query the XML data by selection.

❑ Formatting (XSL(-FO)) — The main subject of this chapter, it allows, the formatting of XML data
using defined structures.

❑ Selection (XPath) — XPath provides the capability to address sections of the XML document
tree.

Transformation is by far the most well-known of the XSL components and inherently utilizes XPath to
select the XML data to transform. Both these topics are covered in detail in chapters 9 & 10 but I also use
them in an example later in the chapter. Also, XSLT is commonly the first step in producing an XML
structure capable of being used with XSL-FO to produce formatted output.

Some of the potential uses for XSL are shown in Figure 4-2.

The full specification for XSL can be found on the W3C site w3.org/TR/xsl/. This is a
full technical specification that is targeted at developers of processing engines and
can be used as a developer’s reference. It is most certainly not a tutorial! The site is
however very useful as a reference and does explain some of the aims and benefits
of the specification.

XSL

XSL(-FO)XSLT XPath

102

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 102

Figure 4-2

In the preceding example, the application extracts data from a data source such as a database, text file or
another XML data source. The XSLT transforms the source to a defined XML tree structure in prepara-
tion for applying further transformations to the data. Depending on the desired destination, you can
apply a stylesheet to the data to produce the appropriate output.

In the previous example, the application applies XSLT to the source, selecting appropriate data to be out-
put within HTML tags. An XSL-FO stylesheet is applied to the source defining the pagination and for-
mat of the data to be output in Adobe PDF format. The final transformation performs an XML-to-XML
transform to produce a SOAP packet.

You work through an example like this later in the chapter. First, however, you go through the basics of
XSL-FO.

XSL-FO Overview
The namespace for XSL-FO is http://www.w3.org/1999/XSL/Format. The example that follows
shows how the xsl-fo namespace is generally introduced using the alias “fo”.

<?xml version=”1.0”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

103

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 103

This and subsequent examples in this book use fo as the alias for the namespace.

Each page is split into the following types of areas:

❑ Region — The main area of the page. This is split into further sub-regions as show later in this
section.

❑ Block Area — Areas of content such as tables, lists and paragraphs.

❑ Line Area — Areas inside a block that contains one line of text.

❑ Inline Area — Lowest level of an area. An inline area can be a single character. Generally, this is
used to display graphics or to insert auto-text or serve as a placeholder for calculations.

Figure 4-3 shows the hierarchical nature of these areas.

Figure 4-3

You can see how the region area is split on a per page basis by the XSL-FO area tags. Figure 4-4 shows
the different areas available within a page followed by a short description of each. Note that a page is
contextual in that the size and length of a page is dependent on the output type. For example, a Web
page is considered one long page, whereas a PDF document the size of the page is restricted by the
selected paper size.

The header and footer regions are self-evident terms. The width of these regions is set to the width of the
page; only the height of this region can be set. The header region is defined by the element fo:region-
before and the footer is defined in by the fo:region-end element. One of the previously mentioned
features of XSL-FO is support for multiple languages. When the chosen language is a dialect that is read
or written from bottom to top, fo:region:start is at the foot of the page and fo:region-end is at the
head.

The start and end regions are the left and right regions of the page. Notice I didn’t specify which was
which! Again, for multilingual support, the start and end regions can be either on the left or right side of
the page. For this example, the start region is the left region of the page and the end region is the right.
The height of the start and end regions, is the height of the body region. The width can be set through an
attribute for each of the elements.

Region Area

Block Area

Block Area

Line Area

Inline Area

Line Area

104

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 104

Figure 4-4

No width or height attributes are available for the body region these attributes are defined by the page
settings. The body region is the size of the page less any margins set on the page level attributes. The page
is discussed in the next section and an example clarifies how the dimensions are determined. The body
can actually overlap the header and footer regions if the attributes of the regions are not correctly set.

Page Templates
Now that you understand the structure and breakdown of a page and regions, look at some of the XSL-
FO elements that define the settings for each. The first element is the simple page master.

fo:simple-page-master
This element is used to specify the settings for a page. More than one fo:simple-page-master can
exists in an XSL-FO document, but each page references only one page master template. Each page mas-
ter is hosted within the fo:layout-master-set element. The following settings for a master page tem-
plate are available:

❑ Margin properties — margin-top, margin-bottom, margin-left, margin-right

❑ master-name — The name by which any subsequent elements refer to the template

❑ page-height — The height of the page

Header Region (fo:region-before)

Page

Body Region (fo:region-body)

Block Region (fo:region-block)

Logical Line Region (derived from processor)

In Line Region (e.g. fo:region-external-graphic)

S
ta

rt
 (

fo
:r

eg
io

n-
st

ar
t)

En
d

(f
o:

re
gi

on
-e

nd
)

Footer Region (fo:region-after)

105

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 105

❑ page-width — The width of the page

❑ reference-orientation — Specifies the rotation (0, 90, 180, 270, -90, -180, -270) in degrees of the
area content

❑ writing-mode — Specifies the direction of text. The available values are:

❑ lr-tb - l(eft)r(ight)-t(op)b(ottom)

❑ rl-tb

❑ tb-rl

❑ lr

❑ rl

❑ tb

Each of these setting is specified as an attribute of the fo:simple-page-master.

Now look at an example template. The code that follows sets a page master template with a one cen-
timeter margin on each side on a standard A4 size page.

<fo:layout-master-set>
<fo:simple-page-master

master-name=”A4”
page-height=”29.7cm”
page-width=”21cm”
margin-top=”1.0cm”
margin-bottom=”1.0cm”
margin-left=”1.0cm”
margin-right=”1.0cm”>
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>

The preceding code sets up the page, but you now want to specify the dimensions of the region areas
such as the header, footer and body. You can achieve this by adding the appropriate elements into the
page master definition. The code that follows shows how to setup the header, footer and body regions
by setting the margin and extent attributes. The extent attribute is the height for header and footer
regions, and width for the start and end regions. Only one dimension can be set for each of these areas.

<fo:layout-master-set>
<fo:simple-page-master
master-name=”A4”
page-height=”29.7cm”
page-width=”21cm”
margin-top=”1.0cm”
margin-bottom=”1.0cm”
margin-left=”1.0cm”
margin-right=”1.0cm”>
<fo:region-before extent=”1.0cm”/>
<fo:region-body margin=”1.0cm”/>
<fo:region-after extent=”1.0cm”/>

</fo:simple-page-master>
</fo:layout-master-set>

106

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 106

Figure 4-5 shows how the settings in the preceding code render the page.

Figure 4-5

To define a page, the fo:page-sequence element is used. One of the attributes of this element is named
master-reference and is a reference to the page master to be used as the layout template for the page.
All the code for the page is stored within the fo:page-sequence element. The following code shows an
example of this.

<fo:layout-master-set>
<fo:simple-page-master
master-name=”A4”
page-height=”29.7cm”
page-width=”21cm”

Page 1.0cm

21.0cm

1.0cm

Body

Header

Footer 1.0cm

1.0cm

1.0cm29.7 cm 1.0cm

B
od

y
M

ar
gi

n
1
cm

B
od

y
M

ar
gi

n
1
cm

107

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 107

margin-top=”1.0cm”
margin-bottom=”1.0cm”
margin-left=”1.0cm”
margin-right=”1.0cm”>
<fo:region-before extent=”1.0cm”/>
<fo:region-body margin=”1.0cm”/>
<fo:region-after extent=”1.0cm”/>

</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

</fo:page-sequence>

Now that you know how the regions hang together, you can put some content into them. Here, you start
with a fairly simple hello world example, but as you go through some of the formatting features, the
examples should become more valuable to help you understand. After all the main features have been
covered, you begin the main example of the chapter.

XSL-FO Basics
In the following examples you need an XML-FO processor to produce formatted output from your XML-
FO documents. All the examples in this section are presented using the Apache processor that can be
downloaded from http://xml.apache.org/fop/. This is an open-source project that processes the
XSL-FO document you supply to the designated output. It is a command line utility and its syntax is dis-
cussed shortly.

Also, with a Microsoft Windows operating system you may need a Microsoft Java Virtual Machine. If
you do not know whether the Java VM is installed, run or install software diagnostics such as Belarc
Advisor (www.belarc.com) to audit the software installed on your machine. If you do not have the Java
VM, you can download and install the service. Because Microsoft no longer supports the Java VM, vari-
ous third party sites now provide the download:

❑ techtips4u.com/downloads/#MSJavx86

❑ download.windowsupdate.com/msdownload/update/v3-19990518/
cabpool/MSJavWU_8073687b82d41db93f4c2a04af2b34d.exe

In order to make the examples a little easier, you can download the XMLSpy suite of applications on a
free 30 day trial from altova.com. This provides an XML, XSL, XSLT editor and also a convenient
download as a plug in which will install the Apache FOP and configure XMLSpy to use it. This enables
you to create a project with an XML document source, XSLT to transform the data into an XSL-FO docu-
ment and instruct XMLSpy to process the resulting XSL-FO document into PDF. All the subsequent
examples in this chapter will use this method and therefore is the recommended method (You still need
the Java VM for Microsoft platforms). In scenarios when you wish to see the results of your XSL-FO doc-
ument in another format, you can use the Apache FOP directly through the command line.

In order to view the examples later in the chapter, you need Adobe Acrobat Reader as this will be the
chosen output for the examples.

108

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 108

Hello World for XSL-FO
The following code shows a sample XSL-FO doc for the Hello World example.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master
master-name=”A4”
page-height=”29.7cm”
page-width=”21cm”
margin-top=”1.0cm”
margin-bottom=”1.0cm”
margin-left=”1.0cm”
margin-right=”1.0cm”>
<fo:region-body margin=”1.0cm”/>
<fo:region-before extent=”1.0cm”/>
<fo:region-after extent=”1.0cm”/>
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>
<fo:flow flow-name=”xsl-region-body”>

<fo:block>Hello World</fo:block>
</fo:flow>

</fo:page-sequence>

</fo:root>

Using the command prompt, run the XSL-FO code through the Apache Formatting Objects Processor
(FOP). Your command line resembles the following:

fop hello.xml -txt hello.txt

Run through the Apache Formatting Objects Processor (FOP), the output for a text file looks like the
screen in Figure 4-6.

Figure 4-6

109

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 109

If you change the output to a PDF file, as follows:

fop hello.xml -pdf hello.pdf

The output looks like what you see in Figure 4-7.

Figure 4-7

Not exactly earth-shattering, but this example enables you to try out using the Apache FOP and is a
starting point for looking at some of the other features available within XSL-FO.

Note that the fo:flow element in the source XML-FO. The fo:flow element is the root level element for
all subsequent content. The fo:flow does not create an area, areas are created for all the child elements
contained within the open and closing tags in the order in which they appear. In our example, the child
element is an fo:block containing the Hello World text.

Within the fo:flow the attribute flow-name specifies where in the page the flow will be rendered. The
allowed values correspond to the regions discussed earlier in the list of possible values:

❑ xsl-region-body— Body

❑ xsl-region-before— Header

❑ xsl-region-after— Footer

❑ xsl-region-start— Left

❑ xsl-region-end— Right

The fo:block element usually host paragraphs, tables captions and so on. Formatting is applied to all
elements within the block unless the child elements override the formatting. This is a form of inheritance
within the XSL-FO model whereby the child elements inherit the formatting properties of their parents
or they can override the settings by specifying their own property values.

To apply a font to the text you add the following:

<fo:flow flow-name=”xsl-region-body”>
<fo:block font-size=”20pt” font-weight=”bold”

font-family=”verdana”>Hello World
</fo:block>
</fo:flow>

110

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 110

Basic Formatting
Begin by putting together a slightly better example than our Hello World application. Consider the fol-
lowing XML listing. This is a set of postal codes and that demonstrate some of the basic formatting.

<?xml version=”1.0” encoding=”UTF-8”?>
<ROOT>
<PostCode>

<PostCode>G1</PostCode>
<City>Glasgow</City>

</PostCode>
<PostCode>

<PostCode>EH1</PostCode>
<City>Edinburgh</City>

</PostCode>
<PostCode>

<PostCode>PA1</PostCode>
<City>Paisley</City>

</PostCode>
<PostCode>

<PostCode>NE5</PostCode>
<City>Newcastle</City>

</PostCode>
</ROOT>

You can generate a basic list of all the postcodes and cities they relate to. The following XSLT produces
an XML-FO to list each of the postcode elements.

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master
master-name=”A4”
page-width=”29.7cm”
page-height=”21cm”
margin-top=”1cm”
margin-bottom=”1cm”
margin-left=”1cm”
margin-right=”1cm”>

<fo:region-body/>
</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:flow flow-name=”xsl-region-body”>
<xsl:apply-templates select=”//ROOT/PostCode”/>

111

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 111

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”//ROOT/PostCode”>
<fo:block><xsl:value-of select=”PostCode”/>-<xsl:value-of

select=”City”/></fo:block>
</xsl:template>

</xsl:stylesheet>

Using XMLSpy, you can apply the transformation to the XML and view the results in any of the follow-
ing formats:

❑ PDF — Default

❑ Text — Standard textual representation of results

❑ XML — An XML area tree

❑ MIF — Maker Interchange Format

❑ PCL — Printer Control Language

❑ Postscript — Adobe postscript format

When you take the default PDF, the results look like the screen in Figure 4-8.

Figure 4-8

Lists
You can now change the transformation to produce XSL-FO that renders the XML using a bulleted list.
The fo:list-block element contains fo:list-item elements which in turn must contain a fo:list-
item:label and one or more fo:list-item -body elements. The fo-list-item is optional because it
is implicit within the fo:list-block. The fo:list-item -label allows us to insert a bullet character
or as we shall see shortly, a bullet image. The fo:list-body, contains the list items themselves.

112

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 112

Within either the fo:list-block or fo:list-body, you can specify any indents we wish to apply. The
attributes start-indent and end-indent allow us to specify the indent in millimeters, centimeters,
etc. There is also a special indent function body-start() that sets the start-indent to value calculated
from provisional-distance-between-starts. The provisional-distance-between-starts can
be set to a value at the fo-list-block element.

<fo:page-sequence master-reference=”A4”>
<fo:flow flow-name=”xsl-region-body”>

<fo:list-block provisional-distance-between-starts=”2.0cm”>
<xsl:apply-templates select=”//ROOT/PostCode”/>
</fo:list-block>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”//ROOT/PostCode”>
<fo:list-item>

<fo:list-item-label start-indent=”1.0cm” end-indent=”1.0cm”>
<fo:block >

<fo:external-graphic src=”C:\Wrox\Professional
XML\Chp4\Code\POSTITL.jpg” content-height=”0.5cm”/>

</fo:block>
</fo:list-item-label>
<fo:list-item-body start-indent=”body-start()” >
<fo:block >

<xsl:value-of select=”PostCode”/>-<xsl:value-of select=”City”/>
</fo:block>
</fo:list-item-body>

</fo:list-item>
</xsl:template>

This code produces the following output shown in Figure 4-9.

Figure 4-9

You can also use images as the bullet points or include them in the list (for example, a traffic light indica-
tor or progress bar for a task list).

113

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 113

<xsl:template match=”//ROOT/PostCode”>
<fo:list-item>

<fo:list-item-label start-indent=”1.0cm” end-indent=”1.0cm”>
<fo:block >

<fo:external-graphic src=”C:\Wrox\Professional
XML\Chp4\Code\POSTITL.jpg” content-height=”0.5cm”/>

</fo:block>
</fo:list-item-label>
<fo:list-item-body start-indent=”body-start()” >

<fo:block >
<xsl:value-of select=”PostCode”/>-<xsl:value-of select=”City”/>

</fo:block>
</fo:list-item-body>

</fo:list-item>
</xsl:template>

The output is shown in Figure 4-10.

Figure 4-10

Tables
You can put this detail into a neatly formatted table. First, look at the HTML table with XSL-FO elements
and attribute equivalents:

HTML XSL-FO Element Description/Values

<TABLE> fo:table-and-caption Table and optional caption

<TH> fo:table-header Table header

<TR> fo:table-row Table row

<TD> fo:table-cell Table cell

<COLUMN> fo-table-column Table column

<TBODY> fo:table-body Table body

<TFOOT> fo-table-footer Table footer

114

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 114

HTML XSL-FO Attribute Description/Values

<COLSPAN> number-columns-spanned number of columns to span on table-cell
element

<ROWSPAN> number of rows to span number of rows to span in table-row
element

NA empty-cells show or hide empty cells in table –
default is show

NA table-omit-header-at-break if table spans multiple pages false
(default) displays the header on each
page; true does not.

NA table-omit-footer-at-break If table spans multiple pages false
(default) displays the header on each
page; true does not.

<TBODY> fo:table-body Table body

<TFOOT> fo-table-footer Table footer

<CELLPADDING> padding-left, padding-right, Specifies the padding width for cells.
padding-top, padding-bottom.

<CELLSPACING> NA

Width column-width Specifies the width of the table column.

This code shows an example of the table structure within an XSLT that produces the XSL-FO document
for sample postal codes.

<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>

<fo:simple-page-master
master-name=”A4”
page-width=”29.7cm”
page-height=”21cm”
margin-top=”1cm”
margin-bottom=”1cm”

margin-left=”1cm”
margin-right=”1cm”>

<fo:region-body/>
</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

<fo:flow flow-name=”xsl-region-body”>

115

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 115

<fo:table>
<fo:table-column column-width=”3cm”/>
<fo:table-column column-width=”3cm”/>
<fo:table-body>

<fo:table-row background-color=”silver”>
<fo:table-cell border-style=”solid” padding-

top=”2px” padding-bottom=”2px” padding-left=”2px” padding-right=”2px”>
fo:block>Postcode</fo:block>
</fo:table-cell>
<fo:table-cell border-style=”solid” padding-

top=”2px” padding-bottom=”2px” padding-left=”2px” padding-right=”2px”>
<fo:block>City</fo:block>

</fo:table-cell>
</fo:table-row>
<xsl:apply-templates select=”//ROOT/PostCode”>

<xsl:sort data-type=”text” select=”City”/>
</xsl:apply-templates>

</fo:table-body>
</fo:table>

</fo:flow>

</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match=”//ROOT/PostCode”>
<fo:table-row>

<fo:table-cell border-style=”solid” padding-top=”2px” padding-bottom=”2px”
padding-left=”2px” padding-right=”2px”>

<fo:block><xsl:value-of select=”PostCode”/></fo:block>
</fo:table-cell>
<fo:table-cell border-style=”solid” padding-top=”2px” padding-bottom=”2px”

padding-left=”2px” padding-right=”2px”>
<fo:block><xsl:value-of select=”City”/></fo:block>

</fo:table-cell>
</fo:table-row>
</xsl:template>

The results of this transformation in PDF format are shown in Figure 4-11.

Figure 4-11

116

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 116

A Working Example
You now work through a real-world example to gain a more thorough understanding of the mechanics of the
XSL-FO process. The example produces a printable invoice from a given XML set that is formatted and pagi-
nated appropriately and available to a consumer (a customer-facing Web site, for example) in PDF format.

A subset of the source XML for the example is shown in the following code (the full file can be down-
loaded from the companion Web site for this book at wrox.com):

<?xml version=”1.0” encoding=”UTF-8”?>
<ROOT DATE=”19/06/2006” Time=”10:41:09”>
<Invoice InvoiceID=”4561598”>

<InvoiceID>4561598</InvoiceID>
<ContractID>CH20721 </ContractID>
<AccountNumber>002585</AccountNumber>
<CustomerName>Smiths Construction</CustomerName>
<CustomerAddress1>123 Glassford St</CustomerAddress1>
<CustomerAddress2>Glasgow</CustomerAddress2>
<CustomerAddress3>Lanarkshire</CustomerAddress3>
<CustomerAddress4>Scotland</CustomerAddress4>
<CustomerPostCode>G2 4YR</CustomerPostCode>
<DeliveryAddress1>Carlisle Railway Station</DeliveryAddress1>
<DeliveryAddress2>HARKER</DeliveryAddress2>
<DeliveryAddress3>CARLISLE</DeliveryAddress3>
<OrderNumber>TC258567</OrderNumber>
<OrderName>MICK</OrderName>
<InvoiceDate>30/06/06</InvoiceDate>
<HireStatus>HIRE COMPLETE</HireStatus>
<PreVATTotal>166.28</PreVATTotal>
<VAT1>29.10</VAT1>
<InvoiceTotal>195.38</InvoiceTotal>
<CreditTerms>30</CreditTerms>
<HireItem>

<ProductCode>CHAA</ProductCode>
<Description>JUNCTION BOX </Description>
<FromDate>01/06/06</FromDate>
<ToDate>21/06/06</ToDate>
<Weeks>3.00</Weeks>
<Rate>10.75</Rate>
<Quantity>1</Quantity>
<Discount>50.00</Discount>
<VATCode>1</VATCode>
<Value>16.14</Value>

It should be noted that depending on the software currently running on your com-
puter, you may receive some warnings while processing and may receive slightly
different output. This may also be the case if you are targeting a different browser
(when rendering HTML).

If you have to ensure the content is presented identically for every target browser,
you should test on each target, make changes to the XSL-FO for that target, then your
page should use client-side script to check which target you are running on and pro-
duce the content accordingly.

117

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 117

</HireItem>
<HireItem>

<ProductCode>CHXL 03206</ProductCode>
<Description>EXT LEAD </Description>
<FromDate>01/06/06</FromDate>
<ToDate>30/06/06</ToDate>
<Weeks>4.40</Weeks>
<Rate>1.25</Rate>
<Quantity>1</Quantity>
<VATCode>1</VATCode>
<Value>5.50</Value>

</HireItem>
<HireItem>

<ProductCode>CHXL 01917</ProductCode>
<Description>EXT LEAD </Description>
<FromDate>01/06/06</FromDate>
<ToDate>30/06/06</ToDate>
<Weeks>4.40</Weeks>
<Rate>1.25</Rate>
<Quantity>1</Quantity>
<VATCode>1</VATCode>
<Value>5.50</Value>

</HireItem>
<SaleItem>

<Description>STARTER KEY</Description>
<Date>01/06/06</Date>
<Quantity>1</Quantity>
<Price>2.10</Price>
<VATCode>1</VATCode>
<Value>-2.10</Value>

</SaleItem>
<SaleItem>

<Description>DRILL CHUCK KEY</Description>
<Date>01/06/06</Date>
<Quantity>1</Quantity>
<Price>1.75</Price>
<VATCode>1</VATCode>
<Value>-1.75</Value>

</SaleItem>
<SaleItem>

<Description>ALLEN KEY</Description>
<Date>01/06/06</Date>
<Quantity>1</Quantity>
<Price>3.10</Price>
<VATCode>1</VATCode>
<Value>-3.10</Value>

</SaleItem>
<SaleItem>

<Description>MISC</Description>
<Date>01/06/06</Date>
<Quantity>1</Quantity>
<Price>3.10</Price>
<VATCode>1</VATCode>
<Value>-3.10</Value>

</SaleItem>
</Invoice>
</ROOT>

118

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 118

The preceding XML represents an invoice produced for a customer who is being charged for hiring
equipment from the providing company. The invoice is encapsulated within the <Invoice> tag and has
child elements <HireItem> showing the specific invoicing details for every individual piece of equip-
ment that has been hired by the customer.

The <invoice> section contains all the top level detail for the invoice, such as invoice number, customer
details and summary values. The <HireItem> section contains the specifics about the equipment such
as descriptions and rates charged. The <SaleItem> section contains a record of sales purchased by the
customer.

The invoice you want to produce shows the invoice header information at the top of the invoice and pro-
vides a detailed breakdown of the equipment hired in a list following the header data.

Figure 4-12 shows a high-level layout for the invoice.

Figure 4-12

Header Corporate Logo

Customer Details

Item Details

Totals Values

Site Details

Dates

Invoice & Contract
Details

Items

Totals

119

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 119

The header section has one table that holds the company logo and all the top level invoice details. You
create a table and populate it using an apply-templates section for the ROOT/Invoice element.

The initial setup of the invoice, an A4 – landscape oriented format is shown in the following code:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>
<xsl:template match=”/”>
<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<fo:layout-master-set>
<fo:simple-page-master master-name=”A4”

page-width=”29.7cm”
page-height=”21cm”
margin-top=”1cm”
margin-bottom=”1cm”
margin-left=”1cm”
margin-right=”1cm”>

<fo:region-body/>
</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-reference=”A4”>

The XSLT code creates the table structure for the header data as shown in the following code:

<fo:flow flow-name=”xsl-region-body”>
<fo:table>

<fo:table-column column-width=”9cm”/>
<fo:table-column column-width=”9cm”/>
<fo:table-column column-width=”9cm”/>
<fo:table-body>

<xsl:apply-templates select=”//ROOT/Invoice”/>
</fo:table-body>
</fo:table>

The header comprises three columns. The first holds invoice and contract information, the second cus-
tomer information and the third delivery details. The apply-templates section builds up the table by
creating and formatting the cells with relevant data from the source XML.

<xsl:template match=”//ROOT/Invoice”>
<fo:table-row background-color=”silver”

text-align=”center”
width=”27cm”>

<fo:table-cell number-columns-spanned=”3”>
<fo:block>
<fo:external-graphic
src=”C:\Wrox\Professional XML\Chp4\Code\AcmeLogo.JPG”
content-height=”0.5cm”/>

</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row background-color=”white”

width=”27cm”>
<fo:table-cell number-columns-spanned=”3”

border-style=”none”>

120

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 120

<fo:block font-family=”serif” font-weight=”bold” font-size=”28pt”>
Hire Invoice

</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row background-color=”white”

width=”100%”>
<fo:table-cell padding=”2px”

border-top-style=”solid”
border-left-style=”solid”
border-right-style=”solid”
width=”33%”>

<fo:block>
Invoice: <xsl:value-of select=”InvoiceID”/>

</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”

border-top-style=”solid”
border-left-style=”solid”
border-right-style=”solid”
width=”33%”>

<fo:block font-family=”serif”
font-weight=”bold”
font-size=”14pt”>

Customer Details
</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”

border-top-style=”solid”
border-left-style=”solid”
border-right-style=”solid”
width=”33%”
text-align=”right”>

<fo:block font-family=”serif”
font-weight=”bold”
font-size=”14pt”>

Site Address
</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row background-color=”white”

width=”100%”>
<fo:table-cell padding=”2px”

border-left-style=”solid”
border-right-style=”solid”
width=”33%”>

<fo:block>
Contract: <xsl:value-of select=”ContractID”/>
</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”

border-left-style=”solid”
border-right-style=”solid”
width=”33%”>

<fo:block>

121

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 121

<xsl:value-of select=”AccountNumber”/>
</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”

border-left-style=”solid”
border-right-style=”solid”
width=”33%”
text-align=”right”>

<fo:block>
<xsl:value-of select=”DeliveryAddress1”/>
</fo:block>
</fo:table-cell>
</fo:table-row>
</xsl:template>

The preceding code shows the first three rows of the header table. The subsequent header rows are iden-
tical to the last two rows with the exception of content.

Some new attributes are shown in the example that must be explained (these are bolded in the code).
The first is the attribute number-columns-spanned. This enables you to create the HTML equivalent of
COLSPAN on the table. For the logo and the header label you want the logo to span the three columns
and be centered. You want the header to span the three columns and be left-aligned.

The second attribute is text-align. This attribute simply allows you to specify the alignment of the child
content as left, right, or center.

The padding attribute sets the cell padding area that outlines the content. This can be broken down
specifically using padding-top, padding-bottom, padding-left and padding-right. You can control cell
padding for each dimension of the cell.

You can also applied various font attributes to some of the fo:block elements in the code. Some of the
commonly used font attributes are shown in the following list:

❑ Font-family — Serif, sans-serif, fantasy etc

❑ Font-size — Can be specified in points, relatively (larger, smaller) or using constants (small,
medium, large, x-large etc)

❑ Font-style — Normal, italic, oblique, backslant or inherit

❑ Font-weight — Constants (normal, bold, bolder or lighter) or an integer value representing the
weighting.

Several attributes enable you to format the border of table cells. The border style is broken down into
border-top-style, border-bottom-style, border-left-style and border-right-style; these
can have the following values:

❑ None — No border

❑ Solid — Single pixel border

❑ Dotted — Single full stop broken border

❑ Dashed — Short line broken border

122

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 122

❑ Hidden — Same as none except when conflict occurs with borders for table elements

❑ Double — Double lined solid border. 1 pixel line, 1 pixel space, 1 pixel line

❑ Inset — Embedded cell style

❑ Outset — Raised cell style

❑ Groove — Embedded border style

❑ Ridge — Raised border style

If you create the subsequent rows for the header table and apply the transformation you achieve the
results shown in Figure 4-13.

Figure 4-13

You now wish to show the payment terms on the invoice for the customer. This is just an fo:block ele-
ment neatly formatted and presented under the header table.

<fo:block padding=”2px”>
Payment Terms: This invoice must be paid no later than
<xsl:value-of select=”//ROOT/Invoice/CreditTerms”/>
from the invoice date.
</fo:block>

Next you want to render the series of hire item records in a table. First, you build up the table structure
and the header record. The XSLT code that follows shows how to achieve this based on the XML data
shown previously.

<fo:table padding=”2px”>
<fo:table-column column-width=”4cm”/>
<fo:table-column column-width=”5cm”/>
<fo:table-column column-width=”3cm”/>
<fo:table-column column-width=”3cm”/>

It should be noted that the presentation of the results on screen (in, for example,
Adobe Acrobat) are not always exactly what will be printed. It is wise to periodically
print to your target printer in order to check the results.

123

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 123

<fo:table-column column-width=”2cm”/>
<fo:table-column column-width=”2cm”/>
<fo:table-column column-width=”2cm”/>
<fo:table-column column-width=”2cm”/>
<fo:table-column column-width=”2cm”/>
<fo:table-column column-width=”2cm”/>
<fo:table-header border-style=”solid”>
<fo:table-row background-color=”white”>
<fo:table-cell number-columns-spanned=”10”>
<fo:block font-family=”serif” font-weight=”bold” font-size=”20pt”>Hire
Items</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row background-color=”silver”>
<fo:table-cell padding=”2px”>
<fo:block>Code</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”>
<fo:block>Description</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”>
<fo:block>From Date</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px”>
<fo:block>To Date</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>Weeks</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>Rate</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>Quantity</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>VATCode</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>Discount</fo:block>
</fo:table-cell>
<fo:table-cell padding=”2px” text-align=”right”>
<fo:block>Value</fo:block>
</fo:table-cell>
</fo:table-row>
</fo:table-header>
<fo:table-body>
<xsl:apply-templates select=”//ROOT/Invoice/HireItem”/>
</fo:table-body>
</fo:table>

This creates the header record for the list of items that have been hired by the customer on this particular
contract. The apply-templates section creates and formats each of the records as cells of table shown
in the previous code.

124

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 124

The XSLT code is shown here:

<xsl:template match=”//ROOT/Invoice/HireItem”>
<fo:table-row background-color=”white” width=”100%”>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”ProductCode”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Description”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”FromDate”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”ToDate”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Weeks”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”
text-align=”right”>

<fo:block>
<xsl:value-of select=”Rate”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”
text-align=”right”>

<fo:block>
<xsl:value-of select=”Quantity”/>
</fo:block>

125

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 125

</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”
text-align=”right”>

<fo:block>
<xsl:value-of select=”VATCode”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”
text-align=”right”>

<fo:block>
<xsl:value-of select=”Discount”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”
text-align=”right”>

<fo:block>
<xsl:value-of select=”Value”/>
</fo:block>
</fo:table-cell>
</fo:table-row>

</xsl:template>

If this code is included with the previous XSLT code, the PDF in Figure 4-14 is produced.

Figure 4-14

126

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 126

You created the header row of the hire items table as a fo:table-header because the number of
records may cause the table to be rendered on several pages. If the number of hire items requires a new
page, the header row is rendered on the second page.

If you add a sufficient number of hire items to the source XML, the rendering of the second page is
shown in Figure 4-15.

Figure 4-15

Any rows included under the fo:table-header element are rendered by default on each page of the
table. The same concept applies to any records contained in a fo:table-footer element. This can be
overridden by using the table-omit-header-at-break and the table-omit-footer-at-break
attributes of a fo:table element. If you set the values of these attributes to true, you stop the render-
ing of the header record and any footer records on any page other than the start page (in the case of the
header) or last page (in the case of the footer) of the table.

The same XML source rendered with the table-omit-header-at-break attribute set to true results in the
second page being rendered as shown in Figure 4-16.

Figure 4-16

Next, you want to render the sale items in a table similar to the hire items. The columns are slightly dif-
ferent but the mechanism to render them is mainly the same.

The XSLT code to create and setup the columns for the sale item table is shown here:

<fo:table>
<fo:table-column padding=”2px” padding-top=”5px” column-width=”10cm”/>
<fo:table-column padding=”2px” column-width=”5cm”/>
<fo:table-column padding=”2px” column-width=”3cm”/>
<fo:table-column padding=”2px” column-width=”3cm”/>
<fo:table-column padding=”2px” column-width=”3cm”/>
<fo:table-column padding=”2px” column-width=”3cm”/>
<fo:table-header border-style=”solid”>
<fo:table-row background-color=”white”

border-style=”none”>
<fo:table-cell number-columns-spanned=”6”>
<fo:block font-family=”serif” font-weight=”bold” font-size=”20pt”>

127

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 127

Sale Items
</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row background-color=”silver”>
<fo:table-cell>
<fo:block>Description</fo:block>

</fo:table-cell>
<fo:table-cell>
<fo:block>Date</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Quantity</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Price</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>VATCode</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Value</fo:block>
</fo:table-cell>
</fo:table-row>
</fo:table-header>
<fo:table-body>
<xsl:apply-templates select=”//ROOT/Invoice/SaleItem”/>
</fo:table-body>

</fo:table>

The apply-templates section for the sale item rows is again very much like the hire items table and is
shown here.

<xsl:template match=”//ROOT/Invoice/SaleItem”>
<fo:table-row keep-with-next=”always”

background-color=”white”
width=”100%”>

<fo:table-cell border-left-style=”solid”
padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Description”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Date”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>

128

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 128

<xsl:value-of select=”Quantity”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Price”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”VATCode”/>
</fo:block>
</fo:table-cell>
<fo:table-cell border-left-style=”solid”

padding=”2px”
border-right-style=”solid”>

<fo:block>
<xsl:value-of select=”Value”/>
</fo:block>
</fo:table-cell>
</fo:table-row>

</xsl:template>

We have introduced one major difference in the rendering of the table. The row attribute keep-with-
next has been used and set to the value always. This means that where possible, the rows of the table
are rendered in the same area (in most cases, in the same page). If this attribute is omitted, the sale items
table is rendered directly after the hire items table regardless of whether all the records in the sales item
data set can be displayed on the same page. Figure 4-17 shows this scenario.

Figure 4-17

129

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 129

Setting keep-with-next to true means that the sales item table split in Figure 4-17 is (where possible)
rendered in a contiguous area.

Finally, you want to create a summary table giving the total values for the invoice. The table does not
introduce any new features, but the code is presented to complete the example.

<fo:table display-align=”after”
text-align=”right”
font-family=”serif”
font-weight=”bold”
font-size=”18pt”>

<fo:table-header border-style=”none”>
<fo:table-row background-color=”white”

border-style=”none”>
<fo:table-cell number-columns-spanned=”2”

text-align=”left”
padding-top=”10px”>

<fo:block font-family=”serif”
font-weight=”bold”
font-size=”20pt”>

Invoice Totals
</fo:block>
</fo:table-cell>
</fo:table-row>
</fo:table-header>
<fo:table-column padding=”2px” column-width=”23cm”/>
<fo:table-column padding=”2px” column-width=”4cm”/>
<fo:table-body>
<fo:table-row border-style=”none”>
<fo:table-cell padding-top=”5px” padding-right=”10px”>
<fo:block>Net</fo:block>
</fo:table-cell>
<fo:table-cell padding-top=”5px” background-color=”silver”>
<fo:block>£<xsl:value-of select=”//ROOT/Invoice/PreVATTotal”/></fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row>
<fo:table-cell padding-right=”10px”>
<fo:block>VAT</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”silver”>
<fo:block>£<xsl:value-of select=”//ROOT/Invoice/VAT1”/>
</fo:block>
</fo:table-cell>
</fo:table-row>
<fo:table-row>
<fo:table-cell padding-right=”10px”>
<fo:block>Total</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”silver”>
<fo:block>£<xsl:value-of select=”//ROOT/Invoice/InvoiceTotal”/></fo:block>
</fo:table-cell>
</fo:table-row>
</fo:table-body>
</fo:table>

130

Part II: Presentation

09_777779 ch04.qxp 3/1/07 11:44 PM Page 130

The example in full is available for download from this books companion Web site. It renders as shown
in Figure 4-18

Figure 4-18

Summary
In this chapter you have seen some powerful uses of XSL-FO. The capability to quickly produce printer
friendly documents from an XML source is extremely attractive. Although this chapter has provided a
full working example, many other applications of this technology exist and you are encouraged to
explore these.

One of the main benefits of XSL-FO that I have moved to the top of my list is the low cost of deployment.
For example, a Web server requires only an XML-FO processor, to produce high-quality documents. No
need for licensing or for other production and delivery applications such as Microsoft Reporting Services,
Crystal Reports or Cognos.

131

Chapter 4: XSL-FO

09_777779 ch04.qxp 3/1/07 11:44 PM Page 131

09_777779 ch04.qxp 3/1/07 11:44 PM Page 132

Part III

DDee ff ii nn ii nngg SS tt rruu cc tt uu rr ee

Chapter 5: Document Type Definitions (DTDs)

Chapter 6: XML Schemas

Chapter 7: RELAX NG

10_777779 pt03.qxp 3/1/07 11:44 PM Page 133

10_777779 pt03.qxp 3/1/07 11:44 PM Page 134

DDooccuummeenntt TTyyppee
DDeeff ii nn ii tt ii oonnss ((DDTTDDss))

You know that, as an XML document author, you can create the XML document in whatever struc-
ture you decide on. You are able to decide on your own element names, you can determine how
the data within these elements is represented, and you can even dictate the complete hierarchy of
the data represented in the document. The structure you decide on is referred to as a vocabulary.
This open set of rules may seem like anarchy, but this is what gives XML its power. It is a creative
environment that allows you to build a true representation of your data.

This openness of XML vocabulary does, however, require a set of rules defined on the structure of
XML documents. This set of rules, once in place, can then be used to validate XML documents that
are created or being read. If you want to consume an XML document, you must have a means to
run the document through a validation process to make sure it abides by the established rules to
ensure easy processing. Otherwise, you must ensure this by laboriously parsing the XML docu-
ment line by line.

The XML validation process is an important one. This book covers the three main ways to validate
an XML document. Document Type Definitions, also known as DTDs, are ways you can apply this
validation process. Other means include XML Schemas and RELAX NG. This chapter takes a look
at DTDs and how you can create and work them.

Why Document Type Definitions?
Validation is important. If you plan to share information or services using an XML document
between two working processes, applications, or other entities, you must put in place a set of rules
that defines the structure of the XML document that is to be passed. You should be able to use the
rule definition to perform validation against any XML document.

For instance, suppose you have created an XML document like the one presented in Listing 5-1.

11_777779 ch05.qxp 3/1/07 11:45 PM Page 135

LLiissttiinngg 55--11:: AA ssiimmppllee XXMMLL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

If your application depends upon a structure like the preceding one, you don’t want to receive an XML
document that doesn’t conform to that structure (for example, Listing 5-2).

LLiissttiinngg 55--22:: AAnn XXMMLL ddooccuummeenntt tthhaatt ddooeess nnoott ffoollllooww tthhee pprreessccrriibbeedd ssttrruuccttuurree

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>
<Type>New</Type>

</Order>
</Process>

As you look at the XML document presented in Listing 5-2, you can see that it doesn’t follow the struc-
ture prescribed immediately prior in Listing 5-1. This XML document Listing 5-has an extra element
(<Type>) that wasn’t part of the original requirement. A departure like adding an extra element makes
the XML document invalid and can break your consuming process. For this reason, you need a valida-
tion process.

The most common form of XML validation is done using XML Schemas. Why, then, would you ever
want to learn about any other validation process? You should learn about the DTD format because it was
the first method (used for quite some time) to validate the structure of XML documents. Although it has
limitations, you may still encounter XML applications that depend on this type of validation. If you do
encounter a DTD, you want to understand how to deal with it.

DTDs came from the SGML world. It was a good choice for defining XML documents because many
SGML users had already used it to define their documents. Using DTDs in the new world of XML made
the migration from SGML to XML that much easier.

DTDs, however, wasn’t the best option for defining document structure. One problem was that the
method was difficult to learn. DTDs are not written using XML. Instead, the syntax is quite different,

136

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 136

and this means that an XML developer has to learn two types of syntaxes when working with XML
documents. One other major difficulty is that this form of XML validation doesn’t support the use of
namespaces — something that is extremely important in XML.

Even though the DTD format is not ideal, you will often see it used. In fact, many of the HTML docu-
ments that you deal with today use some form of DTD to define the permissible structure of the HTML
document.

For instance, if you create a new HTML document in Microsoft’s Visual Studio, you get the results pre-
sented in Listing 5-3.

LLiissttiinngg 55--33:: AA bbaassiicc HHTTMMLL ffiillee uussiinngg aa DDTTDD ttoo ddeeffiinnee iittss ssttrruuccttuurree

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Untitled Page</title>
</head>
<body>

</body>
</html>

At the top of the HTML document, you can see that a <!DOCTYPE> element is defined in the first line
and that the URL of http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd is used to
show where the DTD document for this HTML document is located.

If you pull up this particular DTD document, xhtml1-transitional.dtd, you find a large DTD docu-
ment. Listing 5-4 shows a partial results from this file, which focuses on the definition of the Headings
part of the HTML document.

LLiissttiinngg 55--44:: TThhee HHeeaaddiinnggss ddeeffiinneedd wwiitthhiinn tthhee xxhhttmmll11--ttrraannssiittiioonnaall..ddttdd ddooccuummeenntt

<!--=================== Headings ===-->

<!--
There are six levels of headings from h1 (the most important)
to h6 (the least important).

-->

<!ELEMENT h1 %Inline;>
<!ATTLIST h1
%attrs;
%TextAlign;
>

<!ELEMENT h2 %Inline;>
<!ATTLIST h2
%attrs;

(continued)

137

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 137

LLiissttiinngg 55--44 (continued)

%TextAlign;
>

<!ELEMENT h3 %Inline;>
<!ATTLIST h3
%attrs;
%TextAlign;
>

<!ELEMENT h4 %Inline;>
<!ATTLIST h4
%attrs;
%TextAlign;
>

<!ELEMENT h5 %Inline;>
<!ATTLIST h5
%attrs;
%TextAlign;
>

<!ELEMENT h6 %Inline;>
<!ATTLIST h6
%attrs;
%TextAlign;
>

This is just a partial result from the xhtml1-transitional.dtd file. In the HTML world (also the
XHTML world), you can use a number of different DTDs to define the structure used in your HTML
document. The following list includes some of the available DTDs that are provided for HTML.

❑ HTML 4.01 Strict —http://www.w3.org/TR/html401/strict.dtd

❑ HTML 4.01 Transitional —http://www.w3.org/TR/html401/loose.dtd

❑ HTML 4.01 Frameset —http://www.w3.org/TR/html401/frameset.dtd

❑ XHTML 1.0 Strict —http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

❑ XHTML 1.0 Transitional —http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd

❑ XHTML 1.0 Frameset —http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

Internal DTDs
Before you begin building DTD documents, you should understand that a DTD can be defined in several
places. A DTD is a set of text elements that follows a specific syntax. This text can be stored in the XML
file that it defines, or it can be held in a separate file. If it is held within the same file as the XML it

138

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 138

defines, then it is considered an inline DTD. If it is kept in a separate file, it is considered an external
DTD and has a .dtd file extension.

To show an example of utilizing an internal DTD, suppose you are working with the XML document
presented in Listing 5-5.

LLiissttiinngg 55--55:: AAnn XXMMLL ddooccuummeenntt tthhaatt nneeeeddss aa DDTTDD

<?xml version=”1.0” encoding=”UTF-8” ?>
<Process>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

To place a DTD document within this XML document, you place the DTD definition directly after the
<?xml> declaration as illustrated in Listing 5-6.

LLiissttiinngg 55--66:: PPrroovviiddiinngg tthhee XXMMLL ddooccuummeenntt aann iinntteerrnnaall DDTTDD

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Process [
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT Item (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Order (Item, Quantity)>
<!ELEMENT Process (Name, Address, City, State, Country, Order)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT State (#PCDATA)>
]>
<Process>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

139

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 139

At this point, I won’t review the meaning of the DTD declaration. Note that it is possible to declare
DTDs internally within the XML document. Many in the industry, however, would say this is an
improper way to declare your DTDs. They would tell you it is better to provide some level of abstraction
and declare your DTDs externally. Others prefer that the DTD that validates the XML document is
encased within the document itself — eliminating the need to deal with two files.

Listing 5-6 shows that when the DTD is declared internally, it is presented immediately following the
<?xml> declaration and right before the XML document’s root element <Process>.

If you take the XML file from Listing 5-6 and view the file in Microsoft’s Internet Explorer, you see the
results illustrated in Figure 5-1.

Figure 5-1

From this image, you can see that the DTD is not fully presented, but instead IE instructs you to go to
the source file to see the complete DTD. If you look at the same file through Mozilla’s Firefox, you see
that Firefox doesn’t do anything to present the associated DTD document.

Next, this chapter explains how to create the same document as an external DTD.

External DTDs
It is not considered best practice to build DTDs within your XML documents. Instead, it is best to refer-
ence an external DTD from the XML file. You want this level of abstraction between the data and the
data definition. Tying them together makes future changes more difficult.

An internal DTD is really effective only if you have a single instance of this XML file and you don’t plan
on having any additional copies of the file. If you create more than a single instance of the XML struc-
ture, you must to go into each and every instance to make any change. If a DTD is referenced from your
XML file, you can make any change to the document in a single place to have it instantly reflected across
all the XML files that use that particular DTD. This level of abstraction is simply more powerful.

140

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 140

Creating an external DTD is simple. In the XML file from Listing 5-5, you simply make a single line ref-
erence to the DTD you want to use as your document definition. This is presented in Listing 5-7.

LLiissttiinngg 55--77:: BBuuiillddiinngg aann XXMMLL ddooccuummeenntt wwiitthh aann eexxtteerrnnaall DDTTDD

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE Process SYSTEM “ProcessOrder.dtd”>
<Process>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

In this case, Listing 5-7 shows a reference to the ProcessOrder.dtd document by using the <!DOCTYPE>
declaration within the XML file.

<!DOCTYPE Process SYSTEM “ProcessOrder.dtd”>

This declaration comes after the <?xml> declaration and directly prior to the opening of the root element
<Process>. By using “ProcessOrder.dtd” within this <!DOCTYPE> declaration, you are stating that
the DTD file can be found in the same spot as the XML file itself. If this is not the case, you can assign a
different path for the DTD file.

One option is to locate the DTD on the Internet by using a complete URL, as presented here:

<!DOCTYPE Process SYSTEM “http://www.wrox.com/files/dtd/ProcessOrder.dtd”>

This code is directing the parser to look for the DTD using the absolute path to a remote location on the
Internet. You can also direct the parser to look for the DTD using an absolute path located within a net-
work as follows:

<!DOCTYPE Process SYSTEM “C:\Wrox\Files\DTD\ProcessOrder.dtd”>

Because the location utilized is a relative URL, you can also provide a relative path as follows:

<!DOCTYPE Process SYSTEM “../ProcessOrder.dtd”>

Or

<!DOCTYPE Process SYSTEM “Files/ProcessOrder.dtd”>

After you have defined where to find the DTD file in your XML file, the next step is to actually create the
DTD file. Listing 5-8 shows the ProcessOrder.dtd file.

141

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 141

LLiissttiinngg 55--88:: TThhee PPrroocceessssOOrrddeerr..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT Item (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Order (Item, Quantity)>
<!ELEMENT Process (Name, Address, City, State, Country, Order)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT State (#PCDATA)>

Save this text file with a .dtd file extension, and your DTD file is ready for action.

Building Your Own DTD
Now that you know how to reference your DTD definitions with your XML documents, the next step is
to look at how you can build your own DTDs. A number of tools enable you to build DTDs easily, but
the first step is to learn how to build them from scratch in Notepad. This can help you understand all the
steps that go into making DTDs.

First locate the XML file you want to work with. For this example, you can use the Shakespeare play
Hamlet as it is represented in XML.

You can find the play Hamlet as XML online at andrew.cmu.edu/user/akj/shakespeare/. On
this page, you will find all of Shakespeare’s plays, including Hamlet. To get the XML file, simply right-
click the file and select Save Target As from the provided menu (in Microsoft’s Internet Explorer). If this
page is not present at the time of this reading, then simply do a search in an Internet search engine for
“XML Shakespeare” to find a large number of results.

The Hamlet.xml file is a large file that includes all of the parts of the play itself. It is presented partially
in Listing 5-9.

LLiissttiinngg 55--99:: PPaarrtt ooff tthhee HHaammlleett..xxmmll ffiillee

<?xml version=”1.0”?>
<?xml-stylesheet type=”text/css” href=”shakes.css”?>

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>
<PERSONA>POLONIUS, lord chamberlain. </PERSONA>
<PERSONA>HORATIO, friend to Hamlet.</PERSONA>
<PERSONA>LAERTES, son to Polonius.</PERSONA>

142

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 142

<PERSONA>LUCIANUS, nephew to the king.</PERSONA>

<PGROUP>
<PERSONA>VOLTIMAND</PERSONA>
<PERSONA>CORNELIUS</PERSONA>
<PERSONA>ROSENCRANTZ</PERSONA>
<PERSONA>GUILDENSTERN</PERSONA>
<PERSONA>OSRIC</PERSONA>
<GRPDESCR>courtiers.</GRPDESCR>

</PGROUP>

<PERSONA>A Gentleman</PERSONA>
<PERSONA>A Priest. </PERSONA>

<PGROUP>
<PERSONA>MARCELLUS</PERSONA>
<PERSONA>BERNARDO</PERSONA>
<GRPDESCR>officers.</GRPDESCR>

</PGROUP>

<PERSONA>FRANCISCO, a soldier.</PERSONA>
<PERSONA>REYNALDO, servant to Polonius.</PERSONA>
<PERSONA>Players.</PERSONA>
<PERSONA>Two Clowns, grave-diggers.</PERSONA>
<PERSONA>FORTINBRAS, prince of Norway. </PERSONA>
<PERSONA>A Captain.</PERSONA>
<PERSONA>English Ambassadors. </PERSONA>
<PERSONA>GERTRUDE, queen of Denmark, and mother to Hamlet. </PERSONA>
<PERSONA>OPHELIA, daughter to Polonius.</PERSONA>
<PERSONA>Lords, Ladies, Officers, Soldiers, Sailors, Messengers,
and other Attendants.</PERSONA>
<PERSONA>Ghost of Hamlet’s Father. </PERSONA>

</PERSONAE>

<SCNDESCR>SCENE Denmark.</SCNDESCR>

<PLAYSUBT>HAMLET</PLAYSUBT>

<ACT>
<TITLE>ACT I</TITLE>

<SCENE>
<TITLE>SCENE I. Elsinore. A platform before the castle.</TITLE>
<STAGEDIR>FRANCISCO at his post. Enter to him BERNARDO</STAGEDIR>

<SPEECH>
<SPEAKER>BERNARDO</SPEAKER>
<LINE>Who’s there?</LINE>

</SPEECH>

<SPEECH>
<SPEAKER>FRANCISCO</SPEAKER>
<LINE>Nay, answer me: stand, and unfold yourself.</LINE>

</SPEECH>

143

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 143

Although this is just a partial view of the XML file, you can see that it is a large file. Even though it is
large, very few elements are involved. This means it isn’t going to take much effort to create the DTD
that you can use to validate the Hamlet.xml file.

After you have the Hamlet.xml file on your computer, the next step is to start building the DTD for this
file. The DTD is a representation of the structure allowed for this large XML document. The first step is
to incorporate the document type declaration within your Hamlet.xml file.

Document Type Declaration
The DTD acronym discussed so far in this chapter refers to Document Type Definition — a file that defines
the XML structure of particular XML files. Don’t get the term DTD file confused with the DTD we are
talking about now — the document type declaration element.

The document type declaration is the element that you place within an XML file to declare the DTD
(Document Type Definition) to use to validate the XML contained within the document. An example
document type declaration is presented here:

<!DOCTYPE PLAY SYSTEM “http://www.wrox.com/files/dtd/Hamlet.dtd”>

A document type declaration starts with a <!DOCTYPE and ends with a closing >. The different parts of
this particular DTD are presented in Figure 5-2.

Figure 5-2

This generic construction of the DOCTYPE element is presented here:

<!DOCTYPE [root element name] SYSTEM [URI]>

Root element of the XML file:

DTD element

<!DOCTYPE PLAY SYSTEM “http://www.wrox.com/files/dtd/Hamlet.dtd”>

<?xml version=”1.0”?>

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>

<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

DTD Type URI

144

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 144

Other possible constructions include:

<!DOCTYPE [root element name] [inline DTD]>

<!DOCTYPE [root element name] SYSTEM [URI] [inline DTD]>

<!DOCTYPE [root element name] PUBLIC [identifier] [URI]>

<!DOCTYPE [root element name] PUBLIC [identifier] [URI] [inline DTD]>

After the initial <!DOCTYPE> element declaration, the first item (or attribute) provided is the root ele-
ment of the XML being defined. In the example from the XML file shown in Listing 5-9, the root element
is <PLAY>. Therefore, this is the value that must be used in the <!DOCTYPE> element.

The SYSTEM and PUBLIC Keywords
You can declare the DTD within the XML document as shown earlier in Listing 5-6. If you are not taking
that particular approach, then you are going to want to use the either the SYSTEM or PUBLIC keyword
to specify whether your DTD is a private or public DTD.

By far, the most common method is to use the SYSTEM keyword, thereby making all your DTDs private.
This doesn’t inhibit you from sharing your DTDs with other groups, entities, or organizations. When
using the SYSTEM keyword, you must specify the URI (unique resource identifier) of the DTD. In the previ-
ous examples, you saw that the URI can be a direct physical path to the file as it relates to the XML file
using the DTD:

<!DOCTYPE Play SYSTEM “C:\Wrox\Files\DTD\Hamlet.dtd”>

It can also be an HTTP accessible hyperlink to the DTD file:

<!DOCTYPE Play SYSTEM “http://www.wrox.com/files/dtd/Hamlet.dtd”>

Generally, you should stick to the SYSTEM keyword and never use the PUBLIC keyword. Using the
PUBLIC keyword in the <!DOCTYPE> element means that a standards body (either an official or non-
official standards body) has defined a standard that is available to the public. You might not realize it,
but you have already seen this used once in this chapter. In Listing 5-3, a <!DOCTYPE> defines the vocab-
ulary of an XHTML document. This <!DOCTYPE> is presented here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

In this case, the <!DOCTYPE> element contains the root element of the XML document that it defines,
html, the PUBLIC keyword, its identifier —”-//W3C//DTD XHTML 1.0 Transitional//EN”, and finally
ending with a URI of “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”.

The first character of the identifier (a dash) means that a non-official standards body developed the
DTD. A plus sign instead of a dash (or minus sign) means that an official standards body developed the
DTD. The second attribute within the identifier (all the attributes are separated by //) specifies the gov-
erning body that defined the DTD. In this case, the World Wide Web Consortium, also known as the

145

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 145

W3C, developed this DTD. The third attribute specifies the name of the DTD defined and its version.
Then finally, the fourth attribute defines the language used in the definition because this DTD might be
available in multiple languages.

Following the identifier is the URI defining the location of the DTD. If you are developing your own
public DTD, you follow the same rules as shown here. Remember that you really could achieve the same
thing if you just declared your XML vocabulary using the SYSTEM keyword and its related structure.

Using the URI and Inline DTD Together
As you examine the possible structures of the <!DOCTYPE> element, note that it is possible to combine
both the external and internal DTDs.

<!DOCTYPE [root element name] SYSTEM [URI] [inline DTD]>

<!DOCTYPE [root element name] PUBLIC [identifier] [URI] [inline DTD]>

This means that in addition to invoking a DTD by making an external reference (as shown in Listing 5-10),
you can also extend the DTD by using it in combination with some inline DTD markup (as shown in
Listing 5-11).

LLiissttiinngg 55--1100:: UUssiinngg aann eexxtteerrnnaall DDTTDD

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE PLAY SYSTEM “http://www.wrox.com/files/dtd/Hamlet.dtd”>
<PLAY>

<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE>

<TITLE>Dramatis Personae</TITLE>
<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>
<PERSONA>POLONIUS, lord chamberlain. </PERSONA>
<PERSONA>HORATIO, friend to Hamlet.</PERSONA>
<PERSONA>LAERTES, son to Polonius.</PERSONA>
<PERSONA>LUCIANUS, nephew to the king.</PERSONA>
<PGROUP>

<PERSONA>VOLTIMAND</PERSONA>
<PERSONA>CORNELIUS</PERSONA>
<PERSONA>ROSENCRANTZ</PERSONA>
<PERSONA>GUILDENSTERN</PERSONA>
<PERSONA>OSRIC</PERSONA>
<GRPDESCR>courtiers.</GRPDESCR>

</PGROUP>

<!-- XML cut short for space reasons -->

LLiissttiinngg 55--1111:: UUssiinngg aann eexxtteerrnnaall DDTTDD wwiitthh ssoommee iinnlliinnee DDTTDD mmaarrkkuupp

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE PLAY SYSTEM “http://www.wrox.com/files/dtd/Hamlet.dtd” [

<!ELEMENT TITLE (#PCDATA)>
]>

146

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 146

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE>

<TITLE>Dramatis Personae</TITLE>
<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>
<PERSONA>POLONIUS, lord chamberlain. </PERSONA>
<PERSONA>HORATIO, friend to Hamlet.</PERSONA>
<PERSONA>LAERTES, son to Polonius.</PERSONA>
<PERSONA>LUCIANUS, nephew to the king.</PERSONA>
<PGROUP>

<PERSONA>VOLTIMAND</PERSONA>
<PERSONA>CORNELIUS</PERSONA>
<PERSONA>ROSENCRANTZ</PERSONA>
<PERSONA>GUILDENSTERN</PERSONA>
<PERSONA>OSRIC</PERSONA>
<GRPDESCR>courtiers.</GRPDESCR>

</PGROUP>

<!-- XML cut short for space reasons -->

In this case, not only is the Hamlet.dtd utilized, but this DTD is extended by changing the content spec-
ification of the <TITLE> element by adding an additional inline DTD. Note that not all XML parsers
understand such definitions, and you often get validation errors with this type of structure.

Element Declarations
When building your own DTD, whether it is in a separate file or inline within the XML, you are really
defining elements, entities, attributes, and notations. You now look at defining elements. When defining
a DTD, you must define every XML element using a DTD element declaration. The generic usage of the
element declaration is as follows:

<!ELEMENT [element name] [content specification]>

In this case, the element name is the name used for the element being defined, whereas the content specifi-
cation determines what is allowed as a value within the element. This content definition section can get
rather complex because it can contain a number of subelements of different types that are part of a spe-
cific sequence.

Therefore, to create a DTD for an order form XML document similar to the one used previously in this
chapter, you can start by creating an element declaration for the XML document’s root element, <PLAY>.
This DTD document is presented in Listing 5-12.

LLiissttiinngg 55--1122:: HHaammlleett..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT PLAY (#PCDATA)>

You can also see from the element that it is similar to the <!DOCTYPE> element used earlier. To declare
an element definition, you use the <!ELEMENT> element. Just like <!DOCTYPE>, <!ELEMENT> is case-
sensitive. Therefore, it is illegal to write this as <!Element> (just as you can’t use <!Doctype>).

147

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 147

Listing 5-12 shows a single XML element, PLAY, being defined. The content specification allowed for the
<PLAY> element is defined as #PCDATA. This essentially means anything is allowed as long as it is parsed
character data.

With this definition in Hamlet.dtd in place, you can use the following XML structure in an XML docu-
ment that makes use of this DTD:

<PLAY>Here is some sample text</PLAY>

This also means that you can have the following:

<PLAY></PLAY>

But you are not allowed to place items (such as additional nested XML elements) within the <PLAY> ele-
ment like this:

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE></PERSONAE>
<SCNDESCR>SCENE Denmark.</SCNDESCR>
<PLAYSUBT>HAMLET</PLAYSUBT>

</PLAY>

Using the DTD from Listing 5-12, the previous code would be illegal. Next, this chapter reviews how to
further define the XML document so that constructions such as the preceding one can be built.

Content Specification with ANY
One method to provide a content specification for an element is to use the ANY value. This is illustrated
in Listing 5-13.

LLiissttiinngg 55--1133:: HHaammlleett..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT ACT ANY>
<!ELEMENT GRPDESCR ANY>
<!ELEMENT LINE ANY>
<!ELEMENT PERSONA ANY>
<!ELEMENT PERSONAE ANY>
<!ELEMENT PGROUP ANY>
<!ELEMENT PLAY ANY>
<!ELEMENT PLAYSUBT ANY>
<!ELEMENT SCENE ANY>
<!ELEMENT SCNDESCR ANY>
<!ELEMENT SPEAKER ANY>
<!ELEMENT SPEECH ANY>
<!ELEMENT STAGEDIR ANY>
<!ELEMENT TITLE ANY>

148

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 148

This DTD provides a DTD definition for all XML elements contained within the Hamlet.xml file. This
means that you can use the following syntax and still have a valid XML document:

<PLAY>This is my play!</PLAY>

But it also means that you can use any child elements that you want, such as the following:

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE></PERSONAE>
<SCNDESCR>SCENE Denmark.</SCNDESCR>
<PLAYSUBT>HAMLET</PLAYSUBT>

</PLAY>

The ANY keyword really means that you can place any character data or any set of elements within the
defined item and that specified item is then considered valid. Although this is an easy way to create a
DTD definition, it usually isn’t the best approach because it provides only possible XML elements that
may be contained within a valid XML document. It provides a minimal list of rules. This means someone
using a DTD such as the one defined in Listing 5-13 could build an XML document such as the one illus-
trated in Listing 5-14.

LLiissttiinngg 55--1144:: HHaammlleett..xxmmll

<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE></PERSONAE>
<SCNDESCR>SCENE Denmark.</SCNDESCR>
<PLAYSUBT>HAMLET</PLAYSUBT>
<PLAY>Another Play</PLAY>
<PLAY>

<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE></PERSONAE>
<SCNDESCR>SCENE Denmark.</SCNDESCR>
<PLAYSUBT>HAMLET</PLAYSUBT>

</PLAY>
</PLAY>

From this, you can see that the <PLAY> element is used in a number of different ways. For instance, it is
used as the root element with a series of child elements. One of the child elements is another couple of
<PLAY> elements that are used in a completely different manner.

In the end, certain situations may require use of the ANY value for the content specification of elements
that you define in the DTD, but in many cases you may prefer to strictly define the child elements or
even limit the element to character data only. This is where the value of #PCDATA comes in.

Placing Limits on Elements with #PCDATA
As stated, a #PCDATA value means that the XML element being defined is allowed to have only parsed
character data and is not allowed anything else — including any child elements. Usage of #PCDATA is
illustrated in the following example:

<!ELEMENT SPEAKER (#PCDATA)>

149

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 149

Notice that the #PCDATA is held within parenthesis when being included in the element definition. If you
go back to the Hamlet.dtd (presented in Listing 5-13), you can change all the definitions for the elements
that are not allowed to have any subsequent child elements. This change is presented in Listing 5-15.

LLiissttiinngg 55--1155:: HHaammlleett..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT ACT ANY>
<!ELEMENT GRPDESCR (#PCDATA)>
<!ELEMENT LINE ANY>
<!ELEMENT PERSONA (#PCDATA)>
<!ELEMENT PERSONAE ANY>
<!ELEMENT PGROUP ANY>
<!ELEMENT PLAY ANY>
<!ELEMENT PLAYSUBT (#PCDATA)>
<!ELEMENT SCENE ANY>
<!ELEMENT SCNDESCR (#PCDATA)>
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT SPEECH ANY>
<!ELEMENT STAGEDIR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>

Now all the elements that disallow child elements are defined using #PCDATA instead of ANY. Running
the Hamlet.xml file with this DTD, the validation process succeeds. The additional rules provide more
defined structure for the XML files that use this DTD. The processing of these documents has become
easier.

Note that one of the limitations of using DTDs (instead of something like XML Schemas) is that you can
define the textual content contained within an element only as parsed character data — nothing more
specific. As shown, you do this by using #PCDATA. Unlike XML Schemas, DTDs don’t let you determine
that an element can contain only an integer, double, or a string value.

Empty Values
Having an empty element in your XML document may be important as a signal of a Boolean value and
nothing more, or it might show a null value that should be stored in the database. DTDs allow for an
empty element declaration.

<!ELEMENT Member EMPTY>

In this case, to declare an empty element, simply use the EMPTY keyword in the <!ELEMENT> element
declaration. Remember that it is case-sensitive.

Child Elements
One of the first steps in building a DTD is to define your root element. Root elements within XML
documents generally contain child elements (or nested elements). DTD does allow you to define root ele-
ments through the use of the content specification section of the <!ELEMENT> element. The root element
of the Hamlet.xml file is <PLAY>. Listing 5-16 shows a revised version of the Hamlet.dtd document to
further define the <PLAY> element and the other elements that allow for child elements.

150

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 150

LLiissttiinngg 55--1166:: HHaammlleett..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT ACT (TITLE, SCENE+)>
<!ELEMENT GRPDESCR (#PCDATA)>
<!ELEMENT LINE (#PCDATA | STAGEDIR)*>
<!ELEMENT PERSONA (#PCDATA)>
<!ELEMENT PERSONAE (TITLE | PERSONA | PGROUP)+>
<!ELEMENT PGROUP (PERSONA+, GRPDESCR)>
<!ELEMENT PLAY (TITLE, PERSONAE, SCNDESCR, PLAYSUBT, ACT+)>
<!ELEMENT PLAYSUBT (#PCDATA)>
<!ELEMENT SCENE (TITLE | STAGEDIR | SPEECH)+>
<!ELEMENT SCNDESCR (#PCDATA)>
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT SPEECH (SPEAKER | LINE | STAGEDIR)+>
<!ELEMENT STAGEDIR (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>

When defining the required child elements, you define these elements within parenthesis in the
<!ELEMENT> element itself. Looking specifically at the <PLAY> element, you can see that it can contain
five child elements:

<!ELEMENT PLAY (TITLE, PERSONAE, SCNDESCR, PLAYSUBT, ACT+)>

This definition means that the <PLAY> element is required to contain a <TITLE>, <PERSONAE>,
<SCNDESCR>, <PLAYSUBT>, and <ACT> child elements. The defined elements are separated using
commas. None of the elements are actually required (except for <ACT> because of the plus sign — this
will be explained shortly). These elements are required to be set in the <PLAY> element is this exact order
because of their placement in this definition. This means that if <PERSONAE> comes before <TITLE>, the
XML document won’t validate.

Because the PLAY definition in the DTD document includes a TITLE as a possible child element, you
must define the TITLE child element in the DTD document.

<!ELEMENT TITLE (#PCDATA)>

Looking through the Hamlet.dtd document shown in Listing 5-16, you can see that each of the five
child elements are also defined in the document. Some even nest further as their definition includes yet
more child elements that must also be defined. The definition of the ACT definition shows even more
child elements, thereby allowing further nesting in the XML document.

<!ELEMENT ACT (TITLE, SCENE+)>

Specifying a Number of Instances Required
Some XML documents require you to specify a set number of instances where the child element may
occur in the XML document. For instance, suppose you have the XML document shown in Listing 5-17.

151

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 151

LLiissttiinngg 55--1177:: AAnn XXMMLL ddooccuummeenntt wwiitthh ttwwoo <<AAddddrreessss>> cchhiilldd eelleemmeennttss

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

If you are building a DTD for this bit of XML, your DTD appears as presented in Listing 5-18.

LLiissttiinngg 55--1188:: MMaaiill..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Mail (Name, Address, Address, ZipCode)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT ZipCode (#PCDATA)>

In this case, you can see that the <Name>, <Address>, and <ZipCode> elements are defined, and the
<Mail> element specifies that it must include child elements for all of these. Note that the <Address>
child element is mentioned twice — meaning that it has to appear two times in the document. If you
include just a single <Address> element, the XML document is considered invalid.

Reusing XML Elements
It is also possible to reuse the elements that are defined within the DTD for any number of elements. For
instance Listing 5-19 changes the XML document that is presented in Listing 5-17 so that it now includes
two sets of addresses.

LLiissttiinngg 55--1199:: AAnn XXMMLL ddooccuummeenntt wwiitthh ttwwoo sseettss ooff aaddddrreesssseess

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Home>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Home>
<Business>

<Name>Lipper</Name>
<Address>123 Main Street</Address>
<Address>St. Louis, MO</Address>

152

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 152

<ZipCode>63141</ZipCode>
</Business>

</Mail>

In this case, <Mail> includes two child elements —<Home> and <Business>; each of which makes use
of the same <Name>, <Address>, and <ZipCode> elements. For this reason, you only define each of
these elements a single time. This is illustrated in the DTD for this XML file in Listing 5-20.

LLiissttiinngg 55--2200:: MMaaiill..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Mail (Home, Business)>
<!ELEMENT Home (Name, Address, Address, ZipCode)>
<!ELEMENT Business (Name, Address, Address, ZipCode)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT ZipCode (#PCDATA)>

From this you can see that the <Name>, <Address>, and <ZipCode> elements are defined only a single
time, but they are used by both the <Home> and <Business> elements.

The + Quantifier
You saw earlier that it was possible to force a repeat of the <Address> element as a child element by
repeating the number of times it was defined within the <!ELEMENT> element.

<!ELEMENT Mail (Name, Address, Address, ZipCode)>

This is an easy way to get a specific number of child element instances in the document, but at the same
time, it is very restrictive. If you use it, you are always required to have two instances of the <Address>
element — no less and no more. Even if you require only a single instance of the <Address> element,
you must still include two instances. Also, if you have a foreign address, which in some cases might
require three or four <Address> lines, you would still be unable to place more than two instances in the
document.

Instead of placing the Address definition in the <!ELEMENT> element twice, another option is to use a
quantifier. A quantifier is a symbol that you place after the defined item to specify more or fewer restric-
tions on the item. This was used in the Hamlet.dtd file.

<!ELEMENT PLAY (TITLE, PERSONAE, SCNDESCR, PLAYSUBT, ACT+)>

Here, the + quantifier is used with the <ACT> element definition. The + quantifier signifies that the
<ACT> element can appear one or more times within the <PLAY> element. You can also change the previ-
ous <Mail> element definition so that the <Address> element is allowed one or more times using the +
quantifier.

<!ELEMENT Mail (Name, Address+, ZipCode)>

153

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 153

The Address+ here signifies that the <Address> element can appear one or more times within the
<Mail> element. This means that the following bit of XML in Listing 5-21 is valid:

LLiissttiinngg 55--2211:: AAnn XXMMLL ddooccuummeenntt uussiinngg tthhee ++ qquuaannttiiffiieerr

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Name>Bill Evjen</Name>
<Address>123 Main Street; St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

Here the <Address> element is only used a single time. If the author of this XML document, however,
wanted to use the <Address> element more often, it would be possible to do so. This is illustrated in
Listing 5-22.

LLiissttiinngg 55--2222:: AAnnootthheerr iinnssttaannccee iinn uussiinngg tthhee ++ qquuaannttiiffiieerr

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>Suite 520</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

In this case, the <Address> element is used three times, and this is considered a valid XML document.
The + quantifier does signify, however, that the <Address> element must be included at least once. This
means that the following XML (Listing 5-23) is considered invalid.

LLiissttiinngg 55--2233:: AAnn iinnvvaalliidd XXMMLL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Name>Bill Evjen</Name>
<ZipCode>63301</ZipCode>

</Mail>

As you saw earlier, the child elements are defined within a set of parenthesis and the Address element
was followed with a + quantifier to signify that it can have one or more instances. If you want to apply
this setting to all the children of the <Mail> element, one method would be to use the + quantifier in
each of the elements:

<!ELEMENT Mail (Name+, Address+, ZipCode+)>

154

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 154

Because a + quantifier follows the Name, Address, and ZipCode definitions, all these elements can
appear one or more times (in this sequence only). If you want to make such a declaration, another
method is to apply the + quantifier to each of the items contained within the parenthesis as shown here:

<!ELEMENT Mail (Name, Address, ZipCode)+>

In this case, the + quantifier follows the parenthesis, and this means that this quantifier applies to every-
thing contained within the parenthesis. This appeared earlier in the Hamlet.dtd in the <PERSONAE> ele-
ment definition.

<!ELEMENT PERSONAE (TITLE | PERSONA | PGROUP)+>

The ? Quantifier
Another quantifier to work with in building your DTD documents is the ? quantifier. The ? quantifier
allows you to specify that zero or only a single instance of the child element can be contained within the
element. Suppose you have an XML document like the one presented in Listing 5-24.

LLiissttiinngg 55--2244:: AAnn XXMMLL ddooccuummeenntt uussiinngg tthhee ?? qquuaannttiiffiieerr

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Salutation>Mr.</Salutation>
<Name>Bill Evjen</Name>
<Address>123 Main Street; St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

In this case, a new XML element <Salutation> is contained as a child element within the <Mail> ele-
ment. You could probably structure it so that the <Salutation> element is considered optional. This
means that the <Salutation> element can appear either zero times or at least once in the document.
Also in this case, it doesn’t make much sense for the <Salutation> element to appear more than once,
thereby making the ? quantifier an ideal choice in defining the child element.

In defining the child element using the ? quantifier, you take a similar approach to that used with the +
quantifier. This approach is illustrated in Listing 5-25.

LLiissttiinngg 55--2255:: TThhee MMaaiill..ddttdd uussiinngg tthhee ?? qquuaannttiiffiieerr

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Mail (Salutation?, Name, Address+, ZipCode)>
<!ELEMENT Salutation (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT ZipCode (#PCDATA)>

In this case, the <Salutation> child element is defined with a ? quantifier specifying that the element
can only appear zero or one time within the <Mail> element. This means that the XML document pre-
sented in Listing 5-26 is considered valid.

155

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 155

LLiissttiinngg 55--2266:: AA vvaalliidd XXMMLL ddooccuummeenntt uussiinngg tthhee MMaaiill..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Salutation>Mr.</Salutation>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

This example shows the <Salutation> element a single time (the maximum allowed). The XML docu-
ment presented in Listing 5-27 is also valid.

LLiissttiinngg 55--2277:: AAnnootthheerr vvaalliidd XXMMLL ddooccuummeenntt uussiinngg tthhee MMaaiill..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

Because you use the ? quantifier, if you use the <Salutation> element more than once, you produce an
invalid XML document (see Listing 5-28).

LLiissttiinngg 55--2288:: AAnn iinnvvaalliidd XXMMLL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Salutation>Mr.</Salutation>
<Salutation>Mr.</Salutation>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

You can also apply the ? quantifier, like the + quantifier, to an entire set of child elements as presented here:

<!ELEMENT Mail (Salutation, Name, Address+, ZipCode)?>

Notice how the ? quantifier is applied to each of the elements except the <Address> element. The +
quantifier applies directly to this sequence of elements.

156

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 156

The * Quantifier
The final quantifier is the * quantifier. The use of this quantifier signifies that the child element can be
contained within the designated element zero or more times. An example DTD using the * quantifier is
presented in Listing 5-29.

LLiissttiinngg 55--2299:: UUssiinngg tthhee ** qquuaannttiiffiieerr iinn tthhee MMaaiill..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Mail (Salutation?, Name*, Address+, ZipCode)>
<!ELEMENT Salutation (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT ZipCode (#PCDATA)>

In this case, the <Name> element can appear zero or more times within the XML document that uses this
DTD for validation. This means that the XML document presented in Listing 5-30 is considered valid XML.

LLiissttiinngg 55--3300:: AA vvaalliidd XXMMLL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Salutation>Mr.</Salutation>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

This also means that Listing 5-31 is considered valid.

LLiissttiinngg 55--3311:: AAnnootthheerr vvaalliidd XXMMLL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Mail SYSTEM “Mail.dtd”>

<Mail>
<Salutation>Mr.</Salutation>
<Name>Bill Evjen</Name>
<Name>or Resident</Name>
<Address>123 Main Street</Address>
<Address>St. Charles, MO</Address>
<ZipCode>63301</ZipCode>

</Mail>

Allowing a Choice
A choice option allows you to specify a selection of available child elements that can be used. For instance,
suppose you wanted to allow a choice between <Item>, <Items>, or <Pallets> in your XML docu-
ment. To accomplish this, you structure a DTD in the following fashion (Listing 5-32).

157

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 157

LLiissttiinngg 55--3322:: PPrroovviiddiinngg aa cchhooiiccee vviiaa yyoouurr DDTTDD

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Quantity (Item | Items | Pallet)>
<!ELEMENT Item (#PCDATA)>
<!ELEMENT Items (#PCDATA)>
<!ELEMENT Pallet (#PCDATA)>

As you can see by the <Quantity> definition, you are providing a choice of three items to the consumer
of this DTD —<Item>, <Items>, or <Pallets>. The options provided via the DTD are separated by a
vertical bar (or pipe) instead of by commas as is done normally. This means that the following XML doc-
ument is considered valid:

<Quantity>
<Item>3Q7854P</Item>

</Quantity>

This is also considered valid XML:

<Quantity>
<Items>3Q7854P-6TY458P</Items>

</Quantity>

Also valid is:

<Quantity>
<Pallet>5H3899K</Pallet>

</Quantity>

Although only three items are provided as choices for the child element of the <Quantity> element, you
can actually place as many options as you wish as long as they are all separated by a vertical bar.

Just like standard child elements, these choice child elements can take quantifiers.

<!ELEMENT Quantity (Item | Items | Pallet)+>

The use of the + quantifier means that you can have any of the choices one or more times in your docu-
ment. The following is, therefore, considered valid XML:

<Quantity>
<Item>3Q7854P</Item>
<Item>6TY458P</Item>
<Pallet>5H3899K</Pallet>

</Quantity>

Attribute Declarations
Not all XML documents contain only elements and their values and nothing more. Many XML docu-
ments use attributes to further define the XML document. Just as you can easily define your elements

158

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 158

using a DTD, you can also incorporate the associated attributes into an element. The generic usage of the
attribute declaration is shown here:

<!ATTLIST [element name] [attribute name] [attribute type] [default value]
[attribute name] [attribute type] [default value]>

In this case, the element name is the name of the element to which the attribute is added to. The
attribute name is the name of the attribute. The attribute type is a way to qualify the data type
(a rather limited process). Finally, the default value is the starting value of the item.

Before you begin to create a set of attributes using the <!ATTLIST> element, take a look at the following
bit of XML:

<Name first=”Bill” middle=”J.” last=”Evjen” />

Here you can see a single element, <Name>, which is really an empty element. Although empty, the <Name>
element contains three attributes. Listing 5-33 shows how to declare attributes within this element.

LLiissttiinngg 55--3333:: DDeeccllaarriinngg aattttrriibbuutteess ffoorr tthhee <<NNaammee>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name first CDATA “”>
<!ATTLIST Name middle CDATA “”>
<!ATTLIST Name last CDATA “”>

For this example, just a single element defined —<Name>. From the DTD you can see that the <Name>
element is declared as an empty element with three possible attributes. All the attributes are assigned to
the <Name> element and given a data type of CDATA. This data type specification means that the attribute
will contain character data. As a default value, nothing is assigned and an empty string is used instead.

Using this DTD, you can write the following bit of XML:

<Name first=”Bill” last=”Evjen” />

In this case the first and last attributes are used, but the middle attribute is not used. This is fine because
none of the attributes is required to define the attributes within the DTD. This means that the following
XML is also valid:

<Name last=”Evjen” />

The following would also be considered valid XML:

<Name />

Note that the following bit of XML is also considered valid:

<Name last=”Evjen” first=”Bill” />

Here you can see that the order of the attributes has been inverted. XML parsers ignore attribute
ordering — allowing the attributes to be used in any order.

159

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 159

Attribute Data Types
One of the requirements when declaring your attributes within a DTD is that the attribute be given a
specific data type. In the previous example, you saw what is, probably, one of the more common data
types used —CDATA. The list of available data types is presented in the following table.

Data Type Description

CDATA Any character data.

IDREF Forces a unique ID to be provided for the attribute.

IDREFS Allows for multiple IDs to be provided. IDs must be separated by whitespace.

ENTITY Allows for an entity to be provided. Entities are discussed shortly.

ENTITIES Allows for multiple entities to be provided. Entities must be separated by
whitespace. Entities are discussed shortly.

NMTOKEN Allows for an XML name token to be provided.

NMTOKENS Allows for multiple XML name tokens to be provided. Name tokens must be
separated by whitespace.

NOTATION Allows for one or more notations to be provided.

The #REQUIRED Keyword
If you have an attribute value that is required, you simply use the #REQUIRED keyword when declaring
the attributes. Listing 5-34 shows how the three attributes for the <Name> element are turned into
required attributes.

LLiissttiinngg 55--3344:: DDeeccllaarriinngg rreeqquuiirreedd aattttrriibbuutteess ffoorr tthhee <<NNaammee>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name first CDATA #REQUIRED>
<!ATTLIST Name middle CDATA #REQUIRED>
<!ATTLIST Name last CDATA #REQUIRED>

You make the attribute a required attribute, by utilizing the #REQUIRED keyword. Note that the keyword
is case-sensitive. This forces the attribute to be present, even if it is empty. The following XML is con-
sidered invalid:

<Name first=”Bill” last=”Evjen” />

However, this bit of XML is considered valid:

<Name first=”Bill” middle=”” last=”Evjen” />

Even though no value is provided, the middle attribute is present and, therefore, the XML document is
now considered valid.

160

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 160

Note that when using the #REQUIRED keyword, you are no longer required to provide a default value for
the attribute because the user of the DTD will be providing one.

The #IMPLIED Keyword
Earlier I provided three attributes with a default value of “” instead of something actually meaningful. In
the case of these three attributes, it doesn’t make much sense to provide a default value because everyone
has a different name. One way around this problem is to use the #REQUIRED keyword and force everyone
to provide a value for all three attributes. This can work; but what if you don’t want to require all these val-
ues? For instance, suppose you want to make the first and last attributes required, whereas the middle
attribute can remain optional? In this kind of scenario, using the #IMPLIED keyword in your attribute dec-
laration makes complete sense. Listing 5-35 shows its use in the DTD.

LLiissttiinngg 55--3355:: DDeeccllaarriinngg iimmpplliieedd aattttrriibbuutteess ffoorr tthhee <<NNaammee>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name first CDATA #REQUIRED>
<!ATTLIST Name middle CDATA #IMPLIED>
<!ATTLIST Name last CDATA #REQUIRED>

In this case, the first and last attributes are required. The middle attribute, however, is not required
and it doesn’t include a default value if it isn’t included. It is as if a null value is provided instead. With
this DTD, the following bit of XML is considered valid:

<Name first=”Bill” middle=”J.” last=”Evjen” />

Also, the following bit of XML is just as valid:

<Name first=”Bill” last=”Evjen” />

The #FIXED Keyword
The last keyword to review is the #FIXED keyword. It enables you to assign an attribute with a default
value that cannot be changed for any reason. Listing 5-36 shows an example of the #FIXED keyword.

LLiissttiinngg 55--3366:: DDeeccllaarriinngg ffiixxeedd aattttrriibbuutteess ffoorr tthhee <<NNaammee>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name member CDATA #FIXED “true”>
<!ATTLIST Name first CDATA #REQUIRED>
<!ATTLIST Name middle CDATA #IMPLIED>
<!ATTLIST Name last CDATA #REQUIRED>

To declare an attribute that makes use of the #FIXED keyword, you follow the keyword with the default
value in quotes. Listing 5-36 shows that the member attribute is set to be a fixed attribute with a default
value of true. With this declaration in place, the following bit of XML is considered valid:

<Name member=”true” first=”Bill” last=”Evjen” />

161

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 161

Setting the member attribute to false causes the XML document to be invalid:

<Name member=”false” first=”Bill” last=”Evjen” />

One interesting point is that the attribute need not be included at all. If it is included, then the required
value must be utilized. However, if the attribute is not included, then the XML parser makes use of the
value that is provided via the DTD as if it were present. This means that the following bit of XML is also
considered valid:

<Name first=”Bill” last=”Evjen” />

Using Enumerations as Values
In some instances, you want an attribute to only contain a set of specific values. In these cases, you pro-
vide the user of the DTD with a list of enumerated values that can be used with the attribute. This is
rather similar to enumerations, or choices, that were used when declaring an element.

Suppose you have a member attribute that you want to take a true or false value and nothing else.
You accomplish by providing the true and false values as enumerations. This syntax is illustrated in
Listing 5-37.

LLiissttiinngg 55--3377:: DDeeccllaarriinngg eennuummeerraattiioonnss ttoo uussee wwiitthh aann aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name member (true | false) “true”>
<!ATTLIST Name first CDATA #REQUIRED>
<!ATTLIST Name middle CDATA #IMPLIED>
<!ATTLIST Name last CDATA #REQUIRED>

In this case, the member attribute allows for an enumeration of values — either true or false. These
enumerations must be contained within parenthesis separated by vertical bars. Following the parenthe-
sis is the default value of the member attribute if it is not included by the user of the DTD.

With this DTD, the following bit of XML is considered valid:

<Name member=”true” first=”Bill” last=”Evjen” />

This also means that the inverse value for the member attribute is also valid:

<Name member=”false” first=”Bill” last=”Evjen” />

Then, if no member attribute is provided a default value of true is assumed. Even if the member
attribute is not included, the XML is still valid:

<Name first=”Bill” last=”Evjen” />

When working with enumerations, you can also use the keywords discussed earlier. For instance, if you
wish to make the member attribute required, you use the syntax in your DTD illustrated in Listing 5-38.

162

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 162

LLiissttiinngg 55--3388:: DDeeccllaarriinngg eennuummeerraattiioonnss ttoo uussee wwiitthh aa rreeqquuiirreedd aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Name EMPTY>
<!ATTLIST Name member (true | false) #REQUIRED>
<!ATTLIST Name first CDATA #REQUIRED>
<!ATTLIST Name middle CDATA #IMPLIED>
<!ATTLIST Name last CDATA #REQUIRED>

From Listing 5-38, you can see that the default value was replaced with a #REQUIRED keyword to make
the member attribute required. Now the user of this DTD is required to give a true or false value for
the member attribute in order to have a valid XML document.

Entity Declarations
In the first chapter of this book, you were introduced to entities. An entity is the capability to map a
character string to a specific symbol or character. XML already provides some entities out of the box as is
presented in the following table.

Character Entity

< <

> >

“ "

‘ '

& &

In this table, you can see that the entity for the & symbol is &. To use the & symbol in your docu-
ment, you type & in its place and then, when the XML is parsed, the & string is converted to
the appropriate referenced character.

Entities can be provided as internal or external entities. This section reviews internal entities.

Internal Entities
To declare an internal entity, you use the following syntax:

<!ENTITY [entity key] [entity translated value]>

As you can see, it is rather simple to create an internal entity within your DTD. To create an entity you
use the <!ENTITY> declaration within the DTD and simply provide it with a key and a translated value
for the XML parser to use when it encounters the key in an XML document. Listing 5-39 shows a DTD
making use of the <!ENTITY> declaration.

163

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 163

LLiissttiinngg 55--3399:: FFuunndd..ddttdd uussiinngg aann eennttiittyy

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Fund (Name, NumberShares, DataProvider)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT NumberShares (#PCDATA)>
<!ELEMENT DataProvider (#PCDATA)>
<!ENTITY LIP “Lipper Inc., A Reuters Company”>

In this DTD, a single element is defined that includes three child elements. At the bottom of the DTD, an
entity is declared using the <!ENTITY> declaration. A key of LIP is provided that should then be trans-
lated to Lipper Inc., A Reuters Company by an XML parser. Listing 5-40 shows this entity being used
within an XML document.

LLiissttiinngg 55--4400:: FFuunndd..xxmmll uussiinngg FFuunndd..ddttdd

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Fund SYSTEM “Fund.dtd”>

<Fund>
<Name>XYZ Fund Global Growth</Name>
<NumberShares>22</NumberShares>
<DataProvider>&LIP;</DataProvider>
</Fund>

From this code, you can see that the entity key is provided as a value of the <DataProvider> element.
Note that the key, although declared as LIP in the DTD, must be preceded with an ampersand and fol-
lowed by a semi-colon (&LIP;). The Fund.xml file in Internet Explorer is shown in Figure 5-3.

Figure 5-3

From this figure, you can see that the &LIP; character sequence was converted by the XML parser to a
larger content set because the <!ENTITY> declaration was utilized in the DTD.

164

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 164

External Entities
In addition to internal entities, you can also make reference to external entities. This allows you to input
XML fragments and other single items into your XML documents. The general usage of an external
entity is presented here:

<!ENTITY [entity key] SYSTEM [URI]>

The difference between this declaration and the internal entity declaration is that this one includes the
keyword SYSTEM that signifies that this is an external entity. Then, instead of providing the translated
value of the entity key, you put a pointer in place to indicate its location.

An example usage is shown here:

<!ENTITY LIP SYSTEM “http://www.lipperweb.com/entities/companyname.xml”>

Notation Declarations
Notation declarations are a rudimentary way of providing some type casting capabilities to the values
contained within your XML elements. It is more of a recommendation, and there is no actual enforce-
ment by the XML parsers when you are using a notation declaration. One possible generic usage of the
notation declaration is presented here:

<!NOTATION [name] SYSTEM [URI or Description]>

To create a notation declaration, you use the <!NOTATION> declaration. An example of creating an ele-
ment with a date requirement within your DTD is presented in Listing 5-41.

LLiissttiinngg 55--4411:: FFuunndd..ddttdd uussiinngg aa nnoottaattiioonn

<?xml version=”1.0” encoding=”UTF-8”?>

<!ELEMENT Fund (Name, NumberShares, DataProvider, OrderDate)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT NumberShares (#PCDATA)>
<!ELEMENT DataProvider (#PCDATA)>
<!ELEMENT OrderDate (#PCDATA)>
<!NOTATION Name SYSTEM “http://www.lipperweb.com/namingstandards.html”>

Here a notation declaration is utilized to specify that the name needs to follow a specific naming stan-
dard and that the standard can be found at a specific URL on the Internet. Using this notation in no way
forces XML parsers to make sure that the standard is followed, it is there purely as a reference. You can
put anything in place of the hyperlink as well. In fact, the value can be also a MIME type specifying the
file type of the value contained within the XML element. For those that move images, documents, or
other binary items around via an XML file, this might be a good method to specify to the user of the
XML document the MIME type that can be contained within a specified XML element. An example
MIME type is image/png.

165

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 165

Using XML Tools to Create the DTD
So far in this chapter, you have been creating the DTDs from scratch. The DTD standard has existed for
some time now and, for this reason, many XML tools are built-in to make it easy for you to build and
consume DTDs.

For instance, using Altova’s XMLSpy, you can easily create the DTD for any XML document on the fly.
To accomplish this task, select DTD/Schema from the menu and select Generate DTD/Schema from the
provided options. This pulls up a dialog box that enables you to name the DTD as you wish. The dialog
is presented in Figure 5-4.

Figure 5-4

DTD Validation
Many tools online and offline enable you to validate your XML documents against a DTD. One such tool
online is Validome’s DTD and Schema Validator found at validome.org/grammar/. This site is shown
in Figure 5-5.

166

Part III: Defining Structure

11_777779 ch05.qxp 3/1/07 11:45 PM Page 166

Figure 5-5

This online tool allows you to upload an XML document that contains an inline DTD and also to vali-
date it. The results of the validation are presented in the browser.

Summary
Having an XML document is not always enough. You sometimes need a schema to validate that the
XML documents you create or receive are valid, meaning that they follow a prescribed structure. This
structure enables you to automatically build and consume XML documents.

This chapter looks at one method for defining this structure — DTDs. The next chapter takes a look at
one of the more popular methods — XML Schemas.

167

Chapter 5: Document Type Definitions (DTDs)

11_777779 ch05.qxp 3/1/07 11:45 PM Page 167

11_777779 ch05.qxp 3/1/07 11:45 PM Page 168

XXMMLL SScchheemmaass

In the previous chapter, you saw that defining a vocabulary for the XML that you create or work
with is an important step in any validation process. If you accept XML documents, you need the
means to programmatically validate the structure of those XML documents. Validating an XML
document means initiating a process to ensure that the XML document follows a set of rules
regarding structure. It is quite difficult to process an XML document that is doesn’t have the
structure you expect.

In the previous chapter, you reviewed using DTDs — or document type definitions in XML vali-
dation. DTDs are the original way to describe the vocabulary of an XML document. If you look at
the XML specification (found at w3.org/TR/REC-xml/) you find that DTDs are included in this
definition. You don’t find the XML Schemas specifications defined in the XML specification. XML
Schemas were defined after the creation of the XML specification.

The W3C made the XML Schema a recommendation in October of 2004. You can find the various
specifications in the following places on the Internet:

❑ XML Schema Part 0: Primer —w3.org/TR/xmlschema-0/

❑ XML Schema Part 1: Structures —w3.org/TR/xmlschema-1/

❑ XML Schema Part 2: Datatypes —w3.org/TR/xmlschema-2/

XML Schemas are the default way to represent a vocabulary, and they are the best option for new
development. This chapter looks at the basics of XML Schemas — including how to build and con-
sume them.

The Issues with DTDs
The previous chapter reviews DTDs and how to use them with your XML documents. It described
DTDs as a means to create an XML vocabulary for your XML structures. Vocabulary is a valid word
to describe how you define the structure of a document. Another word that is used just as often is

12_777779 ch06.qxp 3/1/07 11:45 PM Page 169

schema, which is a synonym of the word vocabulary. They are interchangeable. XML Schemas are another
vocabulary for your XML documents.

If DTDs were defined with the XML specification and utilized from the days of SGML, why the need for
a new means of creating a vocabulary? The DTD method of defining a vocabulary for XML documents
has some issues that require the change.

To understand these issues, look at a sample of a DTD that is embedded within a simple XML document.
This document is presented in Listing 6-1.

LLiissttiinngg 66--11:: AAnn XXMMLL ddooccuummeenntt wwiitthh aann eemmbbeeddddeedd DDTTDD

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Process [
<!ELEMENT Address (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT Item (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Order (Item, Quantity)>
<!ELEMENT Process (Name, Address, City, State, Country, Order)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT State (#PCDATA)>
]>

<Process>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</Process>

In this listing, you can see some obvious problems. The first is that a DTD definition looks nothing like
XML. This makes it the process of learning DTDs more difficult than it should be. After learning the syn-
tax of XML, the XML author also needs to learn another syntax that is quite different from XML. XML
Schemas on the other hand make use of the standard XML syntax to create the vocabulary, thereby mak-
ing the transition to XML Schemas quite simple.

Beyond the overall syntax provided via the DTD document, you can see that an element hierarchy is
explicitly defined.

<!ELEMENT Process (Name, Address, City, State, Country, Order)>

If you have another element besides the element <Process> that requires the same set of subelements,
DTDs do not let you reuse a set declaration. Instead of providing set declaration that can be reused,
DTDs have you declare the construction again. XML Schemas on the other hand allow you to create a
group of elements or attributes that can be reused throughout the declaration set.

170

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 170

DTDs also don’t give you any extensive datatyping capabilities. Instead, you can perform only simple
datatyping. For an example, look at the following DTD statement:

<!ELEMENT Quantity (#PCDATA)>

In this case, the element <Quantity> is defined with a #PCDATA statement, which means that the con-
tents of the <Quantity> element can allow only parsed character data. You can’t get much more
detailed using DTDs. In the XML document that makes use of this element, you see that a number is
provided as the content value.

<Quantity>1</Quantity>

Although this statement is valid for the #PCDATA declaration, it would be better if it were more explicit
and precise when stating the possible values of the <Quantity> element. Using XML Schemas, you can
specify that contents of the <Quantity> element should be an int, double, long, or any of many other
possible datatypes. This capability gives you tremendous power.

Another weakness of DTDs is that they give you a limited model for defining the cardinality of the pos-
sible number of times an element can appear in the XML document. You do this using one of a couple of
available quantifiers. For instance:

<!ELEMENT Mail (Name, Address+, ZipCode)>

In this case, the <Address> element being utilized as a child element of the <Mail> element and the +
qualifier defines that the <Address> element must appear one or more times. Besides the + qualifier,
you can also use the ? qualifier.

<!ELEMENT Mail (Salutation?, Name, Address+, ZipCode)>

The ? qualifier states that the <Salutation> element should appear either zero or only one time within
the <Mail> element. The last qualifier available in the DTD-world is the * qualifier.

<!ELEMENT Mail (Salutation?, Name*, Address+, ZipCode)>

In this case, the <Name> element is defined as something that can appear zero or more times within the
<Mail> element. You might be looking at these three qualifiers and be wondering where the problem lies,
but imagine that you wanted the <Address> element to appear three times (no more or less). What if you
wanted the <Address> element to appear between two and five times in the XML document? This is some-
thing that XML Schemas can do. You can get rather specific about how often items appear in the XML doc-
ument. You definitely want the power to be this specific in your declarations of vocabulary definitions.

After reviewing this chapter, you see that XML Schemas provide you much more control over the vocab-
ulary of your documents. They allow for a more specific validation process. That is why XML Schemas
are the most popular methods for validating XML documents.

Building the Root XML Schema Document
Because you already know how to work with XML and understand the XML syntax, you may find that
creating the XML Schema document is a simple process. An XML Schema document is an XML file that

171

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 171

has an .xsd file extension. The next section enables you to create your first XML Schema document and
then associate it to any XML documents. These sections look to detail how to create your root element,
other elements, simple types, complex types and more.

The XML Declaration
When you create an XML Schema (just as when you create XML documents), you are required to include
an XML declaration. This means that your XML Schema starts with the following XML declaration:

<?xml version=”1.0” ?>

This is the minimum requirement for the XML declaration, although you can also specify the encoding
and whether the XML document is a standalone document.

<?xml version=”1.0” encoding=”UTF-8” ?>

The Root Element
The root element of the XML Schema document is the <xs:schema> element. You might also see schema
documents written with the xsd: namespace prefix as well —<xsd:schema>. In addition to the element
declaration, you include a namespace declaration.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<!-- The element and attribute definitions of our document go here -->

</xs:schema>

The xmlns attribute allows you to specify the prefix and associate it with the W3C’s XML Schema
namespace w3.org/2001/XMLSchema. Because xs follows the namespace, this is the item you use pre-
ceding all the XML elements of the document. The next sections review some of the other possible
attributes of this root element.

attributeFormDefault Attribute
The schema root element can take a series of attributes that enable you to specify some additional behav-
iors surrounding the use of XML Schema document. The first attribute is the attributeFormDefault
attribute. From your schema, you can require that XML elements of the instance document prefix their
attributes with some characters associated with a particular namespace. Listing 6-2 shows an example of
an XML Schema using this attribute.

LLiissttiinngg 66--22:: UUssiinngg tthhee aattttrriibbuutteeFFoorrmmDDeeffaauulltt aattttrriibbuuttee iinn yyoouurr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:be=”http://www.lipperweb.com/namespace”
targetNamespace=”http://www.lipperweb.com/namespace”
attributeFormDefault=”qualified”>
<xs:element name=”Process”>
<xs:complexType>

172

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 172

<xs:sequence>
<xs:element name=”Name”>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=”xs:string”>
<xs:attribute name=”salutation” type=”xs:string” use=”required” />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />
<xs:element name=”Order”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Item” type=”xs:string” />
<xs:element name=”Quantity” type=”xs:int” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

The attributeFormDefault can take one of two possible values —qualified or unqualified. The
default value is unqualified and means that you don’t have to qualify the attribute by adding the pre-
fix. Because the attributeFormDefault in this case is set to qualified, you must construct the con-
suming instance document as presented in Listing 6-3.

LLiissttiinngg 66--33:: AAnn iinnssttaannccee ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<be:Process xmlns:be=”http://www.lipperweb.com/namespace”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.lipperweb.com/namespace C:\mySchema.xsd”>
<Name be:salutation=”Mr”>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Order>

<Item>52-inch Plasma</Item>
<Quantity>1</Quantity>

</Order>
</be:Process>

In this case, because the attributeFormDefault attribute in the XML Schema document, mySchema.xsd,
is set to qualified, the attribute contained within the <Name> element makes use of the set prefix.

<Name be:salutation=”Mr”>Bill Evjen</Name>

173

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 173

elementFormDefault Attribute
In addition to setting a required prefix for attributes, you can also take the same approach for any ele-
ments utilizing the schema. This is presented in Listing 6-4.

LLiissttiinngg 66--44:: UUssiinngg tthhee eelleemmeennttFFoorrmmDDeeffaauulltt aattttrriibbuuttee iinn aann XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:be=”http://www.lipperweb.com/namespace”
targetNamespace=”http://www.lipperweb.com/namespace”
attributeFormDefault=”unqualified”
elementFormDefault=”qualified”>

<!-- Removed for clarity -->

</xs:schema>

Like the attributeFormDefault attribute, the elementFormAttribute element can take two possible
values —qualified and unqualified. The default value is unqualified. Using a value of qualified
produces instance documents like the one presented in Listing 6-5.

LLiissttiinngg 66--55:: AAnn iinnssttaannccee ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<be:Process xmlns:be=”http://www.lipperweb.com/namespace”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.lipperweb.com/namespace C:\mySchema.xsd”>
<be:Name salutation=”Mr”>Bill Evjen</be:Name>
<be:Address>123 Main Street</be:Address>
<be:City>Saint Charles</be:City>
<be:State>Missouri</be:State>
<be:Country>USA</be:Country>
<be:Order>

<be:Item>52-inch Plasma</be:Item>
<be:Quantity>1</be:Quantity>

</be:Order>
</be:Process>

Using prefixes on elements or even attributes informs the consumer whether these items are in the target
namespace or not.

targetNamespace Attribute
As you learn in this book, namespaces are an important part of XML. You can assign your intended
namespace to the validation process of the XML document by using the targetNamespace attribute
within the <schema> element. This is presented in Listing 6-6.

LLiissttiinngg 66--66:: UUssiinngg tthhee ttaarrggeettNNaammeessppaaccee aattttrriibbuuttee iinn yyoouurr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”

174

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 174

xmlns:be=”http://www.lipperweb.com/namespace”
targetNamespace=”http://www.lipperweb.com/namespace”
attributeFormDefault=”unqualified”
elementFormDefault=”qualified”>

<!-- Removed for clarity -->

</xs:schema>

The version Attribute
The version attribute allows you to easily place a signifier of the version of the XML Schema document
directly within the root element. It is important to note that the version attribute has nothing to do with
the version of the W3C XML Schema Language which is used, but instead it is the version of the schema
document itself. This is shown in Listing 6-7.

LLiissttiinngg 66--77:: UUssiinngg tthhee vveerrssiioonn aattttrriibbuuttee iinn yyoouurr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:be=”http://www.lipperweb.com/namespace”
targetNamespace=”http://www.lipperweb.com/namespace”
attributeFormDefault=”unqualified”
elementFormDefault=”qualified”
version=”1.3”>

<!-- Removed for clarity -->

</xs:schema>

xml:lang Attribute
The xml:lang attribute allows you to signify the language that is utilized for the XML Schema docu-
ment. This useful if you have versions of the same XML Schema document that are different only
because of the element and attribute names that are used. An example of this attribute is presented in
Listing 6-8.

LLiissttiinngg 66--88:: UUssiinngg tthhee xxmmll::llaanngg aattttrriibbuuttee iinn tthhee XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:be=”http://www.lipperweb.com/namespace”
targetNamespace=”http://www.lipperweb.com/namespace”
attributeFormDefault=”unqualified”
elementFormDefault=”qualified”
xml:lang=”en-US”>

<!-- Removed for clarity -->

</xs:schema>

175

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 175

From this example, you can see that the schema is defined as being of language en-US, which is a spe-
cific culture signifying English as spoken in the United States. Specifying the xml:lang attribute with
en-GB specifies that the document is for English as spoken in the United Kingdom and fi-FI signifies
that the document is for Finnish as spoken in Finland.

Declaring Elements
Elements, of course, are the main components of any XML document. When you declare the required
elements of any instance document that is making use of your XML Schema document, you use several
methods.

Elements can be either a simple type or a complex type. The simple type is the first one reviewed.

Simple Types
Elements are considered simple types if they contain no child elements or attributes. When you declare
simple types, three possible simple types are at your disposal — Atomic types, List types, and Union types.

Atomic Types
Atomic types are by far the simplest. For instance, you can have an XML document that is as simple as
the one presented in Listing 6-9.

LLiissttiinngg 66--99:: AAnn XXMMLL ddooccuummeenntt tthhaatt rreeqquuiirreess oonnllyy aa ssiinnggllee ttyyppee

<?xml version=”1.0” encoding=”UTF-8”?>
<City xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”AtomicType.xsd”>St. Louis</City>

In this case, there is only a single element that is quite simple. It doesn’t contain any other child ele-
ments, and it doesn’t contain any attributes or have any rules about its contents. Defining this through
an XML Schema document is illustrated in Listing 6-10.

LLiissttiinngg 66--1100:: DDeeccllaarriinngg aann XXMMLL SScchheemmaa ddooccuummeenntt wwiitthh aa ssiimmppllee ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”City” type=”xs:string” />
</xs:schema>

From Listing 6-10, the XML Schema document contains a single element declaration. The <City> ele-
ment declaration — also considered an atomic type — is constructed using the <xs:element> element.
From here, two attributes are contained within the <xs:element> element.

The name attribute is used to define the name of the element as it should appear in the XML document.
Remember that the value provided here is case-sensitive, meaning that when using this XML Schema
document you cannot present the element <city> if you want the document to be considered valid.

176

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 176

Besides the name attribute, the other attribute presented is the type attribute. The type attribute allows
you to define the datatype of the contents of the <City> element. In the XML Schema document that is
presented in Listing 6-10, the datatype of the <City> element is defined as being of type string.

The full list of available datatypes that can be utilized in your element and attribute declarations are
presented later in this chapter.

It is rare to declare only a single atomic type and nothing more. In many cases, you use the
<xs:simpleType> element. This chapter next takes a look at how to construct list types.

List Types
A list type enables you to define a list of values within a single element. Because problems sometimes
arise with list types, they are not always considered best practice. It is usually considered better to sepa-
rate values, with each using its own elements rather than put them all into a single element. Putting
multiple values within a single element is illustrated in the XML document presented in Listing 6-11.

LLiissttiinngg 66--1111:: AAnn XXMMLL ddooccuummeenntt tthhaatt rreeqquuiirreess oonnllyy aa ssiinnggllee ttyyppee

<?xml version=”1.0” encoding=”UTF-8”?>
<FundIds xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ListTypes.xsd”>
60003333 600003334 60003335 60003336</FundIds>

This XML document contains a single element, <FundIds>, which contains what appears as a single
value, but really it is four values that are separated with a space. Defining this in an XML Schema docu-
ment is presented in Listing 6-12.

LLiissttiinngg 66--1122:: AAnn XXMMLL SScchheemmaa ddooccuummeenntt uussiinngg aa lliisstt ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”FundIds” type=”FundIdsType” />
<xs:simpleType name=”FundIdsType”>

<xs:list itemType=”xs:int” />
</xs:simpleType>

</xs:schema>

As with previous examples of atomic types, a single declaration begins the document.

<xs:element name=”FundIds” type=”FundIdsType” />

In this case, the <xs:element> element declares an element with the name of <FundIds>, and you can see
that it is of type FundIdsType. This isn’t the type you would normally expect because it is nothing like
string, double, or int. Instead it is a type that must be further defined in your XML Schema document.

<xs:simpleType name=”FundIdsType”>
<xs:list itemType=”xs:int” />

</xs:simpleType>

177

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 177

The FundIdsType is defined using a single <xs:list> element. You declare a list type using the
<xs:list> element. To define the type that is used within the list type itself, you use the itemType
attribute. In this case, the itemType attribute is provided a type of int. No matter which type you define,
the items that are contained within the list of items in the single element are separated with a space.

The XML document that was provided as an example shows four fund ids that are separated by a single
space.

<FundIds>60003333 600003334 60003335 60003336</FundIds>

Be aware of a problem when using strings within an element that makes use of the list type. For instance,
suppose you have a definition like the one presented in Listing 6-13.

LLiissttiinngg 66--1133:: AAnn XXMMLL SScchheemmaa ddooccuummeenntt uussiinngg aa lliisstt ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”BaseballTeams” type=”BaseballTeamsType” />
<xs:simpleType name=”BaseballTeamsType”>

<xs:list itemType=”xs:string” />
</xs:simpleType>

</xs:schema>

This XML Schema defines a list type that is supposed to be a list of string values representing American
and Canadian baseball teams. A valid instance document of this type is illustrated in Listing 6-14.

LLiissttiinngg 66--1144:: AAnn XXMMLL ddooccuummeenntt tthhaatt pprroovviiddeess lliisstt ooff bbaasseebbaallll tteeaammss

<?xml version=”1.0” encoding=”UTF-8”?>
<BaseballTeams xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ListTypes.xsd”>
Cardinals Yankees Mets Rockies</BaseballTeams>

In this case, the XML document is valid and performs as you want. In this case, four items are defined in
the list type. This works well because the strings are single words. Imagine instead that the XML docu-
ment that is making use of this XML Schema document is presented as shown in Listing 6-15.

LLiissttiinngg 66--1155:: AAnn XXMMLL ddooccuummeenntt tthhaatt pprroovviiddeess lliisstt ooff bbaasseebbaallll tteeaammss

<?xml version=”1.0” encoding=”UTF-8”?>
<BaseballTeams xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ListTypes.xsd”>
Cardinals Yankees Mets Blue Jays</BaseballTeams>

Although four teams are listed in this element, the Blue Jays from Toronto consists of two words that are
separated by a single space. The problem is that items are also separated by a space so, when processed,
the example from Listing 6-15 appears to consist of five items and not four. This is one of the reasons you
should think about separating these types of items into their own elements instead of presenting them
within a list type element.

178

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 178

Union types
When working with list types, you might be interested in presenting multiple item types within a single
element. For instance, if you are presenting mutual funds, for example, you want a list that consists of
the ID of the fund (an int value) or the ticker of the fund (a string value). If this is the case, you can
combine items in a single list, thereby making a union. An example XML Schema document that allows
such a construction is presented in Listing 6-16.

LLiissttiinngg 66--1166:: AAlllloowwiinngg aa uunniioonn ttyyppee ffrroomm aann XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”FundIds” type=”FundType” />
<xs:simpleType name=”FundType”>

<xs:union memberTypes=”FundIdsType FundTickerType” />
</xs:simpleType>
<xs:simpleType name=”FundIdsType”>

<xs:list itemType=”xs:int” />
</xs:simpleType>
<xs:simpleType name=”FundTickerType”>

<xs:list itemType=”xs:string” />
</xs:simpleType>

</xs:schema>

A few things are going on in this XML Schema document. First, a couple of list types are defined within
the document —FundIdsType and FundTickerType. Each of these list types is using a different
datatype — one is using int and the other is using string.

<xs:simpleType name=”FundIdsType”>
<xs:list itemType=”xs:int” />

</xs:simpleType>
<xs:simpleType name=”FundTickerType”>

<xs:list itemType=”xs:string” />
</xs:simpleType>

To utilize both these list types within a single element, you create a union between the two using the
<xs:union> element. The <xs:union> element from Listing 6-16 utilizes both the list types (in union)
through the use of the memberTypes attribute. This is where you can place the types that can be part of
that union with a space separating the items.

<xs:simpleType name=”FundType”>
<xs:union memberTypes=”FundIdsType FundTickerType” />

</xs:simpleType>

Thereafter, the <xs:element> element defines a type attribute with a value of the union —FundType.
This construction makes valid the XML document shown in Listing 6-17.

LLiissttiinngg 66--1177:: AAnn XXMMLL ddooccuummeenntt uussiinngg tthhee uunniioonn ttyyppee

<?xml version=”1.0” encoding=”UTF-8”?>
<FundIds xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”UnionType.xsd”>
60003333 60003334 60003335 60003336 JAXP

</FundIds>

179

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 179

Complex Types
In addition to defining simple types by using the <xs:simpleType> element, you can also define ele-
ments that contain other child elements or attributes. In these cases, you define a complex type using the
<xs:complexType> element. Listing 6-18 defines a simple complex type.

LLiissttiinngg 66--1188:: DDeeccllaarriinngg aann aannoonnyymmoouuss ccoommpplleexx ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

In this case, first a single element is defined — the <Process> element. Before closing the <xs:element>
tag to define the <Process> element, you utilize a <xs:complexType> element. The reason that the
<xs:complexType> element is used is because numerous subelements are contained within the
<Process> element.

Listing 6-18 shows a complex type that is considered an anonymous complex type. It is considered anony-
mous because it is an unnamed type. Instead, the type is really defined by the nested
<xs:complexType> element itself.

Within the <xs:complexType> element, an <xs:sequence> element is used to define all the simple
types that are contained within the <Process> element. This XML Schema states that the <Process>
element must contain a <Name>, <Address>, <City>, <State>, and <Country> element. All the subele-
ments defined are of type string and they all must be contained within the XML document in order for
the document to be considered valid. If one of the elements is missing or is repeated more than once, the
XML document is considered invalid. Also, if the elements are out of order, the XML document is con-
sidered invalid. A sample XML document that makes use of this type is presented in Listing 6-19.

LLiissttiinngg 66--1199:: UUssiinngg tthhee ccoommpplleexx ttyyppee

<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
</Process>

Making the anonymous complex type into a named complex type is simple. To create a named complex
type, you construct your XML Schema document as shown in Listing 6-20.

180

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 180

LLiissttiinngg 66--2200:: DDeeccllaarriinngg aa nnaammeedd ccoommpplleexx ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Process” type=”ContactDetails” />

<xs:complexType name=”ContactDetails”>
<xs:sequence>

<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:schema>

In this case, a single parent element is defined, <Process>, of type ContactDetails. The
ContactDetails definition is a named complex type. It is named using the name attribute. This works
like the anonymous complex type presented earlier.

Looking at Reusability
When you define a named complex type, you get into the area of reusability within your XML Schema doc-
ument. In Listing 6-20, you can see that the <Process> element uses an instance of ContactDetails in its
definition. Because ContactDetails is encapsulated, it can be reused. Listing 6-21 shows an example of
how it can be reused in multiple elements.

LLiissttiinngg 66--2211:: DDeeccllaarriinngg aa nnaammeedd ccoommpplleexx ttyyppee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Process”>
<xs:complexType>

<xs:sequence>
<xs:element name=”BillingAddress” type=”ContactDetails” />
<xs:element name=”ShippingAddress” type=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name=”ContactDetails”>
<xs:sequence>

<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

(continued)

181

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 181

LLiissttiinngg 66--2211 (continued)

</xs:sequence>
</xs:complexType>

</xs:schema>

From this example, you can se that two elements are nested within the <Process> element —
<BillingAddress> and <ShippingAddress>. Both these elements are defined as the same type —
ContactDetails. Figure 6-1 shows how this is represented visually.

Figure 6-1

BillingAddress

Name

ContactDetails

City

State

Address

Country

Process

ShippingAddress

Name

ContactDetails

City

State

Address

Country

182

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 182

Reusing the ContactDetails complex type means that you can build a valid XML instance document
as presented in Listing 6-22.

LLiissttiinngg 66--2222:: PPrroocceessss XXMMLL ddooccuummeenntt wwiitthh ttwwoo CCoonnttaaccttDDeettaaiillss iinnssttaanncceess

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<BillingAddress>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</BillingAddress>
<ShippingAddress>

<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</ShippingAddress>
</Process>

This example shows both instances of the ContactDetails type being utilized by different elements.

sequence and all
So far, you have been mostly presented with the use of the <sequence> element in building complex
types. Using <sequence> means that all the items in the list are presented in the instance document in
the order in which they are declared within the complex type. On the other hand, using <all> allows the cre-
ator of the instance document to place the elements in any order they wish — though it is still a require-
ment that all the elements appear in the construction. Listing 6-23 details a schema that makes use of the
<all> element.

LLiissttiinngg 66--2233:: UUssiinngg tthhee <<aallll>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>
<xs:complexType>
<xs:all>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:all>
</xs:complexType>

</xs:element>
</xs:schema>

183

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 183

Using this construction means that an XML document is considered valid in the following format:

<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
</Process>

It is also considered valid in this format:

<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<Country>USA</Country>
<Name>Bill Evjen</Name>
<State>Missouri</State>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
</Process>

Element Types
As you have noticed, one of the big advantages to XML Schemas is that they are able to datatype their
contents in more finely grained manner than a DTD Schema can. A multitude of datatypes are at your
disposal when creating elements. You assign a datatype to an element by using the type attribute.

<xs:element name=”Name” type=”xs:string” />

In this case, an element of <Name> is declared, and it is specified to be of type string. This means that
the contents of the <Name> element will always be considered a string value. This means that the follow-
ing bit of XML is considered valid XML:

<Name>Bill Evjen</Name>

Although you could also have an element declaration like this one:

<xs:element name=”Age” type=”xs:string” />

And this would also be considered valid XML:

<Age>23</Age>

In this case, however, the 23 value would be considered a string. To give more meaning to any value that
you place within the <Age> element, it would probably be better to declare the <Age> element in the fol-
lowing fashion:

<xs:element name=”Age” type=”xs:int” />

Two sets of types at your disposal in the XML Schema world — primitive datatypes and derived datatypes.
The primitive datatypes are the base foundation types, and the derived datatypes build upon the primi-
tive types to create more elaborate types. Figure 6-2 shows a graph of the primitive and derived
datatypes available to you when creating XML Schemas.

184

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 184

Figure 6-2

In this diagram, you can see a number of primitive datatypes, and only two of them (string and
decimal) have been derived from to create some additional datatypes. The primitive datatypes are
detailed in the following table.

Primitive Data Types Description

anyURI An absolute or relative URI such as http://www.lipperweb.com/.

base64Binary A Base64 binary encoded set of data.

boolean A bit-flag option that can be represented as true/false, yes/no, 1/0,
on/off or something similar.

date A date consisting of a day/month/year combination according to the
Gregorian calendar as it is defined by the ISO 8601 standard.

Table continued on following page

All complex types

anyType

gMonthgDaygMonthDaygYeargYearMonthdatetimedateTimeduration

decimalNOTATION

integer

nonPositive
Integer

negativeInteger int

short

unsignedLong

unsignedInt

byte unsignedShort

unsignedByte

positive
Integer

nonNegative
Integer

long

QNameanyURIdoublefloathexBinarybase64
Binary

booleanstring

normalizedString

token

language Name NMTOKEN

NCName NMTOKENS

IDREFID ENTITY Primitive
Types

Legend

Derived
TypesIDREFS ENTITIES

anySimpleType

185

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 185

Primitive Data Types Description

dateTime A date and time value which consists of a date utilizing the day/
month/year values and a time set utilizing hour/minute/second as
defined by the Gregorian calendar.

decimal A variable precision number that is either positive or negative.

double A double-precision floating point number (64-bit).

duration A duration of time which is a set year/month/day/hour/minute/
second length of time according to the Gregorian calendar.

float A single-precision floating point number (32-bit).

gDay A day within the Gregorian calendar.

gMonth A month within the Gregorian calendar.

gMonthDay A month and day within the Gregorian calendar.

gYear A year within the Gregorian calendar.

gYearMonth A year and a month within the Gregorian calendar.

hexBinary A set of binary data that has been hex-encoded.

NOTATION A set of QNames.

QName A qualified name.

string A character string of any length.

time An instance of time. The value range is from 00:00:00 (which represents
midnight) to 23:59:59 (which represents one second before midnight).

The datatypes derived from both the string and the decimal primitive datatypes are presented in the fol-
lowing table.

Derived Data Types Description

byte An integer ranging from -128 to 127. A byte type is derived from the
short type.

ENTITIES A set of ENTITY data type values (one or more).

ENTITY An ENTITY attribute type as presented in the XML 1.0 specification. An
ENTITY type is derived from the NCName type.

ID An ID attribute type as presented in the XML 1.0 specification. The ID
type is derived from the NCName type.

IDREF A reference to an element with a defined ID attribute value. An IDREF
type is derived from the NCName type.

IDREFS A set of IDREF attribute types (one or more).

186

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 186

Derived Data Types Description

int A numerical value ranging from -2147483648 to 2147483647. The int
type is derived from the long type.

integer A numerical value that consists of a whole number that doesn’t contain
any decimal places. This number can be negative or positive. The
integer type is derived from the decimal type.

language A representation of a natural language identifier as defined by RFC
3066. The language type is derived from the token type.

long An integer value ranging from -9223372036854775808 and
9223372036854775807. The long type is derived from the integer type.

Name A token consisting of characters and represents Names as defined in
the XML 1.0 specification. A Name type is derived from the token type.

NCName A “non-colonized” name as presented in the XML 1.0 specification. An
NCName type is derived from the Name type.

negativeInteger An integer which is made up of a negative value. The negativeInteger
type is derived from the nonPositiveInteger type.

NMTOKEN A set of characters that make up a token value and represents the
NMTOKEN attribute as defined in the XML 1.0 specification. The
NMTOKEN type is derived from the token type.

NMTOKENS A set of NMTOKEN attribute types (one or more).

nonNegativeInteger A positive integer that must be greater than or equal to zero. The
nonNegativeInteger type is derived from the integer type.

nonPositiveInteger A negative integer that must be less than or equal to zero. The
nonPositiveInteger type is derived from the integer type.

normalizedString A whitespace normalized string. The normalizedString type is
derived from the string type.

positiveInteger A positive integer that is greater than zero (but not equal to). A
positiveInteger type is derived from the nonNegativeInteger type.

short An integer value ranging from -32768 to 32767. A short type is derived
from the int type.

token A tokenized string. A token type is derived from the
normalizedString type.

unsignedByte An integer value ranging from 0 to 255. The unsignedByte type is
derived from the unsignedShort type.

unsignedInt An integer value ranging from 0 to 4294967295. The unsignedInt type
is derived from the unsignedLong type.

unsignedLong An integer value ranging from 0 to 18446744073709551615. The
unsignedLong type is derived from the nonNegativeInteger type.

unsignedShort An integer value ranging from 0 to 65535. The unsignedShort type is
derived from the unsignedInt type.

187

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 187

Just as these derived datatypes are built upon other types, you can build your own datatypes through
the use of the <simpleType> element directly in your XML Schema document.

Listing 6-24 provides an example of creating a custom datatype called MyCountry.

LLiissttiinngg 66--2244:: CCrreeaattiinngg aa ccuussttoomm ddaattaattyyppee ccaalllleedd MMyyCCoouunnttrryy

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Process”>
<xs:complexType>

<xs:sequence>
<xs:element name=”BillingAddress” type=”ContactDetails” />
<xs:element name=”ShippingAddress” type=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name=”ContactDetails”>
<xs:sequence>

<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”MyCountry” />

</xs:sequence>
</xs:complexType>

<xs:simpleType name=”MyCountry”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”USA” />
<xs:enumeration value=”UK” />
<xs:enumeration value=”Canada” />
<xs:enumeration value=”Finland” />

</xs:restriction>
</xs:simpleType>

</xs:schema>

In the code presented in Listing 6-24, a complex type is used for both the <BillingAddress> and the
<ShippingAddress> elements that consists of a series of elements. The element to pay attention to in
this example is the <Country> element. The <Country> element is built from a custom derived
datatype.

You build a custom datatype using the <simpleType> element and the name attribute (to give a name to
your new datatype). In this example, the datatype is named MyCountry. Next, the <restriction> ele-
ment is used to derive from another datatype using the base attribute — in this case, string. Next, you
place a further restriction by making the MyCountry datatype an enumeration of possible string values
using the <enumeration> element.

188

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 188

Groups and Choices
You have seen some examples of encapsulation so far in this chapter. Another form of encapsulation
places commonly used element groups together in a package that can be used over and over again
within your XML Schema document. This can be accomplished using the <group> element.

For instance, suppose you have an XML Schema document as shown in Listing 6-25.

LLiissttiinngg 66--2255:: CCrreeaattiinngg aa rreeuussaabbllee ggrroouupp iinn yyoouurr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

In this case, you create a group called ContactDetails that encapsulates the <Name>, <Address>,
<City>, <State>, and <Country> elements. You define the child elements of the <Process> element; a
<group> element is used to incorporate the defined group ContactDetails. To associate the <group>
element to the defined group, ContactDetails, you use the ref attribute. Its value is the name of the
group.

By specifying the group using a <sequence> element, you are also stating that all the elements of
ContactDetails must appear in the order in which they are defined.

Now suppose you want to provide a choice of elements that might appear as a child element of the
<Process> element. You can allow choices to single elements or even to entire groups of elements.
Suppose you wanted to change the <Process> element construction to allow for either an American or
a Canadian address, but you don’t want to use the same set of elements to define both of these items.
At the same time, you wanted to allow for only a single instance of either of these element groups to
appear within the <Process> element. This is the situation where you would use the <choice> element
within the XML Schema document. Listing 6-26 provides the XML Schema document that defines this
situation.

189

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 189

LLiissttiinngg 66--2266:: CCrreeaattiinngg aa rreeuussaabbllee ggrroouupp iinn yyoouurr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger”/>
<xs:choice>

<xs:group ref=”ContactDetailsUS”/>
<xs:group ref=”ContactDetailsCanada”/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:group name=”ContactDetailsUS”>
<xs:sequence>

<xs:element name=”US_Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

<xs:group name=”ContactDetailsCanada”>
<xs:sequence>

<xs:element name=”Canada_Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”Province” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

In this case, two groups are defined —ContactDetailsUS and ContactDetailsCanada. The elements
between the two groups are similar, but have some differences. For instance, each group uses a unique
element name for the name of the contact. The US version uses <US_Name> whereas the Canadian ver-
sion uses <Canada_Name>. Also, the US version uses <State> whereas the Canadian version uses
<Province>. The diagram of the schema is presented in Figure 6-3.

Within the <Process> element, you are interested in having only one of either of these groups appear.
So you use the <choice> element.

<xs:element name=”Process”>
<xs:complexType>

<xs:choice>
<xs:group ref=”ContactDetailsUS”/>
<xs:group ref=”ContactDetailsCanada”/>

</xs:choice>
</xs:complexType>

</xs:element>

190

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 190

Figure 6-3

Within the <choice> element are all the choices you want to allow. In this case, only two choices are
defined — ContactDetailsUS and ContactDetailsCanada. Allowing only one or the other means
that your XML instance document takes the form presented in either Listing 6-27 or 6-28.

LLiissttiinngg 66--2277:: AAnn XXMMLL ddooccuummeenntt uussiinngg tthhee AAmmeerriiccaann ccoonnttaacctt iinnffoorrmmaattiioonn

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<OrderNumber>1234</OrderNumber>
<US_Name>Bill Evjen</US_Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Process>

ContactDetailsUS

US_Name

OrderNumber

City

State

Address

Country

Process

ContactDetailsCanada

Canada_Name

City

Province

Address

Country

191

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 191

The US version of the document uses the <US_Name> and <State> elements.

LLiissttiinngg 66--2288:: AAnn XXMMLL ddooccuummeenntt uussiinngg tthhee CCaannaaddiiaann ccoonnttaacctt iinnffoorrmmaattiioonn

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”ComplexTypes.xsd”>
<OrderNumber>1234</OrderNumber>
<Canada_Name>Bill Evjen</Canada_Name>
<Address>123 Main Street</Address>
<City>Vancouver</City>
<Province>British Columbia</Province>
<Country>Canada</Country>

</Process>

Finally, the Canadian version of the document uses the <Canada_Name> and <Province> elements.

Element Restrictions
Building an XML Schema document is all about establishing restrictions. You are defining a set structure
of XML that must be in place in order for the XML document to be considered valid. This means, as you
have seen so far, that certain elements have to appear, that they have to be spelled in a particular way,
and that their values must be of a certain datatype.

You can take the restrictions even further by using a number of available attributes when creating your
elements or attributes (attributes are covered shortly).

Cardinality in XML Schemas
One of the problems with DTDs that was mentioned in the beginning part of this chapter was how they
deal with cardinality. You want to have a really fine-grained way to define how often (and if) items can
appear in a document. Cardinality in XML Schema document is done through the use of the minOccurs
and maxOccurs attributes.

minOccurs
The minOccurs attribute specifies the minimum number of times an item may appear. Listing 6-29
shows the minOccurs attribute in use.

LLiissttiinngg 66--2299:: UUssiinngg tthhee mmiinnOOccccuurrss aattttrriibbuuttee wwiitthh aann eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>

192

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 192

<xs:group name=”ContactDetails”>
<xs:sequence>

<xs:element name=”Salutation” type=”xs:string” minOccurs=”0” />
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

In Listing 6-29, a new element is added —<Salutation>. This element includes a minOccurs attribute
with a value set to 0 (zero). This means that the <Salutation> element can appear zero or one times in
the document. The XML presented in Listing 6-30 is considered valid XML.

LLiissttiinngg 66--3300:: UUssiinngg tthhee mmiinnOOccccuurrss iinn aann iinnssttaannccee ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”DefaultValues.xsd”>
<OrderNumber>1234</OrderNumber>
<Salutation>Mr.</Salutation>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Process>

This also means that the code shown in Listing 6-31 is also considered valid XML.

LLiissttiinngg 66--3311:: UUssiinngg tthhee mmiinnOOccccuurrss iinn aann iinnssttaannccee ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”DefaultValues.xsd”>
<OrderNumber>1234</OrderNumber>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Process>

maxOccurs
The other attribute that helps you to control the number of times an element appears in any of your
instance documents is the maxOccurs attribute. This attribute controls the maximum number of times
an element may appear in your document. Listing 6-32 shows an example of using the maxOccurs
attribute in your XML Schema document.

193

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 193

LLiissttiinngg 66--3322:: UUssiinngg tthhee mmaaxxOOccccuurrss aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>
<xs:element name=”Telephone” type=”xs:string” maxOccurs=”2” />

</xs:sequence>
</xs:group>

</xs:schema>

In this case, a <Telephone> element is added that can occur once or twice within the XML document.
All elements defined here need to occur at least once (unless they have a minOccurs attribute set to 0).
This means that you can now have an instance document as presented in Listing 6-33.

LLiissttiinngg 66--3333:: UUssiinngg tthhee mmaaxxOOccccuurrss aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”Cardinality.xsd”>
<OrderNumber>1234</OrderNumber>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>
<Telephone>555-1212</Telephone>
<Telephone>555-1213</Telephone>

</Process>

As you can see from this listing, the <Telephone> element has appeared twice in the document. This is
allowed to occur because the maxOccurs attribute is set to 2.

A twist on the maxOccurs attribute is that you can set it to have an unlimited number of items by setting
the value of the attribute to unbounded. This is shown in Listing 6-34.

LLiissttiinngg 66--3344:: UUssiinngg tthhee mmaaxxOOccccuurrss aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

194

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 194

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>
<xs:element name=”Telephone” type=”xs:string”
maxOccurs=”unbounded” />

</xs:sequence>
</xs:group>

</xs:schema>

With this in place, the <Telephone> element can now appear as many times in the document as the
instance document author wants (remember that it has to appear at least once in the document).

Default values
You sometimes want to specify whether an element has a default value. You can do this to make XML
documents less error-prone and more user-friendly. For instance, suppose you want to provide a new
child element called <OrderLocation> to the <Process> element and provide a default value to this
element at the same time. You do this by using the default attribute within the element. You accom-
plish this task as presented in Listing 6-35.

LLiissttiinngg 66--3355:: CCrreeaattiinngg aann eelleemmeenntt wwiitthh aa ddeeffaauulltt vvaalluuee aattttaacchheedd ttoo iitt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:element name=”Location” type=”xs:string” default=”Seattle” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

195

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 195

In this case an XML element called <Location> provides the location where the order is to be pro-
cessed. Using the default attribute within the <element> element, you are able to assign a default value
of Seattle. This means that if no value is present in the instance document, a value of Seattle will be
assumed. Using an XML Schema document as shown here means you can have an XML document like
the one in Listing 6-36.

LLiissttiinngg 66--3366:: BBuuiillddiinngg tthhee <<LLooccaattiioonn>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”DefaultValues.xsd”>
<OrderNumber>1234</OrderNumber>
<Location>San Francisco</Location>
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Process>

This is a valid instance document. Although a default value is set for the <Location> element with the
XML Schema document from Listing 6-35, you can easily just override this value by assigning a new
value (as shown in Listing 6-36) by setting the value to San Francisco. You could have also made use
of the default value by building the XML instance document as presented in Listing 6-37.

LLiissttiinngg 66--3377:: BBuuiillddiinngg tthhee <<LLooccaattiioonn>> eelleemmeenntt uussiinngg tthhee ddeeffaauulltt vvaalluuee

<?xml version=”1.0” encoding=”UTF-8”?>
<Process xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”DefaultValues.xsd”>
<OrderNumber>1234</OrderNumber>
<Location />
<Name>Bill Evjen</Name>
<Address>123 Main Street</Address>
<City>Saint Charles</City>
<State>Missouri</State>
<Country>USA</Country>

</Process>

In this case, the value of Seattle is used for the <Location> element because nothing is specified. Note
that using the default attribute means that you can use no value for the <Location> element, but at
the same time, the <Location> element must appear in the document. If the element is not present, the
instance document is considered invalid.

Fixed Values
A fixed value is similar to that of a default value with the big difference that the end user cannot change
the value. When using a fixed value for an element, you are assigning a value that cannot be changed at
all. This is done using the fixed attribute rather than the default attribute. For instance, if you wanted
to set the <Location> element to a fixed value of Seattle, you would use code like that shown in
Listing 6-38.

196

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 196

LLiissttiinngg 66--3388:: CCrreeaattiinngg aann eelleemmeenntt wwiitthh aa ffiixxeedd vvaalluuee aattttaacchheedd ttoo iitt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:element name=”Location” type=”xs:string” fixed=”Seattle” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

Using this XML Schema means that the following element is valid:

<Location>Seattle</Location> <!-- Valid -->

Using a value other than Seattle causes your instance document to be considered invalid:

<Location>San Francisco</Location> <!-- Invalid -->

When using the fixed attribute, you may find that it behaves like the default attribute. As a consumer
of this schema, you are not required to place a value within the <Location> element. This means that
the following use of the <Location> element is also considered valid XML, and a value of Seattle is
assumed.

<Location /> <!-- Valid -->

Null Values
In some instances, you want to set items so that a null value is allowed. Sometimes, you also may want
to set elements so that they cannot be null as well. In these cases, you use the nillable attribute and set
this to either true or false. Its use is presented in Listing 6-39.

LLiissttiinngg 66--3399:: CCrreeaattiinngg aann eelleemmeenntt wwiitthh aa vvaalluuee wwhhiicchh ccaann bbee nnuullll

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>

(continued)

197

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 197

LLiissttiinngg 66--3399 (continued)

<xs:sequence>
<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:element name=”Location” type=”xs:string” nillable=”true” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:group name=”ContactDetails”>

<xs:sequence>
<xs:element name=”Name” type=”xs:string”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

Defining Attributes
So far in this chapter, much of the attention has been on XML elements. You saw how easy it is to create
element declarations in your XML Schema documents. You can also just as easily create declarations for
the attributes.

An attribute is a key/value pair that actually appears inside an element. Attributes are there to further
define an element. Any element can contain as many attributes as it needs. Listing 6-40 shows an exam-
ple of declaring an attribute to be used within the <Name> element.

LLiissttiinngg 66--4400:: CCrreeaattiinngg aann aattttrriibbuuttee ffoorr tthhee <<NNaammee>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderNumber” type=”xs:positiveInteger” />
<xs:group ref=”ContactDetails” />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name=”ContactDetails”>
<xs:sequence>

<xs:element name=”Name”>
<xs:complexType>

<xs:simpleContent>
<xs:extension base=”xs:string”>

198

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 198

<xs:attribute name=”Sex”/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
</xs:group>

</xs:schema>

This example shows that the element name can now have an attribute Sex contained within. This means
that the following construction is possible:

<Name Sex=”M”>Bill Evjen</Name>

It is also just as possible to do without the attribute, and the element is still considered valid.

<Name>Bill Evjen</Name>

With the attribute, the <Name> element becomes even more defined. Just as you do when you declare an
element declaration, you can declare an attribute by providing the name of the attribute and the datatype
of the value it can hold. In this case, the datatype is defined as a string, so that it can contain an “M” or
an “F”.

An attribute is declared within the <schema>, <complexType>, or <attributeGroup> elements. If
there are other declarations within this complex type, such as other elements, the attribute declarations
should appear at the bottom of the element declarations. If you are declaring multiple attributes, they do
not need to appear in any specific order.

Default Values
The attribute tag within an XML Schema document can contain the attribute default as well. This spec-
ifies the initial value of the attribute as it is created. If the end user, creating an instance document based
upon a schema with this type of attribute declaration, doesn’t override the initial value, the default value
is used. This is shown in Listing 6-41 within this partial XML Schema document.

LLiissttiinngg 66--4411:: CCrreeaattiinngg ddeeffaauulltt vvaalluueess ffoorr aattttrriibbuutteess

<xs:element name=”Name”>
<xs:complexType>

<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”Member” default=”No” />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

199

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 199

The big difference between defaults for elements and attributes is that when you define a default value
for an element, the element must still appear in the XML instance document even if the consumer
doesn’t specify any value. Attributes, on the other hand, don’t need to be present, and the default value
is assumed.

use Attribute
The use attribute allows you to specify whether the attribute for the element is required. This is an optional
attribute itself and can take one of three possible values —optional, prohibited, or required. This is
shown in Listing 6-42.

LLiissttiinngg 66--4422:: UUssiinngg tthhee uussee aattttrriibbuuttee

<xs:element name=”Name”>
<xs:complexType>

<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”Member” use=”required” />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

The default setting is optional.

Putting Restrictions on Attribute Values
At times you don’t want to allow the end user to enter any value he wants for an attribute, but instead,
you choose to put a limit on the attribute’s values. This is done as follows (shown in Listing 6-43):

LLiissttiinngg 66--4433:: RReessttrriiccttiioonnss bbeeiinngg aapppplliieedd ttoo aattttrriibbuutteess

<xs:element name=”Name”>
<xs:complexType>

<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”Age”>
<xs:simpleType>

<xs:restriction base=”xs:positiveInteger”>
<xs:minInclusive value=”12” />
<xs:maxInclusive value=”95”” />

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

200

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 200

This is done by using the <minInclusive> and <maxInclusive> elements. The preceding example
specifies an attribute Age where the minimum value that can be utilized is 12 and the maximum value
is 95. Therefore, if the end user inputs a value that is not within this range, the XML document is con-
sidered invalid.

Earlier in this chapter, you saw how it is possible to use the <xs:restriction> element to put in an
enumeration of available options as well:

<xs:simpleType name=”MyCountry”>
<xs:restriction base=”xs:string”>

<xs:enumeration value=”USA” />
<xs:enumeration value=”UK” />
<xs:enumeration value=”Canada” />
<xs:enumeration value=”Finland” />

</xs:restriction>
</xs:simpleType>

In this case, the <xs:restriction> element along with the list of <xs:enumeration> elements forces
a restriction to only the items in the list.

Other types of restrictions you can utilize include:

<xs:restriction base=”xs:string”>
<xs:minLength value=”1” />

</xs:restriction>

Or

<xs:restriction base=”xs:string”>
<xs:maxLength value=”20” />

</xs:restriction>

Using <xs:minLength> or <xs:maxLength> allows you to define the length restriction of the element
contents. These elements are used to define string restrictions. You could also define numerical restric-
tions using the <xs:totalDigits> element.

The available constraining facets in the XSD Schema language include:

Primitive Data Types Description

enumeration Defines a set of allowed values

fractionDigits Defines a value with the specific number of decimal digits

length Sets the units of length that the element can contain

maxExclusive Defines an upper-level bound value based upon the data
type of the element

Table continued on following page

201

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 201

Primitive Data Types Description

maxInclusive Defines the maximum value

maxLength Defines the maximum number of units of length that is
allowed for a value

minExclusive Defines a lower-level bound value based upon the data
type of the element

minInclusive Defines the minimum value

minLength Defines the minimum number of units of length that is
allowed for a value

pattern Defines an exact structure of a value using regular
expressions

totalDigits Defines the total allowed digit (int) values

whitespace Defines how whitespace elements should be treated in the
value. Possible values include Preserve, Replace, or
Collapse

Attribute Groups
If you have certain attributes that are used across a wide variety of elements, it is easier to create an
attribute group in order to manage these attributes. This function allows you to create a group of
attributes that you can assign to different elements without having to declare the same attributes over
and over again for each element. This is shown in Listing 6-44.

LLiissttiinngg 66--4444:: CCrreeaattiinngg aann aattttrriibbuuttee ggrroouupp

<xs:attributeGroup name=”myAttributes”>
<xs:attribute name=”x” type=”xs:integer” />
<xs:attribute name=”y” type=”xs:integer” />

</xs:attributeGroup>

<xs:complexType name=”myElementType”>
<xs:attributeGroup ref=”myAttributes” />

</xs:complexType>

The idea is to declare a group of attributes within the <attributeGroup> element. When you are ready
to declare a set of attributes within an element, you simply make a reference to the attribute group using
the <attributeGroup> element. Within this tag, you simply point to the attribute group reference
using the ref attribute.

Even when using the attribute groups to define attributes within your elements, you can still provide an
element with attributes other than those that the attribute group specifies as is shown in Listing 6-45.

202

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 202

LLiissttiinngg 66--4455:: UUssiinngg aaddddiittiioonnaall aattttrriibbuutteess

<xs:attributeGroup name=”myAttributes”>
<xs:attribute name=”x” type=”xs:integer” />
<xs:attribute name=”y” type=”xs:integer” />

</xs:attributeGroup>

<xs:complexType name=”myElementType”>
<xs:attribute name=”z” type=”xs:integer” />
<xs:attributeGroup ref=”myAttributes” />

</xs:complexType>

With this declaration, you assign the attributes that are represented in the attribute group myAttributes
as well as the new attribute z.

In some situations, you don’t want to use every attribute that is defined within the attribute group. In
these cases, you simply use the prohibited keyword with the use attribute to turn off the capability for
the end user to employ that particular attribute within the element.

Putting XML Schema Document Together
You put XML Schema documents together through the use of either the <import> or <include> elements.
Using these is something I recommend because it allows you to create reusable schema documents that
you can use as a foundation whenever you build an XML Schema document.

<import>
Imports allow you to import another entire XML Schema document into the one that you are already work-
ing with. This is usually done if the two varying XML Schema documents utilize different namespaces. You
use the import statement as shown in the example in Listing 6-46.

LLiissttiinngg 66--4466:: IImmppoorrttiinngg aannootthheerr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:LipperNamespace=”http://www.lipperweb.com/OtherNamespace”
targetNamespace=”http://www.lipperweb.com/Namespace”
elementFormDefault=”qualified”>

<xs:import namespace=”http://www.lipperweb.com/OtherNamespace”
schemaLocation=”OtherSchema.xsd” />

<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />

(continued)

203

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 203

LLiissttiinngg 66--4466 (continued)

<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

This import is done using the <import> element and two attributes —namespace and schemaLocation.
When doing so, you also want to associate the namespace with a prefix within the <schema> element.

xmlns:LipperNamespace=”http://www.lipperweb.com/OtherNamespace”

This allows you to use the items declared in either XML Schema document. If you are referencing an
item that is contained in the other schema, you use a construction like the one shown here:

<LipperNamespace:OtherElement>value</LipperNamespace:OtherElement>

<include>
The <include> element is used if the other schema has the same namespace or makes use of no name-
space. It is quite similar to the <import> element and is a good way to combine two schemas with little
work. Listing 6-47 shows an example of using the <include> element.

LLiissttiinngg 66--4477:: IImmppoorrttiinngg aannootthheerr XXMMLL SScchheemmaa ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.lipperweb.com/Namespace”
elementFormDefault=”qualified”>

<xs:include schemaLocation=”OtherSchema.xsd” />

<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

204

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 204

Commenting XML Schemas
You can apply comments to your XML Schema documents in a couple of ways. The first is fairly simple
and straightforward — using standard XML comments.

Standard XML Comments
Because this is an XML document, you can place comments in the XML Schema document just as you
can in any other XML or HTML document. Comments are placed between the <!-- and the -->
character sets. An example of commenting your schema document using this method is presented in
Listing 6-48.

LLiissttiinngg 66--4488:: CCoommmmeennttiinngg XXMMLL SScchheemmaa ddooccuummeennttss

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<!-- Schema created by Bill Evjen in the summer of 2006 -->
<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

You can also comment out entire blocks of text or code by putting the comment elements on multiple
lines as is presented in Listing 6-49.

LLiissttiinngg 66--4499:: CCoommmmeennttiinngg XXMMLL SScchheemmaa ddooccuummeennttss iinn bblloocckkss

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<!-- Turned off for now
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” /> -->

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

205

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 205

From this, you can see that the <State> and <Country> elements have been commented out and will
no longer be recognized by any engine.

<annotation>
A child element of the <element> element is the <annotation> element. The <annotation> element
allows you to add comments to your schema documents more professionally. The <annotation> ele-
ment has a couple of child elements at its disposal —<documentation> and <appInfo>.

<documentation>
The <documentation> element allows you to write textual documentation concerning a specific ele-
ment. An example of its use is presented in Listing 6-50.

LLiissttiinngg 66--5500:: UUssiinngg tthhee <<ddooccuummeennttaattiioonn>> eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Process”>
<xs:complexType>
<xs:sequence>

<xs:element name=”Name” type=”xs:string”>
<xs:annotation>

<xs:documentation>This represents the full name of the
person making the order (e.g. John Doe).
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”State” type=”xs:string” />
<xs:element name=”Country” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

<appInfo>
The <appInfo> element allows you to stick application-specific documentation in addition to human
readable documentation inside the same element.

206

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 206

XML Schema Tools
A number of tools are at your disposal to create and validate XML Schema documents. You can find a large
list of such tools at w3.org/XML/Schema#Tools. Although a large list is available, I will review only the
two that are commonly used by developers — Microsoft’s Visual Studio 2005 and Altova’s XMLSpy.

Microsoft’s Visual Studio 2005
Microsoft made strong efforts to incorporate XML development into its latest development environment.
Microsoft’s Visual Studio 2005 can do quite a bit more than XML development, but it allows you to cre-
ate XML-based documents of many kinds easily, including XML Schema documents.

A XSD document type in Visual Studio enables you to visual create schema documents. You can also
create hem directly in the code view as well. Figure 6-4 shows Visual Studio 2005 open with the design
surface for the schema document.

Figure 6-4

207

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 207

From the available Toolbox, you can drag and drop elements directly onto the design surface. The tool
creates all the required code on your behalf. Figure 6-5 shows the screen when elements have been cre-
ated on this design surface.

Figure 6-5

As you can see from the figure, you can select the datatypes from a drop-down list directly in the
designer. Next, this chapter reviews Altova’s XMLSpy.

208

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 208

Altova’s XMLSpy
Altova’s XMLSpy is a powerful tool recommended for any serious XML programmer. You will find that
the XSD capabilities built into the tool allow you to perform pretty much any XSD task including creat-
ing schemas from scratch, from other XML documents, and more. Figure 6-6 shows how XMLSpy allows
you to code the schema document directly.

Figure 6-6

You can also design the schema visually and let XMLSpy create the schema code on your behalf. This is
presented in Figure 6-7.

209

Chapter 6: XML Schemas

12_777779 ch06.qxp 3/1/07 11:45 PM Page 209

Figure 6-7

Summary
Just as you could probably see the power and reasoning behind DTDs, I hope that you can appreciate
that XML Schema documents are that much more powerful. Their power comes in their incredible flexi-
bility. This chapter took a look at the principles you need to build XML Schema documents and focused
on building elements, attributes, and more. You will find that schema documents are a big part of most
XML technologies — whether you are working with Web services, RSS feeds, or others.

The next chapter looks at another schema technology that is quite flexible as well, but is fairly new on
the scene — RELAX-NG.

210

Part III: Defining Structure

12_777779 ch06.qxp 3/1/07 11:45 PM Page 210

RREELLAAXX NNGG

The previous two chapters looked at two of the more commonly used formats for defining XML
vocabularies. This chapter continues this survey of schema languages by looking at RELAX NG.
This is a relatively new XML schema definition language from the Organization for the Advance-
ment of Structured Information Standards (OASIS). OASIS is a standards body — similar to the
W3C — that was originally created as an improved version of DTDs, and can leverage some of the
functionality of XML Schema. To further these goals, RELAX NG was designed to provide a highly
readable format that could be used to define complex vocabularies.

This chapter will look at the two forms of the RELAX NG specification: the standard form and the
compact form. It will show the way you use these two forms to define XML vocabularies, and
compare it with DTDs and XML Schemas. Along the way, you will see how RELAX NG integrates
with XML tools and programming languages for validating XML documents and creating objects
that map to RELAX NG schemas.

Why Another Schema Language?
At first glance, there seems to be little need for yet another schema language. DTDs have been
around since SGML, so most people are aware of them, and most applications can work with
them. XML Schema is also commonly available, integrated with many XML tools, and ratified by
the W3C. Still, there are great reasons why you should consider using RELAX NG.

The primary reason to use RELAX NG is simplicity. Anyone who has read the W3C XML Schema
specification (all three parts) knows that they are not simple. RELAX NG was designed from the
outset to be simple to understand and implement. Listing 7-1 shows a RELAX NG schema. Even
without knowing the structure of a RELAX NG schema or reading the specification, it is fairly easy
to understand the intent of each of the elements.

13_777779 ch07.qxp 3/1/07 11:45 PM Page 211

LLiissttiinngg 77--11:: RREELLAAXX NNGG SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar
xmlns=”http://relaxng.org/ns/structure/1.0”
datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
<start>

<element name=”productCatalog”>
<oneOrMore>

<element name=”product”>
<ref name=”productDefinition”></ref>

</element>
</oneOrMore>

</element>
</start>
<define name=”productDefinition”>

<attribute name=”id”><data type=”integer”/></attribute>
<element name=”shortName”><text /></element>
<element name=”fullName”><text /></element>
<element name=”description”><text /></element>
<element name=”components”>

<ref name=”productDefinition” />
</element>

</define>
</grammar>

In the preceding schema, you see that it defines a grammar (the root node). Within that grammar, the
root element is a productCatalog. This productCatalog includes one or more products. Each prod-
uct, in turn, includes a number of sub-elements. The name of each pattern in a RELAX NG schema
almost literally guides the reader to describe the structure, and this is one of the main benefits in its use.

In addition to simplicity, RELAX NG was defined to be much more modular and composable than DTDs
or XML Schema. Features such as W3C Schema data types can be integrated with RELAX NG schemas.
In addition, RELAX NG makes it easy to break your schema into multiple files. This enables you to
define standardized schema elements (such as a standard address schema) and combine them into a
larger schema.

Finally, RELAX NG provides two forms: a normal syntax that uses XML, and a compact syntax. This
enables you to define your XML vocabularies using either the well-formed normal syntax, or the more
DTD-like compact syntax.

Defining a RELAX NG Schema
The first step in using RELAX NG, as with other schema languages, is to sketch out your model. Identify
the key elements in the XML syntax you are creating, determine the cardinality of each item, and decide
if each item should be an element or attribute. When you are moderately comfortable with your deci-
sions, you can begin to document them using RELAX NG syntax.

Defining a RELAX NG syntax is similar to creating one using DTD or W3C XML Schema syntax — the
task that the three languages use is the same. Each attempts to describe the rules of a document, so that

212

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 212

humans and/or software can know that the document successfully follows the rules. The actual differ-
ences between the three can be seen to be minor or major, depending on your perspective.

Listing 7-2 shows a simple DTD, Listing 7-3 shows the equivalent W3C XML Schema version, and 7-4
shows the RELAX NG schema.

LLiissttiinngg 77--22:: XXMMLL ddooccuummeenntt wwiitthh aann eemmbbeeddddeedd DDTTDD

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT order (name,address,city,state,country,orderItems)*>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT orderItems (item,quantity)+>
<!ELEMENT item (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>

LLiissttiinngg 77--33:: WW33CC XXMMLL SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified”>
<xs:element name=”order”>
<xs:complexType>
<xs:sequence minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”name” type=”xs:string”/>
<xs:element name=”address” type=”xs:string”/>
<xs:element name=”city” type=”xs:string”/>
<xs:element name=”state” type=”xs:string”/>
<xs:element name=”country” type=”xs:string”/>
<xs:element ref=”orderItems”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”orderItems”>
<xs:complexType>
<xs:sequence maxOccurs=”unbounded”>
<xs:element name=”item” type=”xs:string”/>
<xs:element name=”quantity” type=”xs:int”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

LLiissttiinngg 77--44:: SSiimmppllee RREELLAAXX NNGG SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<element name=”order” xmlns=”http://relaxng.org/ns/structure/1.0”>
<zeroOrMore>
<element name=”name”><text /></element>
<element name=”address”><text /></element>

(continued)

213

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 213

LLiissttiinngg 77--44 (continued)

<element name=”city”><text /></element>
<element name=”state”><text /></element>
<element name=”country”><text /></element>
<element name=”orderItems”>
<oneOrMore>
<element name=”item”><text /></element>
<element name=”quantity”><text /></element>

</oneOrMore>
</element>

</zeroOrMore>
</element>

As you can see from these examples, the main differences among the three schema syntaxes are how
they use XML and identify cardinality. There are a few other differences, and the rest of this chapter will
outline how you can write RELAX NG to define an XML schema.

Declaring Elements
The intent of a schema definition language is to first describe the elements that make up the language
you are defining. Therefore, much of RELAX NG is composed of patterns that you will use to define the
elements (and attributes) of an XML syntax. Each of the main RELAX NG patterns defines some aspect
of the resulting XML.

Simple Elements
The simplest possible definition of an element uses, strangely enough, the element pattern:

<element name=”fullName” xmlns=”http://relaxng.org/ns/structure/1.0”>
<text />

</element>

This pattern defines a single element, called fullName. The declaration includes the current RELAX NG
namespace: http://relaxng.org/ns/structure/1.0. (Future versions will likely have a different
version number.) As with all other XML syntax, you can either use this namespace as the default name-
space, or provide a prefix for the RELAX NG elements within your schema. Therefore, both of the
RELAX NG schemas in Listing 7-5 are valid.

LLiissttiinngg 77--55:: UUssiinngg nnaammeessppaacceess wwiitthh RREELLAAXX NNGG sscchheemmaass

<element name=”contact” xmlns=”http://relaxng.org/ns/structure/1.0”>
<choice>
<element name=”fullName”>
<text />

</element>
<group>
<element name=”givenName”>

214

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 214

<text />
</element>
<element name=”lastName”>
<text />

</element>
</group>

</choice>
</element>

<r:element name=”contact” xmlns:r=”http://relaxng.org/ns/structure/1.0”>
<r:choice>
<r:element name=”fullName”>
<r:text />

</r:element>
<r:group>
<r:element name=”givenName”>
<r:text />

</r:element>
<r:element name=”lastName”>
<r:text />

</r:element>
</r:group>

</r:choice>
</r:element>

The fullName element must include some text, as defined by the enclosed <text /> element. RELAX
NG does not allow element patterns to be empty by default; you must include an element within each
element definition that describes the expected content for XML files using the schema. If you are defin-
ing an XML element that doesn’t have content, such as the
 element of XHTML, you should
include the <empty /> element as content in the definition. For example:

<element name=”isActive”>
<empty />

</element>

If the element is only optional, you wrap it in the <optional> element as follows.

<element name=”contact” xmlns=”http://relaxng.org/ns/structure/1.0”>
<element name=”fullName”>
<text />

</element>
<optional>
<element name=”email”>
<text />

</element>
</optional>

</element>

List Types
You rarely have one of anything with XML. Therefore, you need to be able to define the cardinality of a
list of items — that is, how many of the items are valid in a schema.

215

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 215

One common cardinality defines whether an element may occur in any number. This is defined with the
zeroOrMore element in your schema, as follows:

<element name=”contacts” xmlns=”http://relaxng.org/ns/structure/1.0”>
<zeroOrMore>
<element name=”contact”>
<element name=”fullName”>
<text />

</element>
<element name=”email”>
<text />

</element>
</element>

</zeroOrMore>
</element>

Here you can see some of the simplicity of RELAX NG. Rather than describing the cardinality using
terms such as minOccurs/maxOccurs, you simply wrap the element in a zeroOrMore element to define
the fact that is optional but may occur in any number.

If the element must occur at least once, you use the oneOrMore element instead. For example:

<element name=”contacts” xmlns=”http://relaxng.org/ns/structure/1.0”>
<oneOrMore>
<element name=”contact”>
<element name=”fullName”>
<text />

</element>
<element name=”email”>
<text />

</element>
</element>

</oneOrMore>
</element>

RELAX NG includes a third type of element that occurs multiple times: the list. This is for elements that
contain multiple items, separated by whitespace. The schema defines the data format and quantity
expected. For example, you may have a schema such as the following:

<element name=”line”>
<element name=”startPt”>
<list>
<data type=”float” />
<data type=”float” />

</list>
</element>
<element name=”endPt”>
<list>
<data type=”float” />
<data type=”float” />

</list>
</element>

</element>

216

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 216

The line element contains two child elements, startPt and endPt, which represent the starting and
ending X and Y coordinates for the line. The following XML fragment shows how a valid document
might appear using this schema:

<line>
<startPt>1.0 4.5</startPt>
<endPt>3.2 7.0</endPt>

</line>

In this example, the content of each element containing a list is broken using any whitespace character
(such as a space or tab), and the data type and quantity are used to determine if the content is valid
based on the schema.

Although the previous example uses two explicit <data> elements to define the expected quantity of
child elements, you can also use the zeroOrMore or oneOrMore elements to produce more open-ended
results. For example:

<element name=”contacts”>
<zeroOrMore>
<element name=”contact”>
<element name=”fullName”>
<text />

</element>
<element name=”email”>
<text />

</element>
<optional>
<element name=”spouseName”>
<text />

</element>
</optional>
<optional>
<element name=”children”>
<list>
<zeroOrMore>
<text />

</zeroOrMore>
</list>

</element>
</optional>

</element>
</zeroOrMore>

</element>

In this schema, the children node will contain a list of names, separated by whitespace. There may be
zero children, or any number. The following XML fragment shows some valid uses for this schema.

<contacts>
<contact>
<fullName>Foo deBar</fullName>
<email>foo@debar.com</email>

</contact>
<contact>
<fullName>Bob Sjeruncle</fullName>

217

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 217

<email>bob.sjeruncle@example.com</email>
<spouseName>Mary Sjeruncle</spouseName>
<children>Rob Tina Anne</children>

</contact>
<contact>
<fullName>Anne Other</fullName>
<email>anne@example.com</email>
<children>Thea</children>

</contact>
</contacts>

Each contact may have a child element, and that element will contain some number of names, separated
by spaces (or other whitespace).

The only cardinality you cannot explicitly define with RELAX NG is when the minimum or maximum
number of entries is something other than 0 or 1. For example, a manager element might have between 3
and 10 reports elements. However, these types of scenarios are rare, and they can easily be defined
through the judicious use of optional and other elements.

Union Types
Union types are when two or more nodes may be valid at a given point in a schema. For example, a
child node may occur as either an element or an attribute. Or an element might be presented either com-
pletely, or broken down into subcomponents. This last scenario is common when adding names to a
schema. Do you include the fullName, or break it into surname and given names? RELAX NG enables
you to handle these scenarios with the <choice> element, as shown here:

<element name=”contacts”>
<zeroOrMore>
<element name=”contact”>
<choice>
<element name=”fullName”>
<text />

</element>
<group>
<element name=”surname”>
<text />

</element>
<element name=”givenName”>
<text />

</element>
</group>

</choice>
<element name=”email”>
<text />

</element>
</element>

</zeroOrMore>
</element>

The choice element identifies a section of a schema where there may be multiple valid nodes. Each
element that occurs within the choice becomes a valid entry at that point in an XML document using
the schema. In order to mark a set of child elements as being together, you wrap them in the <group>

218

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 218

element, as shown in the previous schema for the surname and givenName elements. Failing to add this
would have meant that any one of the fullName, surname or givenName elements could have been
used, but that surname and givenName could not be used together. The following XML shows a valid
XML fragment using the schema defined previously:

<contacts>
<contact>
<surname>deBar</surname>
<givenName>Foo</givenName>
<email>foo@debar.com</email>

</contact>
<contact>
<fullName>Anne Other</fullName>
<email>anne@example.com</email>

</contact>
</contacts>

Each contact is identified using either the surname and givenName elements or with the fullName
element.

Attributes
A common decision that you must make when you’re creating an XML vocabulary is whether a given
item should be an element or an attribute. Schemas that use elements for every item are the most exten-
sible, and attribute-based schemas are the most compact. As opposed to DTDs and W3C Schema, in
which you define attributes using different syntax than when you’re defining elements, RELAX NG
attempts to make defining attributes the same as defining elements.

You add attributes to your RELAX NG schemas with the <attribute> element, as shown in
Listing 7-6.

LLiissttiinngg 77--66:: DDeeffiinniinngg aa sscchheemmaa wwiitthh aattttrriibbuutteess

<element name=”contact” xmlns=”http://relaxng.org/ns/structure/1.0”>
<attribute name=”fullName” />
<attribute name=”email” />

</element>

One change you may notice is that when you’re adding attributes with RELAX NG, you don’t need to
include the <text /> child element like you do with <element>. This is because it is implied for
attributes. You can, however, include it without error, as shown here:

<element name=”contact” xmlns=”http://relaxng.org/ns/structure/1.0”>
<attribute name=”fullName”>
<text />

</attribute>
<attribute name=”email”>
<text />

</attribute>
</element>

219

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 219

Just as with elements, attributes added using this syntax are mandatory. To make an attribute optional,
you wrap it with the <optional> element, just as you do with elements. For example:

<element name=”contact” xmlns=”http://relaxng.org/ns/structure/1.0”>
<attribute name=”fullName” />
<attribute name=”email” />
<optional>
<attribute name=”notes” />

</optional>
</element>

Order of Elements
Although RELAX NG attempts to use consistent behavior for both attributes and elements, there is one
notable difference. The order of attributes is not significant, but the order of elements is. Therefore, using
the schema defined in Listing 7-6, either of the two following fragments would be valid:

<contact fullName=”Foo deBar” email=”foo@debar.com” />
<contact email=”bob.sjeruncle@example.com” fullName=”Bob Sjeruncle” />

However, using the equivalent schema with elements, this fragment is valid:

<contact>
<fullName>Foo deBar</fullName>
<email>foo@debar.com</email>

</contact>

The following fragment is not valid, because the two child elements don’t appear in the same order as in
the schema:

<contact>
<email>foo@debar.com</email>
<fullName>Foo deBar</fullName>

</contact>

If the order of the elements is not significant, you can use the <interleave> pattern to group those ele-
ments, like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<element name=”order” xmlns=”http://relaxng.org/ns/structure/1.0”>

<zeroOrMore>
<interleave>
<element name=”name”>

<text/>
</element>
<element name=”email”>

<text/>
</element>

</interleave>
</zeroOrMore>

</element>

220

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 220

In this schema, the name and e-mail elements can occur in any order. The interleave element is useful
when XML documents need extra flexibility. For example, the elements within XHTML documents can
occur in any order. Listing 7-7 shows a simplified section of the XHTML schema for the <head> element,
as it might be defined in RELAX NG.

LLiissttiinngg 77--77:: RREELLAAXX NNGG sscchheemmaa ffoorr XXHHTTMMLL <<hheeaadd>>

<?xml version=”1.0” encoding=”UTF-8”?>
<element name=”head” xmlns=”http://relaxng.org/ns/structure/1.0”>

<interleave>
<element name=”title”>

<text/>
</element>
<zeroOrMore>

<element name=”style”>
<text/>

</element>
</zeroOrMore>
<zeroOrMore>

<element name=”script”>
<text/>

</element>
</zeroOrMore>
<zeroOrMore>

<element name=”meta”>
<text/>

</element>
</zeroOrMore>

</interleave>
</element>

When you’re writing an XHTML document, you don’t normally think of the order you use to add ele-
ments, therefore the interleave pattern is ideal.

Another use for the interleave pattern is when an element may have child elements in addition to, or
instead of, text. Listing 7-8 shows a schema and Listing 7-9 the XML fragment for this type of scenario.

LLiissttiinngg 77--88:: MMiixxeedd--ccoonntteenntt eelleemmeennttss —— SScchheemmaa

<element name=”meetings” xmlns=”http://relaxng.org/ns/structure/1.0”>
<oneOrMore>

<element name=”meeting”>
<element name=”topic”>

<text/>
</element>
<element name=”dateTime” datatypeLibrary=””>

<text/>
</element>
<optional>

<element name=”notes”>
<interleave>

<zeroOrMore>
<element name=”keyPoint”>

(continued)

221

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 221

LLiissttiinngg 77--88 (continued)

<text/>
</element>

</zeroOrMore>
<text/>

</interleave>
</element>

</optional>
</element>

</oneOrMore>
</element>

LLiissttiinngg 77--99:: MMiixxeedd--ccoonntteenntt eelleemmeennttss —— XXMMLL ffrraaggmmeenntt<<mmeeeettiinnggss>>

<meeting>
<topic>Plan new widget</topic>
<dateTime>2006-04-01T14:30:00Z</dateTime>
<notes>

Lorem ipsum dolor sit amet, <keyPoint>consectetuer adipiscing elit</keyPoint>.
Fusce id ante et orci facilisis tristique. Suspendisse viverra. <keyPoint>Morbi at
purus</keyPoint> non metus venenatis egestas. Duis nulla ipsum, imperdiet eu,
interdum vitae, mattis ut, diam. <keyPoint>Integer egestas ultricies
lacus</keyPoint>. Suspendisse commodo. Vestibulum diam. Curabitur consectetuer
tempor diam. Aliquam <keyPoint>tincidunt mollis mi</keyPoint>. Suspendisse porta
lorem vitae odio. Mauris accumsan sapien eget ante. Praesent suscipit lobortis
turpis.

</notes>
</meeting>
<meeting>
<topic>Assign widget tasks</topic>
<dateTime>2006-04-04T09:00:00Z</dateTime>
<notes>

Morbi rhoncus, purus ac imperdiet auctor, quam augue euismod diam, ac tempus dolor
metus in odio. Sed ac lacus. Cras pulvinar enim sed justo tempor fermentum. Proin
dictum dapibus urna. Maecenas at velit a <keyPoint>magna congue
pulvinar</keyPoint>. Praesent <keyPoint>consectetuer convallis erat. Cras lobortis
orci eu pede dapibus aliquam. Ut fringilla molestie risus. Nam diam.
<keyPoint>Quisque consequat euismod turpis</keyPoint>.

</notes>
</meeting>

</meetings>

Because this pattern is fairly common in XML, RELAX NG creates a shortcut method that enables you
to describe elements like this: <mixed>. Using <mixed>, you can simplify the schema in Listing 7-8
to the one shown in Listing 7-10. Notice that the <mixed> section does not need to include either the
<interleave> pattern or <text />.

LLiissttiinngg 77--1100:: UUssiinngg <<mmiixxeedd>>

<element name=”meetings” xmlns=”http://relaxng.org/ns/structure/1.0”>
<oneOrMore>

<element name=”meeting”>
<element name=”topic”>

222

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 222

<text/>
</element>
<element name=”dateTime” datatypeLibrary=””>

<text/>
</element>
<optional>

<element name=”notes”>
<mixed>

<zeroOrMore>
<element name=”keyPoint”>

<text/>
</element>

</zeroOrMore>
</mixed>

</element>
</optional>

</element>
</oneOrMore>

</element>

Defining Grammar
Some schemas can have different valid root nodes. For example, the Atom specification allows the root
node to either be an atom:feed element or atom:entry. With W3C schemas, you would have to define
this as two schemas. RELAX NG, on the other hand, enables you to create schemas with different root
nodes by using two special elements: grammar and start.

The grammar element replaces the normal starting node. The start element then contains the various
nodes that may be used as the root node in the syntax. Listing 7-11 shows these two elements in action as
part of the Atom 1.0 specification.

LLiissttiinngg 77--1111:: UUssiinngg ggrraammmmaarr aanndd ssttaarrtt eelleemmeennttss

<grammar xmlns:atom=”http://www.w3.org/2005/Atom”
xmlns=”http://relaxng.org/ns/structure/1.0”
datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
<start>
<choice>
<element name=”atom:feed”>
...

</element>
<element name=”atom:entry”>
...

</element>
</choice>

</start>
</grammar>

In this schema, the grammar element marks the starting point of the schema definition, and includes the
namespaces used by the definition. The full Atom specification includes other namespaces, but these
have been removed for simplicity. You can define multiple elements within the grammar element.
Therefore, you need the start element to identify the possible root nodes of the document. In this case,
the start element includes a choice element, meaning that multiple elements are possible — either

223

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 223

the atom:feed or atom:entry elements can represent the starting point of an Atom document.
Although you can approximate this with W3C XML Schema by identifying each of the root nodes as
minOccurs=”0”, a document with neither may be valid. RELAX NG avoids this outcome.

Reusing Types
There may be times when you want to reuse the structure of a schema. For example, you may use an
address structure multiple times within the schema. Alternately, you may want to maintain a library of
commonly defined items to be included in your company’s schemas. RELAX NG supports both internal
and external references to reuse schema patterns.

A common model of writing schemas is to define building block elements, such as address or partClass,
and then include these building blocks at the appropriate location of the schema (that is, to use an internal
reference in your schemas). You can do this in RELAX NG with the ref and define elements.

The define element is used to define a type for reference elsewhere in the document. This element has
the required attribute name. This name is referenced with the ref element to include the defined struc-
ture. Listing 7-12 shows these two elements in action.

LLiissttiinngg 77--1122:: UUssiinngg ddeeffiinnee aanndd rreeff ffoorr iinntteerrnnaall rreeffeerreenncceess

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar
xmlns=”http://relaxng.org/ns/structure/1.0”
xmlns:a=”http://relaxng.org/ns/compatibility/annotations/1.0”
datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
<start>

<element name=”orders”>
<oneOrMore>

<element name=”order”>
<element name=”shipToAddress”>
<ref name=”addressType” />
</element>
<element name=”billToAddress”>

<ref name=”addressType” />
</element>
</element>

</oneOrMore>
</element>

</start>
<define name=”addressType”>

<element name=”street”>
<text />

</element>
<element name=”city”>

<text />
</element>
<element name=”state”>

<text />
</element>
<element name=”zip”>

<text />
</element>

224

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 224

<element name=”country”>
<text />

</element>
</define>

</grammar>

The addressType definition creates a simple structure that you can use elsewhere in the document.
Both the shipToAddress and billToAddress elements then reference this definition.

External references are basically the same as internal references, with the exception that the defined pat-
tern is located in a separate file. The externalRef and include elements identify this file with its href
attribute. This is another useful technique for creating modular RELAX NG schemas. You can create
standard definitions of commonly used patterns, and then reference them to complete the schema.
Listing 7-13 defines a pattern for a part definition and Listing 7-14 shows how you might reference this
file. Although the include and externalRef patterns are similar in behavior, they serve two logical
needs. The include pattern acts like an import and must occur as a child node to the grammar element.
The included document must contain a grammar root node. Conversely, the externalRef element may
occur at any place in the schema, and the file referenced does not need to be a complete grammar.

LLiissttiinngg 77--1133:: UUssiinngg eexxtteerrnnaallRReeff —— EExxtteerrnnaall SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar
xmlns=”http://relaxng.org/ns/structure/1.0”
datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
<start><ref name=”partDefinition” /></start>
<define name=”partDefinition”>

<attribute name=”id”><data type=”integer”/></attribute>
<element name=”shortName”><text /></element>
<element name=”fullName”><text /></element>
<element name=”description”><text /></element>
<element name=”components”><ref name=”partDefinition” /></element>

</define>
</grammar>

LLiissttiinngg 77--1144:: UUssiinngg eexxtteerrnnaallRReeff —— RReeffeerreenncciinngg SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”

<start>
<element name=”productCatalog”>

<zeroOrMore>
<element name=”part”>

<externalRef href=”externalRefDefinition.rng” />
</element>

</zeroOrMore>
</element>

</start>
</grammar>

Listings 7-13 and 7-14 show two RELAX NG schemas. The first defines a grammar that includes a single
element named partDefinition. This element defines a single attribute and four child elements. Note
that the last child element references itself, meaning that the parts may be defined recursively. This

225

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 225

partDefinition file is referenced using the externalRef element in the second schema. The href
attribute of the externalRef element points to the URL of the included schema. In this example, the two
files are stored in the same directory. Therefore, the URL includes only the filename. You could store all
of your external definitions in a single location and reference them with a full URL. The externalRef
element acts as though the referenced file replaces the externalRef element. Therefore, the resulting
logical schema is as if the contents of the partDefinition file were included within the <element
name=”part”> pattern.

Merging Schemas
When you begin reusing schema parts with <ref> and <externalRef>, you will eventually need to
combine two types that contain multiple definitions for the same name. RELAX NG contains patterns
that describe how the schema should combine the multiple definitions.

There are two main ways that RELAX NG can combine schema: the definitions can be combined, or one
definition can replace or override the other definitions.

The core pattern used to merge two or more schemas is the <combine> attribute. You include this
attribute for elements that have multiple definitions. This attribute must have a value of either choice
or interleave, which describes how the schema validates the XML. Listing 7-15 shows the use of the
combine attribute.

LLiissttiinngg 77--1155:: CCoommbbiinnee aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>

<start>
<element name=”orders”>

<zeroOrMore>
<element name=”order”>

<element name=”customer”>
<ref name=”contact”/>

</element>
<oneOrMore>

<element name=”orderItem”>
<element name=”item”>

<ref name=”product”/>
</element>

</element>
</oneOrMore>

</element>
</zeroOrMore>

</element>
</start>
<!-- These would likely be from separate externalRefs -->
<define name=”contact” combine=”choice”>

<attribute name=”id”/>
<element name=”fullName”>

<text/>
</element>

</define>
<define name=”contact” combine=”choice”>

<attribute name=”id”/>

226

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 226

<element name=”given”>
<text/>

</element>
<element name=”surname”>

<text/>
</element>
<element name=”price”>

<text/>
</element>

</define>
<define name=”product” combine=”interleave”>

<attribute name=”id”/>
<attribute name=”name”/>

</define>
<define name=”product” combine=”interleave”>

<attribute name=”description”/>
</define>

</grammar>

If the combine attribute is choice, this means that any of the items combined are valid. The following
schema fragment is equivalent to the one shown in Listing 7-15:

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>
<start>

<element name=”orders”>
<zeroOrMore>

<element name=”order”>
<element name=”customer”>

<element name=”contact”>
<attribute name=”id”/>
<choice>

<element name=”fullName”>
<text/>

</element>
<group>

<element name=”given”>
<text/>

</element>
<element name=”surname”>

<text/>
</element>

</group>
</choice>

</element>
</element>
<oneOrMore>

<element name=”orderItem”>
<element name=”item”>

<interleave>
<attribute name=”id”/>
<attribute name=”name”/>
<attribute name=”description”/>

</interleave>
</element>

</element>

227

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 227

</oneOrMore>
</element>

</zeroOrMore>
</element>

</start>
</grammar>

When combining multiple schemas, there may be a case when you need to replace the existing definition
with the one from the external definition, such as when the core definition includes a placeholder ele-
ment that will be provided by the external definition. Alternately, the core definition may include a
default implementation (such as an address pattern that defaults to the US formatting), and the external
implementations override this behavior for other implementations. The schemas in Listing 7-16 and
Listing 7-17 show how you can override a definition in another RELAX NG schema.

LLiissttiinngg 77--1166:: TThhee rreeppllaaccee ppaatttteerrnn —— BBaassee ddeeffiinniittiioonn

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>

<start>
<element name=”orderItems”>

<element name=”shipAddress”>
<ref name=”address”/>

</element>
<oneOrMore>

<ref name=”item”/>
</oneOrMore>

</element>
</start>
<define name=”item”>

<notAllowed/>
</define>
<define name=”address”>

<element name=”street”>
<text/>

</element>
<element name=”city”>

<text/>
</element>
<element name=”state”>

<text/>
</element>
<element name=”zip”>

<text/>
</element>

</define>
</grammar>

LLiissttiinngg 77--1177:: TThhee rreeppllaaccee ppaatttteerrnn —— OOvveerrrriiddiinngg bbaassee

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>
<include href=”replaceBase.rng”>

<define name=”item”>
<attribute name=”partNum”/>
<attribute name=”color”>

228

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 228

<choice>
<value>red</value>
<value>black</value>
<value>blue</value>

</choice>
</attribute>

</define>
<define name=”address”>

<element name=”street”><text /></element>
<element name=”city”><text /></element>
<element name=”postalCode”><text /></element>

</define>
</include>

</grammar>

The notAllowed element is a placeholder for an alternate implementation. You can add it at any point
in a schema to mark a point where a later element will use replace to provide the actual implementa-
tion. In the preceding base schema, the item element is undefined in the orderItems schema. Instead,
the orderItems includes the notAllowed element. The notAllowed element will not match any con-
tent. The item element is defined in the overriding schema. Notice that the replacement definitions for
item and address are written within the <include> element. This ensures that it will be included
within the original schema. If the define elements were not enclosed within the include element, they
would be considered side-by-side definitions, and you would have to include the combine attribute.

Namespaces and Name Classes
RELAX NG also supports the use of namespaces to define elements and attributes that exist within alter-
nate schemas. (See Chapter 1 for more information on namespaces.)

There may be times when you are not absolutely sure what tags may be within a block, such as when
you have an element that may contain arbitrary XHTML or another XML dialect. In those cases, you
want to describe the possible content, but you don’t want to simply leave it as <text />. Alternately,
you might want to create a pattern where the documents may include any attribute, or any attribute
with a given namespace. In these cases, you will make use of the RELAX NG name classes.

The simplest name class is anyName. This represents any possible node, regardless of the name or name-
space. It is equivalent to the any element in W3C XML schema. In the schema shown in Listing 7-18, the
notes element can include any single element, of any name. That element may include any number of
attributes and child elements.

LLiissttiinngg 77--1188:: UUssiinngg tthhee aannyyNNaammee eelleemmeenntt

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>
<start>
<element name=”contact”>
<element name=”fullName”>
<text />

</element>
<element name=”email”>
<text />

</element>

(continued)

229

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 229

LLiissttiinngg 77--1188 (continued)

<element name=”notes”>
<ref name=”childElement” />

</element>
</element>

</start>
<define name=”childElement”>
<element>
<anyName />
<zeroOrMore>
<attribute>
<anyName />

</attribute>
</zeroOrMore>
<text />
<zeroOrMore>
<ref name=”childElement” />

</zeroOrMore>
</element>

</define>
</grammar>

In this schema, the notes element is defined as a childElement. This definition allows any element (the
<element><anyName /></element> part. Also within the childElement, you can have zeroOrMore
attributes, again with any name. In addition to these elements, the childElement pattern may contain
<text /> and zeroOrMore child elements using the same definition. This is the definition of well-formed
XML. Therefore, the notes element of the contact will be valid as long as it contains any well-formed XML.

In addition to the anyName element, REL AX NG includes two other name classes for describing valid
content: nsName and except. You use the nsName element to identify the namespace of valid content
when you need to include elements or attributes of a specific alternate namespace to your schema. For
example, you may need to define a schema in which part of the document should contain a valid SOAP
message. The following fragment shows how this would be defined using RELAX NG:

<element name=”message”>
<element>
<nsName ns=” http://www.w3.org/2003/05/soap-envelope/” />

</element>
</element>

Both the anyName and nsName elements may include the <except> child. This provides exceptions to
the parent. You may have an element that can include any possible child element except specific ones, or
more commonly, you may want to exclude specific elements or namespaces as possible children. The fol-
lowing schema fragment shows an element that may have any child element, but only the xs:type
attribute from the W3C XML schema data types namespace (http://www.w3.org/2001/XMLSchema):

<element name=”item” xmlns:xs=”http://www.w3.org/2001/XMLSchema” >
<zeroOrMore>

<attribute>

230

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 230

<anyName>
<except>

<nsName ns=”http://www.w3.org/2001/XMLSchema”/>
</except>

</anyName>
</attribute>

</zeroOrMore>
<optional>

<attribute name=”xs:type”/>
</optional>

</element>

This item element definition allows for any attribute, except one with the namespace of http://www
.w3.org/2001/XMLSchema, that includes the data type definitions. This item is added later with the
optional attribute that includes both name and ns attributes.

Annotating Schemas
The RELAX NG specification does not explicitly define an element or pattern for annotating your
schema. However, because it supports namespaces and including elements from alternate namespaces in
your schemas, you can add annotations using another namespace. The Oxygen XML editor (discussed
later in this chapter) adds the http://relaxng.org/ns/compatibility/annotations/1.0 name-
space to documents it creates. You can then use this namespace to add notes to your schema, keeping in
mind that they will be ignored by the parser except as needed. The schema in Listing 7-19 includes a
couple of annotations that use this namespace.

LLiissttiinngg 77--1199:: AAnnnnoottaattiinngg RREELLAAXX NNGG sscchheemmaass

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”
xmlns:a=”http://relaxng.org/ns/compatibility/annotations/1.0”>
<start>

<a:documentation>Short schema for a personal contact</a:documentation>
<element name=”contact”>

<a:documentation xml:lang=”en”>
Full name of the contact ({given Name} {surname}

</a:documentation>
<element name=”fullName”>

<text/>
</element>
<a:documentation>
E-mail address using RFC 822(http://www.w3.org/Protocols/rfc822/)

</a:documentation>
<element name=”email”>

<text/>
</element>

</element>
</start>

</grammar>

231

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 231

RELAX NG Tools
RELAX NG has not been available as a standard as long as DTDs or W3C XML Schema, so there are
fewer tools available for creating or editing RELAX NG files. Many of the most commonly used tools
were written by the specification authors themselves. However, because RELAX NG is now an official
OASIS standard, more tools are beginning to add support for RELAX NG. Two tools that support the
creation of RELAX NG schemas are the Oxygen XML editor and Trang.

Oxygen
As described in Chapter 2, Oxygen is a full-featured XML editor. One of the features that make it unique
among similar products is its support for RELAX NG schemas (both the XML form and the compact
syntax).

You can create RELAX NG schemas in Oxygen using either a text-based or graphical editor. (RELAX NG
compact schemas only allow text-based editing.) Figure 7-1 shows a split screen of the two editors dis-
playing the same schema.

Figure 7-1

232

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 232

In this figure, the central editing area is composed of two parts: the top area is a graphical model of the
schema structure, and the lower half is the text of the schema. Oxygen enables you to edit the schema
using either section; the other is updated with the changes.

In addition to editing RELAX NG schemas, Oxygen includes a graphical interface to the Trang schema
converter. This convertor (see Figure 7-2) enables you to convert between the XML syntax and compact
syntax of RELAX NG, as well as convert a DTD into the corresponding RELAX NG schema.

Figure 7-2

Trang
Trang is a multiformat schema converter, originally written by James Clark (one of the authors of the
RELAX NG specification). Internally, it uses the RELAX NG syntax, but it is capable of converting
RELAX NG (both the XML and compact syntaxes), DTDs, and W3C XML Schemas. It is also capable of
inferring a schema based on a number of XML documents. This last capability is useful for generating a
schema after the fact based on a set of XML examples, such as when a throwaway format needs to be
formalized.

Trang is written in Java and distributed in jar format. It is intended for use as a command-line tool, and
has no associated GUI (although the Oxygen XML editor provides this support, see the previous sec-
tion). The basic syntax using Trang is as follows:

java –jar trang.jar –I <input format> -O <output format> -i <input options> -o
<output options> <input filename> <output filename>

All of the options except the filenames are optional. The input and output formats will be inferred from
the extensions of the filenames provided. You can override this behavior by adding the -I and -O
options. There may be multiple input and output option items on the command line. Generally, these

233

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 233

options are not needed, and the most common usage is to identify the encoding of the incoming or out-
going document. For example, the following command lines convert the DocBook 4.5 schema from DTD
format to RELAX NG syntax, specify UTF-16 for the RELAX NG encoding, and set the indent to 4:

java -jar trang.jar -o indent=4 -o encoding=UTF-16
C:\temp\docbook-xml-4.5\docbookx.dtd c:\temp\docbook\docbook4_5.rng

The Trang convertor maintains the structure of the original schema. This means that if the original
schema is defined using multiple documents (as with the DocBook DTD), then the resulting RELAX NG
schema will use multiple files as well. Comments are also maintained.

Trang can also provide a shortcut approach to writing a schema by inferring the schema from the struc-
ture of a number of XML documents. This is useful if you have XML documents that you may have used
informally, but for which you now need a format definition (for example, if an internal format will now
need to be transmitted to another company). For example, Listing 7-20 shows three XML fragments.
Each displays the same type of document, but in slightly different ways.

LLiissttiinngg 77--2200:: CCoonnvveerrttiinngg sscchheemmaass uussiinngg TTrraanngg —— OOrriiggiinnaall XXMMLL ffiilleess

contacts1.xml
<contacts>
<contact name=”Foo deBar” phone=”+1-212-555-1212”
email=”foo@debar.com” />

<contact name=”Bob Sjeruncle” phone=”+1-425-555-1212”
email=”bob.sjeruncle@example.com” />

</contacts>

contacts2.xml
<contacts>
<contact>
<fullName>Foo deBar</fullName>
<email>foo@debar.com</email>

</contact>
<contact>
<fullName>Bob Sjeruncle</fullName>
<email>bob.sjeruncle@example.com</email>

</contact>
</contacts>

contacts3.xml
<contacts>
<contact id=”42”>
<name>
<first>Foo</first>
<surname>deBar</surname>

</name>
</contact>
<contact id=”13”>
<name>
<first>Bob</first>
<surname>Sjeruncle</surname>

</name>
</contact>

</contacts>

234

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 234

You can generate a schema that applies to all three XML files using the following Trang command.

java -jar trang.jar contacts1.xml contacts2.xml contacts3.xml contacts.rng

This creates a merged schema that will validate each of the above contact listings (see Listing 7-21).

LLiissttiinngg 77--2211:: CCoonnvveerrttiinngg sscchheemmaass uussiinngg TTrraanngg —— RREELLAAXX NNGG SScchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<grammar ns=”” xmlns=”http://relaxng.org/ns/structure/1.0”
datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”>
<start>
<element name=”contacts”>
<oneOrMore>
<element name=”contact”>
<optional>
<attribute name=”email”/>

</optional>
<optional>
<attribute name=”id”>
<data type=”integer”/>

</attribute>
</optional>
<optional>
<attribute name=”name”/>

</optional>
<optional>
<attribute name=”phone”/>

</optional>
<optional>
<choice>
<element name=”name”>
<element name=”first”>
<data type=”NCName”/>

</element>
<element name=”surname”>
<data type=”NCName”/>

</element>
</element>
<group>
<element name=”fullName”>
<text/>

</element>
<element name=”email”>
<text/>

</element>
</group>

</choice>
</optional>

</element>
</oneOrMore>

</element>
</start>

</grammar>

235

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 235

The resulting RELAX NG schema includes a number of optional items, because the three XML files were
structurally distinct. If the structure were more consistent, the resulting schema would be simpler.
Notice also that the data type of some of the nodes (such as the id) is identified and added to the
schema.

Although you will probably not need to convert schema formats very often, but there may be times
when all you have is a schema in one format and you need it in a different format. Trang fills this need
admirably — not only for RELAX NG schemas, but for W3C XML Schema and DTDs as well.

RELAX NG Compact
In addition to the regular RELAX NG syntax, there is a compact form of the syntax that does not use
XML as a format. Therefore, it can be viewed as a more capable, modernized version of the DTD. The
format is similar to the regular form of the syntax. However, the elements are not expressed using XML
syntax. Listing 7-22 shows a RELAX NG form of the schema defined in Listing 7-1.

LLiissttiinngg 77--2222:: RREELLAAXX NNGG ccoommppaacctt sscchheemmaa

start =
element productCatalog {
element product { productDefinition }+

}
productDefinition =
attribute id { xsd:integer },
element shortName { text },
element fullName { text },
element description { text },
element components { productDefinition }*

Each of the patterns of the regular RELAX NG syntax has an analog in the compact syntax. The choice of
form has more to do with the desire or need to use XML syntax when defining your schema, rather than
capabilities of the language. If you need to manipulate the schema using other XML tools, then the regu-
lar syntax is most appropriate. If you want to avoid “the angle bracket tax” that XML is sometimes
called, look to the compact syntax.

Most of the elements in the XML form of RELAX NG have corresponding items in the compact syntax,
but some of the structures do bear describing. Most of these relate to the way you use the compact syn-
tax to define zeroOrMore, oneOrMore, optional, and similar patterns.

If an element can occur zero or more times in a schema, you use the asterisk (*) to mark the pattern as
shown previously in Listing 7-22. If the element must occur at least once (oneOrMore), you replace the
asterisk with a plus sign (+) as shown in the following code:

Optional elements use the question mark (?) as shown in the qty element.

element order {
element orderDate { text },
element orderItems {
element sku { text },

236

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 236

element price { text },
element qty { text }?

}+
}

In the XML form of RELAX NG, you use the choice element to enable one of multiple items. In the
compact syntax, you do this with the pipe (|) character. If one or more of the items must occur together
(as in the previous group pattern), you wrap them in parentheses like this:

element contact {
(element fullName { text } |
(element givenName { text }, element surname { text })),
element email { text }

}

In this schema, either fullName or the combination of givenName and surname must be used. As the
givenName and surname must occur together, they are included within a second set of parentheses.

These patterns work the same way for attributes as they do for elements. For example, if an attribute
needed a value to be one of a set of options, you use the same notation:

element item {
attribute partNum { text },
attribute color { “red” | “blue” | “green” | “black” }

}

This specifies that the color attribute can have a value of red, blue, green or black.

Just as with the longer format, you can create named definitions using the compact syntax. For example:

element order {
element shipAddress { address },
element orderItems { item+ }

}
address =
element street { text },
element city { text },
element state { text },
element zip { text }

item =
attribute id { text },
element name { text }

If you combine these definitions, you use |= (for combine=”choice”) or &= (for combine=”interleave”)
to describe how you want the definitions to be included within the main schema.

The compact version of the RELAX NG syntax takes a bit longer to get used to — keeping the various
symbols straight can take a while. However, when you are comfortable with these symbols, they can
save a great deal of space. For example, the Atom 1.0 specification written using the XML form of
RELAX NG is approximately 16KB in size. The equivalent RELAX NG compact syntax form is approxi-
mately 7KB. If you must transfer your schema many times, or if the connections are slower, it may make
sense to take advantage of this briefer format.

237

Chapter 7: RELAX NG

13_777779 ch07.qxp 3/1/07 11:45 PM Page 237

Summary
In a perfect world, there would be only a single schema language that is able to describe any XML docu-
ment and simple to learn. Sadly, that schema definition language hasn’t been written yet, so there are
multiple schema definition languages. Each has benefits — and drawbacks — that relate to the choices
made by the designers. RELAX NG leans more heavily towards simplicity, although it is a complete lan-
guage. The syntax is highly approachable and understandable without requiring you to read the entire
specification. Because the specification is newer than DTD and W3C XML Schema, there is not much tool
support for RELAX NG yet. However, this should improve as more developers see the benefits of this
flexible XML schema definition language.

Resources
This section includes links to useful information for working with RELAX NG schemas.

❑ RELAX NG home page (http://relaxng.org/) — Here you will find information and links
to the specifications, tutorials, and tools for RELAX NG and RELAX NG compact.

❑ Oxygen (oxygenxml.com) — IDE for working with RELAX NG files.

❑ Trang (http://thaiopensource.com/relaxing/trang.html) — Schema conversion tool
that enables migrating schemas between common (and not so common) schema formats,
including RELAX NG and RELAX NG compact.

238

Part III: Defining Structure

13_777779 ch07.qxp 3/1/07 11:45 PM Page 238

Part IV

XXMMLL aass DDaattaa

Chapter 8: XSLT

Chapter 9: XPath

Chapter 10: XQuery

Chapter 11: XML in the Data Tier

14_777779 pt04.qxp 3/1/07 11:46 PM Page 239

14_777779 pt04.qxp 3/1/07 11:46 PM Page 240

XX SS LLTT

Every tradesman’s tool case has one tool that is a little more worn than the others. It is the favorite
tool, the “go to” tool that gets used when all other tools have failed, or maybe even the first tool
for all problems. For XML developers, that tool is often XSLT (eXtensible Stylesheet Language
Transformations). XSLT is a templating language that can be used to convert XML into something
else. The result of the transformation can be XML, HTML, XHTML, or even plain text or binary.
XSLT is a powerful tool and, like many powerful tools, it has a few sharp edges you should avoid.
As XSLT is a functional language, it can seem a little alien at first for developers used to procedu-
ral languages such as C# or Java. In addition, XSLT has limited support for variables and condi-
tional logic than either of those languages. This chapter shows you how you can use XSLT in your
applications and avoid its potential problems. Examples will show how you can use XSLT stan-
dalone, or combined with other programming languages and tools.

What Is XSLT?
XSLT is a transformation language for XML. Its purpose is to take a source tree of XML nodes and
convert them into a result by using a series of templates or rules. XSLT is itself an XML syntax (see
Listing 8-1). The result of an XSLT transformation does not have to be XML, however. The XSLT
specification allows the output to be XML, HTML, or text. In addition, you can target some other
form of output, perhaps even binary content.

LLiissttiinngg 88--11:: SSaammppllee XXSSLLTT

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”/”>
<contacts>
<xsl:apply-templates />
</contacts>

(continued)

15_777779 ch08.qxp 3/1/07 11:46 PM Page 241

LLiissttiinngg 88--11 (continued)

</xsl:template>
<xsl:template match=”customer”>
<cust>
<xsl:attribute name=”id”>
<xsl:value-of select=”generate-id(contact/name)” />

</xsl:attribute>
<xsl:attribute name=”company”>
<xsl:value-of select=”company” />

</xsl:attribute>
<xsl:apply-templates select=”contact” />

</cust>
</xsl:template>
<xsl:template match=”contact” name=”contact”>
<xsl:attribute name=”name”><xsl:value-of select=”name” /></xsl:attribute>

</xsl:template>
</xsl:stylesheet>

Just as an individual program is composed of a number of classes or modules, an XSLT stylesheet is
composed of multiple templates. Each forms a logical subroutine that creates part of the output.

XSLT has less in common with traditional programming languages such as C# or Java and more in com-
mon with other declarative languages such as SQL. To program in XSLT, you must create a description
of the output based on the source data.

XSLT Syntax
Because XSLT is itself an XML syntax, it defines a number of elements that provide the processing. In
addition to these elements, a number of functions are defined for working with the source and result
trees. Finally, XSLT makes use of XPath functions (XPath 2.0 in XSLT 2.0) for computation, context, and
other work. Therefore, knowledge of XPath (see Chapter 10) helps with XSLT.

Required Items
The root node for an XSLT stylesheet is, appropriately enough, stylesheet. It uses the http://www.w3
.org/1999/XSL/Transform namespace. Alternatively, the specification defines transform as a valid
synonym for stylesheet. Therefore, you may see either term as the root node in an XSLT stylesheet.
Either stylesheet or transform has a single required attribute, version. Currently, 1.0 and 2.0 (for
XSLT 2.0, obviously) are the only valid values for this attribute. In addition to this attribute, the style-
sheet element may also contain references to other namespaces.

Top-level Elements
Typically, after the root node, a number of optional top-level elements provide additional information,
either about the document(s) to be processed, or for the output. The valid top-level elements include:

❑ import, include

❑ strip-space, preserve-space

242

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 242

❑ decimal-format

❑ output

❑ key

❑ variable

❑ param

❑ template

Including Additional Stylesheets with include and import
The import node imports one stylesheet into another. If this node exists, it must be the first element after
the root node. The import element enables the modularization of your stylesheets. For example, you
could have a stylesheet specific for processing address elements or other common elements. Rather than
duplicate this functionality throughout multiple XSLT stylesheets, you could import it when needed. If an
element exists in both the parent and the imported stylesheets, the element in the parent stylesheet takes
precedence. During processing, lower precedent templates are ignored in favor of higher ones.

The include node is similar in functionality to the import node, with one exception. The included
stylesheet has the same precedence as the parent. This can lead to errors if both stylesheets include the
same definition. Therefore, you should be careful when including other stylesheets to ensure that there
are no duplicate templates, parameters, variables, and so on.

The import and include elements take a single attribute —href— that points at the imported or
included stylesheet URL.

Controlling Whitespace and Formatting with strip-space,
preserve-space, and decimal-format

The strip-space element lists a number of elements that have whitespace removed during processing.
Alternatively, the preserve-space element defines child elements that maintain their whitespace when
processed. Note: This does not affect all nodes, only those text nodes that only contain whitespace. For
example, look at the following source fragment and stylesheet:

<?xml version=”1.0” encoding=”UTF-8”?>
<customers>
<customer id=”ALFKI”>
<company> </company>
<address>
<street>Obere Str. 57</street>
<city>Berlin</city>
<zip>12209</zip>
<country> </country>

</address>
<contact>
<name>Maria Anders</name>
<title>Sales Representative</title>
<phone>030-0074321</phone>
<fax>030-0076545</fax>

</contact>
</customer>

243

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 243

</customers>

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:strip-space elements=”country”/>
<xsl:preserve-space elements=”company”/>
<xsl:template match=”/”>
<xsl:apply-templates select=”customers/customer[@id=’ALFKI’]”/>

</xsl:template>
<xsl:template match=”customer”>
<cust>
<ctry>
<xsl:attribute name=”length”>
<xsl:value-of select=”string-length(address/country)”/>
</xsl:attribute>
<xsl:value-of select=”address/country”/>

</ctry>
<name>
<xsl:attribute name=”length”>
<xsl:value-of select=”string-length(company)”/>

</xsl:attribute>
<xsl:value-of select=”company”/>

</name>
<contact>
<xsl:value-of select=”contact/name”/>

</contact>
</cust>

</xsl:template>
</xsl:stylesheet>

The resulting output is:

<cust>
<ctry length=”0”></ctry>
<name length=”3”> </name>
<contact>Maria Anders</contact>

</cust>

Both the strip-space and preserve-space elements take a single attribute called elements. This
attribute is either asterisk (*) for all elements or a space-delimited list of the elements to which the rule
applies. In the above sample, the whitespace of the country name was stripped, leaving the new element
0 characters long. The preserve-space on the company, on the other hand, left the spaces in, and the
size was still three.

The decimal-format element defines the symbols to be used when formatting numbers in the style-
sheet. These rules are then applied using the format-number function (covered later in the chapter). A
typical use for this element is to create a number of named formats. For example, for US currency you
use a comma (,) for grouping thousands and a period (.) as a decimal separator. Meanwhile, European
currency would use a period (.) for grouping thousands, and a comma (,) for decimal separator. In addi-
tion, you use the decimal-format element to change the value displayed when the input value is not a
number, infinity, or a negative.

244

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 244

Controlling Output with output and key
The output element defines the format of the result document. This includes defining the output format
and any parameters that describe that format.

Attribute Value Description

cdata- string This attribute lists the elements that are CDATA wrapped
section- in the output document. Use spaces to delimit multiple
elements elements. This is useful if you are producing HTML output

that may include XML content.

doctype- string This attribute defines the public identifier to be used in the
public document type declaration.

doctype- string This attribute defines the system identifier to be used in
system the document type declaration.

encoding string This attribute is needed only if the output format has an
encoding attribute, such as for XML. This inserts the
encoding attribute into the output document.

indent yes/no If this value is yes, the output document is indented to
match the hierarchy. This is useful if the XML is intended
for human access, although it does increase the size of the
document slightly.

media-type string This attribute defines the MIME type of the resulting
output. For example, if you are outputting Atom: and this
is XML, the correct MIME type is application/atom+xml.

method One of: xml, Defines the output format, defaults to XML, with one
html, text or exception. If the root node is <html>, the output format is
named type. HTML.
XSLT 2.0
adds XHTML To create XHTML output with XSLT 1.0, you can use either
as a valid the XML output format and include the XHTML namespace
value. and elements, or use the HTML output format and ensure

you follow the XHTML rules (always close elements, and so
on). This is rarely used, but you can also target any output
format by using a qualified name for the method.

omit-xml- yes/no If this value is yes, the XML declaration is not included in
declaration the target document. Typically, you set this to no for text or

HTML output.

standalone yes/no If this value is yes, the standalone attribute is added to the
XML declaration.

version string This character is needed only if the output format has a
version, such as for XML. This inserts the version attribute
into the output document.

245

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 245

The key element creates a named key that is used when searching the source document. Just as each ele-
ment in an XML document can be identified by a unique identifier, often id, the key element identifies
the attribute or child element that provides the unique identifier for each element. This key pattern can
then be used later in the XSLT to retrieve individual items.

For example, look at the following XML source document:

<customers>
<customer id=”ALFKI”>
<company>Alfreds Futterkiste</company>
<address>
<street>Obere Str. 57</street>
<city>Berlin</city>
<zip>12209</zip>
<country>Germany</country>

</address>
<contact>
<name>Maria Anders</name>
<title>Sales Representative</title>
<phone>030-0074321</phone>
<fax>030-0076545</fax>

</contact>
</customer>
<customer id=”ANATR”>
<company>Ana Trujillo Emparedados y helados</company>
<address>
<street>Avda. de la Constitución 2222</street>
<city>México D.F.</city>
<zip>05021</zip>
<country>Mexico</country>

</address>
<contact>
<name>Ana Trujillo</name>
<title>Owner</title>
<phone>(5) 555-4729</phone>
<fax>(5) 555-3745</fax>

</contact>
</customer>

</customers>

You define a key pattern for the customer node using the XSLT in Listing 8-2:

LLiissttiinngg 88--22:: UUssiinngg tthhee KKeeyy eelleemmeenntt aanndd ffuunnccttiioonn

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:key name=”cust” match=”customer” use=”@id”/>
<xsl:template match=”/”>
<result>
<xsl:for-each select=”key(‘cust’,’ANATR’)”>
<company>

246

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 246

<xsl:value-of select=”company”/>
</company>

</xsl:for-each>
</result>

</xsl:template>
</xsl:stylesheet>

The created key, named cust searches the id attribute of customer nodes to locate the desired elements.
This key element is different from the key function used later in the stylesheet. In the for-each ele-
ment, the key function uses the named key to search for a customer with the id ANATR. Alternatively,
because only a single item can match each key, you use the select attribute of apply-templates to
retrieve the selected company as shown in the following code.

<xsl:template match=”/”>
<result>
<xsl:apply-templates select=”key(‘cust’, ‘TORTU’)” />

</result>
</xsl:template>
<xsl:template match=”customer”>
<company><xsl:value-of select=”company” /></company>

</xsl:template>

Templates
The core of XSLT is in the templates. These provide examples of how the different source elements
should be processed when creating the result document. Listing 8-3 shows an XSLT template.

LLiissttiinngg 88--33:: XXSSLLTT tteemmppllaattee

<xsl:template match=”customer”>
<cust>
<xsl:attribute name=”id”>
<xsl:value-of select=”generate-id(contact/name)” />

</xsl:attribute>
<xsl:attribute name=”company”>
<xsl:value-of select=”company” />

</xsl:attribute>
<xsl:apply-templates select=”contact” />

</cust>
</xsl:template>

Each template is composed of the template element and either a match and/or name attribute. The
match attribute is more common and identifies an XPath pattern in the source document to which the
template will apply. The name attribute is used only in cases where the call-template (covered later in
the chapter) is used. In the preceding sample, the template applies to customer elements in the source
document. This doesn’t mean that it affects all customer elements, however. The caller can select the
customer nodes to which the template applies.

The content of the template defines the output of the template. In the preceding template, whenever a
customer node is processed, the result document has a <cust> node with a number of attributes.

247

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 247

Retrieving Values
The template element does not work alone in producing the result nodes. A number of additional XSLT
elements work inside the template to extract values from the source document and produce the result.
These include the following:

❑ value-of— Used to extract a single value based on an XPath statement. This is one of the
“work horse” XSLT elements.

❑ element— Used to create a new element in the result document. Although you can create new
elements in the result document simply by including them in the XSLT, element is useful to cre-
ate a result element based on a value in the source document or a calculation.

❑ attribute— Used to create a new attribute in the result document. Just like element, this is
most useful to create an attribute dynamically.

❑ text— Used to add text to the result document. Again, this is most useful when creating new
text based on the source document, probably with some intermediate processing.

❑ copy— Used to copy an element from the source document into the result document. This ele-
ment does not copy any child elements or attributes. This element is commonly used when the
result document is similar in structure or naming to the source document.

❑ copy-of— Used to copy an element and its child elements and attributes from the source docu-
ment into the result document.

The value-of element extracts a value from the source document, based on an XPath expression and
the current context. This element is possibly the most frequently used XSLT element. It has a single
required attribute, select, that is the XPath expression, and one optional attribute, disable-output-
escaping. The disable-output-escaping attribute is set to either yes or no. If yes, characters that
are significant in XML (such as < or >) will be included in the output. If no, these characters are escaped
to < and >. If excluded, the default is no. The following element extracts the value of any child
element named company, escaping characters as needed.

<xsl:value-of select=”company” disable-output-escaping=”no” />

The element and attribute elements create the appropriate nodes in the result tree. Although you can
create elements in the result document by including them in the XSLT, these elements make it easier to
create these nodes, especially if the desired node is based on the source document. Both of these ele-
ments take a single required attribute, name, and an optional namespace attribute. The name is the
newly created element or attribute, and namespace defines the namespace URI for the element or
attribute.

The following XSLT fragment creates a new element based on the value of the category element in the
source document. As the name attribute is generated dynamically, the attribute element is also used to
create the name.

<xsl:template match=”category”>
<xsl:element name=”department” >
<xsl:attribute name=”id”>
<xsl:value-of select=”text()” />

</xsl:attribute>

248

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 248

</xsl:element>
</xsl:template>

<!-- This would generate: (assuming the current node has
a child element called category.

<department id=”Beverages”/>
-->

The text element is used to add text nodes to the result document. Although you can add text by
including the new text in the XSLT, the text element enables the creation of dynamic content based
either on XPath functions or the source document. For example, the following line adds the Unicode
character for carriage return (character 13 or hexadecimal 0D) to the result document.

<xsl:text></xsl:text>

The copy and copy-of elements work to copy the current node to the result document. The difference
between the two is that copy-of includes child elements and attributes, whereas copy only reproduces
the current node. These two elements are useful when parts of the source and result documents match.

Calling templates
When you have created the templates for your stylesheet, the next step is to call them. With XSLT, two
elements are used to call templates: apply-templates and call-template.

The apply-templates element executes templates based on the current context and passes control
over to the other template. This is the common method of using templates in your stylesheets. The code
that follows shows a parent template using apply-templates to execute another template. The line
<xsl:apply-templates select=”contact” /> performs an XPath selection based on the current con-
text. The parent template calls the contact template for each instance of a child contact node. That is, the
contact template is executed for each node in the node-set defined by customer[current]/contact.

<xsl:template match=”customer”>
<cust>
<xsl:apply-templates select=”contact” />
<xsl:value-of select=”company” />

</cust>
</xsl:template>
<xsl:template match=”contact” name=”contact”>
<xsl:attribute name=”name”><xsl:value-of select=”name” /></xsl:attribute>

</xsl:template>

If you exclude the select attribute for the apply-templates, all child templates are called in the order
that they appear in the source document. This is a useful shorthand method when transforming a large
block of a source document. The apply-templates element also supports sorting the data before the
new template is executed (see the following sections).

Call-template, on the other hand, executes a single named template based on the current context. It is
equivalent to calling a function and passing the current node. After the template completes, “flow” is
passed back to the calling template. The parent template in Listing 8-4 uses call-template to format
the price.

249

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 249

LLiissttiinngg 88--44:: UUssiinngg ccaallll--tteemmppllaattee

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”text” encoding=”UTF-16”/>
<xsl:template match=”/”>
<xsl:apply-templates select=”//product” />

</xsl:template>
<xsl:template match=”product”>
<xsl:value-of select=”name” />: <xsl:call-template name=”price” />
<xsl:text></xsl:text>

</xsl:template>
<xsl:template name=”price”>
<xsl:value-of select=”format-number(price, ‘#.00’)” />

</xsl:template>
</xsl:stylesheet>

The call-template element is frequently used with conditional logic and/or parameters (see the fol-
lowing sections). For example, you could use it to provide a localized version of a value from the source
document.

Multiple Templates for a Single Element
In addition to the match and name attributes, a template can also include mode and priority attributes.
The priority attribute is used in cases where multiple templates apply to a single source element. Tem-
plates with a higher priority have precedence and are used; at no time should multiple templates act on the
same node-set. The priority value must be a number. By default, most templates have a priority of 0.5.

The mode attribute is used to override the limitation on a single template acting on an element from the
source document. The mode defines a particular action for a template. Other modes may also apply to
the same element, but act in a slightly different way. The code in Listing 8-5 shows two templates acting
on the same element using the mode attribute to identify both the template and the template call.

LLiissttiinngg 88--55:: UUssee ooff tthhee mmooddee aattttrriibbuuttee

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”/”>
<modes>
<xsl:apply-templates select=”//customer[@id=’ANATR’]” mode=”block” />
<xsl:apply-templates select=”//customer[@id=’ANATR’]” mode=”attributes” />

</modes>
</xsl:template>
<xsl:template match=”customer” mode=”attributes”>
<attributesMode>
<xsl:attribute name=”company”>
<xsl:value-of select=”company” /></xsl:attribute>

<xsl:attribute name=”contact”>
<xsl:value-of select=”contact/name” /></xsl:attribute>

<xsl:attribute name=”phone”>
<xsl:value-of select=”contact/phone” /></xsl:attribute>

</attributesMode>

250

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 250

</xsl:template>
<xsl:template match=”customer” mode=”block”>
<blockMode>
<xsl:value-of select=”company”/>:
<xsl:value-of select=”contact/name” />
(<xsl:value-of select=”contact/phone” />)</blockMode>

</xsl:template>
</xsl:stylesheet>

Two templates apply to the customer node in the source document. To identify the two, each is given a
mode attribute. When the template is called using the apply-templates element, the desired mode is
identified. Therefore, despite the attribute’s mode element being first in the stylesheet, the block mode is
executed first. The resulting document appears as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<modes>
<blockMode>Ana Trujillo Emparedados y helados: Ana Trujillo ((5)

555-4729)</blockMode>
<attributesMode company=”Ana Trujillo Emparedados y helados”
contact=”Ana Trujillo” phone=”(5) 555-4729”/>

</modes>

Modes provide a handle that can be used by conditional logic to process a given element in different
ways. For example, one mode might format dates, currency, and phone numbers for European cus-
tomers, and another one might do so for U.S. customers.

Conditional Processing
Most programming languages provide some means of conditional logic in the form of if...else,
switch or similar statements. XSLT is no exception: it provides both simple and complex branching
using the if and choose/when/otherwise blocks.

The if element is used to provide a single simple test in processing. It takes a single attribute, test, that is
an expression. If the expression evaluates to true, the content of the if element is processed. Listing 8-6
shows the use of the if element.

LLiissttiinngg 88--66:: UUssiinngg tthhee iiff eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”/”>
<xsl:apply-templates select=”customers/customer”/>

</xsl:template>
<xsl:template match=”customer”>
<company>
<name><xsl:value-of select=”company” /></name>
<xsl:if test=”address/country=’USA’”>
<contact><xsl:value-of select=”contact/phone” /></contact>

</xsl:if>
</company>

</xsl:template>
</xsl:stylesheet>

251

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 251

The test of the if element tests whether the country of the current customer is USA and if so, outputs
the phone number. The test attribute can use XPath functions as well as node expressions. If the test
requires the use of lesser-than (<) or greater-than (>), you should encode the characters. Therefore, a test
to determine if the price of a product is less than $20.00 in the products.xml file looks like this:

<xsl:if test=”price <= 20”>
<xsl:attribute name=”bgcolor”>#E0E0E0</xsl:attribute>

</xsl:if>

The attribute is created if the price is less-than or equal to 20.

You cannot add an else clause. If you need multiple tests, use the choose element. The choose element
is similar to switch statements used by many other languages (or select case in Visual Basic). You
define a number of tests, and the first one that evaluates to true is executed. If none of the tests are true,
the otherwise element, if present, is used. (See Listing 8-7.)

LLiissttiinngg 88--77:: UUssiinngg tthhee cchhoooossee,, wwhheenn,, aanndd ootthheerrwwiissee eelleemmeennttss

<xsl:choose>
<xsl:when test=”price <= 20”>
<xsl:attribute name=”bgcolor”>#e0e0e0</xsl:attribute>

</xsl:when>
<xsl:when test=”price <= 100”>
<xsl:attribute name=”bgcolor”>#00ff00</xsl:attribute>

</xsl:when>
<xsl:otherwise>
<xsl:attribute name=”bgcolor”>#FF0000</xsl:attribute>

</xsl:otherwise>
</xsl:choose>

The choose element is a container for when and otherwise elements. Each when element has a test
expression. The content of the first valid test is applied to the result document. Therefore, if the price is
less than or equal to 20, the background color is set to light gray. If it is greater than 20, but less than 101,
the background is set to green. All other items have a background set to red.

Looping
Although templates apply to each node in the selected node-set, on occasion, you need to loop through a
set of elements not using a template. This is the purpose of the for-each element. This element takes a
single select statement containing an XPath expression. The content of the element is then applied to
each node selected by the query. (See Listing 8-8.)

LLiissttiinngg 88--88:: UUssiinngg tthhee ffoorr--eeaacchh eelleemmeenntt

<xsl:for-each select=”catalog/row “>
<xsl:copy-of select=”category” />

</xsl:for-each>

Given the source XML document in Listing 8-9, it is possible to create a destination document using
either for-each (see Listing 8-10) or template (see Listing 8-11).

252

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 252

LLiissttiinngg 88--99:: AA pprroodduucctt lliissttiinngg

<catalog>
<row id=”1”>
<category>Beverages</category>
<product>
<name>Chai</name>
<price>18.0000</price>

</product>
</row>
<row id=”2”>
<category>Beverages</category>
<product>
<name>Chang</name>
<price>19.0000</price>

</product>
</row>

...
<row id=”3”>
<category>Condiments</category>
<product>
<name>Aniseed Syrup</name>
<price>10.0000</price>

</product>

(continued)

253

Chapter 8: XSLT

Should I use for-each or templates?
To developers who come to XSLT from traditional languages, templates are often con-
fusing. XSLT just does not seem “like a real programming language” to people used to
writing if statements and loops. So, many stick to creating repeating structures with
for-each.

For example, given a block of XML similar to the fragment in Listing 8-9 that contains a
number of categories and products, you could create a summary report of the products
and their prices using for-each as shown in Listing 8-10.

Chai: 18.00
Chang: 19.00
Chartreuse verte: 18.00
Côte de Blaye: 263.50
Guaraná Fantástica: 4.50
Ipoh Coffee: 46.00
Lakkalikööri: 18.00
...

If you do so, however, you miss the true power of XSLT. Templates are just like the sub-
routines in languages like Java, C#, or C++. Rather than templates being called manu-
ally, however, the data itself calls them. Remember that templates represent an example
of what the output should look like. They are similar to someone saying, “Put all the
yellow triangles in the box and the green squares in the bag.” You essentially define an
example of the desired result and identify when each result should happen. The data
then flows into each appropriate template, creating the result document.

15_777779 ch08.qxp 3/1/07 11:46 PM Page 253

LLiissttiinngg 88--99 (continued)

</row>
<row id=”4”>
<category>Condiments</category>
<product>
<name>Chef Anton’s Cajun Seasoning</name>
<price>22.0000</price>

</product>
</row>

...
</catalog>

LLiissttiinngg 88--1100:: UUssiinngg ffoorr--eeaacchh ttoo pprroocceessss XXMMLL

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”text” encoding=”UTF-16” omit-xml-declaration=”yes”/>
<xsl:template match=”/”>
<xsl:for-each select=”catalog/row/product”>
<xsl:value-of select=”name” />:
<xsl:value-of select=’format-number(price, “#.00”)’ />
<xsl:text></xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

The for-each element extracts the matching elements from the XML. The contents of the element are
performed for each of these extracted elements; in this case, the name and price are outputted. The inter-
nal XSLT function format-number converts the price to a value with two decimal places. Finally, because
the output method is text, the <xsl:text></xsl:text> expression adds a carriage return (hex
13) to force a new line.

LLiissttiinngg 88--1111:: UUssiinngg tteemmppllaatteess ttoo pprroocceessss XXMMLL

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”text” encoding=”UTF-16” omit-xml-declaration=”yes”/>
<xsl:template match=”/”>
<xsl:apply-templates select=”catalog/row/product” />

</xsl:template>
<xsl:template match=”product”>
<xsl:value-of select=”name” />: <xsl:value-of select=’format-number(price,

“#.00”)’/>
<xsl:text></xsl:text>

</xsl:template>
</xsl:stylesheet>

The processing for each product occurs in the template identified using the match syntax. Although this
is a trivial example, with only a single template, it demonstrates how using templates narrows the scope
and makes change easier.

254

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 254

The for-each element (as well as the apply-templates element) takes an optional child element sort.
This enables you to sort the content before the template or loop is applied. This element takes a number
of optional attributes as shown in the following table.

Attribute Description

select An XPath expression that defines the content to sort on. This is based on the current
context. Therefore, it is based on the current selection in a for-each or apply-
templates element.

data-type The data type of the content — text, numeric, or a qname. The default is text.

lang The language to be used for the sort, using the language code. It ensures that the
correct sorting is applied for the selected language.

order The sort order, either ascending or descending.

case-order The sort order when items may begin with either upper- or lowercase characters.
Can be either upper-first or lower-first.

Sorting is a resource-intensive process if you have a large document or if you sort within another loop.
Therefore, you should apply a sort only if it is needed for your result. The following code applies a sort
on a product before the product name and price are written.

<xsl:for-each select=”catalog/row/product”>
<xsl: sort select=”name” data-type=”text” />
<xsl:value-of select=”name” />:
<xsl:value-of select=’format-number(price, “#.00”)’ />
<xsl:text></xsl:text>

</xsl:for-each>

Variables and Parameters
Stylesheets and templates sometimes require additional data during the transformation of a document,
often in the form of calculated values or temporary data. For this reason, XSLT provides both variables
and parameters.

Variables provide a name that may hold a value for processing. The value held by the variable may be
any valid data type, including the schema types and node-sets. You create a variable using the variable
element.

<xsl:variable name=”someName” select=”expression”>contents</xsl:variable>

The name attribute is required and identifies the variable. The select attribute can be used to assign a
value to the variable; alternatively, the content provides the value.

The scope of the variable depends on where it is defined. If defined at the top-level of the stylesheet, it is
globally available. If it is defined within another element, then it is only available within that element.

You access the value of a variable (or parameter) elsewhere in the stylesheet using the $name syntax.

255

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 255

A param element is similar to the variable element, but it defines a variable passed to a template. For
example, the fragment in Listing 8-12 defines a parameter used to calculate the tax on a product.

LLiissttiinngg 88--1122:: UUssiinngg ppaarraammeetteerrss aanndd vvaarriiaabblleess

<xsl:template match=”/”>
<xsl:apply-templates select=”//product”>
<xsl:with-param name=”rate” select=”0.07” />

</xsl:apply-templates>
</xsl:template>
<xsl:template match=”product”>
<xsl:param name=”rate” />
<xsl:copy>
<xsl:attribute name=”id”>
<xsl:value-of select=”generate-id()” />

</xsl:attribute>
<xsl:attribute name=”name”>
<xsl:value-of select=”name” />

</xsl:attribute>
<xsl:attribute name=”priceWithTax”>
<xsl:value-of select=”format-number(price+(price*$rate), ‘#.00’)” />

</xsl:attribute>
</xsl:copy>

</xsl:template>

The root template calls the product template as you’ve done elsewhere, but it includes the with-param
element. This provides the value that is passed to the product template. Therefore, the param named
rate will hold the value 0.07. This value is used in the final highlighted line to provide the tax rate for
the calculation.

Other Functions and Expressions
XSLT leverages the functionality of XPath for most of its functions, providing over 100 different func-
tions for string-handling, date processing, and more. In addition, XSLT supports a number of built-in
functions (see the following table).

Function Description

document Enables access to XML documents other than the source document. This can be
used to merge the nodes of another document with those of the source document.

<xsl:for-each select=”document(documentURL)/XPath/expression>
..<!-- process content here -->
</xsl:for-each>

key Used with the key element to generate keys in the result document. See
Listing 8-2 for an example of using the key function.

256

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 256

Function Description

generate-id Used to generate ids for your result document. These ids are guaranteed to be
unique based on the current context.

<cust>
<xsl:attribute name=”id”>

<xsl:value-of select=”generate-id(contact/name)” />
</xsl:attribute>

</cust>

format- Formats a value based on a supplied mask or pattern. These are characters that will
number be replaced by the data. For example, the mask ###,###.00 would format numbers

to two decimal places, adding a grouping character if they are larger than 1,000.

current Returns the current node, essentially equivalent to the. XPath expression.

system- Used to query the implementation for information. Typically, this includes
property version and vendor information, but the vendor can provide any information

using this function.

Extending XSLT
Just like other XML syntaxes, XSLT is not fixed; it can be extended through the use of additional names-
paces. This enables implementers to add functionality. One notable and commonly used extension is
available with the Microsoft XSLT engine. You can apply script to your templates with the addition of
the msxsl:script element. This element allows the addition of script code, using JavaScript, VBScript,
C#, VB .NET, or another active scripting language. It also permits the addition of procedural functional-
ity to a template.

For example, XSLT 1.0 does not have any means of manipulating text, such as substring extraction or
case changing. Script extensions can provide this functionality, as shown in Listing 8-13.

LLiissttiinngg 88--1133:: EExxtteennddiinngg XXSSLLTT wwiitthh ssccrriipptt

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:msxsl=”urn:schemas-microsoft-com:xslt” xmlns:ex=”urn:some-URI”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<msxsl:script language = “C#” implements-prefix = “ex”>
<![CDATA[
string delim = “ “;
public String upperCase(String value) {
return value.ToUpper();

}
public String firstToken(String value) {
string[] temp = value.Split(delim.ToCharArray());
return temp[0];

}
public String lastToken(String value) {
string[] temp = value.Split(delim.ToCharArray());

(continued)

257

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 257

LLiissttiinngg 88--1133 (continued)

return temp[temp.Length-1];
}]]>

</msxsl:script>

<xsl:template match=”/”>
<xsl:apply-templates select=”//customer[@id=’ANTON’]/contact” />
</xsl:template>
<xsl:template match=”contact”>
<contact>
<fullName><xsl:value-of select=”name” /></fullName>
<firstName><xsl:value-of select=”ex:firstToken(name)” /></firstName>
<lastName><xsl:value-of select=”ex:upperCase(ex:lastToken(name))” />

</lastName>
</contact>

</xsl:template>
</xsl:stylesheet>

When extending XSLT, you must provide additional namespaces for your extensions. The Microsoft-
defined namespace for its scripting extensions is urn:schemas-microsoft-com:xslt. In addition,
a second namespace is added for the script functions themselves. You can include multiple script
blocks — even in different languages — as long as each uses a different implements-prefix. This
prefix is used later when calling the functions. The output of this script is the following:

<contact xmlns:msxsl=”urn:schemas-microsoft-com:xslt” xmlns:ex=”urn:some-URI”>
<fullName>Antonio Moreno</fullName>
<firstName>Antonio</firstName>
<lastName>MORENO</lastName>

</contact>

Executing XSLT
Obviously, an XSLT stylesheet is only useful if you can apply it to some XML. Apart from executing
XML in an XML editor or IDE, you have at least three ways to apply XSLT to XML:

❑ Using Command-line tools

❑ Via code

❑ In a browser

Executing XSLT at the Command-line
If you need to generate a new document based on a source document and standalone XSLT file, a command-
line tool may be useful. The two most notable are Open Source Saxon tool and Microsoft’s msxsl.exe.

Saxon is an Open Source tool, originally written by Michael Kay. It supports command-line usage and
code. It is available for Java and .NET development in two flavors. Saxon-B provides basic conformance
support for XSLT 2.0 and XQuery, whereas Saxon-SA provides Schema-aware support and is a commer-
cial package. You execute XSLT using Saxon using the following command-line (Java version shown):

java -jar saxon8.jar [options] [Source document] [Stylesheet document] [parameters]

258

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 258

The resulting document is displayed in the console. You can send the output to a file either using the –o
filename option or the output pipe (>). The following line shows using the Saxon processor to execute
the sample shown in Listing 8-1 on the customers.xml file.

java -jar \Tools\saxon\saxon8.jar customers.xml language\sample.xslt

The msxsl.exe tool from Microsoft is similar to Saxon. It requires that the MSXML DLLs are also avail-
able (at least version 3.0). The command-line parameters and use are also similar:

MSXSL source stylesheet [options] [param=value...] [xmlns:prefix=uri...]

For example, calling the sample in Listing 8-1 is done with the following:

msxsl customers.xml language\sample.xslt –o result.xml

Although the MSXSL tool can be used with most XSLT scripts, it cannot process scripts with embedded
.NET code, as with Listing 8-13.

Executing XSLT via Code
Both Java and .NET provide built-in functionality for performing XSLT transformations. Other lan-
guages also provide this functionality as part of their class libraries. These functions load both source
documents and stylesheets and generate the result document. Listing 8-14 shows transforming XML
using Java, whereas Listing 8-15 shows using Visual Basic and the .NET Framework to transform XML.
Both samples put the resulting XML into a text box for display (see Figure 8-1), but it could also be out-
put to a document or loaded into an XML-handling class.

LLiissttiinngg 88--1144:: UUssiinngg XXSSLLTT ffrroomm JJaavvaa

import java.io.*;
import javax.swing.*;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

private void transformButtonActionPerformed(java.awt.event.ActionEvent evt) {
if(this.sourceField.getText().length() > 0 &&

this.stylesheetField.getText().length() >0) {

try {
File source = new File(this.sourceField.getText());
File stylesheet = new File(this.stylesheetField.getText());

StreamSource sourceSource = new StreamSource(source);
StreamSource styleSource = new StreamSource(stylesheet);
Transformer transformer =

TransformerFactory.newInstance().newTransformer(styleSource);
StringWriter w = new StringWriter();
StreamResult result = new StreamResult(w);

(continued)

259

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 259

LLiissttiinngg 88--1144 (continued)

transformer.transform(sourceSource, result);
this.resultField.setText(w.getBuffer().toString());

} catch (TransformerException te) {
System.out.println (“\n** Transformer error”);
System.out.println(“ “ + te.getMessage());

} catch(Exception e) {
System.out.println (“\n** General error”);
System.out.println(“ “ + e.getMessage());

}
}

}

private void stylesheetButtonActionPerformed(java.awt.event.ActionEvent evt) {
int ret = fc.showOpenDialog(this);
if(JFileChooser.APPROVE_OPTION == ret) {

this.stylesheetField.setText(fc.getSelectedFile().getPath());
}

}

private void sourceButtonActionPerformed(java.awt.event.ActionEvent evt) {
int ret = fc.showOpenDialog(this);
if(JFileChooser.APPROVE_OPTION == ret) {

this.sourceField.setText(fc.getSelectedFile().getPath());
}

}

The XSLT functionality is available in the javax.xml.transform package. The main class is the
Transformer, created by the TransformerFactory. This class takes a number of sources, via a DOM,
SAX, or a stream. Similarly, it can produce results as a DOM, SAX, or stream.

In this sample, the source and stylesheet files are loaded into StreamSource objects. This object can load
from a file, stream, or reader to prepare the text for transformation. The source document is transformed,
and the result displayed in the resultField JTextArea.

LLiissttiinngg 88--1155:: UUssiinngg XXSSLLTT ffrroomm VViissuuaall BBaassiicc aanndd tthhee ..NNEETT FFrraammeewwoorrkk

Imports System.IO
Imports System.Text
Imports System.Xml
Imports System.Xml.Xsl

Public Class MainForm

Private Sub SourceXmlButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles SourceXmlButton.Click
With FileOpenDialog

.Filter = “XML Files|*.xml|All Files|*.*”
If .ShowDialog = Windows.Forms.DialogResult.OK Then

Me.SourceXmlField.Text = .FileName
End If

End With

260

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 260

End Sub

Private Sub StylesheetButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles StylesheetButton.Click
With FileOpenDialog

.Filter = “XSLT Files|*.xsl;*.xslt|All Files|*.*”
If .ShowDialog = Windows.Forms.DialogResult.OK Then

Me.StylesheetField.Text = .FileName
End If

End With
End Sub

Private Sub TransformButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TransformButton.Click
If File.Exists(Me.SourceXmlField.Text) AndAlso _
File.Exists(Me.StylesheetField.Text) Then
Dim trans As New XslCompiledTransform
Dim out As New StringBuilder
Using w As XmlWriter = XmlWriter.Create(out)

With trans
.Load(Me.StylesheetField.Text)
.Transform(Me.SourceXmlField.Text, w)

End With
End Using
Me.ResultField.Text = out.ToString

End If
End Sub

End Class

The .NET Framework 2.0 comes with the XslCompiledTransform class for performing XSLT
transformations. There is also the earlier XslTransform class, although this is deprecated. The
XslCompiledTransform class can load the XSLT stylesheet and source document from a stream,
XmlReader, a variable that implements IXPathNavigable, or a file. Similarly, the result of the trans-
formation can be passed to an XmlWriter, file, or Stream. You can also provide arguments to the
transformation if necessary.

Figure 8-1

261

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 261

Executing XSLT in a Browser
Most modern browsers also support using XSLT when displaying XML documents. This means that you
can send XML to the browser and have the client render it into HTML based on your stylesheet. The
stylesheet may make the XML more presentable, add more information, or both. For example, Figure 8-2
shows XML being displayed in Internet Explorer. The XML is colorized to identify elements, attributes, and
text. Although this is useful when testing XML produced in code, it is less than useful for most viewers.

Figure 8-2

You add an XSLT stylesheet to an XML document with the xml-stylesheet processing instruction.

<?xml-stylesheet type=’text/xsl’ href=’URL to xslt’ version=’1.0’?>

With the addition of the stylesheet, the preceding XML becomes more useful (see Figure 8-3).

The advantage to adding the stylesheet information to the XML is two-fold. First, it means that global
changes to multiple XML files are made in only one place — the XSLT file. Second, it pushes the process-
ing required to transform and display the XML to the client. This means that less server-side processing
is required.

262

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 262

Figure 8-3

Changes with XSLT 2.0
XSLT 2.0 is still a candidate recommendation as I write this, but it should remain constant as it moves to
a proposed recommendation and finally to a recommendation. XSLT 2.0 is an evolutionary step from
XSLT 1.0. There are no major syntax breaking changes. Instead, it refines the existing model, and
improves its clarity and flexibility. The major visible changes within XSLT 2.0 include:

❑ Support for XPath 2.0 functions

❑ Addition of XHTML as an output format

❑ Easier methods for grouping data

❑ Capability to create multiple output documents

❑ Capability to create user-defined functions

XSLT 2.0 and XPath 2.0 have been progressing simultaneously through the W3C. The benefit of this is
that the functionality of XPath 2.0 is available for use by XSLT 2.0, and the two groups aren’t creating
similar but incompatible functionality. The greatest benefit is the availability of the XPath functions.

263

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 263

These add a number of necessary capabilities including string, date, and numeric processing. Some of
the more useful functions include:

❑ round, round-half-to-even—Round rounds the number argument to the nearest number;
round-half-to-even performs the banker’s round that rounds 1.5 and 2.5 to 2.

❑ concat, string-join—Concat combines multiple strings to create a new string; String-
join takes an additional parameter for the separator to use between each.

❑ lower-case, upper-case— Changes the case of the supplied string.

❑ substring, replace—Substring finds one string within another; replace changes one
string based on a supplied pattern.

❑ year-from-date, month-from-date, day-from-date— Extracts the component from the
supplied date.

One output format that was missing from XSLT 1.0 was XHTML. Although you could generate XHTML
by setting the output format to HTML and ensuring the generated output was XHTML, it was not the
same. XSLT 2.0 adds direct support for output=”XHTML”. You can also use the doctype-public and
doctype-system to add the appropriate declaration in your XHTML. For example, to declare your doc-
ument as XHTML 1.0 Transitional, you use the following output statement:

<xsl:output method=”xhtml”
doctype-system=”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”
doctype-public=”-//W3C//DTD XHTML 1.0 Transitional//EN” version=”1.0”
indent=”yes” encoding=”UTF-16”/>

One common form of report involves data grouped based on some categorization (see Figure 8-4). With
XSLT 1.0, creating this type of structure was difficult. XSLT 2.0 adds the for-each-group element (see
Listing 8-16).

LLiissttiinngg 88--1166:: UUssiinngg tthhee ffoorr--eeaacchh--ggrroouupp eelleemmeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
exclude-result-prefixes=”xs fn xdt”>
<xsl:output method=”xhtml”
doctype-system=”http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”
doctype-public=”-//W3C//DTD XHTML 1.0 Transitional//EN” version=”1.0”
indent=”yes” encoding=”UTF-8”/>

<xsl:template match=”/”>
<html>
<body>
<table>
<tbody>
<tr>
<th>Country</th>
<th>Company</th>

</tr>

264

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 264

<xsl:for-each-group select=”customers/customer”
group-by=”address/country”>
<xsl:sort select=”address/country” data-type=”text”/>
<tr>
<td colspan=”2” bgcolor=”#E0E0E0”>
<xsl:value-of select=”address/country”/>

</td>
</tr>
<xsl:for-each select=”current-group()”>
<xsl:sort select=”company” data-type=”text” />
<tr>
<td> </td>
<td>
<xsl:value-of select=”company”/>

</td>
</tr>

</xsl:for-each>
</xsl:for-each-group>

</tbody>
</table>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Figure 8-4

265

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 265

The for-each-group element takes a select attribute, as did the for-each element. In addition, it has a
group-by attribute. This identifies the expression based on the select attribute that is used to group the
output. Within the for-each-group element, the current-group() function returns the items in the
current group.

XSLT 1.0 was limited to a single output document for each stylesheet. XSLT 2.0 adds the capability to
export multiple documents using the result-document element. It requires you identify the URI for
the new document and a format. In essence, it duplicates the output node, but for each output docu-
ment. Listing 8-17 shows how to use the result-document element.

LLiissttiinngg 88--1177:: OOuuttppuuttttiinngg mmuullttiippllee ddooccuummeennttss

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”>
<xsl:output method=”text”/>
<xsl:output method=”text” encoding=”UTF-16” name=”textFormat”/>
<xsl:template match=”/”>
<xsl:for-each-group select=”//customer” group-by=”address/country”>
<xsl:sort select=”address/country” data-type=”text”/>
<xsl:variable name=”uri” select=”concat(address/country, ‘.txt’)”/>
<xsl:result-document href=”{$uri}” format=”textFormat”>
<xsl:for-each select=”current-group()”>
<xsl:value-of select=”company”/>
<xsl:text></xsl:text>

</xsl:for-each>
</xsl:result-document>

</xsl:for-each-group>
</xsl:template>

</xsl:stylesheet>

This stylesheet uses the customers.xml file to generate one text file per country, listing the companies
in each country. The primary document is actually empty, although you could also create it as part of the
processing. The result-document element takes — at a minimum — the href of the file to create and
a named output format. In the preceding example, the href is of the form country.txt. The format
attribute points at the named output to create a UTF-16 encoded text file. Within each result-
document element, the elements in the current group are written to the file.

Finally, the addition of custom functions takes over many of the abuses of call-template. User-
defined functions in XSLT enable encapsulation, just as they do in other programming languages. Each
function can have multiple parameters and a return value. Listing 8-18 shows a sample user-defined
function.

266

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 266

LLiissttiinngg 88--1188:: UUsseerr--ddeeffiinneedd ffuunnccttiioonnss iinn XXSSLLTT 22..00

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
xmlns:ex=”some-URI”>
<xsl:output method=”xml” version=”1.0”
encoding=”UTF-8” indent=”yes”
exclude-result-prefixes=”fn xs xdt ex”/>
<xsl:template match=”/”>
<contacts>
<xsl:apply-templates select=”customers/customer/contact”/>

</contacts>
</xsl:template>
<xsl:template match=”contact”>
<contact>
<xsl:value-of select=”ex:name-case(name)”/>

</contact>
</xsl:template>
<xsl:function name=”ex:name-case” as=”xs:string”>
<xsl:param name=”value” as=”xs:string”/>
<xsl:sequence select=”if(contains($value, ‘ ‘))

then concat(substring-before($value, ‘ ‘),
‘ ‘,
upper-case(substring-after($value, ‘ ‘)))

else $value”/>
</xsl:function>

</xsl:stylesheet>

To avoid any possible collision with existing functions, you define a new namespace for the user-defined
function. This namespace is used in both the call to the function and in the definition. The function ele-
ment requires a name and, optionally, the data type of the return value. Within the definition of the func-
tion, you can include as many parameters as necessary. They must be the first child elements within the
function. As with the function, you can also include the type of the parameters. The sequence element
generates the return value. The resulting XML displays the last name of each contact in uppercase.

<?xml version=”1.0” encoding=”UTF-8”?>
<contacts>
<contact>Maria ANDERS</contact>
<contact>Ana TRUJILLO</contact>
<contact>Antonio MORENO</contact>
<contact>Thomas HARDY</contact>
<contact>Christina BERGLUND</contact>
<contact>Hanna MOOS</contact>
<contact>Frédérique CITEAUX</contact>

...
</contacts>

267

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 267

Although XSLT 2.0 is not yet a W3C standard, it soon will be. If your XSLT processor supports XSLT 2.0,
there really is no excuse not to take advantage of all the new functionality for your stylesheets.

Generating Output with XSLT
XSLT is output-neutral. That is, you can generate just about any type of output from a stylesheet,
although XML or HTML are the two most common.

Generating HTML with XSLT
One of the most common uses for XSLT is to create HTML or XHTML from a block of XML. This enables
rendering of data for use in browsers without requiring two separate outputs.

RSS is becoming a common XML syntax (see Chapter 19 for more on this), and many sites are using it as
a syndication mechanism for news, opinion, or feature releases. Listing 8-19 shows the result of an MSN
search for XML displayed as RSS. This search normally provides an XSLT stylesheet but I removed it for
this example. Most users do not understand and, therefore, cannot use raw RSS. Therefore, applying an
XSLT stylesheet to RSS provides users with a friendlier interface (see Figure 8-5) and more information.
Listing 8-20 shows the transformation used to create this.

LLiissttiinngg 88--1199:: AA rraaww RRSSSS ffeeeedd

<?xml version=”1.0” encoding=”utf-8”?>
<rss version=”2.0”>
<channel>
<title>MSN Search: xml</title>
<link>http://search.msn.com:80/results.aspx?q=xml</link>
<description>Search results</description>
<copyright>Copyright Â© 2006 Microsoft. All rights
reserved. These XML results may not be used, reproduced or
transmitted in any manner or for any purpose other than
rendering MSN Search results within an RSS aggregator for your
personal, non-commercial use. Any other use of these results
requires express written permission from Microsoft Corporation.
By accessing this web page or using these results in any manner
whatsoever, you agree to be bound by the foregoing
restrictions.</copyright>
<item>
<title>XML.com: XML From the Inside Out -- XML development,
XML resources ...</title>
<link>http://www.xml.com/</link>
<description>Community resources and solutions, XML authoring
tools, XML resources, and interactive forums.</description>
<pubDate>30 Jun 06 17:52:00 UTC</pubDate>

</item>
<item>
<title>XML.org</title>
<link>http://www.xml.org/</link>
<description>News, education, and information about the

268

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 268

application in industrial and commercial
settings.</description>
<pubDate>01 Jul 06 16:04:00 UTC</pubDate>

</item>
...

<item>
<title>XML Developer Center</title>
<link>http://msdn.microsoft.com/xml/</link>
<description>Microsoft’s XML resource site including
tutorial, XML specification, samples, and XML support in
Microsoft applications such as Internet
Explorer.</description>
<pubDate>02 Jul 06 11:02:00 UTC</pubDate>

</item>
</channel>

</rss>

Figure 8-5

LLiissttiinngg 88--2200:: XXSSLLTT TTrraannssffoorrmmaattiioonn ffoorr RRSSSS 22..00

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”/”>
<html>

(continued)

269

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 269

LLiissttiinngg 88--2200 (continued)

<head>
<title>
<xsl:value-of select=”rss/channel/title”/>

</title>
<style type=”text/css” media=”screen”>
body {
font-family: verdana, arial, sans-serif;
font-size: 80%;
line-height: 1.45em;

}
#itemWrapper {}
#itemWrapperHighlight {
background-color: #E0E0E0;

}
#itemBody{}
</style>

</head>
<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>
<xsl:template match=”channel”>
<h1>
<xsl:value-of select=”title”/>

</h1>
<div id=”intro”>
<xsl:value-of select=”description”/>

RSS (or Really Simple Syndication) is the name for a format
used to share information feeds for updating content.

These feeds contain content from Web sites and contain article headlines,
summaries and links back to full-text articles on the web.

For more information on RSS see this page
</div>
<div id=”items”>
<xsl:apply-templates select=”item”>
<xsl:with-param name=”maxItems” select=”6”/>

</xsl:apply-templates>
</div>

</xsl:template>
<xsl:template match=”item”>
<xsl:param name=”maxItems”/>
<xsl:if test=”count(preceding::item) < $maxItems”>
<div id=”itemWrapper”>
<xsl:if test=”position() mod 2”>
<xsl:attribute name=”id”>itemWrapperHighlight</xsl:attribute>

</xsl:if>

270

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 270

<h3 id=”itemTitle”>
<xsl:value-of select=”title”/>

</h3>
<div id=”itemBody”>
<xsl:value-of select=”description”/>

<a>
<xsl:attribute name=”href”>
<xsl:value-of select=”url”/>

</xsl:attribute>
<xsl:attribute name=”alt”>
<xsl:value-of select=”title”/>

</xsl:attribute>
Read more of this item

</div>

</div>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

The code consists of three templates, one each for the root (/), channel, and item nodes.

The root node template begins the HTML page and includes information for the head of the document,
including the page title and stylesheet information. It then calls the apply-templates expression.
Remember that excluding the select parameter causes all other templates to be called. In this case, select-
ing the channel node explicitly produces the same effect.

The channel node template is fairly basic: It extracts a few items from the XML and supplements
this with additional text. It is worth noting, however, that with-param is used in the call to apply-
templates. This defines the maximum number of items to display from the feed. You can experiment
changing this value to see how it affects the resulting page.

Most of the complexity in the sample is in the item template. The maxItems parameter is provided in the
call to apply the item template. However, this parameter is not available unless a matching param ele-
ment is included. The test in the conditional if statement <xsl:if test=”count(preceding::item)
< $maxItems”> translates to, “Count the preceding calls to the item template. If this value is less
than the value of the maxItems parameter, process the contents of this if element.” This is a simple
means of controlling the number of items displayed from the feed. The third thing to note about the
item node template is the if element “<xsl:if test=”position() mod 2”>”. This test is true (that
is, non-zero) for odd-numbered items, and false for even-numbered items. When true, the id of the
itemWrapper div changes to itemWrapperHighlight. This style includes a light grey background in
the example. The final noteworthy item in the item template is the technique for adding attributes based
on the XML content. The attribute element retrieves the desired item using the value-of element, and
creates an attribute, in this case the href and alt attributes for the anchor tag.

You can add an XSLT stylesheet to an XML file using the xml-stylesheet processing instruction at the
beginning of the XML file (after the XML declaration):

<?xml-stylesheet type=”text/xsl” href=”url to XSLT”?>

271

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 271

When building an XSLT to transform XML to HTML, it is best to break the code into separate templates,
just as you would break a set of code into separate functions or modules. The template for the channel
node can easily be integrated into the root node, or vice versa. However, doing this limits the extensibil-
ity of both nodes. Similarly, separating the processing for the item node provides a local template for
manipulating just those nodes.

Converting between XML Syntaxes with XSLT
The second major use for XSLT is to convert between XML formats. The purpose might be to align one
format with the one used by a business partner, or because of a version change in your own schema. The
technique is similar to creating HTML; however, you create a series of templates based on the source
schema and define the result document in those templates.

Figure 8-6 shows what the desired output should look like, starting with the products.xml document
used earlier in this chapter. Notice that the product listing is now grouped by the category, and the prod-
uct name and price are now attributes of the product element.

Figure 8-6

If you break down the conversion process, you see at least two stages: extracting the category names to
ensure they are unique and converting the elements in the product node to attributes. Listing 8-21 shows
the XSLT 2.0 stylesheet used to convert the source document. XSLT 2.0 is used to provide access to some
of the XPath 2.0 functions, such as replace and lowercase.

272

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 272

LLiissttiinngg 88--2211:: CCoonnvveerrtt ..xxsslltt

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”>
<xsl:import href=”formats.xslt”/>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8”
indent=”yes” exclude-result-prefixes=”fn xs xdt”/>

<xsl:template match=”/”>
<products>
<xsl:for-each-group select=”catalog/row” group-by=”category”>
<xsl:sort select=”category” data-type=”text”/>
<xsl:variable name=”cat” select=”category”/>
<xsl:variable name=”catclean”
select=”lower-case(replace(category, ‘\s+|\\|/’, ‘_’))”/>

<xsl:element name=”{$catclean}”>
<xsl:apply-templates select=”//row[category=$cat]”>
</xsl:apply-templates>

</xsl:element>
</xsl:for-each-group> </products>

</xsl:template>
<xsl:template match=”row”>
<product>
<xsl:attribute name=”id”><xsl:value-of select=”@id”/></xsl:attribute>
<xsl:call-template name=”prod”/>

</product>
</xsl:template>
<xsl:template match=”product” name=”prod”>
<xsl:attribute name=”name”>
<xsl:value-of select=”product/name”/>

</xsl:attribute>
<xsl:attribute name=”priceUSD”>
<xsl:value-of
select=”format-number(product/price, ‘$#.00’, ‘USD’)”/>

</xsl:attribute>
<xsl:attribute name=”priceEuro”>
<xsl:value-of
select=”format-number(product/price, ‘¤#,00’, ‘EURO’)”/>

</xsl:attribute>
</xsl:template>

</xsl:stylesheet>

The first step in this stylesheet is to import the formats.xslt file (see Listing 8-22). This file includes a
couple of decimal-format declarations used in the stylesheet. Output is defined as XML, and the xpath-
functions, xpath-datatypes, and XML Schema namespaces are excluded from the resulting output. This
step is not necessary, but reduces the complexity of the output.

273

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 273

Much of the work in the stylesheet is performed in the root template. It uses the XSLT 2.0 element
for-each-group to loop through the categories in the source document. For XSLT 1.0, you can get a
similar result using the for-each statement as follows:

<xsl:for-each select=”catalog/row[not (category = preceding::category)]”>

The two variables cat and catclean are needed because some of the categories include ampersands
and slashes. These would interfere with the output document and, therefore, they are replaced with
underscores. However, they are needed when applying the child template to select the products.

LLiissttiinngg 88--2222:: FFoorrmmaattss..xxsslltt

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:decimal-format name=”USD”
decimal-separator=”.”
grouping-separator=”,”
NaN=”-” />

<xsl:decimal-format name=”EURO”
decimal-separator=”,”
grouping-separator=”.”
NaN=”-” />

</xsl:stylesheet>

As currency formats are commonly used as output in XSLT stylesheets, it makes sense to extract them
into a common file that can be imported as needed. The formats.xslt file defines two decimal formats
using the decimal and grouping separators appropriate for US dollars and Euros.

Debugging XSLT
Just as with any programming effort, it is difficult to get it right the first time. Therefore, many of the
XML-processing tools shown in Chapter 2 include XSLT debugging to help you correct any logic errors
you may make when writing XSLT stylesheets. Just like code debuggers, these tools enable the devel-
oper to step through the templates, examine variables, and set breakpoints to determine how the
stylesheet is processing. Figure 8-7 shows a debugging session in Altova XMLSpy. One of the nice fea-
tures of this debugger is that you can see your script, source document, and result document at the same
time as you debug the script.

A number of the product nodes have been processed, as you can see from the output panel. This output
is built up as the value-of nodes are executed.

Creating breakpoints allows you to ignore the parts of your document that are working as expected. Set
a breakpoint at the point in the source document that you want to debug. Then, run the debugger; exe-
cution will pause at the breakpoint. The XPath-Watch window (see Figure 8-8) provides insight into the
current context and variables. You can then step line by line or template by template through the script
as the output document is generated.

274

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 274

Figure 8-7

Figure 8-8

275

Chapter 8: XSLT

15_777779 ch08.qxp 3/1/07 11:46 PM Page 275

Summary
XSLT is a powerful tool that many developers turn to when working with XML. Many application fre-
quently need the capability to extract, manipulate, and transform XML into new XML or other formats.
Learning the declarative programming model does take a few mindset changes. However, once you’ve
mastered XSLT, you’ll find it an invaluable resource when working with any XML syntax.

Resources
❑ XSLT 1.0 Specification —w3.org/TR/xslt

❑ XSLT 2.0 Specification —w3.org/TR/xslt20/

❑ Saxon —http://saxon.sourceforge.net/
Open Source XSLT and XQuery processor. Distributed as a Java jar file.

❑ msxsl.exe—microsoft.com/downloads/details.aspx?FamilyID=2fb55371-
c94e-4373-b0e9-db4816552e41&DisplayLang=en
Command-line XSLT processor from Microsoft.

276

Part IV: XML as Data

15_777779 ch08.qxp 3/1/07 11:46 PM Page 276

XX PPaa tthh

XPath is a compact expression language to query XML documents. Most of the expressions you
will find in XPath are simple to read and understand, even if you are not to use those libraries in
your yet an XPath expert. This in part explains the success of the XPath language, which is already
in wide use . Among other things, you can use XPath to extract information from an XML docu-
ment, check the validity of a document, or perform complex queries on a document.

In the first section of this chapter, you learn about some of the major features of the XPath expres-
sion language. After reading this section, you will be able to understand most XPath expressions
and write your own expressions.

If you are already an XPath expert, you can jump directly to the “Lessons from the Trenches” sec-
tion. In this section, you will read some lessons that have been learned (often the hard way) over
the years by programmers using XPath in real-life situations.

You need a special engine to run XPath expressions. Engines often come in the form of libraries,
which you then use from a programming language. This chapter covers XPath libraries available
in Java, .NET, and PHP, and shows you how programs.

As always, having the right tool makes a big difference. So the last section of this chapter tells you
about some tools that will make your life easier when dealing with XPath expressions.

Major Features of XPath
What follows is a short introduction to some of the most important concepts and features of
XPath. Here you will learn how to navigate the tree structure of an XML document with path
expressions, about node types, predicates, axes, and sequences.

16_777779 ch09.qxp 3/1/07 11:46 PM Page 277

Nodes
XPath looks at an XML document as a tree of nodes. Let’s see what those nodes are through the following
example:

<catalog>
<product id=”mug”>

<price>5.95</price>
<description>Custom printed stainless steel coffee mug</description>

</product>
<product id=”table”>

<price>119.95</price>
<description>Natural maple bedside table</description>

</product>
</catalog>

From the perspective of XPath, everything in this document is a node. There are seven types of nodes in
XPath. The following four are used most frequently:

❑ Element nodes, such as catalog or product.

❑ Attribute nodes, such as id=”mug”.

❑ Text nodes, such as 5.95 or Custom Printed Stainless steel coffee mug.

❑ Document node is a somewhat artificial node that stands as the root the tree, with one of its chil-
dren (and sometimes its only child) being the root element (such as catalog in the previous
example).

The other three types of nodes that you might encounter occasionally in XPath are as follows:

❑ Processing instructions

❑ Namespaces

❑ Comments

Do not confuse elements with tags. Tags refer to the lexical structure of XML, where <product> and
</product> are opening and closing tags, and elements are what is placed between these tags, such as
the id, price, and description attributes of that product.

In XPath, you always talk about elements, not tags. If you write an expression that points to the first
product element, it returns the whole element, including its attributes and anything else between the
opening and closing tags in the textual representation of XML.

Tree Structure
Nodes are organized in a tree structure as follows:

❑ Every node has exactly one parent, except the document node, which doesn’t have a parent.

❑ Nodes can have zero or more children nodes.

278

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 278

❑ Nodes that have same parent are called siblings.

❑ The ancestors of a node are its parent, the parent of the parent, and so on until you reach the
document node.

❑ The descendants of a node are its children, the children of those children, and so on until you
reach and include nodes that don’t have any children.

Path Expressions
The tree structure of an XML document is not unlike the structure of a file system. Instead of the ele-
ments and attributes used in XML, the file system has directories and files. On UNIX or Windows, you
use a particular syntax, called a path, to point to a directory or file. The path to a file looks like C:\
windows\system32\drivers\etc\hosts on Windows or /etc/hosts on UNIX. In both cases, you
specify directory and file names starting from the root and separating them by a forward or backward
slash. For example, A/B or A\B refers to the child B of A.

The same is true in XPath. So the /catalog specifications in the previous document example signify the
following:

❑ /catalog points to the catalog element.

❑ /catalog/product points to the two product elements, which are children of the catalog
element.

Just as with path expressions on UNIX or Windows, you can use .. (two dots) to refer to parent node.
For example:

❑ /catalog/product/.. is another (albeit longer) way to point to the catalog element.

❑ /catalog/.. points to the parent of the catalog element, which is the document element.

In the first expression, /catalog/product returns two catalog elements. So you might wonder if
/catalog/product/.. returns the parents of these two elements, and if the parent would be the
same if the expression returns the catalog element twice. This doesn’t happen, because a path expres-
sion never returns duplicate nodes. So /catalog/product/.. returns just one node: the catalog
element.

If you prefix a name with @ (the “at” symbol), it points to an attribute with that name. For instance, the
following expression returns the two id attributes “mug” and “table”:

/catalog/product/@id

Predicates
What if you don’t want to get all the products from the catalog, but only those with a price lower than 10
dollars? You can filter the nodes returned by a path expression by adding a condition between square
brackets. So to return only the products with a price lower than 10 dollars, you would write this:

/catalog/product[price <= 10]

279

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 279

There are two types of predicates:

❑ When the expression in the predicate evaluates to a value of a numeric type, then it is called a
numeric predicate. A numeric predicate selects the node that has a context position equal to the
specified value. Context positions are 1-based (not 0-based). For example:

❑ /catalog/product[1] returns the first product, the one with id “mug”.

❑ /catalog/product[0] doesn’t return any product, because the context position of the
first product is 1. Note that this is a valid expression that does not generate an error.

❑ When the expression does not evaluate to a value of numeric type, it is taken as a Boolean value.
If the expression does not evaluate to a Boolean value, it is converted with the boolean() func-
tion. For example:

❑ /catalog/product[price >=100 and price < 200] returns products with a price
point between 100–200 dollars.

❑ /catalog/product[contains(description, ‘table’)] returns products with
descriptions that contain the word “table.” Note that the predicate expression uses the
contains() function, and the ‘table’ string is within single quotes.

280

Part IV: XML as Data

Boolean expressions in predicates
Many developers don’t know exactly how the boolean() function works, so the best
solution is to always write expressions that either return a numeric value or a Boolean
value. For example:

❑ boolean() converts an empty string to false and a nonempty string to
true, even if the value of the string is the text “false”. So to get all the
products with nonempty descriptions, you could write this:

/catalog/product[string(description)]

However, to ensure that you get numeric or Boolean values, you should
write this:

/catalog/product[description != ‘’]

❑ boolean() converts an empty sequence to false and a node to true. So you
could use the following expression to return all the products that have an
id attribute:

/catalog/product[@id]

However, to state your intention more clearly, you can use the exists()
function, like this:

/catalog/product[exists(@id)]

16_777779 ch09.qxp 3/1/07 11:46 PM Page 280

Axes
XPath expressions navigate through a tree. An axis is the direction in which this navigation happens.
Let’s see what this means on the expression /catalog/product that you have seen before:

❑ The first / refers to the document node.

❑ catalog selects the catalog child element of the document node.

❑ /product selects the product elements children of the catalog element.

The / operator is used here to select child elements. But you can also use it to navigate other axes, as they
are called in XPath. For example, this expression selects the product elements that follow the first product:

/catalog/product[1]/following-sibling::product

In the case of the document you saw earlier, this returns the second product. You select the following-
sibling axis by prefixing the last occurrence of product with following-sibling::. When no axis is
specified in front of an element name, the child axis is implied. So you could rewrite the /catalog/
product expression as follows:

/child::catalog/child::product

There are 13 axes available in XPath. The eight axes that are most frequently used are these:

❑ descendant

❑ descendant-or-self

❑ following-sibling

❑ following

❑ ancestor

❑ preceding-sibling

❑ preceding

❑ ancestor-or-self

The remaining five axes are these:

❑ parent

❑ self

❑ attribute

❑ child

❑ namespace

281

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 281

In the previous example, the child and attribute axes were written as /child::catalog, which is
just a long version of /catalog. Similarly, /catalog/product/attribute::id is a long version of
/catalog/product/@id. But it is interesting to note here how these are defined as two distinct axes. One
consequence is that an attribute is not a child of the element on which it is defined. The @id attribute is
not a child of the product element, but the product element is the parent of the @id attribute.

Sequences
You have seen expressions that return more than one element, like /catalog/product. They are said to
return a sequence. Sequences in XPath are similar to lists in other languages — they can contain items of
different types, they can contain duplicates, and items in the sequence are ordered. However, a sequence
cannot contain other sequences — they cannot be nested.

Path expressions can return sequences, but you can also build your own sequences using the comma (,)
operator. For example, the following expression returns a sequence with the two numbers 42 and 43:

(42, 43)

Lessons from the Trenches
Even starting with little or no knowledge in XPath, you can become productive very quickly. This is
because in most cases, simple problems have a simple solution in XPath. But you can also solve complex
problems with XPath. While simple in appearance, XPath is in fact a very powerful language. In this sec-
tion you learn about some more advanced features of the languages. But not those obscure features no
one knows about, but those we have found the most useful based on years of practical experience with
XPath.

When A != B Is Different from not(A = B)
Are you a genius? Of course you are. Then the same question written in XPath, you = genius, returns
true(). In this case, you != genius must return false(). No rocket science here: if A = B returns
true(), you expect A != B to return false(), and the other way around. In other words, you expect A
!= B and not(A = B) to be the same.

In most cases they are, but not always. Because of the way XPath compares sequences, the result of the
comparison is true if and only if one value in the first sequence and one value in the second, when com-
pared with the specified operator, return true(). This causes the following:

❑ If at least one of the two sequences is empty, the comparison always returns false, so both () =
42 and () != 42 return false().

❑ For some sequences, you can find pairs of values, one in the first sequence and one in the sec-
ond sequence, that both match the = and != operators. For example, (1, 2) = (1) returns
true() because 1 is in both sequences. But (1, 2) != (1) also returns true(), because 2 from
the first sequence is not equal to any value from the second sequence.

282

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 282

Is this all here to confuse you? Certainly not. The way comparison works in XPath has a number of bene-
fits, maybe the most important one in practice being that you can use the = and != operators to check if a
value is present in a sequence, like some sort of contains() function. For example, x = (1, 2, 3, 5, 8,
13, 21, 34, 55, 89), where x is of type xs:double, returns true() if x is a Fibonacci number lower
than 100.

The Many Faces of a Document
From time to time, you will come across a function in XPath that returns an XML document. If you are
using XSLT 1.0 or 2.0, XPath 2.0, XQuery, or XForms, you can use a mix of instance(), doc(), and
document().

XForms is a technology used to create forms. The data you enter in the form is stored in one or more
XML documents, which in the XForms jargon are called XForms instances. Each document in XForms has
an id, as in the following:

<xforms:instance id=”address”>
<address>

<street>1 Infinite Loop</street>
<city>Cupertino</city>
<state>California</state>

</address>
</xforms:instance>

Assuming that the document in the instance with the address id is also accessible at the URI http://
www.example.org/address.xml, consider the following XPath expressions:

❑ instance(‘address’)

❑ doc(‘http://www.example.org/address.xml’)

❑ document(‘http://www.example.org/address.xml’)

All three expressions return the same “address” document. You can use the first expression with
instance() in XForms, the second one with doc() wherever you have XPath 2.0 or XQuery expres-
sions, and the third with document()within an XPath expression in XSLT 1.0 or 2.0 stylesheets.

Although all three return the same address document, they don’t return the same node of the document.
instance() returns the root element, and doc() and document() return the root node. This means
that to point to the street element, you will need to write the following:

❑ instance(‘address’)/street

❑ doc(‘http://www.example.org/address.xml’)/address/street

❑ document(‘http://www.example.org/address.xml’)/address/street

Note how the name of the root element (address) is used with doc() and document() but not with
instance(). Granted, the difference between doc()/document() on one side and instance() on the
other side is trivial. But it is surprisingly easy to make a mistake when you’re using both functions in the
same day. So keep this in mind: the same document can have many faces depending on which function
you use.

283

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 283

Tuning Your XPath Expressions
When you write an XPath expression, you describe what information you want to extract from an XML
document, but you are not saying how that information ought to be extracted. Consider, for example, the
expression /phonebook/person[starts-with(phone-number, ‘323’) and last-name = ‘Lee’].
Imagine you are running this query on a hypothetical XML document that contains the information
found in the phone book. The query retrieves all the persons from Hollywood (area code 323) with the
last name Lee. Here are a few ways in which the XPath engine could run this query:

❑ It can go through the list of persons and start by checking the first condition first. If the first
three digits of the phone number are 323, it checks if the last name is Lee.

❑ A more advanced engine might figure that because the first test on the phone number is more
expensive than the straight comparison of the last name with Lee, to run the query more effi-
ciently it will instead do the second comparison first and only perform the comparison on the
area code if the last name is Lee.

❑ An even more advanced engine might maintain an index of the persons based on their last
name. With this index, it can quickly locate the persons with the last name Lee. A standalone
XPath engine wouldn’t typically index XML documents, but this can be expected from an
engine running in a database.

The XPath engine has a lot of freedom in the way it runs your XPath queries, and unless you know the
engine you are using extremely well, you don’t know if a query will run more efficiently because it is
written one way instead of another way. So start by writing your queries optimizing for human readabil-
ity, making your queries explicit and simple to understand. For example:

❑ Instead of //person use /phonebook/person, because of the following:

❑ Using /phonebook/person might be more efficient. With //person, some engines will
traverse every element of the document, but they would only need to go through child
elements of the root element with /phonebook/person.

❑ /phonebook/person states your intension more clearly and makes your code more
readable.

❑ In large XPath expressions, avoid duplicating part of the expression. For example, the expression
(count(/company/department[name = ‘HR’]/employee), avg(/company/department
[name = ‘HR’]/employee/salary)) returns a sequence with two numbers: the number of
employees in the HR departments, and their average salary. Instead, write it as for $hr in
/company/department[name = ‘HR’] return (count($hr/employee), avg($hr/
employee/salary)). Unlike XQuery, XPath doesn’t have a let construct for you to declare
variables. In some cases however, you can get around this by using the for construct.

Don’t try to optimize your XPath expression prematurely. Or as 37signals puts it in their book Getting
Real, “it’s a problem when it’s a problem.” Until then, just write clean and readable expressions.

284

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 284

Function Calls in Path Expressions
You may have seen an expression like /company/department[@name = ‘Engineering’]/employee
[@firstname = ‘Bruce’] used to retrieve the employee element that corresponds to that Bruce guy in
the engineering department. This is a path expression, and each step of the expression selects some node
from the input document relative to the nodes selected by the previous step.

One new feature of XPath 2.0 is that you can have functions calls as a step expression. Consider this
document:

<company>
<department id=”1” name=”HR”>

<employee firstname=”John” lastname=”Smith” salary=”60000”/>
<employee firstname=”Peter” lastname=”Strain” salary=”70000”/>
<employee firstname=”Carl” lastname=”Thompson” salary=”80000”/>

</department>
<department id=”2” name=”Engineering”>

<employee firstname=”Letticia” lastname=”Vallejo” salary=”80000”/>
<employee firstname=”Bruce” lastname=”Wilson” salary=”90000”/>

</department>
</company>

What if you want to return the name of each department and the average salary of the employees work-
ing in that department? With imperative languages like Java, C++, or most scripting languages, you
would typically use some type of iteration. In XPath, the equivalent would be to use the for construct to
iterate over the departments and then run the avg() function to compute the average salary for each
department, like this:

for $d in /company/department return avg($d/employee/@salary)

When executed on the preceding document, this expression returns (70000, 85000). But instead of
having just a list of average salaries, you also want the name of the department, as in: (‘HR’, 70000,
‘Engineering’, 85000). A simple addition to the previous query will get you the expected result:

for $d in /company/department return (string($d/@name), avg($d/employee/@salary))

As mentioned earlier, with XPath 2.0 you can use function calls as step expressions. So instead of
string($d/@name), you can write $d/@name/string(). As long as $d/@name returns an attribute
node instead of an empty sequence, those two expressions are equivalent. So the one you use is a matter
of personal choice. However, keeping simplicity and clarity in mind, it would probably be best to use
$d/name/string(), which does exactly what you’d think from looking at it: given the element in the
variable $d, take the attribute name, and then take the string value of that attribute.

Note that in cases where $d/@name can potentially return an empty sequence, those two expressions are
not equivalent anymore, because string() applied to an empty sequence returns a zero-length string.
So the following occurs:

❑ string(()) returns a zero-length string.

❑ ()/string() returns an empty sequence.

285

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 285

With XPath 2.0, you can further simplify the expression you saw earlier, getting rid of the
<code>for</code> construct altogether to create a much simpler expression such as this:

/company/department/(string(@name), avg(employee/@salary))

You can push the envelope further. In addition to the average salary for each department, you can get
the first name of the person who has the highest salary, like this:

/company/department/(string(@name), avg(employee/@salary), employee[@salary =
max(../employee/@salary)]/@firstname/string())

This returns (‘HR’ 70000 ‘Carl’ ‘Engineering’ 85000 ‘Bruce’). Try to imagine how many lines of
code you would need with a traditional programming language if you had to extract the same informa-
tion from a text file with tab separated fields, for example. Indeed, using XML to represent data, and
XPath 2.0 to extract information for XML can be quite a time-saver.

Using Comments and Nested Comments
Did you know you could have comments in XPath? You get lured into using XPath because of its simplicity,
and as you get more and more familiar with the language, and recognize how powerful it is, your XPath
expressions tend to grow in size. Then one day, they get to such a level of heftiness that adding comments
within the expression becomes a requirement. And yes, you can do it. For example, the following adds a
couple of comments to the expression you saw previously:

/company/department/(
string(@name), (: Department name :)
avg(employee/@salary), (: Average salary :)
employee[@salary = max(../employee/@salary)]

/@firstname/string() (:Employee with highest salary :)
)

You start a comment with (: and close it with :). One interesting feature of XPath comments is that
they can be nested, a feature that is missing from many languages. Here is the use case: you have a com-
plex expression and, maybe the sole purpose of verifying a hypothesis, you would like to run only a
subset of that expression. Say that in the preceding expression, you would like to return only the name
of each department. For this, you need to comment the rest of the expression — the part that computes
the average salary per department and the first name of employee with the highest pay. Because XPath
supports nested comments, you don’t have to worry about the :) after Average salary as being inter-
preted as the end of your comment. You can write this:

/company/department/(
string(@name)
(:
, (: Department name :)
avg(employee/@salary), (: Average salary :)
employee[@salary = max(../employee/@salary)]

/@firstname/string() (:Employee with highest salary :)
:)

)

286

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 286

When this expression is executed on the previous document, it returns the sequence (‘HR’
‘Engineering’).

Because XPath 2.0 supports nested comments, in most cases you don’t need to worry if part of an
expression you are commenting out already contains comments. In most cases it does, but not always.
Consider the following expression:

/company/department[@id = 1 and @name != ‘:)’]

This is a valid XPath expression and when executed on the document shown earlier, it returns the element
corresponding to the HR department, because its id is 1 and its name is not equal to the string “(:”.

Now look at the second condition in the predicate:

/company/department[@id = 1 (: and @name != ‘:)’ :)]

If you run this expression, the XPath engine will throw an error at you that will read something like
“Unmatched quote in expression.” This is because while the comment is being parsed, the parser only
looks for the following two-character sequences:

❑ (:, which signals the beginning of a nested comment

❑ :), which signals the end of a comment, nested or not

When the parser finds the :) that was originally inside a string, it considers it the end of the comment.
So essentially the previous expression becomes this:

/company/department[@id = 1 ‘ :)]

Notice that the single quote that follows the :) is still there, hence the error message “Unmatched quote
in expression.” Fortunately, this only happens very rarely, and you can usually comment parts of your
expressions without any worries, even if the part you are commenting out contains a comment.

Support for nested expressions is one of those features that you could wish every language had, espe-
cially XML. Maybe this will be considered for XML 2.0, if there is ever one.

Using Regular Expressions
With XPath 2.0, you get three new functions that let you use regular expressions. But you might be won-
dering why you need regular expressions in XPath. Regular expressions are useful to extract information
from text, and because information is already clearly structured in XML, you should not need regular
expressions, right? Although this is certainly true in theory, the documents you have to work with often
contain information buried in strings. Consider this document, which represents an order from a customer:

<order>
<number>3837482006122593897</number>
...

</order>

287

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 287

Here, the order number starts with a six-digit client number, followed by the year, month, and day when
the order was processed, and it ends with digits that make the order number unique if the client sent
multiple orders in the same day. You can extract the date from the order number with a series of calls to
the substring() function. However, this replace() function in XPath 2.0 makes your job much easier:

replace(/order/number,
‘^[0-9]{6}([0-9]{4})([0-9]{2})([0-9]{2})[0-9]{5}$’,
‘$1-$2-$3’)

Execute this XPath expression on the document, and you will get 2006-12-25, where:

❑ [0-9] matches one digit (i.e. character between 0 and 9).

❑ Adding {n} matches exactly n digits. For example [0-9]{4} matches 4 digits.

❑ The ^ at the beginning and the $ at the end of the expression indicate that the expression
matches the whole string, not just a subset of the string.

❑ Adding parenthesis around parts of the expression enables you to refer to what was matched by
this part of the expression with $x. You use $1 to refer to the first parenthesized expression, $2
to the second, and so on.

Regular expressions that are available in different languages or libraries are similar, but there are quite a
few variations. Regular expressions in XPath are a superset of those available in XML Schema, which in
turn are based on Perl regular expressions. One difference is that regular expressions in XML Schema do
not support the ^ and $ character, the {n} qualifier, or the group semantic using parenthesized expres-
sions. Those features are all used in the previous expression, so it is quite fortunate that XPath offers sig-
nificant extensions over what is available in XML Schema.

The unordered() Function: Quite an Oddity
There is a function in XPath that takes one parameter and that XPath engines are free to implement by
just returning the parameter. It is the unordered() function.

The unordered() function takes a sequence of items as a parameter and returns a sequence that con-
tains the same items, but not necessarily in the same order. The purpose of this function is not to shuffle
items around, but to give an optimization hint to the XPath engine. Consider this expression:

/company/department/employee[@salary > 80000]

This returns all the employees with a salary higher than 80,000 dollars. In XPath, any expression that
uses the / path operator must return nodes in document order. This expression meets that criteria, so if
Leticia appears before Bruce in the document, Leticia must be before Bruce in the sequence of nodes
returned by the expression.

If the document is stored in an XML database, you might have an index for salaries, and the XPath
engine might be able to use that index to quickly retrieve the sequence of employees with a salary higher
than 80,000 dollars. But because it is created based on the index, this sequence is ordered by increasing
salary. To return nodes in document order, the XPath engine needs to reorder the nodes in the sequence.
If you don’t care about getting the nodes in document order, you can use the unordered() to tell the
engine that this last reordering is not necessary, like this:

unordered(/company/department/employee[@salary > 80000])

288

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 288

If you think that unordered() adds clarity to your expressions, then you should use it. But most likely,
adding unordered() will do more to clutter your XPath expressions. So you should find out if your
engine does anything special with unordered() before using it. If you are using a standalone engine,
most likely unordered() won’t work. XML databases might handle unordered() in a special way, but
they are not guaranteed to do so. For example, using unordered() in the open source eXist XML
database won’t have any effect.

Union and Sequence Operators
Consider these two XPath expressions:

❑ /r/a | /r/b

❑ /r/a , /r/b

The first expression uses the union operator (|), which already existed in XPath 1.0. The second expres-
sion uses the sequence concatenation operator (,). When they are executed on the same document, they
both return the following sequence, which contains element a first and element b second:

<r>
<a/>

</r>

If you modify the expression to put /r/b before /r/a, the expression /r/b | /r/a still returns the same
result, but /r/b , /r/a returns a sequence with the b element first. This illustrates one difference
between the union and concatenation operators: the union operator always returns nodes in document
order, and concatenation does not change the order you specified.

Also, the sequence returned by the union operator never contains duplicates, so the following occurs:

❑ /r/a | /r/a returns the a element.

❑ /r/a , /r/a returns a sequence that contains the a element twice.

You can only use the union operator on nodes, so using the previous example, note the following:

❑ /r/a | 1 is not a valid expression.

❑ /r/a , 1 returns a sequence with the a element first and the atomic value 1 second.

With XPath 2.0, instead of the | character, you can use union, which is strictly equivalent to |.

//h1[1] Different Than (//h1)[1]
Say you want to extract the main title from an XHTML document. Looking for h1 elements in the document
is a good bet, but there might be more than one h1, so you decide to take the first one, in document order. At
first, you might think that you could use XPath expression //h1[1] to do this. Although it will return the
first h1 on some documents, in some cases it will also return other h1 elements. Consider this document:

<body>
<div>

289

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 289

<p/>
<h1>A</h1>
<h1>B</h1>
<p/>

</div>
<div>

<h1>C</h1>
<p/>
<h1>D</h1>
<p/>

</div>
</body>

Here //h1[1] returns the h1 with A and C, but not B and D. Those are the first h1 child elements of
their parent. The expression //h1[1] works this way because the predicate operator ([]) has a higher
precedence than the // operator. So //h1[1] is in fact equivalent to //(h1[1]), and not (//h1)[1].
In this case, it is the later that you want to use to get the first h1 element in the document.

The precedence of some operators, also sometimes referred to as operator priority, is nothing new. In most
languages, the multiplication operator has a higher precedence than that additive operator, so 1 + 2 * 3
reads 1 + (2 * 3), not (1 + 2) * 3. Operators can be ranked by their precedence, and for a given language
you can assign a number to each operator that represents its precedence. The higher the precedence of
an operator is, the higher the number is.

In XPath, the precedence of operators is formally defined by the grammar of the language. It can be
quite time-consuming to look at the XPath grammar to figure out what the precedence of an operator is,
because the grammar is scattered throughout the XPath specification. Fortunately, the editors have
included a table in the appendix with the precedence of each operator. The following table is sorted by
ascending precedence, so remember that the lower an operator is in the table, the higher its precedence.

Precedence Number Operators

1 , (comma)

2 for, some, even, if

3 Or

4 And

5 eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >>

6 to

7 +, -

8 *, div, idiv, mod

9 union, |

10 intersect, except

11 instance of

290

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 290

Precedence Number Operators

12 treat

13 castable

14 cast

15 -(unary), +(unary)

16 /, //

17 [], ()

Reverse Axis — Evil at Times
An XPath expression can return a sequence. Items in the sequence are in a certain order, and each of
them has a context position. For example, consider this document, with three employees — John, Peter,
and Carl:

<company>
<employee firstname=”John”/>
<employee firstname=”Peter”/>
<employee firstname=”Carl”/>

</company>

Now consider these two expressions:

❑ /company/employee[1]/following-sibling::employee

❑ /company/employee[3]/preceding-sibling::employee

The first expression returns the employees that follow the first employee. There is not much to be sur-
prised about here: John is the first employee, so it returns Peter and Carl in that order. The second
expression gets the employees before Carl. It returns John and Peter in this order, because all the path
expressions in XPath return nodes in document order. This can be summarized as follows:

❑ The first expression returns Peter, Carl.

❑ The second expression returns John, Peter.

Now add the predicate [1] to both of those expressions, as follows:

❑ /company/employee[1]/following-sibling::employee[1]

❑ /company/employee[3]/preceding-sibling::employee[1]

291

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 291

When the value of a predicate is of a numeric type, as is the case here, the predicate is called a numeric
predicate. A numeric predicate is true if the value is equal to the context position and false otherwise. So,
the item in each sequence that has a context position equal to 1 is as follows

❑ The first sequence is composed of Peter and Carl in that order, and Peter is the employee with
context position equal to 1.

❑ The second sequence is composed of John and Peter in that order, and the second employee in
the sequence (which in this case is Peter) is the one with a context position equal to 1 (not John,
who is the first employee in the sequence).

The reason for this potentially surprising result is that when you use a reverse axis, such as preceding-
sibling, position is assigned in reverse order. Because a reverse axis is used here, the context position
of the last item in the sequence is 1.

You can think of the engine as assigning context position starting from the node where you start your
search. If you are going down, as with following-sibling, context positions are assigned in document
order, but if you are going up, as with preceding-sibling, then context positions are assigned in
reverse document order. Even if context positions are assigned differently depending on the type of axis
you are using, the nodes returned by a path expression are always in document order.

Debugging with trace()
XPath is designed to be used within a host language, such as XSLT. Some host languages provide a trac-
ing facility, such as the <xsl:message> construct in XSLT. Other host languages don’t, such as XForms.
For this reason, the XPath trace() function can be quite useful.

trace() is an XPath 2.0 function. XForms 1.0 uses XPath 1.0, so unfortunately you can’t use trace()
in XForms, unless your XForms engine specifically supports XPath 2.0, as does Orbeon Forms.

trace() takes two arguments: a value, which is sequence of items, and a label, which is a string. It
returns the value and logs both the label and value in an implementation-dependent way. Consider what
is logged when you execute the following XPath expressions with the open source Saxon engine on the
employees document:

❑ The following expression:
trace(/company/employee[1]/@firstname, ‘Name’)

logs this:

Name [1]: attribute(firstname, untypedAtomic): /company/employee[1]/@firstname

❑ The following expression:

trace(string(/company/employee[1]/@firstname), ‘Name’)

logs this:

Name: xs:string: John

❑ The following expression:

trace(/company/employee, ‘Employee’)

292

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 292

logs this:

Employee [1]: element(employee, untyped): /company/employee[1]
Employee [2]: element(employee, untyped): /company/employee[2]
Employee [3]: element(employee, untyped): /company/employee[3]

❑ The following expression:

trace(/, ‘Document node’)

logs this:

Document node: document-node(): /

When you use trace() in an expression, there is no guarantee that the function will be executed,
because the engine might not need to run that part of the expression, which means that you might not
see anything in the trace output. The following expression reads false() and ...:

false() and trace(true(), ‘This doesn’t get displayed’)

This is an and expression that starts with false(), so whatever comes after that doesn’t matter: the
result is always false(). In cases like this, the XPath engine typically does not run the trace() func-
tion call.

You can see what an expression returns by putting the whole expression inside a trace(), as shown in
the previous examples. You can also use it inside a path expression. For example, this returns a sequence
of names:

/company/employee/string(@firstname)

To see what are the employees taken into consideration by this expression, just add a trace() step
within the path expression, like this:

/company/employee/trace(., ‘Employee’)/string(@firstname)

XPath in Java, .NET, and PHP
You can evaluate an XPath expression from a tool, like an XML editor. You will learn about some of the
tools that can be used for this purpose in the section “Tools for XPath”. But you often need to evaluate
an XPath expression from one of your programs, which in most cases means that you will need to use an
XPath library. In what follows, you will learn how to use XPath libraries to evaluate XPath expressions
in three programming languages: Java, C#, and PHP.

XPath in Java
The Java API for XML Processing (JAXP) is a standard Java API that includes an API for XPath. So using
JAXP, you can write code in a way that is mostly independent of a particular XPath implementation. If
you write some code using JAXP running a current implementation of XPath, you will be able to easily
switch to another XPath implementation in the future. JAXP not only makes your code portable to other
XPath implementations, but it also makes your knowledge portable. You will be able to use what you
learn here with any implementation of XPath.

293

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 293

JAXP comes out-of-the-box with J2SE 5 and newer. If you are using J2SE 4, you can download the Sun
JAXP package from https://jaxp.dev.java.net/. Follow this step-by-step procedure to learn how
to use JAXP from your Java program:

The code in this procedure uses the Saxon implementation of the JAXP. There are two versions of Saxon:
Saxon-SA is the schema aware version, and Saxon-B is the open source version. The only limitation of
Saxon-B is that it does not provide any of the schema-aware features, which is not a concern for what you
are doing here. You can find more about Saxon and download it from http://saxon.sourceforge
.net/.

1. All the classes used in the following steps are declared here. Some come from the JAXP library,
others come from Saxon, and one comes from SAX (the Simple API for XML).

// Classes from JAXP
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath
import javax.xml.xpath.XpathExpression;
import javax.xml.transform.sax.SAXSource;

// Class from SAX
import org.xml.sax.InputSource

// Classes from Saxon
import net.sf.saxon.xpath.XPathEvaluator;
import net.sf.saxon.om.NamespaceConstant;

2. Create an XPath factory. To do this, call the JAXP method XPathFactory.newInstance() and
pass a URI as parameter. The URI you need to pass to use the Saxon implementation is
http://saxon.sf.net/jaxp/xpath/om. Instead of using the literal string, you reference the
public static final string NamespaceConstant.OBJECT_MODEL_SAXON as follows:

XPathFactory xpathFactory =
XPathFactory.newInstance(NamespaceConstant.OBJECT_MODEL_SAXON);

3. Use the factory to create XPath object. The object returned by the factory implements the inter-
face javax.xml.xpath.XPath, but because this code is using the Saxon implementation, you
know that it is an instance of net.sf.saxon.xpath.XPathEvaluator so you can just do this:

XPath xpath = xpathFactory.newXPath();

4. The object that represents the XML document on which the XPath expression is evaluated is
XPath implementation dependent. With Saxon, this object implements the net.sf.saxon
.om.NodeInfo interface, and you create it with the instance of XPathEvaluator from step 3.
The XPathEvalutor.setSource() method used on the third line takes a SAXSource, which is
created based on the URL of the XML file on which the XPath expression will be evaluated:

InputSource inputSource = new InputSource(“http://www.example.com/catalog.xml”);
SAXSource saxSource = new SAXSource(inputSource);
NodeInfo nodeInfo = ((XPathEvaluator) xpath).setSource(saxSource);

5. Now that you have all those objects in place, you can directly evaluate an XPath expression with
xpath.evalute(). Instead, the following code takes the long route — it first compiles the
expression, and then evaluates the expression: You will want to compile your expressions if you
are evaluating them multiple times, in which case your program will run more efficiently
because the XPath expression will be analyzed and compiled only once.

294

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 294

XPathExpression expression = xpath.compile(“local-name(/*)”);

6. Evaluate the expression you just compiled, passing the object that represents the XML document
you created in step 4. Specify the type of object you expect in return with the second argument. In
this case, you specify the String type, so you can safely cast the object returned by evaluate()
to String:

expression.evaluate(nodeInfo, XPathConstants.STRING);

The full source code for this program is available at wrox.com.

XPath on .NET
The XPath implementation that was used in the Java code in the previous section is Saxon. It is also avail-
able for the .NET platform. You can download Saxon for .NET from http://saxon.sourceforge.net/.
To run an XPath expression on a document with Saxon for .NET, follow these steps:

1. You are using System and Saxon.Api in this program:

using System;
using Saxon.Api;

2. Create an instance of Processor, and then use it to create XPathCompiler and
DocumentBuilder, as follows:

Processor processor = new Processor();
XPathCompiler compiler = processor.NewXPathCompiler();
DocumentBuilder builder = processor.NewDocumentBuilder();

3. The object document that represents the XML document is created by loading the file from a
URL. You need to set a base URI on the builder, so it can resolve any URI that could appear in
the document, such as a reference to DTDs. Here’s how to do this:

builder.BaseUri = new Uri(“http://www.example.com/”);
XdmNode document = builder.Build

(new Uri(“http://www.example.com/catalog.xml”));

4. You get to an object that you can use to evaluate the XPath expression by first calling the
Compile() and then Load() methods, which gives you an instance of XPathSelector:

XPathSelector selector = compiler.Compile(“local-name(/*)”).Load();

5. Use the instance of XPathSelector you created in step 4 to set the document that contains the
expression to be evaluated , and then call the Evaluate() method to evaluate the XPath expres-
sion on the document:

selector.ContextItem = document;
XdmValue value = selector.Evaluate();
Console.WriteLine(value.ToString());

The full source code for this program is available at wrox.com.

295

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 295

XPath in PHP
PHP ships with a set of functions that use of the GNOME XML library. Simplicity is one reason why
PHP became so popular. Evaluating an XPath expression on a document is just as simple. In just four
lines, you can read an XML file, evaluate an XPath expression on that document, and print the result.
Consider the following program:

$doc = domxml_open_file(“catalog.xml”);
$xpathContext = $doc->xpath_new_context();
$rootName = $xpathContext->xpath_eval(“local-name(/*)”);
print($rootName->value);

This is what’s happening here:

❑ The first line reads the XML document catalog.xml from a file on disk.

❑ The second line creates an XPath evaluation context for that document.

❑ With the XPath context, the third line evaluates the expression.

❑ The fourth line prints the result.

That’s it. (You can view this as PHP’s contribution to saving trees.)

Tools for XPath
Using the right tool for the job is just as important for programmers as it is for construction workers. The
right tool will help you write XPath expressions quickly and avoid errors. A number of tools let you
experiment with XPath by writing an expression and quickly seeing what the result will be. This type of
tool is particularly appropriate for XPath because it has these characteristics:

❑ XPath expressions are often short. You can type them quickly. Sometimes a text field is all you
need to enter an expression.

❑ XPath expressions are not destructive. All you can do with XPath is extract information for a
document, so your worst expression won’t end up reformatting your hard drive.

The tools you learn about in this section let you quickly see what an XPath expression returns when
evaluated on a certain document. You can determine which tools suit your environment best.

Online XPath Sandbox
The XPath sandbox is an online tool that doesn’t require any installation. All you need is a web browser.
You can access it by going to the followingURL: orbeon.com/ops/goto-example/xpath

Figure 9-1 shows the relevant part of the page you will see in your browser.

296

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 296

Figure 9-1

You can use this page as follows:

❑ Input area — Use this area to modify the document on which your XPath expression is evaluated.

❑ Xpath area — Type the XPath expression here.

❑ Output area — The result of your expression evaluation on the document is shown here.

The service performs the XPath evaluation as you type, so you don’t need to worry about having to click a
submit button. If your expression is invalid, an error will be displayed at the top of the page. This service
uses the XPath engine in Saxon, which is known as one of the most compliant implementations of XPath.

XPath in Your Browser
XPath is often used to extract information from web pages. More often than not, HTML is not well-
formed XML. However, you can transform HTML into XML automatically with tools like HTML Tidy
(http://tidy.sourceforge.net). This tool has a derived C library called TidyLib; bindings for PHP,
Perl, Python, and other languages; and ports, such as JTidy (http://sourceforge.net/projects/
jtidy), which is written Java.

Writing an XPath expression that extracts the piece of information you are interested in from a web page
is often an iterative process. For example, say you want to extract the current value of the Dow from the
Google Finance page shown in Figure 9-2.

You can use the XPath Checker add-on for Firefox to extract what you want from this page. Just install
Firefox from https://addons.mozilla.org/firefox/1095/, restart it, go to the Google Finance
page, and choose View XPath from the contextual menu. After looking at the source of the page, you
might notice that the values for Dow are located the line of a table with id mkt0. Enter the expression
//tr[@id= ‘mkt0’] in the XPath Checker window, and make sure that it extracts the expected line, as
shown in Figure 9-3.

297

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 297

Figure 9-2

Figure 9-3

The current value for the Dow is in the second column, which you can extract by entering the expression
//tr[@id= ‘mkt0’]/td[2].

298

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 298

XML Editors
Most XML editors like XML Spy (altova.com/products/xmlspy/xml_editor.html) and Stylus
Studio (stylusstudio.com/) provide a way for you to evaluate an XPath expression on a document
you have opened in the editor. Figure 9-4 shows the interface provided by XML Spy.

Figure 9-4

299

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 299

Eclipse and IntelliJ
If you already have a Java IDE such as Eclipse (eclipse.org/) or IntelliJ (jetbrains.com/idea/), you
might want to use the XML editor provided by that IDE instead of installing a specialized XML IDE.
Eclipse and IntelliJ don’t provide a tool to evaluate XPath expressions outside the box, but you can
download a third party plug-in as follows:

❑ You can install the XPathView plug-in for IntelliJ from File ➪ Settings ➪ Plugins. XPathView can
evaluate an expression on a document as shown in Figure 9-5, or you can use it to search for
information from a number of files.

❑ The Eclipse-XPath-plugin is a similar plug-in for Eclipse. You can find it at http://
sourceforge.net/projects/eclipse-xpath.

Figure 9-5

Summary
In this chapter, you got an overview of the major XPath features, and read about the lessons that pro-
grammers who use XPath in real-life situations have learned over the years. You were also introduced to
tools that you can use when you’re writing XPath expressions.

There is much more to XPath than what can be covered in just one chapter. If you want to learn more,
check out Michael Kay’s book XPath 2.0 Programmer’s Reference. And rest assured, this isn’t being recom-
mended just because it is published by the same editor as Professional XML: Michael is editor of both the
XPath 2.0 and the XSLT 2.0 specification, and he has implemented both in his Saxon product, which is a
superior XPath 2.0 and XSLT 2.0 implementation. His book will make also make you an XPath expert.

300

Part IV: XML as Data

16_777779 ch09.qxp 3/1/07 11:46 PM Page 300

References
W3C specifications can at times be intimidating, but you might want to check out the following for
reference:

❑ XPath 2.0 specification — This contains everything about the syntax and semantic of the
language. You can find it at www.w3.org/TR/xpath20/.

❑ XPath 2.0 and XQuery 1.0 Functions and Operators specification — One of the great benefits
of XPath 2.0 compared to XPath 1.0 is its extensive function library. This library includes
everything you need to deal with strings and dates. You can find it at www.w3.org/TR/
xpath-functions/.

❑ XPath 1.0 specification — Given the choice between using XPath 1.0 and 2.0, you should go
with XPath 2.0. But if you have to work with XPath 1.0, then the XPath 1.0 specification is your
reference. You can find it at www.w3.org/TR/xpath.

301

Chapter 9: XPath

16_777779 ch09.qxp 3/1/07 11:46 PM Page 301

16_777779 ch09.qxp 3/1/07 11:46 PM Page 302

XX QQ uu ee rr yy

XQuery is a declarative, typed, functional language designed from scratch by the XML Query
Working Group specifically for the purpose of querying data stored in XML format. XQuery shares
the same data model and the same XML Schema-based type system with other members of the
XML standards family such as XPath 2.0 and XSLT 2.0. XQuery is designed to work with XML
documents that are untyped (no schema associated with the data), typed with XML Schemas, or a
combination of both. XQuery 1.0 is basically a superset of XPath 2.0. In addition to the features of
XPath 2.0, it has the following capabilities:

❑ Adds an order by clause to the FLWOR (more on this later) clause to sort in nondocument
order

❑ Adds a let clause to the FLWOR clause to name results of expressions for further use

❑ Provides a way to specify static context items in the query prolog (such as namespace pre-
fix bindings)

❑ Provides the ability to construct new nodes

❑ Provides the ability to specify user-defined functions

❑ Provides the ability to create modules and libraries

In this chapter, you get an in-depth look at the features of XQuery, including its syntax through
examples. After that, you will be introduced to the support provided by Java and SQL Server 2005
for XQuery and the steps involved in working with XQuery from within Java and SQL Server 2005.

What Is XQuery?
XQuery is a fairly new language for querying XML data. It was designed from the ground up by
the XML Query Working Group of the W3C with the sole purpose of querying data stored in XML
format. As mentioned before, it is essentially a superset of XPath 2.0 that gives it all the features of

17_777779 ch10.qxp 3/1/07 11:47 PM Page 303

XPath 2.0 plus a long list of additional features. The great thing about XQuery is that it was built to work
with all XML documents, whether they are untyped, typed, or a combination of the two. In all cases, its
job is to query data stored in XML format. It does this by using the XPath navigational functionality.

XQuery Use Cases
Application areas for XQuery can be classified broadly as follows:

❑ XQuery for query and analysis — XQuery is excellent for querying huge chunks of data and
provides the capability to filter, sort, order, and repurpose the required information. Typical
applications include querying XML documents that represent semistructured information,
name-value pair property bags, analysis of application logs, transaction logs and audit logs to
identify potential application errors and security issues, and so on.

❑ XQuery for application integration — As organizations move away from proprietary application
integration approaches and start adopting standards-based application integration approaches,
the need for transforming data from internal application-specific formats to standard exchange
formats is gaining more focus. Because of its ability to construct and transform XML data,
XQuery caters to this need. One typical use of XQuery in the application-integration domain is
translating the vocabulary used by one application that uses a native XML database relational
data source into a language used by another application that uses an XML relational data format.

Advantages of XQuery
In addition to building on top of XML querying technologies such as XPath, and XSLT, XQuery also pro-
vides a number of advantages:

❑ It is easy to learn if knowledge of SQL and XPath is present.

❑ When queries are written in XQuery, they require less code than queries written in XSLT do.

❑ XQuery can be used as a strongly typed language when the XML data is typed, which can
improve the performance of the query by avoiding implicit type casts and provide type assur-
ances that can be used when performing query optimization.

❑ XQuery can be used as a weakly typed language for untyped data to provide high usability.

❑ Because XQuery requires less code to perform a query than does XSLT, maintenance costs are
lower.

❑ XQuery is supported by major database vendors.

Structure of an XQuery Expression
An XQuery expression consists of two sections — a prolog and a body. A prolog can in turn contain a
namespace declaration subsection. Namespace declarations are used to define a mapping between prefix
and namespace URI, thereby enabling you to use the prefix instead of the namespace URI in the query
body. You can also refer to element names without the prefix by binding a default namespace for ele-
ment names, using the declare default namespace declaration.

The body of an XQuery expression contains query expressions that define the result of the query. It can,
for example, be the signature FLWOR expression (see the “FLWOR Expressions” section in this chapter),
an XPath 2.0 expression, or another XQuery expression such as a construction or arithmetic expression.

304

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 304

A Simple XQuery Example
XQuery is used to query an XML document, and for that you need an XML document to talk about
while examining the various queries. For the purposes of this chapter, consider the XML document in
Listing 10-1, which describes the structure of a set of products.

LLiissttiinngg 1100--11:: SSaammppllee XXMMLL ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<Products>
<Product Category=”Helmets”>
<ProductID>707</ProductID>
<Name>Sport-100 Helmet, Red</Name>
<ProductNumber>HL-U509-R</ProductNumber>

</Product>
<Product Category=”Socks”>
<ProductID>709</ProductID>
<Name>Mountain Bike Socks, M</Name>
<ProductNumber>SO-B909-M</ProductNumber>

</Product>
<Product Category=”Socks”>
<ProductID>710</ProductID>
<Name>Mountain Bike Socks, L</Name>
<ProductNumber>SO-B909-L</ProductNumber></Product>

<Product Category=”Caps”>
<ProductID>712</ProductID>
<Name>AWC Logo Cap</Name>
<ProductNumber>CA-1098</ProductNumber>

</Product>
</Products>

The root element of this XML document is <Products>, which contains an arbitrary number of
<Product> elements. Each <Product> element, in turn, contains <ProductID>, <Name>, and
<ProductNumber> elements. In addition, the <Product> element also contains a Category attribute.

Just as SQL needs to be able to access any row or column in a relational table, XQuery needs to be able
to access any node in an XML document. XML structures have both hierarchy and sequence, and can
contain complex structure. Path expressions directly support hierarchy and sequence, and allow you to
navigate any XML structure. In its simplest form, an XQuery can simply be an XPath expression. For
example, to get a list of all of the product names that are of type “Socks”, you could use the following
XQuery:

doc(“Products.xml”)/Products/Product[@Category=”Socks”]/Name

The doc(“Products.xml”) part indicates the XML data store, which is an XML file named
Products.xml in this case. Given the preceding contents of the Products.xml file, the output of this
query would be as follows:

<Name>Mountain Bike Socks, M</Name>
<Name>Mountain Bike Socks, L</Name>

305

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 305

The output of an XQuery statement is a collection of XML elements. In the previous example, it is a col-
lection of <Name> elements.

Enclosed Expressions
In literal XML constructors, you can use curly braces ({ }) to add content that is computed when the
query is run. This is called an enclosed expression. For example, in the previous example, if you want all
of the <Name> elements to appear within an XML root element named <ProductNames>. This could be
accomplished with the following XQuery expression:

<ProductNames>
{ doc(“Products.xml”)/Products/Product[@Category=”Socks”]//Name }

</ProductNames>

With this addition, the output would be as follows:

<ProductNames>

<Name>Mountain Bike Socks, M</Name>
<Name>Mountain Bike Socks, L</Name>

</ProductNames>

Note that in this query, you used curly braces around the XPath expression within the <ProductNames>
element. The braces denote that the content within the braces is an XQuery expression, and not literal
content. For example, the following query omits the braces:

<ProductNames>
doc(“Products.xml”)/Products/Product[@Category=”Socks”]//Name

</ProductNames>

The output of this query would be as follows:

<ProductNames>
doc(“Products.xml”)/Products/Product[@Category=”Socks”]//Name

</ProductNames>

FLWOR Expressions
Similar to the T-SQL SELECT statement, XQuery FLWOR statements are the foundation for querying, fil-
tering, and sorting results from an XML document. FLWOR stands for for, let, where, order by, and
return and is pronounced “flower.” Although simple XPath expressions are useful, the real power of
XQuery shines through with FLWOR expressions.

Take a moment to think about a SQL SELECT clause. The main ingredients there are the SELECT, FROM,
and WHERE clauses. The FROM clause specifies the tables to query. Then the WHERE clause is evaluated for
each row in the FROM clause tables. Those rows that pass the evaluation have those fields that are speci-
fied in the SELECT clause output.

306

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 306

FLWOR statements are very similar to a SQL SELECT. As mentioned previously, it is made up of five
parts, or clauses, which do the following:

❑ for— Specifies the XML node list to iterate over, and is akin to the SELECT statement’s FROM
clause. The list of XML nodes is specified via an XPath expression. For example, if you wanted
to iterate over all of the <Product> elements, you would use the XPath expression doc
(“Products.xml”)/Products/Product.

❑ let— Enables you to declare a variable and give it a value.

❑ where— Contains an expression that evaluates to a Boolean, just like the WHERE clause in a SQL
SELECT statement. Each XML node in the XML node list in the for clause is evaluated by the
where clause expression. Those that evaluate to True move on; those that don’t are passed over.

❑ order by— Allows you to order the results of the query expression in ascending or descending
order.

❑ return— Specifies the content that is returned from the FLWOR expression.

In a later section, you get an in-depth look at each of these clauses in the FLWOR expression.

A Simple FLWOR Expression
The simplest XQuery FLWOR expression is something like this:

for $p in $doc/Products/Product
return $p

This simply returns all the Product elements in the document $doc. You can add a bit of substance with
an XQuery where clause and a slightly more functional XQuery return clause, as follows:

for $p in $doc/Products/Product
where $p/ProductID = 707
return $p/Name

This now returns the product that is identified by product id 707.

If you know SQL, you will probably find this very similar to the corresponding SQL statement:

SELECT p.Name FROM Product p WHERE p.ProductID = 707

On the other hand, an equivalent query using XPath would be this:

$doc/Products/Product[ProductID=707]/Name

As you can see, you can produce the same output using XPath as well. So the question is how do you
know which style to use and when? It depends on what you’re used to. If you’ve been using XML for
years, especially XML with the deep hierarchy found in narrative documents, you’ll probably be com-
fortable with path expressions. But if you’re more comfortable with the idea of representing your data as
a table, then the FLWOR style might suit you better.

In fact, an XPath path expression is completely equivalent to the previous FLWOR expression, and it’s a
legal XQuery on its own. In fact, every legal XPath expression is also legal in XQuery. The first query in
this section can in fact be written like this:

307

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 307

$doc/Products/Product

As you’ll see, FLWOR expressions are a lot more powerful than path expressions when it comes to doing
joins. But for simple queries, the capabilities overlap and you have a choice.

An In-Depth Look at FLWOR Expressions
As mentioned before, the name FLWOR comes from the five clauses that make up a FLWOR expression:
for, let, where, order by, and return. The following sections take a detailed look at each of these
clauses.

for Clause
The behavior of the for clause is fairly intuitive: it iterates over an input sequence and calculates some
value for each item in that sequence, returning a sequence obtained by concatenating the results of these
calculations. In simple cases, there’s one output item for every input item. For example:

for $i in (1 to 10)
return $i * $i

This returns the sequence (1, 4, 9, 16, 25, 36, 49, 64, 81, 100).

In this example, the input items are simple numbers, and the output items are also simple numbers.
Numbers are an example of what XQuery calls atomic values. Other examples are strings, dates,
booleans, and URIs. The XQuery data model allows sequences to contain XML nodes as well as atomic
values, and the for expression can work on either.

Here’s an example that takes nodes as input, and produces numbers as output. It counts the number of
product numbers listed for each product:

for $p in //Products/Product
return count($p/ProductNumber)

This returns the output (1,1,1,1).

A FLWOR expression is just an expression, and you can use it anywhere an expression is allowed — it
doesn’t have to be at the top level of the query. The avg() function computes the average of a sequence
of numbers, so you can use that to find the average of a group of elements.

As you can see from the previous example, XQuery is a functional language that you can use to calculate
a value by passing the result of one expression or function into another expression or function. Any
expression can be nested inside any other, and the FLWOR expression is no exception.

If you’re coming from SQL, your instinct was probably to try and do the averaging and rounding in the
return clause. But the XQuery way is actually much more logical. The return clause calculates one
value for each item in the input sequence, whereas the avg() function applies to the result of the
FLWOR expression as a whole.

And you can get from one sequence of nodes to another sequence of nodes. The for clause really comes
into its own when you have more than one of them in a FLWOR expression. You will be introduced to
that when you start looking at joins later in the chapter.

308

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 308

let Clause
The XQuery let clause simply declares a variable and gives it a value. For example:

let $ProductID := 707
let $productWithProductID707 := //Products/Product[ProductID = $ProductID]
return count($productWithProductID707)

Hopefully, the meaning of that is fairly intuitive. In fact, in this example you can simply replace each
variable reference by the expression that provides the expression’s value. This means that the result is
the same as if you used the following:

count(//Products/Product[ProductID = 707])

In a for clause, the variable is bound to each item in the sequence in turn. In a let clause, the variable
takes only one value. This can be a single item or a sequence, and a sequence can contain nodes, atomic
values, or a mixture of the two.

In most cases, variables are used purely for convenience, to simplify the expressions and make the code
more readable. If you need to use the same expression more than once, then declaring a variable is also a
good hint to the query processor to only do the evaluation once. In a FLWOR expression, you can have
any number of for clauses, and any number of let clauses, and they can be in any order.

There’s an important thing to note about variables in XQuery: they can’t be updated. This means you
can’t write something like let $x := $x+1. This rule might seem very strange if you’re expecting
XQuery to behave in the same way as procedural languages like JavaScript. But XQuery isn’t that kind
of language — it’s a declarative language and works at a higher level. There are no rules about the order
in which different expressions are executed, and this means that constructs whose result would depend
on order of execution (like variable assignment) are banned. This constraint is essential to give optimiz-
ers the chance to find execution strategies that can search vast databases in fractions of a second.

where Clause
The XQuery where clause in a FLWOR expression performs a very similar function to the WHERE clause
in a SQL select statement: it specifies a condition to filter the items you are interested in. The where
clause in a FLWOR expression is optional, but if it appears it must only appear once, after all the for
and let clauses. Here’s an example that restates one of the earlier queries, but this time using a where
clause:

for $product in //Products/Product
where $product/ProductID = 707
and $product/@Category = “Helmets”

return $product/Name

This query returns the product with product id 707 with the category of “Helmets”.

This style of coding is something that SQL users tend to be very comfortable with: First, define all the tables
you’re interested in, and then specify a WHERE expression to define all the restriction conditions that select
subsets of the rows in each table as well as the join conditions that show how the various tables are related.

309

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 309

order by Clause
The order by clause enables you to sort the values in the returned result set. The order by keyword
accepts a sorting expression, which should return an atomic value. Optionally, you can also specify
ascending or descending for the sort order. The default sort order is ascending.

To sort the products in ascending order of product id, use the following query:

for $product in //Products/Product
order by $product/ProductID ascending
return $product/Name

return Clause
Every XQuery FLWOR expression has a return clause, and it always comes last. It defines the items that
are included in the result. Usually the XQuery return clause generates a single item each time it’s evalu-
ated. In general, the return clause can also produce a sequence. For example, you can do the following:

for $product in //Products/Product[@Category=”Socks”]
return $product/Name

This selects all the names for products that belong to the category “Socks”. However, you can also
wrapper the resultant nodes into a root element so that it easily wrappers around the Name elements:

<ProductNames>
{for $product in //Products/Product[@Category=”Socks”]
return $product/Name}

</ProductNames>

Generally a FLWOR expression without element constructors can only produce flat lists of values or
nodes, and that’s not usually enough. You usually want to produce an XML document as the output of
the query, and XML documents aren’t flat.

As a result, instead of doing purely relational joins that generate a flat output, you want to construct
hierarchic output using a number of nested FLWOR expressions. The return clause might seem like the
least significant part of the FLWOR, but a misplaced return can make a big difference. It is recom-
mended that you always align the F (for), L (let), W (where), O (order by), and R (return) clauses of
a single FLWOR expression underneath each other, indenting any nested expressions, so that you can
see what’s going on.

FLWOR Expressions Versus XPath Expressions
Using a FLWOR expression to define the result sequence when you could express the same sequence using
an XPath expression can be overkill in some cases because of the complexity of FLWOR expressions. As a
general rule of thumb, you must establish the use cases where the use of a FLWOR expression is justified.
The following list provides basic scenarios where the use of FLWOR expressions makes sense:

❑ If you want to iterate over a sequence of values that are returned as a result of an expression:
Use the for clause, which binds a variable to successive values of the result set. Examples are
the construction of new elements within the scope of the for clause and the retention of
duplicates.

310

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 310

❑ If you want to filter the result sequence of the for clause based on a predicate that cannot be
defined using simple XPath expressions: Use the where clause to eliminate unwanted values in
the result set. For example:

for $i in (1, 2, 3), $j in (3, 4, 5)
where $i < $j
return sum($i + $j)

❑ If you want to sort the result set based on a sorting expression: Use the order by clause to
define the sort on the result set.

❑ If you want to define the shape of the returned result set using the results obtained from the for
clause: Use the return statement to perform the shaping of the result set.

If your requirement does not fall in any of these scenarios, you must carefully evaluate the use of
FLWOR expressions.

XQuery Functions
XQuery includes an array of built-in functions. These functions are used for all the way from working with
string values to numeric values, date and time comparison, node and QName manipulation, sequence
manipulation, Boolean values, and more. In addition to the built-in functions, you can also define your
own custom functions in XQuery. The following sections explore the XQuery built-in functions.

XQuery Built-In Functions
The XQuery namespace that contains all the XPath functions is identified by w3.org/2005/02/
xpath-functions. When you use these built-in functions, you can use the prefix fn:. For example, you
can invoke the string() function using the default prefix fn:string(). However you can invoke the
same function just as string() leaving out the fn: prefix since fn: is the default prefix of the name-
space. For example, here are some examples of functions usage inside an XQuery.

❑ You can use functions to format the contents of an XML element Inside an XML element:

<name>{upper-case($Name)}</name>

❑ You can also use functions inside the predicate of a XPath query for performing operations such
as string comparisons, and so on to introduce new conditions:

doc(“Products.xml”)/Products/Product[substring(Name,1,5)=’Sport’]

❑ You can also use functions in a let clause before assigning the values to a XQuery variable as
follows:

let $name := (substring($Name,1,5))

As you can see from the previous examples, XQuery built-in functions are very handy and go a long way
in effectively applying the power of XQuery to solve real world problems. Now that you have had an idea
of the role of the functions supplied with XQuery, let us explore some of the useful built-in functions.

311

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 311

doc() Function
The doc (uri) function returns the root node of the referenced document. The URI reference format is
implementation dependent. For example, doc(“Products.xml”) returns the root node of the
Products.xml document.

Aggregate Functions
XQuery provides count, avg, max, min and sum aggregate functions, which do the following:

❑ count returns the number of items in the sequence.

❑ avg returns the average (mean) of a sequence of numbers.

❑ sum returns the sum of a sequence of numbers.

❑ max returns the number with maximum value from a sequence.

❑ min returns the number with minimum value from a sequence.

For example, the following query calculates the number of products contained in the Products.xml file:

let $products := doc(“Products.xml”)/Products//Product
return
<itemCount> {count($products) } </itemCount>

In the preceding XQuery, the $products variable represents all the product elements in the
Products.xml file. The count($products) function returns the count of products in that sequence.
The return clause constructs an element that looks like this:

<itemCount> 4 </itemCount>

String Functions
XQuery provides the following string functions: concat, starts-with, ends-with, contains, sub-
string, string-length, normalize, upper-case, and lower-case.

The function starts-with (str1, str2) returns true if the beginning of str1 matches the characters in
str2. The function ends-with (str1, str2) returns true if the ending characters in str1 match the
characters in str2. The function contains(str1, str2) returns true if str1 contains str2.

The following query uses the contains() function to find products in the Products.xml whose cate-
gory is of type “Socks”:

for $product in doc(“Products.xml”)/Products/Product
where contains($product/@Category, “Socks”)
return $product/Name

This results in the following output:

<Name>Mountain Bike Socks, M</Name>
<Name>Mountain Bike Socks, L</Name>

312

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 312

XQuery User-Defined Functions
The nice thing about XQuery is that if you can’t find the right XQuery function out of the box, you are
free to write your own. These user-defined functions can be defined in the query or in a separate library.
The syntax for user-defined functions is as follows:

declare function prefix:function_name($parameter AS datatype)
AS returnDatatype

{
(: ...function code here... :)

};

The following are the key characteristics of a user-defined function that you need to be aware of while
writing user-defined functions:

❑ The functions use the “declare function” keyword.

❑ The name of the function must be prefixed.

❑ The data types of the parameters are mostly the same as the data types defined in XML schema.

❑ The body of the function must be surrounded by curly braces.

Here is an example of a user-defined function:

declare function local:minPrice(
$price as xs:decimal,
$discount as xs:decimal)
as xs:decimal

{
let $disc := ($price * $discount) div 100
return ($price - $disc)

};

And here is an example of how to call the minPrice function:

<minPrice>
{local:minPrice($book/price, $book/discount)}

</minPrice>

The following is another example that illustrates the declaration and use of a local function. In this case,
the function accepts a sequence of employee elements, summarizes them by department, and returns a
sequence of dept elements:

declare function local:summary($emps as element(employee)*)
as element(dept)*

{
for $d in fn:distinct-values($emps/deptno)
let $e := $emps[deptno = $d]
return
<dept>
<deptno>{$d}</deptno>
<headcount> {fn:count($e)} </headcount>
<payroll> {fn:sum($e/salary)} </payroll>

</dept>
};

313

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 313

To prepare a summary of the employees located in Phoenix, invoke the above function as follows:

local:summary(fn:doc(“Employees.xml”)//employee[location = “Phoenix”])

XQuery in Java
There are a number of toolkits available to work with XQuery from within Java. This chapter uses the
XMLBeans open source implementation from Apache for working with XQuery. XMLBeans is a technol-
ogy for accessing XML by binding it to Java types. XMLBeans provides several ways to get at the XML,
including the following:

❑ Through XML Schema, which has been compiled to generate Java types that represent schema
types. In this way, you can access instances of the schema through JavaBeans-style accessors
such as getXXX and setXXX.

❑ Reflect into the XML schema itself through an XML Schema Object model as provided by the
XMLBeans API.

❑ With a cursor model through which you can traverse the full XML InfoSet.

❑ With XML DOM, which is completely supported.

Pre-requisites
Here are the prerequisites to working with XMLBeans:

❑ JDK 1.4 and Ant — Install these if you don’t have them already.

❑ XMLBeans binaries — You can download them fromhttp://xmlbeans.apache.org/
sourceAndBinaries/index.html#XMLBeans+Binary+and+Development+Kit.

❑ Saxon XQuery processor for full XQuery support — For XMLBeans 2.2.0, you need Saxon
8.6.1,which you can download from http://prdownloads.sourceforge.net/saxon/
saxonb8-6-1.zip?download.

❑ An editor for writing Java code — This could be a text editor or your favorite Java IDE.

With these items installed and configured, you are ready to work with XQuery from Java.

Selecting XML with XQuery
You can use XQuery to retrieve specific pieces of XML as you might retrieve data from a database.
XQuery provides syntax for specifying the elements and attributes you’re interested in. The XMLBeans
API provides a method named execQuery() for executing XQuery expressions.

You can call them from and XmlObject instance (or a generated type inheriting from it) or an XmlCursor
instance. First take a look at an example that invokes the execQuery() method from an XmlObject instance.

Invoking execQuery() from an XmlObject
Note that the XQuery expressions require additional classes on the class path, as noted in the XMLBeans
installation instructions. You use the execQuery method to execute XQuery expressions. With XQuery

314

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 314

expressions, the output XML returned is a copy of XML in the document queried against and this output
is an array of type XmlObject.

The example in Listing 10-2 retrieves <Name> elements from the incoming XML, displaying them
directly on the console.

LLiissttiinngg 1100--22:: EExxeeccuuttiinngg aann XXQQuueerryy eexxpprreessssiioonn ffrroomm aa JJaavvaa aapppplliiccaattiioonn

package com.wrox.xquery;
import org.apache.xmlbeans.XmlCursor;
import org.apache.xmlbeans.XmlObject;

public class XmlObjectSample
{
final static String m_namespaceDeclaration =
“declare namespace xq=’http://www.wrox.com/xquery/samples/departments’;”;

public static void main(String[] args) throws Exception
{
String fileName = args[0];
XmlObject departmentDoc = XmlObject.Factory.parse(new URL(fileName));
//Get all the <Name> elements
String queryExpression =

“let $d := $this/xq:Departments “ +
“return “ +
“for $n in $d/xq:Department/ xq:Name “ +
“return $n “ ;

XmlObject[] results =
departmentDoc.execQuery(m_namespaceDeclaration + queryExpression);

//Print the results.
if (results.length > 0)
{
System.out.println(“The query results: \n”);
for (int i=0; i<results.length; i++)
{ System.out.println(results[i].toString() + “\n”);
}

}
else
{
System.out.println(“No results returned: \n”);

}
}

}

You start by creating an instance of XmlObject object passing in the XML filename as an argument:

String fileName = args[0];
XmlObject departmentDoc = XmlObject.Factory.parse(new
URL(filename));

After that, you specify the query expression in a string variable:

315

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 315

String queryExpression =
“let $d := $this/xq:Departments “ +
“return “ +

“for $n in $d/xq:Department/xq:Name “ +
“return $n “ ;

This query expression first gets references to all the <Name> elements in the XML file and returns them
as the output. The $this variable in the query expression refers to the current position.

You then actually execute the XQuery using the execQuery() method, passing in the value that is
derived by combining the namespace declaration with the actual query expression:

XmlObject[] results =
departmentDoc.execQuery(m_namespaceDeclaration + queryExpression);

You then display the resultant output on the console through the System.out.println() method.

To test this Java program, create an XML file named Departments.xml with the contents shown in
Listing 10-3.

LLiissttiinngg 1100--33:: DDeeppaarrttmmeennttss..xxmmll ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<Departments xmlns=”http://www.wrox.com/xquery/samples/departments”>
<Department>
<DepartmentID>1</DepartmentID>
<Name>Engineering</Name>
<GroupName>Research and Development</GroupName>

</Department>
<Department>
<DepartmentID>2</DepartmentID>
<Name>Tool Design</Name>
<GroupName>Research and Development</GroupName>

</Department>
<Department>
<DepartmentID>3</DepartmentID>
<Name>Sales</Name>
<GroupName>Sales and Marketing</GroupName>

</Department>
<Department>
<DepartmentID>4</DepartmentID>
<Name>Marketing</Name>
<GroupName>Sales and Marketing</GroupName>

</Department>
<Department>
<DepartmentID>5</DepartmentID>
<Name>Purchasing</Name>
<GroupName>Inventory Management</GroupName>

</Department>
</Departments>

If you pass the URL of the Departments.xml file as a command-line argument at the time of executing
the XmlObjectSample class, you will get the following output:

316

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 316

<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Engineering</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Tool Design</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Sales</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Marketing</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Purchasing</Name>

Invoking execQuery() from an XmlCursor
The XML cursor offers a fine-grained model for manipulating data in addition to providing you with a
method to execute query expressions. The XML cursor API, analogous to the DOM’s object API, is sim-
ply a way to point at a particular piece of data. So, just like a cursor helps navigate through a word pro-
cessing document, the XML cursor defines a location in XML where you can perform actions on the
selected XML.

Cursors are ideal for moving through an XML document when there’s no schema available. After you’ve
got the cursor at the location you’re interested in, you can perform a variety of operations with it. For
example, you can execute queries, set and get values, insert and remove fragments of XML, copy fragments
of XML to other parts of the document, and make other fine-grained changes to the XML document.
Listing 10-4 uses an XML cursor to execute an XQuery query.

LLiissttiinngg 1100--44:: UUssiinngg XXmmllCCuurrssoorr ttoo eexxeeccuuttee aann XXQQuueerryy eexxpprreessssiioonn

package com.wrox.xquery;
import org.apache.xmlbeans.XmlCursor;
import org.apache.xmlbeans.XmlObject;
public class XmlCursorSample
{
final static String m_namespaceDeclaration =
“declare namespace xq=’http://www.wrox.com/xquery/samples/departments’;”;

public static void main(String[] args) throws Exception
{
String fileName = args[0];
XmlObject departmentDoc = XmlObject.Factory.parse(new URL(fileName));
//Get the <Name> elements and return them
String queryExpression =
“let $d := $this/xq:Departments “ +
“return “ +
“for $n in $d/xq:Department/xq:Name “ +
“return $n” ;

XmlCursor resultsCursor = departmentDoc.newCursor().execQuery
(m_namespaceDeclaration + queryExpression);

//Print the results
System.out.println(resultsCursor.xmlText());

}
}

This code creates a new cursor at the start of the document. From there, it uses the XmlCursor inter-
face’s execQuery() method to execute the query expression:

XmlCursor resultsCursor = departmentDoc.newCursor().execQuery
(m_namespaceDeclaration + queryExpression);

317

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 317

After executing the query, the results are displayed through the call to the xmlText() method of the
resultant XmlCursor:

System.out.println(resultsCursor.xmlText());

Here is the output produced by the code.

<xml-fragment>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Engineering</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Tool Design</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Sales</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Marketing</Name>
<Name xmlns=”http://www.wrox.com/xquery/samples/departments”>Purchasing</Name>

</xml-fragment>

XQuery in Relational Databases
One of the primary tasks developers are faced with is querying data from some data store and allowing
users to view and/or manipulate the information via a Web interface. Typically, the data stores that you
query from are traditional relational databases, such as Microsoft SQL Server or Oracle. With relational
databases, the de facto means for querying data is SQL. However, with the ever-continuing rise in the
popularity of Web services, and the need for a platform-independent, Internet-transferable, data repre-
sentation format, XML data stores are becoming more and more popular. SQL was never designed for
querying semi-structured data stores, and therefore is not suitable for querying XML data stores. So,
how do you query an XML data store and retrieve results from such a query? Most developers currently
use XSLT and XPath to accomplish this task. However, XPath and XSLT alone are not sufficient for
querying the XML data stores, and you need the power of XQuery to be able to maximize the benefits of
using XML data stores. Now all the major relational database vendors (including Oracle and Microsoft)
support XQuery as part of their database implementations. The following section gives you a quick tour
of the XQuery support provided by SQL Server 2005.

XQuery in SQL Server 2005
One of the newly introduced features in SQL Server 2005 is the native XML data type. Using the XML
data type, you can create a table that has one or more columns of type XML in addition to relational
columns. XML variables and parameters are also allowed. XML values are stored in an internal format as
large binary objects (BLOBs) in order to support the XML model characteristics, such as document order
and recursive structures, more faithfully.

SQL Server 2005 provides XML schema collections as a way to manage W3C XML Schemas as metadata.
An XML data type can be associated with an XML Schema collection to enforce schema constraints on
XML instances. When the XML data is associated with an XML Schema collection, it is called typed XML;
otherwise it is called untyped XML. Both typed and untyped XML are accommodated within a single
framework, the XML data model is preserved, and query processing enforces XML semantics. The under-
lying relational infrastructure is used extensively for this purpose. It supports interoperability between
relational and XML data, thereby making way for more widespread adoption of the XML features.

318

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 318

XML Data Type Query and Data Modification
You can use a T-SQL SELECT statement to retrieve XML instances. Five built-in methods on the XML
data type are provided to query and modify XML instances. These methods accept XQuery. The XQuery
type system is aligned with that of W3C XML schema types. Most of the SQL types are compatible with
the XQuery type system (for example, decimal). A handful of types (for example, xs:duration) are
stored in an internal format and suitably interpreted to be compatible with the XQuery type system.

The compilation phase checks static type correctness of XQuery expressions and data modification state-
ments, and uses XML schemas for type inferences in the case of typed XML. Static type errors are raised
if an expression could fail at run time due to a type safety violation. Through the XQuery support, you
can retrieve entire XML values or you can retrieve parts of XML instances. This is possible by using four
XML data type methods that take an XQuery expression as argument: query(), value(), exist() and
nodes(). A fifth method, modify(), allows modification of XML data and accepts an XML data modifi-
cation statement as input. Here is a brief introduction to each of these methods:

❑ query()— Extracts parts of an XML instance. The XQuery expression evaluates to a list of XML
nodes. The subtree rooted at each of these nodes is returned in document order. The result type
is untyped XML.

❑ value()— Extracts a scalar value from an XML instance and returns the value of the node the
XQuery expression evaluates to. This value is converted to a T-SQL type specified as the second
argument of the value() method.

❑ exist()— Performs existential checks on an XML instance. It returns 1 if the XQuery expression
evaluates to non-null node list; otherwise it returns 0.

❑ nodes()— Yields instances of a special XML data type, each of which has its context set to a
different node that the XQuery expression evaluates to.

❑ modify()— Enables you to modify parts of an XML instance, such as adding or deleting sub-
trees, or replacing scalar values such as the price of a book from 9.99 to 39.99.

Take a brief look at each of these methods. Before that, create a table named Department with two
columns: an id column and xml_data column that uses the xml data type.

CREATE TABLE Department(id int primary key, xml_data xml)

Now that the table is created, insert a couple of rows to the table as follows:

INSERT INTO Department values(1, ‘<department id=”1”>
<name>Engineering</name><groupname>Research and
Development</groupname></department>’)
GO
INSERT INTO Department values(2, ‘<department id=”2”>
<name>Sales</name><groupname>Sales and Marketing</groupname></department>’)

Working with the query Method
With the introduction of the XML data type in SQL Server 2005, the FOR XML clause now provides the
ability to generate an instance of XML directly using the new TYPE directive. For example:

319

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 319

SELECT * FROM HumanResources.Employee as Employee FOR XML AUTO, TYPE

This returns the Employee elements as an XML data type instance, instead of the nvarchar(max)
instance that would have been the case without the TYPE directive. This result is guaranteed to conform
to the well-formedness constraints provided by the XML data type. Because the result is an XML data
type instance, you can also use XQuery expressions to query and reshape the result. For XQuery expres-
sions, you use the query() method supported by the XML data type. For example, the following
XQuery expression retrieves all the department names from the Department table.

SELECT xml_data.query(‘/department/name’) from Department

The previous query results in the following output:

<name>Engineering</name>
<name>Sales</name>

You can also use the query method to execute a FLWOR XQuery. For example, you can build an XML
document that contains all the department names from the Department table using this query:

SELECT xml_data.query(‘
<department>
{
for $d in //department
order by $d/name[1]
return $d/name[1]

}
</department>’)

FROM Department

Here is the output produced by the previous query.

<department><name>Engineering</name></department>
<department><name>Sales</name></department>

Note that you must declare the namespace of the document if the source column is a typed xml column.
Since the xml_data column is not a typed column, there is no need to use the namespace.

Working with the value Method
To the value method, you pass an XQuery statement and the return type. As a result, the value()
method returns a single value that is produced as a result of query execution.

As an example, the following query,

SELECT xml_data.value(‘
/department[1]/name[1]’, ‘VARCHAR(100)’)
from Department Where ID = 1

produces the following result.

320

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 320

Engineering

As you can see from the query, you pass in the data type as a second parameter to the value() method.
This tells the method to return the value as that type. The value() method is very useful when you
want to fetch a value from an XML column and insert the value into another table column of a different
type.

Working with the exist Method
The exist() method allows you to determine whether a node value you are searching for exists. It
returns a 1 if the node value is found and a 0 if not.

Select xml_data.query(‘/department//name’)
from Department where
xml_data.exist(‘/department[@id = “1”]’) = 1

In the previous example, the exist() method is used in the where clause and acts as the filtering mech-
anism to retrieve only the name for the department with the id value of 1. The query also produces
“Engineering” as the output.

Working with the nodes Method
This method accepts an XQuery statement as a parameter and returns a rowset that contains logical
scalar data from the XML variable. It is very similar to the selectNodes() function in XML DOM. This
method is very useful when you need to shred the data from an XML data type variable into one or
many relational table columns.

Working with the modify Method
Through the modify method, you can insert, update, or delete values from an XML typed column. To
modify the contents of an element, you first need to reference that element using the XPath expression.
Once you get to the actual element, you then reference the textual contents using the text() method as
follows:

Update Department
SET xml_data.modify
(‘replace value of
(/department/name/text())[1]

with “Engineering and Design”
‘)

Where ID = 1

In the previous code, you use replace value of to identify the element you want to modify and then
you use the with to specify the new value.

Now that you have had a look at the update, look at an example for deleting an element. For example,
here is how you delete the <groupname> (child element of <department>) element from the xml_data
column.

321

Chapter 10: XQuery

17_777779 ch10.qxp 3/1/07 11:47 PM Page 321

UPDATE Department
SET xml_data.modify
(‘delete /department/groupname[1]’)

Where ID = 1

Summary
This chapter started with a brief introduction to XQuery by discussing the role of XQuery, its advantages
and the structure of an XQuery expression. After that, you looked at one of the key aspects of XQuery-
FLWOR expressions that provide you with a consistent way to write and execute query expressions.
FLWOR expressions are the central feature of the XQuery language, in the same way as path expressions
are at the heart of XPath. Specifically:

❑ FLWOR expressions have five clauses: for, let, where, order by, and return. The first two
can appear any number of times in any order. The where and order by clauses are optional, but
if used, they must appear in the order given. There is always a return clause.

❑ The semantics are similar to those of a SELECT statement in SQL. In most cases, you can think of
a FLWOR expression with multiple for clauses as a set of nested loops, but a sorting using order
using a rather more complex execution model is needed.

❑ You can use FLWOR expressions anywhere that you can use any other kind of expression. This
means the expressions can be nested within each other, and they can appear in contexts such as
an argument to a function like count() or max(). The only constraint is that the type of value
returned by the FLWOR expression (a sequence of items) must be appropriate to the context
where the expression is used.

After that, you learned the various functions supported by XQuery including the use of built-in and
user-defined functions. You also explored the steps involved in using XQuery from within a Java pro-
gram through an XMLBeans open-source implementation. As part of this, you learned the two ways of
executing XQuery expressions from within a Java application: through XmlObject and XmlCursor.
Examples showed you the XQuery implementation in SQL Server 2005.

Now is as good a time as any to start learning XQuery, because it’s bound to become more prominent as
XML data stores continue their meteoric rise. Furthermore, with the deep XQuery support provided by
SQL Server 2005, it is only a matter of time before XQuery becomes pervasive.

322

Part IV: XML as Data

17_777779 ch10.qxp 3/1/07 11:47 PM Page 322

XXMMLL iinn tthhee DDaattaa TT ii ee rr

Although XML is frequently a part of the data tier — because it stores data — this chapter concen-
trates on XML and databases. Databases, both relational and native XML, are part of many appli-
cations. You must, therefore, often store XML in those databases or retrieve some of the data in
XML format. While the conversion of data to XML could be done in an intermediate layer of your
application, it is sometimes more efficient to do this work within the database itself. This chapter
will look at how you can store and retrieve XML from such common databases as Microsoft SQL
Server and Oracle 10g. In addition, this chapter will cover XML databases, and their possible role
in your applications.

XML and Databases
Although XML is an excellent format for moving data between platforms, applications, or applica-
tion tiers, it may not be the best format to use for storing data for your application. As the volume
of data increases, so too does the time it takes to search for and manipulate that data. Databases,
on the other hand, minimize the query times, even for large data sets. Because of this, you might
often combine XML and databases in some applications. This can create mismatches: Data types
stored in the database may not be in the same format as XML, and the structure of the two are dif-
ferent. XML tends to be more loosely structured or hierarchical, and relational databases (the most
common forms today) are designed around tabular data. Moving data in and out of relational
databases can be a code-intensive operation. However, some databases are embracing XML, either
as a first-class data type or, at least, for enabling querying and indexing semistructured data.

Retrieving Data as XML
Databases are convenient stores for data in many applications, but you also frequently share the
data with clients from other platforms or move the data between tiers of your application and
computers. Most native database formats are not optimal for this type of data exchange; however,

18_777779 ch11.qxp 3/1/07 11:47 PM Page 323

XML is ideally suited for these scenarios. You can convert data stored in a database into XML,
providing an excellent cross platform format for data exchange. You can also easily write components to
convert the rows and columns of relational data into XML. However, many databases are beginning to
provide support for retrieving your queries as XML. This may be provided by proprietary extensions to
SQL or via the upcoming SQL/XML standard. SQL/XML (or SQL-X) is a proposed extension to the SQL
programming language (see Chapter 14 of that specification if you like reading specification docu-
ments). Note that this SQL/XML should not be confused with Microsoft’s SQLXML. SQL/XML is a pro-
posed extension to the standard SQL language for working with databases. SQLXML is a
Microsoft-specific API for integrating SQL Server and XML. The SQL/XML standard defines a number
of new SQL keywords:

❑ XML — a data type to hold XML data

❑ XMLAgg — used to group XML data in GROUP BY queries

❑ XMLAttributes — used to add attributes in XML elements

❑ XMLConcat — used to concatenate two or more XML values

❑ XMLElement — used to transform a relational value into an XML element

❑ XMLForest — used to generate a list of XML elements

❑ XMLNamespaces — used to declare namespaces in an XML element

❑ XMLSerialize — used to serialize an XML value as a character string

These extensions are used in two ways. First, the XML data type becomes a native data type for columns.
This provides you with a method for storing XML as XML, rather than as text. In addition, when you
work with XML in stored procedures, having an XML type ensures that validity and other rules apply to
the data. The second use of the new SQL/XML extensions is to create a standard mechanism for query-
ing data and returning it as XML. The XMLAttributes, XMLElement, XMLForest, and XMLNamespaces
operators create the appropriate structures within a SELECT statement. See the Oracle section later in this
chapter for samples of using these publishing functions.

In addition to allowing you to directly query using a SQL dialect, many databases are adding support
for the relatively new standard XQuery for querying data (see Chapter 11 for more details on XQuery).

Storing XML
When storing XML in a relational database, you usually have three choices:

❑ Shred the XML to fit into the rows and columns of one or more relational tables.

❑ Store the XML in a Binary Large Object (BLOB) or Character Large Object (CLOB) field.

❑ Store the XML in a field specialized for storing and/or indexing XML.

Shredding the XML, or converting into rows and columns, is simple, but requires the most processing. In
addition, it also means you must make more decisions: Do you process the XML within the database itself —
using stored procedures — or in another component of your application? Using stored procedures might

324

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 324

provide better performance, but only if the variant of SQL supported by your database provides XML-
handling functions. This adds complexity, however, if the elements and attributes of the XML do not align
directly with rows and columns. You may need to perform additional processing or conversion of the data
when saving and loading. For example, the XML may hold the full name of a client, when you need to
save the first and last names separately in the database. Therefore, you would need to separate the name
before storing.

Storing XML in BLOB or CLOB fields (for example, text fields) or even a large character field is a simple
solution that works with every database. However, the data is essentially meaningless at this point. It is
difficult to query text fields in any meaningful way. You can use whatever full-text search is available
from the database, but this is certainly less useful than a search that includes the tags. For example, if
you had a BLOB field full of resumés in XML format, searching for candidates with experience in .NET
using a full-text search would likely give results cluttered with URL values and possibly become a fish-
ing experience. If the search were aware of the structure of the XML, you would have more luck narrow-
ing the scope of the search.

Finally, you can use a dedicated XML field. Not all databases have a native way of storing XML, and the
techniques used to store and index the XML vary. The sections that follow describe the features available
for some databases.

XML databases add a fourth choice to storing XML: Store it as is. The XML is stored natively, and queries
are usually carried out using XQuery or XPath. Although XML databases are not as prevalent as rela-
tional databases, this feature makes them quite attractive in some scenarios.

Relational Databases
The most common databases in use today fit into the relational model. Data is stored as logical rows in
one or more tables. Manipulation is typically accomplished with a dialect of Structured Query Language
(SQL). Two of the most common relational databases in use today that provide XML features are
Microsoft SQL Server and Oracle.

Microsoft SQL Server 2005
Microsoft SQL Server, currently version 2005, is a popular and powerful database server. XML support,
including XQuery support and the addition of an XML column type, is one of the primary areas of
improvement in this version

Retrieving XML
SQL Server’s T-SQL dialect includes the FOR XML clause for SELECT queries. This clause, which must be
the last clause in the SELECT statement, causes the data returned from the query to be formatted as XML.
This feature was first added with SQL Server 2000, but it has been improved in SQL Server 2005. The
actual format of the XML is configurable using one of the optional keywords listed in the following
table.

325

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 325

FOR XML Formatting Notes

RAW Each row in the query is returned as an XML element. Individual
columns are returned as attributes of that element. There is no
root node by default, although this can be added. By default, the
element name is row. This can be changed by including the name
as a parameter to RAW (FOR XML RAW(‘myrowname’)).

AUTO Each row is returned as an XML element named for the table pro-
viding the data. Individual columns returned are attributes of that
element. There is no root node by default. If related columns are
included, the resulting XML is nested.

EXPLICIT The structure of the resulting XML must be defined. This provides
the most flexibility in creating XML, but also requires the most
work by the developer.

PATH The structure of the resulting XML can be defined. This method,
added with SQL Server 2005, is much easier to use than the
EXPLICIT model. By default, it creates a structure similar to the
AUTO output, but columns are output as elements, not attributes.

RAW format is, as the name implies, the rawest output of SQL data to XML. It generates a document frag-
ment (that is, the result is not a well-formed document because no a single root node exists). Listing 11-1
shows part of the output from the following simple raw query on the Northwind sample database.

The Northwind sample database is available for download from Microsoft at http://www.microsoft
.com/downloads/details.aspx?FamilyID=06616211-0356-46A0-8DA2-
EEBC53A68034&displaylang=en.

SELECT CategoryName, ProductName, UnitPrice
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID
WHERE CategoryName=’Beverages’
ORDER BY ProductName
FOR XML RAW

LLiissttiinngg 1111--11:: OOuuttppuutt ooff FFOORR XXMMLL RRAAWW qquueerryy

<row CategoryName=”Beverages” ProductName=”Chai” UnitPrice=”18.0000” />
<row CategoryName=”Beverages” ProductName=”Chang” UnitPrice=”19.0000” />
<row CategoryName=”Beverages” ProductName=”Chartreuse verte” UnitPrice=”18.0000” />
<row CategoryName=”Beverages” ProductName=”Côte de Blaye” UnitPrice=”263.5000” />
<row CategoryName=”Beverages” ProductName=”Guaraná Fantástica” UnitPrice=”4.5000” />
<row CategoryName=”Beverages” ProductName=”Ipoh Coffee” UnitPrice=”46.0000” />
<row CategoryName=”Beverages” ProductName=”Lakkalikööri” UnitPrice=”18.0000” />
<row CategoryName=”Beverages” ProductName=”Laughing Lumberjack Lager”
UnitPrice=”14.0000” />
<row CategoryName=”Beverages” ProductName=”Outback Lager” UnitPrice=”15.0000” />
<row CategoryName=”Beverages” ProductName=”Rhönbräu Klosterbier” UnitPrice=”7.7500” />
<row CategoryName=”Beverages” ProductName=”Sasquatch Ale” UnitPrice=”14.0000” />
<row CategoryName=”Beverages” ProductName=”Steeleye Stout” UnitPrice=”18.0000” />

326

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 326

The AUTO format takes a few guesses about the structure of the resulting XML. It then structures the XML
to nest child data appropriately. The output from an AUTO query can be either a complete document or a
document fragment, depending on the query. Listing 11-2 shows the output for the following query:

SELECT CategoryName, ProductName, UnitPrice
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID
WHERE CategoryName=’Beverages’
ORDER BY ProductName
FOR XML AUTO

LLiissttiinngg 1111--22:: OOuuttppuutt ffoorr FFOORR XXMMLL AAUUTTOO qquueerryy

<Categories CategoryName=”Beverages”>
<Products ProductName=”Chai” UnitPrice=”18.0000” />
<Products ProductName=”Chang” UnitPrice=”19.0000” />
<Products ProductName=”Chartreuse verte” UnitPrice=”18.0000” />
<Products ProductName=”Côte de Blaye” UnitPrice=”263.5000” />
<Products ProductName=”Guaraná Fantástica” UnitPrice=”4.5000” />
<Products ProductName=”Ipoh Coffee” UnitPrice=”46.0000” />
<Products ProductName=”Lakkalikööri” UnitPrice=”18.0000” />
<Products ProductName=”Laughing Lumberjack Lager” UnitPrice=”14.0000” />
<Products ProductName=”Outback Lager” UnitPrice=”15.0000” />
<Products ProductName=”Rhönbräu Klosterbier” UnitPrice=”7.7500” />
<Products ProductName=”Sasquatch Ale” UnitPrice=”14.0000” />
<Products ProductName=”Steeleye Stout” UnitPrice=”18.0000” />

</Categories>

As you can see from the output, the products are nested within the categories node because this is the
relationship between the two tables. In this case, the output is well-formed; however, if the WHERE clause
hadn’t been included, the result would have been a document fragment with multiple Categories nodes
and no single root node.

EXPLICIT format is more complex than the preceding two formats because it has no default output. The
developer is responsible for defining the structure of the resulting XML. When defining an EXPLICIT
query, you must add two columns to the query. These two provide the relationship between each row
and its parent. Figure 11-1 shows the desired structure of the output, if it is returned normally.

Figure 11-1

327

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 327

SELECT 1 as Tag,
NULL as Parent,
C.CategoryID as [cat!1!id],
NULL as [prod!2!name],
NULL as [prod!2!price]

FROM Categories C, Products P
WHERE C.CategoryID = P.CategoryID
UNION
SELECT 2 as Tag,

1 as Parent,
P.CategoryID,
ProductName,
UnitPrice

FROM Categories C, Products P
WHERE C.CategoryID = P.CategoryID
ORDER BY [cat!1!id],[prod!2!name]
FOR XML EXPLICIT

The Tag column identifies each level in the generated XML, whereas the Parent column identifies the Tag
representing the parent of each item. For the top level elements, the Parent column should be NULL. In
addition, placeholder fields must be added to the root element. This is the purpose of the two NULL entries
in the first half of the UNION query. Finally, the ElementName!TagNumber!AttributeName!Directive
syntax is used to shape the resulting XML. The term [cat!1!id] causes the element name to be cat with
an attribute id, and this element is placed at the root. [prod!2!name] is placed as a child element because
of the position=2. It assigns the element and attribute names to prod and name respectively.

Running the preceding query returns the XML shown in Listing 11-3 (not all the XML is shown).

LLiissttiinngg 1111--33:: OOuuttppuutt ffoorr FFOORR XXMMLL EEXXPPLLIICCIITT qquueerryy

<cat id=”1”>
<prod name=”Chai” price=”18.0000” />
<prod name=”Chang” price=”19.0000” />
<prod name=”Chartreuse verte” price=”18.0000” />
<prod name=”Côte de Blaye” price=”263.5000” />
<prod name=”Guaraná Fantástica” price=”4.5000” />
<prod name=”Ipoh Coffee” price=”46.0000” />
<prod name=”Lakkalikööri” price=”18.0000” />
<prod name=”Laughing Lumberjack Lager” price=”14.0000” />
<prod name=”Outback Lager” price=”15.0000” />
<prod name=”Rhönbräu Klosterbier” price=”7.7500” />
<prod name=”Sasquatch Ale” price=”14.0000” />
<prod name=”Steeleye Stout” price=”18.0000” />

</cat>

The PATH format is new with SQL Server 2005. It provides an easier model for manipulating the output
than using EXPLICIT queries. Creating PATH queries is based on the aliases assigned to the result
columns. If the alias starts with a @ character, the data is placed in an attribute. If the alias contains one

328

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 328

or more / characters, these create child elements. You could view this as XPath in reverse. For example,
in the following query, the field aliased as product/name creates a new child element named product.
That element then has a name child. Listing 11-4 shows the output from this query.

SELECT ProductID “@id”,
CategoryName “category”,
ProductName “product/name”,
UnitPrice “product/price”
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID
WHERE CategoryName=’Beverages’
ORDER BY ProductName
FOR XML PATH

LLiissttiinngg 1111--44:: PPaarrttiiaall oouuttppuutt ffoorr FFOORR XXMMLL PPAATTHH qquueerryy

<row id=”1”>
<category>Beverages</category>
<product>
<name>Chai</name>
<price>18.0000</price>

</product>
</row>
<row id=”2”>
<category>Beverages</category>
<product>
<name>Chang</name>
<price>19.0000</price>

</product>
</row>
<row id=”39”>
<category>Beverages</category>
<product>
<name>Chartreuse verte</name>
<price>18.0000</price>

</product>
</row>
<row id=”38”>
<category>Beverages</category>
<product>
<name>Côte de Blaye</name>
<price>263.5000</price>

</product>
</row>
<row id=”24”>
<category>Beverages</category>
<product>
<name>Guaraná Fantástica</name>
<price>4.5000</price>

</product>
</row>

In addition to the parameters outlined here, you can also manipulate the resulting XML to change the
resulting structure. The following table shows additional keywords and the formats they can be used with.

329

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 329

Directive Can be used with Notes

ELEMENTS AUTO, RAW, PATH Causes the column values to be output as elements, not
attributes.

ROOT any Adds a root node to the resulting XML. The name
defaults to root, but you can change this by adding the
name as a parameter to the ROOT keyword (FOR XML
AUTO, ROOT(‘rootElement’)) (see Listing 11-5).

TYPE any Ensures that the output is treated as XML. This becomes
important when you are assigning the output of the
query to the XML data type in T-SQL. Alternatively, if
you are building the XML using nested queries, failing
to include the type may cause the inner blocks of XML
to be encoded.

XMLSCHEMA AUTO, RAW Causes the XML Schema to be added to the resulting
XML (see Listing 11-6).

XMLDATA AUTO, RAW, Causes the XML Data Reduced schema to be included
EXPLICIT in the resulting XML.

BINARY BASE64 any Outputs binary data Base 64 encoded. This enables out-
put of binary data using simple ASCII.

Listing 11-5 shows an FOR XML PATH query with an additional root node added. This ensures that the
resulting XML is a well-formed document.

LLiissttiinngg 1111--55:: AAddddiinngg aa rroooott nnooddee ttoo aa FFOORR XXMMLL PPAATTHH qquueerryy

SELECT TOP 3 Products.ProductID “@id”,
CategoryName “category”,
ProductName “product/name”,
UnitPrice “product/price”
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID
WHERE CategoryName=’Beverages’
ORDER BY ProductName
FOR XML PATH, ROOT(‘catalog’)
================================
<catalog>
<row id=”1”>
<category>Beverages</category>
<product>
<name>Chai</name>
<price>18.0000</price>

</product>
</row>
<row id=”2”>
<category>Beverages</category>
<product>
<name>Chang</name>
<price>19.0000</price>

</product>

330

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 330

</row>
<row id=”39”>
<category>Beverages</category>
<product>
<name>Chartreuse verte</name>
<price>18.0000</price>

</product>
</row>

</catalog>

Queries can use as many of these additional commands as necessary. Listing 11-6 shows adding both a
root node and an XML schema to an AUTO query. This would be useful when transmitting this data to
another system because the schema could be then used to validate the document or to create a serializer
to convert the XML into an object for further processing.

LLiissttiinngg 1111--66:: AAddddiinngg aann XXMMLL SScchheemmaa ttoo aa FFOORR XXMMLL AAUUTTOO qquueerryy

SELECT CategoryName, ProductName, UnitPrice
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID
WHERE CategoryName=’Beverages’
ORDER BY ProductName
FOR XML AUTO, ROOT(‘catalog’), XMLSCHEMA
==
<catalog>
<xsd:schema targetNamespace=”urn:schemas-microsoft-com:sql:SqlRowSet1”
xmlns:schema=”urn:schemas-microsoft-com:sql:SqlRowSet1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:sqltypes=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”
elementFormDefault=”qualified”>
<xsd:import namespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”

schemaLocation=”http://schemas.microsoft.com/sqlserver/2004/sqltypes/sqltypes.xsd”
/>
<xsd:element name=”Categories”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”schema:Products” minOccurs=”0” maxOccurs=”unbounded” />

</xsd:sequence>
<xsd:attribute name=”CategoryName” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType IgnoreWidth”
sqltypes:sqlSortId=”52”>
<xsd:maxLength value=”15” />

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

</xsd:element>
<xsd:element name=”Products”>
<xsd:complexType>
<xsd:attribute name=”ProductName” use=”required”>
<xsd:simpleType>
<xsd:restriction base=”sqltypes:nvarchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType IgnoreWidth”

(continued)

331

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 331

LLiissttiinngg 1111--66 (continued)

sqltypes:sqlSortId=”52”>
<xsd:maxLength value=”40” />

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
<xsd:attribute name=”UnitPrice” type=”sqltypes:money” />

</xsd:complexType>
</xsd:element>

</xsd:schema>
<Categories xmlns=”urn:schemas-microsoft-com:sql:SqlRowSet1”

CategoryName=”Beverages”>
<Products ProductName=”Chai” UnitPrice=”18.0000” />
<Products ProductName=”Chang” UnitPrice=”19.0000” />
<Products ProductName=”Chartreuse verte” UnitPrice=”18.0000” />
<Products ProductName=”Côte de Blaye” UnitPrice=”263.5000” />
<Products ProductName=”Guaraná Fantástica” UnitPrice=”4.5000” />
<Products ProductName=”Ipoh Coffee” UnitPrice=”46.0000” />
<Products ProductName=”Lakkalikööri” UnitPrice=”18.0000” />
<Products ProductName=”Laughing Lumberjack Lager” UnitPrice=”14.0000” />
<Products ProductName=”Outback Lager” UnitPrice=”15.0000” />
<Products ProductName=”Rhönbräu Klosterbier” UnitPrice=”7.7500” />
<Products ProductName=”Sasquatch Ale” UnitPrice=”14.0000” />
<Products ProductName=”Steeleye Stout” UnitPrice=”18.0000” />

</Categories>
</catalog>

Although SQL Server does not have support for the SQL/XML extensions, Microsoft is a member of
the group working on the standard. As such, future versions of SQL Server may provide access to that
functionality as well.

Storing XML
SQL Server 2005 adds support for the XML column type. You can create a table containing one of these
columns just as you can for any other data type (see Listing 11-7).

LLiissttiinngg 1111--77:: CCrreeaattiinngg aa ttaabbllee ccoonnttaaiinniinngg XXMMLL ddaattaa iinn MMiiccrroossoofftt SSQQLL SSeerrvveerr

CREATE TABLE dbo.Articles(
id int IDENTITY(1,1) NOT NULL PRIMARY KEY,
Title nvarchar(255) NOT NULL,
CreatedOn datetime NOT NULL DEFAULT (getdate()),
Body xml NULL
)

After the table is created, you can populate and query it just as you do any other table:

INSERT INTO dbo.Articles(Title, Body)
VALUES(‘Welcome’,
‘<div class=”wrapper”>Welcome to the system</div>’)

SELECT Body FROM dbo.Articles

332

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 332

Simply dumping XML into an XML column, although it is useful, has few benefits over using a text col-
umn. To improve the process, you can add an XML Schema to the column. Then, adding data to the table
triggers validation, ensuring the column contains data of the appropriate type. To do this with SQL
Server, you create a schema collection in the database. The CREATE XML SCHEMA COLLECTION command
creates the schema collection (see Listing 11-8). In addition to adding an entry in the database for the
schema, adding a schema collection to a database creates a number of new system tables and views to
track the schemas, as well as support validation.

LLiissttiinngg 1111--88:: CCrreeaattiinngg aann aarrttiiccllee sscchheemmaa ccoolllleeccttiioonn

CREATE XML SCHEMA COLLECTION ArticleSchemaCollection AS
‘<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified” attributeFormDefault=”unqualified”
targetNamespace=”http://example.com/articleSchema.xsd”>
<xs:element name=”article”>
<xs:complexType>
<xs:sequence>
<xs:element name=”encoding”>
<xs:complexType>
<xs:attribute name=”type” />

</xs:complexType>
</xs:element>
<xs:element name=”author” type=”xs:string”/>
<xs:element name=”body” type=”xs:string”/>
<xs:element name=”published” type=”xs:dateTime”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>’

You can view the new schema collection by querying the sys.xml_schema_collections system view (see
Figure 11-2).

After you have created the schema collection, you can apply it to the table. Drop the previous articles
table and recreate it using the schema collection (Listing 11-9).

Figure 11-2

333

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 333

LLiissttiinngg 1111--99:: AAppppllyyiinngg aa sscchheemmaa ccoolllleeccttiioonn ttoo aa ttaabbllee

CREATE TABLE dbo.Articles(
id int IDENTITY(1,1) NOT NULL PRIMARY KEY,
Title nvarchar(255) NOT NULL,
CreatedOn datetime NOT NULL DEFAULT (getdate()),
Body xml(ArticleSchemaCollection) NULL
)

By applying the schema collection to the XML column, SQL Server validates the data on insert/update
(Listing 11-10).

LLiissttiinngg 1111--1100:: IInnsseerrttiinngg iinnttoo aa vvaalliiddaattiinngg ccoolluummnn

INSERT INTO dbo.Articles (Title, Body)
VALUES (‘Validated item’,

‘<article xmlns=”http://example.com/articleSchema.xsd “>
<encoding type=”text/plain” />
<author>Foo deBar (foo@debar.com)</author>
<body>This item will be validated upon insert.</body>
<published>2001-11-17T09:30:47.0Z</published>

</article>’)

This item should be saved because it matches the schema. However, if you try the insert with invalid
XML (for example, XML missing the body element), it fails. Adding a schema to validate your XML is a
good idea unless you need the capability to store less-structured documents.

A second means of storing XML is via the OPENXML function, first added with SQL Server 2000. This
function enables you to open a block of XML in a stored procedure. After it is open, you can perform
other processing on the XML. Essentially, it converts a block of XML into rows and columns.

The format of the OPENXML function is:

OPENXML(@doc, @xpath, @flags)
WITH row definitions

Here, @doc points at an in-memory block of XML; @xpath is an XPath statement identifying the XML to
process, and @flags provides additional hints to the processor. The WITH clause provides one or more
columns into which you convert the XML.

For example, you can use the OPENXML function to extract the attributes from the XML shown in Listing
11-2 back into columns with the query shown in Listing 11-11.

LLiissttiinngg 1111--1111:: UUssiinngg OOPPEENNXXMMLL ttoo eexxttrraacctt aattttrriibbuutteess

DECLARE @idoc int
DECLARE @doc nvarchar(1000)
SET @doc =’<Categories CategoryName=”Beverages”>
<Products ProductName=”Chai” UnitPrice=”18.0000” />
<Products ProductName=”Chang” UnitPrice=”19.0000” />
<Products ProductName=”Chartreuse verte” UnitPrice=”18.0000” />
<Products ProductName=”Côte de Blaye” UnitPrice=”263.5000” />
<Products ProductName=”Guaraná Fantástica” UnitPrice=”4.5000” />

334

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 334

<Products ProductName=”Ipoh Coffee” UnitPrice=”46.0000” />
<Products ProductName=”Lakkalikööri” UnitPrice=”18.0000” />
<Products ProductName=”Laughing Lumberjack Lager” UnitPrice=”14.0000” />
<Products ProductName=”Outback Lager” UnitPrice=”15.0000” />
<Products ProductName=”Rhönbräu Klosterbier” UnitPrice=”7.7500” />
<Products ProductName=”Sasquatch Ale” UnitPrice=”14.0000” />
<Products ProductName=”Steeleye Stout” UnitPrice=”18.0000” />

</Categories>’
-- Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
-- Execute a SELECT statement using OPENXML rowset provider.
SELECT *
FROM OPENXML (@idoc, ‘/Categories/Products’,1)

WITH (ProductName nvarchar(50),
UnitPrice decimal)

EXEC sp_xml_removedocument @idoc

The sp_xml_preparedocument stored procedure loads the block of XML into the @idoc variable, and
sp_xml_removedocument frees the memory and handles used by the variable. The OPENXML function
first applies the XPath /Categories/Products to extract the individual rows. The ProductName and
UnitPrice attributes are mapped to the columns identified in the WITH clause. At this point, you can
walk the RowSet, perhaps saving the individual items. The preceding code simply returns the resulting
RowSet, as shown in Figure 11-3.

Figure 11-3

335

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 335

Rather than simply returning the resulting rows and columns, you can use the OPENXML function to per-
form a bulk insert, as Listing 11-12 shows.

LLiissttiinngg 1111--1122:: AA bbuullkk iinnsseerrtt uussiinngg OOPPEENNXXMMLL

CREATE TABLE NewProducts(
id int identity(1,1) NOT NULL,
productName nvarchar(50) NOT NULL,
unitPrice decimal)
GO

DECLARE @idoc int
DECLARE @doc nvarchar(1000)
SET @doc =’<Categories CategoryName=”Beverages”>
<Products ProductName=”Chai” UnitPrice=”18.0000” />
<Products ProductName=”Chang” UnitPrice=”19.0000” />
<Products ProductName=”Chartreuse verte” UnitPrice=”18.0000” />
<Products ProductName=”Côte de Blaye” UnitPrice=”263.5000” />
<Products ProductName=”Guaraná Fantástica” UnitPrice=”4.5000” />
<Products ProductName=”Ipoh Coffee” UnitPrice=”46.0000” />
<Products ProductName=”Lakkalikööri” UnitPrice=”18.0000” />
<Products ProductName=”Laughing Lumberjack Lager” UnitPrice=”14.0000” />
<Products ProductName=”Outback Lager” UnitPrice=”15.0000” />
<Products ProductName=”Rhönbräu Klosterbier” UnitPrice=”7.7500” />
<Products ProductName=”Sasquatch Ale” UnitPrice=”14.0000” />
<Products ProductName=”Steeleye Stout” UnitPrice=”18.0000” />

</Categories>’
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc
INSERT INTO NewProducts SELECT *
FROM OPENXML (@idoc, ‘/Categories/Products’,1)

WITH (ProductName nvarchar(50),
UnitPrice decimal)

EXEC sp_xml_removedocument @idoc

First, a new table is created. You wrap the CREATE TABLE command in an if exists statement to avoid
any errors caused by the effort to create a table that already exists. The INSERT INTO clause then
retrieves the list of products and creates new rows for each entry. This technique can be used to load a
number of tables quickly from a block of XML.

Additional XML-related features
In addition to storing and retrieving data as XML, SQL Server 2005 adds support for exposing stored
procedures or functions as Web services. These Web services are then available to clients via HTTP or
TCP. This can provide a method of sharing the functionality of a SQL Server without requiring a dedi-
cated Web service layer or a Web server. You must be running Windows Server 2003 or Windows XP
Professional Service Pack 2 or later to get this functionality because it depends on the HTTP.SYS driver,
which is present only on those operating systems.

336

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 336

The basic syntax of the CREATE ENDPOINT command is shown in Listing 11-13. Although both AS HTTP
and AS TCP are shown, only one can occur per create endpoint command.

LLiissttiinngg 1111--1133:: TThhee CCRREEAATTEE EENNDDPPOOIINNTT ccoommmmaanndd

CREATE ENDPOINT endPointName [AUTHORIZATION login]
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (
PATH = ‘url’,
AUTHENTICATION =({ BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS } [,...n]),
PORTS = ({ CLEAR | SSL} [,... n])
[SITE = {‘*’ | ‘+’ | ‘webSite’ },]
[, CLEAR_PORT = clearPort]
[, SSL_PORT = SSLPort]
[, AUTH_REALM = { ‘realm’ | NONE }]
[, DEFAULT_LOGON_DOMAIN = { ‘domain’ | NONE }]
[, COMPRESSION = { ENABLED | DISABLED }]
)

AS TCP (
LISTENER_PORT = listenerPort
[, LISTENER_IP = ALL | (<4-part-ip> | <ip_address_v6>)]
)

(continued)

337

Chapter 11: XML in the Data Tier

To expose or not to expose?
Exposing Web Services directly from the database is a bit of a controversial exercise.

Those in favor of it believe that providing functionality like this directly from the
source allows for more optimization. The database is more aware of the structure of the
data and, therefore, can optimize better. For example, indexes can make data retrieval
faster than is possible in the business tier code. In addition, joins and views can mean
that the data required by the Web service is more readily available in the database
itself. Therefore, it makes sense to provide the Web service from the database.

Developers opposed to providing Web service access to the database point out that
doing so allows a dangerous direct connection to the database — possibly from the
Internet. They argue that the database should be behind a firewall (if not multiple fire-
walls), and adding another port that can access the data means that the system is that
much more vulnerable to attack.

However, keep in mind that just because you have Web services does not mean that the
clients are coming from the Internet. They could be coming from within the firewall. In
this case, Web services provide platform independence and reduce the need to install
database client functionality on client machines. For example, using these SQL end-
points could provide access to data to Unix or other non-Windows workstations that
lack SQL connectivity. Finally, Ajax clients could access the Web services without
requiring database connectivity. In short, SQL endpoints become another tool in your
developer’s toolbox: not perfect for all scenarios, but useful when employed correctly.

18_777779 ch11.qxp 3/1/07 11:47 PM Page 337

LLiissttiinngg 1111--1133 (continued)

FOR SOAP(
[{ WEBMETHOD [‘namespace’ .] ‘method_alias’
(NAME = ‘database.owner.name’
[, SCHEMA = { NONE | STANDARD | DEFAULT }]
[, FORMAT = { ALL_RESULTS | ROWSETS_ONLY }]

)
} [,...n]]
[BATCHES = { ENABLED | DISABLED }]
[, WSDL = { NONE | DEFAULT | ‘sp_name’ }]
[, SESSIONS = { ENABLED | DISABLED }]
[, LOGIN_TYPE = { MIXED | WINDOWS }]
[, SESSION_TIMEOUT = timeoutInterval | NEVER]
[, DATABASE = { ‘database_name’ | DEFAULT }
[, NAMESPACE = { ‘namespace’ | DEFAULT }]
[, SCHEMA = { NONE | STANDARD }]
[, CHARACTER_SET = { SQL | XML }]
[, HEADER_LIMIT = int]
)

The main points to consider when creating an endpoint are:

❑ What stored procedure or function (or UDF) will you be exposing? This is identified in the
WebMethod clause.

❑ What authentication will clients need to use? Typically, if your clients are part of the same net-
work, you use integrated or NTLM authentication. If clients are coming across the Internet or
from non-Windows, you may want to use Kerberos, digest, or basic authentication.

❑ What network port will the service use? The basic choices when creating an HTTP endpoint
are CLEAR (port 80) or SSL (port 443). Generally, you should use SSL if the data transmitted
requires security and you are using public networks. Note that Internet Information Services
(IIS) and other Web servers also use these ports. If you have both IIS and SQL Server on the
same machine, you should alternate ports (using CLEAR_PORT or SSL_PORT) for your HTTP
endpoints. When creating TCP endpoints, you should select a LISTENER_PORT that is unused
on your server.

Listing 11-14 shows the creation of an HTTP endpoint exposing the system stored procedure sp_monitor.

LLiissttiinngg 1111--1144:: CCrreeaattiinngg aann HHTTTTPP eennddppooiinntt

CREATE ENDPOINT SampleEndpoint
STATE = STARTED
AS HTTP(

PATH = ‘/sql’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
CLEAR_PORT = 8888,
SITE = ‘localhost’
)

FOR SOAP (

338

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 338

WEBMETHOD ‘GetServerStats’
(name=’master.sys.sp_monitor’),

WSDL = DEFAULT,
SCHEMA = STANDARD,
DATABASE = ‘master’,
NAMESPACE = ‘http://tempUri.org/’
);

GO

The CREATE ENDPOINT command creates an endpoint that responds to SOAP requests via HTTP. In this
case, the endpoint is created on the local instance of SQL Server. One Web method is created in the pre-
ceding sample. However, you can add multiple WEBMETHOD clauses to create multiple methods in a sin-
gle call. Figure 11-4 shows a portion of the WSDL dynamically created by querying the new endpoint
(http://localhost:8888/sql?WSDL).

Figure 11-4

After a method is created, you can use any SOAP client to bind to the WSDL and call the HTTP endpoint
on the SQL Server. Figure 11-5 shows a portion of the result when you call this Web service using XML Spy.

339

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:47 PM Page 339

Figure 11-5

One last feature of SQL Server 2005 is not directly related to XML, but can provide a great deal of assis-
tance when working with XML: the capability to use C# or Visual Basic to create stored procedures. This
provides a number of benefits in some scenarios, most notably the availability of .NET classes (including
the System.Xml namespace) for processing data. This means you can perform XPath or XSLT processing
within the stored procedure, giving you additional flexibility in processing XML, either for storage or
retrieval.

Oracle 10g
Oracle and databases are synonymous for many developers. Oracle is frequently at the forefront in pro-
viding database functionality, and its support for XML is yet another example of this. Oracle 10g
includes support for SQL/XML and XQuery via the XML DB subsystem. In addition to SQL/XML and
XQuery, Oracle adds hierarchical indices, a number of PL/SQL extensions for working with XML.

340

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:47 PM Page 340

Retrieving XML
Retrieving XML from Oracle is based on the emerging SQL/XML standard. You can use the operators
defined in the standard to construct queries that output XML. Oracle supports most of the proposed
operators. However, the XML type in the standard is implemented using the XMLType keyword.

To query the table shown in Figure 11-6 and return XML, you construct the following query:

SELECT XMLElement(“emp”, XMLAttributes(employee_id AS id),
XMLElement(“fname”,first_name),
XMLElement(“lname”,last_name),
XMLElement(“email”, email))

FROM employees
WHERE last_name LIKE ‘L%’;

Figure 11-6

341

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:48 PM Page 341

The SQL/XML operators convert the data returned into XML elements and attributes. As you can see in
the preceding query, the employee_id field is converted into an attribute and applied to a newly created
emp element, showing that you can easily create elements as needed. As the first and last names are
enclosed within the emp element, the resulting elements are created as child elements. Listing 11-15
shows the output of the query.

LLiissttiinngg 1111--1155:: OOuuttppuutt ffrroomm SSQQLL//XXMMLL qquueerryy

<emp ID=”137”>
<fname>Renske</fname>
<lname>Ladwig</lname>
<email>RLADWIG</email>

</emp>
<emp ID=”127”>
<fname>James</fname>
<lname>Landry</lname>
<email>JLANDRY</email>

</emp>
<emp ID=”165”>
<fname>David</fname>
<lname>Lee</lname>
<email>DLEE</email>

</emp>
<emp ID=”177”>
<fname>Jack</fname>
<lname>Livingston</lname>
<email>JLIVINGS</email>

</emp>
<emp ID=”107”>
<fname>Diana</fname>
<lname>Lorentz</lname>
<email>DLORENTZ</email>

</emp>

Rather than listing each of the child elements separately, you can use the XMLForest command to sim-
plify the query (the following query generates the same output as Listing 11-15):

SELECT XMLElement(“emp”,
XMLAttributes(employee_id AS id),

XMLForest(first_name AS “fname”,
last_name AS “lname”,
email AS “email”))

FROM employees
WHERE last_name LIKE ‘L%’;

The XMLForest command provides an easy means of adding multiple elements using the one com-
mand. Each of the elements listed in the XMLForest command is a child element of the preceding
XMLElement.

The SQL/XML extensions enable you to define complex queries and provide a syntax similar to the nor-
mal SELECT. For example, the query in Listing 11-16 retrieves the employees and groups them by their
departments.

342

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:48 PM Page 342

LLiissttiinngg 1111--1166:: RReettrriieevviinngg eemmppllooyyeeeess aanndd ddeeppaarrttmmeennttss

SELECT XMLElement(“dept”,
XMLAttributes(d.department_name AS “Name”),

XMLAgg(
XMLElement(“emp”,

XMLAttributes(employee_id AS id),
XMLForest(e.first_name AS “fname”,

e.last_name AS “lname”,
e.email AS “email”)))) AS out

FROM departments d INNER JOIN employees e
ON d.department_id = e.department_id

GROUP BY d.department_name;

As before, the XMLElement and XMLAttributes commands are used to identify the tags to use. The
XMLAgg command is used to group the employees based on the GROUP BY clause. Listing 11-17 shows
part of the output of this query.

LLiissttiinngg 1111--1177:: EEmmppllooyyeeeess aanndd ddeeppaarrttmmeennttss

<dept Name=”Accounting”>
<emp ID=”205”><fname>Shelley</fname><lname>Higgins</lname></emp>
<emp ID=”206”><fname>William</fname><lname>Gietz</lname></emp>

</dept>
<dept Name=”Administration”>
<emp ID=”200”><fname>Jennifer</fname><lname>Whalen</lname></emp>

</dept>
<dept Name=”Executive”>
<emp ID=”100”><fname>Steven</fname><lname>King</lname></emp>
<emp ID=”101”><fname>Neena</fname><lname>Kochhar</lname></emp>
<emp ID=”102”><fname>Lex</fname><lname>De Haan</lname></emp>

</dept>

Storing XML
Oracle supports storing XML in database tables using the XMLType column type. This type is similar to
the CLOB type in that it stores large amounts of text. In addition to standard CLOB behavior, it ensures
that the resulting data is well-formed XML and provides a number of helper methods for working with
the resulting document. Listing 11-18 creates a table that stores XML in one column.

LLiissttiinngg 1111--1188:: CCrreeaattiinngg aa ttaabbllee ccoonnttaaiinniinngg XXMMLL ddaattaa iinn OOrraaccllee 1100gg

CREATE TABLE “ARTICLES”
(
“ID” NUMBER NOT NULL ENABLE,
“TITLE” VARCHAR2(255) NOT NULL ENABLE,
“BODY” “XMLTYPE”,
CONSTRAINT “ARTICLES_CON” PRIMARY KEY (“ID”) ENABLE

)

INSERT INTO Articles(id, Title, Body) VALUES (24, ‘An article title’,
XMLType(‘<article>

(continued)

343

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:48 PM Page 343

LLiissttiinngg 1111--1188 (continued)

<author>Foo deBar (foo@debar.com)</author>
<body>This is the article body.</body>

</article>’));

The XMLType operator converts the enclosed XML block into the SQL/XML XML type for storage in the
Body column.

The table created in Listing 11-18 does not ensure the XML validates against a schema, however. To do
that, the schema must be registered with the database. Another benefit in addition to validation is that
you can index the schema, allowing queries of the XML data to be almost as fast as queries against
indexed tables. Listing 11-19 shows how you would associate a schema with this table.

LLiissttiinngg 1111--1199:: CCrreeaattiinngg aa ttaabbllee ccoonnttaaiinniinngg XXMMLL ddaattaa wwiitthh aa sscchheemmaa

DBMS_XMLSCHEMA.registerSchema(
SCHEMAURL => ‘http://example.com/schemas/articles.xsd’,
SCHEMADOC => bfilename(‘SchemaDir’,’article.xsd’),
CSID => nls_charset_id(‘AL32UTF8’));

/
CREATE INDEX iArticleAuthor ON Articles
(extractValue(Body, ‘/article/author’));
/

The SchemaUrl points to the target namespace URL of the schema and may not actually point to a phys-
ical file. The SchemaDoc value is used to load the actual schema to store in the database. The CSID
parameter identifies the character encoding used by the document.

SQL/XML also defines a number of operators for extracting data from the supplied XML. This is useful
when you want to extract only a few values from a block of XML. The following table shows some of
these operators.

Operator Notes

existsnode() Queries the XML using an XPath statement to determine if the node
exists.

extract() Retrieves the document or document fragment described by the
XPath query. If the query identifies a single node, the resulting XML
is well-formed. If it identifies a number of nodes, the resulting XML
is a fragment.

extractvalue() Retrieves the text value for the node identified with the XPath query.
The resulting data is converted to the appropriate SQL data type.

updatexml() Changes the XML based on an XPath statement and the new desired
value.

xmlsequence() Converts a document fragment into a well-formed document.

344

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:48 PM Page 344

For example, the following query returns the value of the author element from the article with an ID of 24:

SELECT extractvalue(Body, ‘/article/author’) AS author FROM articles where id=24

// returns: Foo deBar (foo@debar.com)

XML Databases
The databases described previously all work with XML from a relational model; they may store XML,
but they are designed with rows and columns in mind. Storing XML data is either a matter of dumping
the content into a BLOB (Binary Large OBject) field or extracting the information and mapping it to
columns. XML databases, on the other hand, store and manipulate XML in a more native form. Three
examples of XML databases are the open source Xindice (pronounced Zeen-dee-chay), the eponymous
Mark Logic Server, and Berkeley DB XML from Sleepycat Software. These databases store XML natively,
without requiring conversion to and from relational tables. Rather than attempt to shoehorn SQL as a
query language, they use XQuery or XPath as a query mechanism.

Xindice
Xindice is an open source native XML database. It is part of the tools developed and managed by the
Apache Foundation. Although not as full-featured as some commercial databases (it has no support for
XQuery for example), binaries and source code are available for a number of Operating Systems. You
can download it from the Apache Foundation Web site at http://xml.apache.org/xindice/. The
samples in this section use Xindice 1.1 syntax, which is slightly different from that used by 1.0. It directly
supports access via Java, but other languages are supported via WebDAV queries.

Setting up Xindice requires that you first install an application server. This can be either the freely avail-
able Tomcat (also from the Apache Foundation), or a commercial application server, such as BEA
Weblogic or IBM Websphere. Xindice is distributed as a WAR (Web ARchive) file for installation into the
application server. After it is set up and configured, you can begin to communicate with the database via
the included command-line tool or Java.

Retrieving XML
As XML is stored in Xindice as the native format, retrieving XML is simpler than retrieving it from rela-
tional databases. You don’t need to map columns to XML or to use extensions to SQL to work with the
collection. Instead, you process Xindice collections using a provided command-line tool or via Java.
Other languages may also be used via an XML-RPC interface.

Xindice stores XML documents in collections; these structures serve as the databases, and they may be
nested. Before performing any other processing with Xindice, you must first create a collection in which
to store your documents. When querying or adding XML, you reference the collection for the docu-
ments. You create a collection either with the command-line interface or via code. Via the command-line,
you use the add_collection (or ac) command:

xindice ac –c xmldb:xindice://db –n {collection}

Listing 11-20 shows the code used to create a new collection.

345

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:48 PM Page 345

LLiissttiinngg 1111--2200:: CCrreeaattiinngg aa XXiinnddiiccee ccoolllleeccttiioonn

private void collectionButtonActionPerformed(java.awt.event.ActionEvent evt) {
try {

getDatabase();
Collection col = DatabaseManager.getCollection(SERVICE_URL);
CollectionManager service =

(CollectionManager) col.getService(“CollectionManager”, “1.0”);
String collectionName = this.collectionField.getText();

String collectionConfig =
“<collection compressed=\”true\” “ +
“ name=\”” + collectionName + “\”>” +
“ <filer class=\”org.apache.xindice.core.filer.BTreeFiler\”/>” +
“</collection>”;

service.createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

this.collectionMessage.setText(“Collection created”);

} catch (Exception e) {
System.err.println(“Error creating collection “ + e.getMessage());

}

}

The first step when working with a Xindice collection is to register the database (see Listing 11-21). Next,
the Collection Manager service is loaded and the new collection created. Notice that the parameters of
the new collection are passed to the createCollection method. In this case the resulting collection is
compressed and uses the BTreeFiler.

LLiissttiinngg 1111--2211:: TThhee ggeettDDaattaabbaassee mmeetthhoodd

private static void getDatabase() {
try {

Class c = Class.forName(driver);
Database database = (Database) c.newInstance();
DatabaseManager.registerDatabase(database);

} catch (Exception e) {
System.err.println(“Error registering database “ + e.getMessage());

}
}

The getDatabase routine loads the class for the Xindice implementation (org.apache.xindice
.client.xmldb.DatabaseImpl), and then it creates a new instance of that class and registers the
database. This is required whenever you work with the database, either storing or retrieving
information.

Xindice collections are queried using XPath statements. This means that it is relatively simple to retrieve
individual items or lists from the collection. However, complex queries or calculations that would be
possible in XQuery are not possible currently.

Using the command-line, you perform queries with the xpath command:

xindice xpath -c xmldb:xindice://{server}:{port}/db/{collection} –q {query}

346

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:48 PM Page 346

For example, to retrieve the information in a collection named employees about Foo deBar, you use the
following command:

xindice xpath -c xmldb:xindice://{server}:{port}/db/employees
–q emps[lname=”deBar”]

Figure 11-7 shows a simple application for working with a Xindice collection (see Listing 11-22).

Figure 11-7

LLiissttiinngg 1111--2222:: UUssiinngg XXPPaatthh ttoo qquueerryy aa XXiinnddiiccee ccoolllleeccttiioonn wwiitthh JJaavvaa

private void queryButtonActionPerformed(java.awt.event.ActionEvent evt) {
try {

getDatabase();
this.queryResults.setText(“”);
String url = SERVICE_URL + “/” + this.collectionField.getText();
Collection col = DatabaseManager.getCollection(url);
XPathQueryService service =

(XPathQueryService) col.getService(“XPathQueryService”, “1.0”);
String xpath = this.queryField.getText();
ResourceSet resultSet = service.query(xpath);
ResourceIterator results = resultSet.getIterator();
StringBuffer buff = new StringBuffer();
while (results.hasMoreResources()) {

Resource res = results.nextResource();
buff.append(res.getContent());
System.out.println((String) res.getContent());

}
this.queryResults.setText(buff.toString());

} catch(Exception e) {

(continued)

347

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:48 PM Page 347

LLiissttiinngg 1111--2222 (continued)

System.err.println(“Error querying collection “ + e.getMessage());
}

}

The query functionality first connects to the database as before. After you have registered the database,
the next step is to load the collection. This is performed by referencing the URL (xmldb:xindice:
//localhost:90/db/employees on my machine; the server and port depend on the URL of your
application server). You then retrieve the XPath query service and execute the query. This returns a col-
lection that can be iterated to process each item in the result set. Notice that the key is part of the result.

Storing XML
Storing XML in Xindice is similar to the retrieval: You access the collection and use the xindice ad (or
add_document) command. The document is added into the collection based on the URL used.

xindice ad -c xmldb:xindice://{server}:{port}/db/{collection} -f {file}

You can also add a number of documents simultaneously with the -e switch, listing the extension of all
the documents to be added. Listing 11-23 shows the code required to add documents to the collection.

LLiissttiinngg 1111--2233:: AAddddiinngg ddooccuummeennttss ttoo XXiinnddiiccee ccoolllleeccttiioonn

private void addButtonActionPerformed(java.awt.event.ActionEvent evt) {

try {
getDatabase();
String url = SERVICE_URL + “/” + this.collectionField.getText();
Collection col = DatabaseManager.getCollection(url);
XMLResource document =

(XMLResource) col.createResource(null, “XMLResource”);
document.setContent(this.bodyField.getText());
col.storeResource(document);

this.itemMessage.setText(“Item added”);
} catch(Exception e) {

System.err.println(“Error adding item “ + e.getMessage());
}

}

The XMLResource class provides a number of methods for working with XML. This includes adding the
content as I have done here or via a DOM or SAX handle. To confirm the item is listed, you can either query
for the new information or retrieve the full list of resources in the collection as shown in Listing 11-24.

LLiissttiinngg 1111--2244:: RReettrriieevviinngg aallll rreessoouurrcceess iinn tthhee XXiinnddiiccee ccoolllleeccttiioonn

private void refreshButtonActionPerformed(java.awt.event.ActionEvent evt) {
DefaultListModel theList = new DefaultListModel();
this.itemList.setModel(theList);

348

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:48 PM Page 348

try {
//get all items from collection
getDatabase();
String url = SERVICE_URL + “/” + this.collectionField.getText();
Collection col = DatabaseManager.getCollection(url);
String[] items = col.listResources();

//add each to list
for(int i=0;i<items.length;i++) {

theList.addElement(items[i]);
}

} catch (Exception e) {
System.err.println(“Error retrieving items “ + e.getMessage());

}
}

Xindice provides an easy (and inexpensive) way to add a native XML database to your solution. If you
are dealing with many small XML documents and don’t want to add a relational database to your appli-
cation, it can provide a useful data storage and query mechanism.

Other Databases
Obviously, not every developer in the world uses one of the databases discussed in this chapter. Many
more databases are in use, and many of them also support some interaction with XML. Some of the more
notable databases providing support for XML include:

❑ Sybase Adaptive Server Enterprise 15 — includes support for SQL/XML and XQuery.

❑ Berkeley DB XML — formerly from Sleepycat Software, now owned by Oracle. Berkeley DB
XML is a native XML database with full XQuery support and is capable of being embedded in
other applications. Support for Java and C/C++ clients.

❑ Mark Logic Server — native XML database (or Content Server, as the site calls it). It provides
support for XQuery and XPath 2.0. In addition, it provides support for partitioning a database
across multiple servers for better performance. Support for Java and .NET clients, as well as
direct connection from Stylus Studio.

Summary
Databases are rapidly becoming excellent stores for XML data — either natively or using extensions to
SQL. Similarly, XQuery support is expanding, providing a common query mechanism for XML and rela-
tional data. For those scenarios where the structure of the XML does not allow for the use of relational
databases, native XML databases are available to provide data storage. The integration of databases and
XML will continue, and tool support should improve — helping developers access the best features of
XML and databases in their applications.

349

Chapter 11: XML in the Data Tier

18_777779 ch11.qxp 3/1/07 11:48 PM Page 349

Resources
❑ MSDN SQL Server Developer Center —http://msdn.microsoft.com/sql

❑ Oracle OTN —oracle.com/technology/index.html

❑ IBM DB2 Developer Center —ibm.com/developerworks/db2/

❑ Mark Logic xq:zone —http://xqzone.marklogic.com/

❑ SQL/XML specification —sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf

350

Part IV: XML as Data

18_777779 ch11.qxp 3/1/07 11:48 PM Page 350

Part V

PPrrooggrraammmmiinngg XXMMLL

Chapter 12: XML Document Object Model (DOM)

Chapter 13: Simple API for XML (SAX)

Chapter 14: Ajax

Chapter 15: XML and .NET

Chapter 16: XML and Java

Chapter 17: Dynamic Languages and XML

19_777779 pt05.qxp 3/1/07 11:48 PM Page 351

19_777779 pt05.qxp 3/1/07 11:48 PM Page 352

XXMMLL DDooccuummeenntt
OObb jj eecc tt MMooddee ll ((DDOOMM))

XML was introduced to alleviate interoperability problems across platforms and networks. A stan-
dard language, combined with a DTD (or another schema construct), provides a way of exchang-
ing data. Not only does data need to be in a standard format, but the way data is accessed should
also be standardized. XML provides the constructs for putting data into a standard format, and as
you will soon see, the Document Object Model provides a standard way of accessing data. A Web
developer, who provides some script inside a Web page that makes use of an XML document,
shouldn’t have to recode the script to work in every browser. This chapter takes you through a
tour of the XML DOM features, including its object model, various classes, and their usage.
Specifically you will see:

❑ The need for XML DOM processing on the client side

❑ The different classes contained in the XML DOM

❑ How to work with the various classes of XML DOM

❑ How to create, read, and modify nodes in an XML document

❑ How to validate an XML document against an XSD schema using XML DOM

❑ How to transform an XML document into HTML using XML DOM

What Is DOM?
Some overhead is involved when using XML documents, because extracting data from the tags in
an XML document can be arduous. A parser is used to take care of checking a document’s validity
and extracting the data from the XML syntax. A layer of abstraction between the application and the
XML document is made possible by the XML Document Object Model (DOM) specification, which
has been standardized by the W3C. This layer of abstraction comes in the form of interfaces that

20_777779 ch12.qxp 3/1/07 11:48 PM Page 353

have methods and properties to manipulate an XML document. In other words, when using the DOM,
you don’t need to worry about the XML syntax directly. For example, the methods, getAttribute(...)
and setAttribute(...), enable you to manipulate the attributes on an element in an elegant fashion.
Legacy systems can use these interfaces to provide access to legacy data as if the data was natively stored
in XML. In other words, your legacy data can be made to look like an XML document by implementing
the DOM interfaces on top of the legacy database.

Why Client-Side XML Processing?
At first glance, it seems pretty silly to process XML data on the client side when powerful languages
such as ASP.NET, Java, and Perl exist to handle processing on the back end. But, if you have been around
the world of Web development for any length of time, will know that in some circumstances it makes
sense to handle things on the server side, and other conditions that suit processing on the client side.

Processing data on the client side can help relieve server load and give the visitor a better, more respon-
sive experience on your site. For example, the use of server-side programming to perform a task as sim-
ple as sorting a column in a table, or formatting some data, is unnecessary; it also forces the users to wait
longer than they should have to for such trivial operations. Client-side processing of XML data can be a
big help in situations like this.

XML DOM Object Model
Document Object Model is a W3C standard that allows you to put together a document dynamically,
and to navigate and manipulate its structure and content. To work with DOM, you use an XML parser to
load XML documents into memory. After the documents are loaded, you can then easily manipulate the
information in the documents through the Document Object Model (DOM).

You can visualize the DOM’s structure as a tree of nodes. The root of the tree is a Document node, which
has one or more child nodes that branch off from this trunk. Each of these child nodes may in turn con-
tain child nodes of its own, and so on. For example, consider the XML file shown in Listing 12-1.

LLiissttiinngg 1122--11:: AA ssaammppllee XXMMLL ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<Products>
<Product Category=”Helmets”>
<ProductID>707</ProductID>
<Name>Sport-100 Helmet, Red</Name>
<ProductNumber>HL-U509-R</ProductNumber>

</Product>
<Product Category=”Socks”>
<ProductID>709</ProductID>
<Name>Mountain Bike Socks, M</Name>
<ProductNumber>SO-B909-M</ProductNumber>

</Product>
<Product Category=”Socks”>
<ProductID>710</ProductID>
<Name>Mountain Bike Socks, L</Name>
<ProductNumber>SO-B909-L</ProductNumber></Product>

354

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 354

<Product Category=”Caps”>
<ProductID>712</ProductID>
<Name>AWC Logo Cap</Name>
<ProductNumber>CA-1098</ProductNumber>

</Product>
</Products>

The root element of this XML document is <Products>, which contains an arbitrary number of
<Product> elements. Each <Product> element, in turn, contains <ProductID>, <Name>, and
<ProductNumber> elements. In addition, the <Product > element also contains a category attribute.

If you load this XML file into DOM, DOM loads the XML file into a tree-like structure with the elements,
attributes, and text defined as nodes. Some of these node objects have child objects or child nodes.
Nodes with no child object are called leaf nodes. Figure 12-1 provides a visual representation of the
Products.xml file.

According to W3C recommendations, the DOM Level 1 allows navigation within an HTML or XML doc-
ument and the manipulation of its content. DOM Level 2 extends Level 1 with a number of features such
as XML Namespace support, filtered views, ranges, and events. DOM Level 3 builds on Level 2 that
allows programs to dynamically access and update the content, structure, and style of documents. The
following table describes the main interfaces that form the DOM Level 3 Core module.

Figure 12-1

Root Element
(Products)

ChildParent

Element
(Product)

Element
(Name)

Siblings

Element
(ProductID)

Element
(ProductNumber)

Attribute
(Category)

355

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 355

Interface Description

Attr The Attr interface represents an attribute in an Element object

CDataSection CDATA sections escape blocks of text containing characters that would
otherwise be regarded as markup

CharacterData The CharacterData interface extends Node with a set of attributes and
methods for accessing character data in the DOM

Comment This interface inherits from CharacterData and represents the content of a
comment (in other words, all the characters between the starting <!-- and
ending -->)

Document The Document interface represents the entire Hypertext Markup Language
(HTML) or XML document

DocumentFragment DocumentFragment is a light-weight or minimal Document object

DocumentType Each Document has a doctype attribute whose value is either null or a
DocumentType object

DOMImplementation The DOMImplementation interface provides a number of methods for per-
forming operations that are independent of any particular instance of the
DOM

Element The Element interface represents an element in an HTML or XML document

Entity This interface represents an entity, either parsed or unparsed, in an XML
document

EntityReference EntityReference objects may be inserted into the structure model when an
entity reference is in the source document or when the user wants to insert
an entity reference

NamedNodeMap Objects implementing the NamedNodeMap interface represent collections
of nodes that can be accessed by name

Node The Node interface is the primary data type for the entire DOM

NodeList The NodeList interface provides the abstraction of an ordered collection of
nodes, without defining or constraining how this collection is implemented

Notation This interface represents a notation declared in the document type definition
(DTD)

ProcessingInstruction The ProcessingInstruction interface represents a PI, which is used in XML
as a way to keep processor-specific information in the text of the document

Text The Text interface inherits from CharacterData and represents the textual
content (termed character data in XML) of an Element or Attr

Note that every interface that represents a node in the DOM tree extends the Node interface. The next
few sections explore some of the important interfaces and the steps involved in using its methods and
properties.

356

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 356

Using the Document Interface
The Document interface is the uppermost object in the XML DOM hierarchy. It implements all the basic
DOM methods required to work with an XML document. It also provides methods that help you navi-
gate, query, and modify the content and the structure of an XML document. Some of the important
methods of the Microsoft’s implementation of Document object are described in the following table:

Method Description

createElement Takes an element name as a parameter and creates an element node
by using the name. You cannot create namespace-qualified elements
using the createElement() method. To create namespace-qualified
elements, you need to use the createElementNS() method

createAttribute Takes an attribute name as a parameter and creates an attribute node
with that name

createTextNode Takes a string as a parameter and creates a text node containing the
specified string

createNode Takes three parameters. The type parameter is a variant that can be
either a string or an integer. The second parameter is a string that
represents the name of the node to be created. The third parameter is
a string that represents the namespace-URI

createComment Takes a string as a parameter and creates a comment node containing
this string

getElementsByTagName Takes a string as a parameter. The string represents the element to be
searched. This method returns an instance of the IXMLDOMNodeList
object, which contains the collection of nodes with the specified ele-
ment name. You can use the node list to navigate and manipulate the
values stored in the named elements

load Takes a string as a parameter that represents the URL or the path of
an XML document as its argument and loads the specified document
in the DOMDocument object

loadXML Takes a string as a parameter, which contains well-formed XML code
or an entire XML document, to load it in the DOMDocument object

transformNode Takes a style sheet object as a parameter, processes the node by
applying the corresponding style sheet template on the XML docu-
ment, and returns the result of transformation

save Takes an object as a parameter. This object can be either DOMDocu-
ment or a filename. The save() method saves the DOMDocument
object at the specified destination

357

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 357

In addition to the preceding methods, the Microsoft implementation of the Document interface also
exposes the following properties that can be used to manipulate the information contained in the
Document object.

Property Description

async Specifies whether an asynchronous download is permitted. If you set this
property to true, the script executes while the XML document is still being
loaded. If this property is set to false, the script waits until the XML docu-
ment is loaded before it starts processing the content.

childNodes Returns a list of child nodes that belong to a parent node. The value of this
property is of the type IXMLDOMNodeList.

documentElement Contains the root element of the XML document represented by the DOM-
Document object.

firstChild Returns the first child node of a parent element. This is a read-only property.

lastChild Returns the last child of a parent node.

parseError Returns an IXMLDOMParseError object that contains information about the
most recently generated error.

readyState Returns the state of the XML document. It indicates whether the document
has been loaded completely.

xml Returns an XML representation of a node and its child nodes.

validateOnParse Specifies whether the parser should validate the XML document when parsing.

Now that you have had a brief look at the properties and methods of the Document interface, take a look
at an example that shows how to load an XML document through the Document interface.

Loading an XML Document
To traverse an XML document in Internet Explorer, you first have to instantiate the Microsoft XMLDOM
parser. In Internet Explorer 5.0 and above, you can instantiate the parser using JavaScript:

<script type=”text/javascript”>
function loadDocument()
{
var doc = new ActiveXObject(“Microsoft.XMLDOM”);
...

}
</script>

Note that the previous XML parser is implemented as an ActiveX object and works only in Internet
Explorer.

358

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 358

After the parser is instantiated, you can load a file into it using a series of commands. For example, to
load the Products.xml file in the parser:

<script type=”text/javascript”>
function loadDocument()
{
var doc = new ActiveXObject(“Microsoft.XMLDOM”);
doc.async = false;
doc.load(“Products.xml”);
...

}
</script>

Note that you set the async property of the XMLDOM object to false to ensure that the parser will wait
until the document is fully loaded before it does anything else. Next, you invoke the load() method to
load the contents of the Products.xml file into the parser.

At times you might want to load the XML from a string variable and then feed it directly to the parser.
To do this, you must use the loadXML() method instead of the load() method, as in the following
example:

<script type=”text/javascript”>
function loadDocument()
{
var xmlContents = ‘<?xml version=”1.0” encoding=”iso-8859-1”?>’;
xmlContents += ‘<Products><Product>’;
xmlContents += ‘<ProductID>707</ProductID>’;
xmlContents += ‘<Name>Sport-100 Helmet, Red</Name>’;
xmlContents += ‘<ProductNumber>HL-U509-R</ProductNumber>’;
xmlContents += ‘</Product></Products>’;
var doc = new ActiveXObject(“Microsoft.XMLDOM”);
doc.async = false;
doc.loadXML(xmlContents);
...

}
</script>

The loadXML() method can be extremely useful in scenarios where you are retrieving XML data from
the server side dynamically as a string variable. You can take that XML and load it onto an XML DOM
object using the loadXML() method for subsequent processing.

Using the readyState Property
To check whether a document has been loaded completely, use the readyState property. This property
stores a numeric value, which represents one of the following states:

❑ LOADING (1)— The loading process is in progress, and data is not yet parsed.

❑ LOADED (2)— The data has been read and parsed, but the object model is not ready.

❑ INTERACTIVE (3)— The object model is available with partially retrieved data set and is in
read-only mode.

❑ COMPLETED (4)— The loading process is complete.

359

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 359

To determine whether the XML document is completely loaded and display a message using JavaScript,
use the code:

if (doc.readyState==4)
{
alert (“Document is completely loaded”);

}

Using the Element Interface
The Element interface represents each element in the XML document. It supports the manipulation of
elements and the attributes associated with the elements. If the element node contains text, this text is
represented in a text node. The Element interface helps manage attributes because this is the only node
type that has attributes. This interface has only one read-only property, tagName, which retrieves the tag
name of the element as a string.

An element is also a Node object and inherits different properties of the Node object. The methods of the
Element interface are shown in the following table:

Method Description

getAttribute Returns the string containing the value of the specified attribute

getAttributeNode Returns the specified attribute node as an Attr object

getElementsByTagName Returns the NodeList of all descendant elements with a given
tag name

removeAttribute Removes the specified attribute’s value

removeAttributeNode Removes the specified attribute node

setAttribute Creates a new attribute and sets the value for the attribute. If an
attribute is present, changes the value for it

setAttributeNode Inserts a new specified attribute to the element, replacing any
existing attribute

As mentioned previously, the getElementsByTagName() method retrieves all elements of the specified
name that occur under the node on which the method is called. For example, to print the value con-
tained in the Name element of the first product, you could write the following code:

document.write(doc.getElementsByTagName(“Name”).item(0).text);

To display all the values of the Name elements, you could loop through the collection of NodeList object
returned by the getElementsByTagName() method:

var names = doc.getElementsByTagName(“Name”);
for (var i = 0; i < names.length; i++)
{
document.write(names.item(i).text + “ “);

}

360

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 360

Creating a New Element
You can create a new element for an XML document using the createElement() method of the DOM
object. The createElement() method takes one parameter — the name of the element that is to be cre-
ated, as shown:

var prodElement = doc.createElement(“Product”);

In the previous code, a variable named prodElement is declared and a new element node, Product, is
created. The reference of the new node is stored in the prodElement variable.

Using the Node Interface
The Node interface represents a single node in the document tree structure. All the objects inherit the
properties from the Node interface. In addition to the properties and functions, which are associated
with them, the Node interface provides basic information like the name of the Node, its text, and its con-
tent. The following table lists the different properties of the Node interface:

Property Description

attributes This returns a NamedNodeMap for nodes that have attributes

baseName A read-only property that returns the base name for a node

childNodes A read-only property containing a node list of all children for all the ele-
ments that can have them

dataType A read-only property that specifies the data type for the node

definition This property returns the definition of the node in the DTD

firstChild A read-only property that returns the first child node of a node

lastChild A read-only property that returns the last child node of a node

namespaceURI A read-only property. This property returns the Universal Resource Identifier
(URI) of the namespace

nextSibling This property returns the next node in the parent’s child list

nodeName A read-only property and contains the name of the node, depending on node
type

nodeType A read-only property specifying the type of the node

nodeTypedValue This property contains the value of this node as expressed in its data type

nodeTypeString A read-only property and returns the node type in string form

nodeValue This property contains the value of the node, depending on its type

ownerDocument This property returns the Document interface to which the node belongs

parentNode A read-only property and returns the parent node of all nodes except Docu-
ment, DocumentFragment and Attr, which cannot have parent nodes

Table continued on following page

361

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 361

Property Description

parsed This property returns a value of True if this node and all of its child
nodes have been parsed. Otherwise, it returns False

prefix This property is read-only property and returns the namespace prefix

previousSibling This property returns the previous node in the parent’s child list

specified This property returns a value indicating whether this node is speci-
fied or derived from a default value in the DTD or schema

text This property returns the text content of this node and its sub trees

xml This property contains the XML representation of this node and its
child nodes

Note that the properties baseName, dataType, definition, nodeTypedValue, nodeTypeString,
parsed, text, and xml are available only in the Microsoft implementation of DOM.

The following table lists the different methods of the Node interface:

Method Description

appendChild Adds a new child node to the list of children for this node

cloneNode Creates a clone node that is an exact duplicate of this node

hasChildNodes Determines whether a node has child nodes

insertBefore Inserts a new child node before an existing one. If no child node
exists, the new child node becomes the first

removeChild Removes the specified node from the list of child nodes

replaceChild Replaces one child of a node with another and returns the old child

selectNodes Creates a NodeList of all the matching child nodes returned after
matching the specified pattern

selectSingleNode Returns a Node interface for the first child node to match the
specified pattern

transformNode Processes this node and its child nodes using the specified XSL style
sheet and returns the resulting transformation

transformNodeToObject Processes this node and its descendants using the specified XSL
style sheet and returns the resulting transformation in the specified
object

Note that the methods selectNodes, selectSingleNode, transformNode, and transform
NodeToObject are available only in the Microsoft implementation of DOM.

362

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 362

Now that you have had an understanding of the properties and methods of the Node object, look at an
example.

When the parser loads an XML document, it gives you a reference to the document itself. From this, you
can get a reference to the root element in the document (in this example, the Products element) with the
property name documentElement. The children of that element are, in turn, accessible through the
childNodes property.

var nodes = doc.documentElement.childNodes;

The childNodes property, and thus the nodes variable in this example, contains a node list that is rep-
resented by NodeList interface. In accordance with the DOM standard, you can access the elements of a
node list by passing a numerical index to the item() method, with 0 corresponding to the first node in
the list. In this example, therefore, nodes.item(0) returns a reference to the first child element of the
Products element — the Product element.

document.write(nodes.item(0).text);

The result should look something like this:

707 Sport-100 Helmet, Red HL-U509-R

As you can see, the output shows the concatenated the values of the ProductID, Name and
ProductNumber elements. If you just want to print the ProductID element value of the first Product
element, you need to modify the code to look as follows:

var nodes = doc.documentElement.childNodes.item(0).childNodes;
document.write(nodes.item(0).text);

When you run the code now, the text 707 is displayed in the browser dialog box.

Note that Internet Explorer (and indeed many other DOM implementations) allows you to treat
NodeList objects as arrays to simplify the code you need to work with them. For example, you could
use array syntax to access nodes instead of the item method:

var nodes = doc.documentElement.childNodes[0].childNodes;
alert(nodes[0].text);

This method of accessing text values within an XML file by numerical index is useful, but it can get a lit-
tle cumbersome and it can be sometimes error prone as well. Fortunately, there is another way to
approach the problem.

Creating a New Node
You create a new node using the createNode() method. To create a root element using the createNode()
method in JavaScript, use the following code:

var doc = new ActiveXObject(“Microsoft.XMLDOM”);
doc.async = false;
doc.load(“Products.xml”);

363

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 363

if (doc.childNodes.length == 0)
{

rootNode = doc.createNode(1,”Products”,” “);
doc.appendChild(rootNode);
doc.save(“Products.xml”);

}

In the previous code, the DOM object serves as the root node for the tree structure. The length property
of the NodeList object is used to check the number of child nodes that the root node contains. If this
number is equal to 0, a new node is created using the createNode() method. This new node is then
added as the root document element using the appendChild() method.

Appending a New Child Node
You append a new child node to a DOM tree using the appendChild() method of the Node object, as
shown:

var rootElement = doc.documentElement;
var prodElement=doc.createElement(“Product”);
rootElement.appendChild(prodElement);

In the previous code, you first create a reference to the root element of the DOM object. You then create a
new element using the createElement() method of the DOMDocument object in JavaScript. Finally, you
append the created element to the last child of the root element using the appendChild() method of the
Node object.

Inserting a Node Before an Existing Node
You insert a node before an existing node in a DOM tree using the insertBefore() method of the Node
object, as shown:

var newElement= doc.createElement(“ProductIdentifier”);
var oldElement = doc.documentElement.childNodes.item(0).childNodes.item(0);
doc.documentElement.childNodes.item(0).insertBefore(newElement, oldElement);

In the previous code, you first create a new element called ProductIdentifier. You then obtain the
reference of the first child of the first node-set within the root element and store a reference to this child
node in a variable, oldElement. Finally, you insert the newly created node before the first child node
using the insertBefore() method of the Node object.

Removing a Child Node
You can remove a child node from a DOM tree using the removeChild() method of the Node object, as
shown:

var elementToBeRemoved = doc.documentElement.childNodes.item(0).firstChild;
doc.documentElement.childNodes.item(0).removeChild(elementToBeRemoved);

In the previous code, you first obtain a reference to the first child node of the first node-set of the root
element and store this reference in the variable, elementToBeRemoved. You use the removeChild()
method of the Node object to remove the node contained in elementToBeRemoved.

364

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 364

Replacing a Node
You replace an existing node with a new node using the replaceChild() method of the Node object.
The replaceChild() method takes two parameters, the first parameter is the new element and the
second parameter is the existing element that needs to be replaced. In the following code, the first
ProductID element in the document is replaced with the new element named ProductIdentifier.

var newElement= doc.createElement(“ProductIdentifier”);
var oldElement=doc.documentElement.childNodes.item(0).childNodes.item(0);
doc.documentElement.childNodes.item(0).replaceChild(newElement, oldElement);
doc.documentElement.childNodes.item(1).childNodes.item(0).
replaceChild(newElement, oldElement);

Accessing Text Values of Elements
In the Microsoft implementation of DOM, the text enclosed within the tags in an XML document is used
as a node value, which can be the value of an attribute or the text within an element.

You can display the text within an element using the text property of the Node object, as shown:

alert(productIDElement.text);

You can also set the value of an element or an attribute using this property, as shown:

productIDElement.text=”100”;

Using the NodeList Interface
The NodeList interface is a collection of Node and its childNode interfaces. It allows access to all the
child nodes. The length property of the NodeList interface is a very important property that returns the
number of items in the NodeList collection. The following table describes the different methods of the
NodeList interface.

Method Description

item Returns the item at the index of the Node collection

nextNode Returns null if an invalid index is entered

reset Resets the sequence of the collection

The following code creates a NodeList interface of the Product elements using the XML document’s
getElementByTagName() method. With the Length property, you can determine the number of nodes
in the list and display the node values by accessing each node through the index.

var productNodes = doc.getElementsByTagName(“Product”);
var length = productNodes.length;
for (i = 0; i < length; i++)
document.write(productNodes.item(i).text + “
”);

365

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 365

When you open the HTML file in the browser, the browser displays the output shown in Figure 12-2.

Figure 12-2

Using the NamedNodeMap Interface
The NamedNodeMap interface represents a collection of nodes that can be accessed by name. The fol-
lowing code shows how to create a NamedNodeMap interface of all the attribute nodes of the class ele-
ment. Then iterate through the collection using the item method to display the attribute name and
associated text.

var firstChildElement = doc.documentElement.firstChild;
var attributes = firstChildElement.attributes;
for (i = 0; i < attributes.length; i++)
document.write(attributes.item(i).name + “=”
+ attributes.item(i).text + “
”);

When you open the HTML file in the browser, the browser displays the attribute name and associated
text. If you use the Products.xml file as an example, you will get “Category=Helmets” as the output
because the Product element has only one attribute.

Using the Attr Interface
The Attr interface represents an attribute of an Element object. The DOM considers Attr to be a property
of an element. The values that are allowed for an Attr interface are defined in DTD. An Attr interface is
similar to a Node interface and has the properties and methods of a Node interface. The following table
discusses the important properties of the Attr interface.

366

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 366

Property Description

Name Sets the name of the attribute. It is same as the nodeName property
for this Node interface

specified Indicates if the value of the attribute is set in the document

Value Returns or sets the value of the attribute

In addition to the previous methods, all the methods of the Node interface also apply to Attr because
Attr is also a Node interface. The following code shows a simple example of using the Attr interface to
retrieve the name and value of attributes in an XML document.

var firstChildElement = doc.documentElement.firstChild;
var attributes = firstChildElement.attributes;
for (i = 0; i < attributes.length; i++)
document.write(attributes.item(i).name + “=” +
attributes.item(i).value + “
”);

When you open the HTML file in the browser, the browser displays the name and the value of the
attribute of the first node. In the case of Products.xml file, it just displays Category=Helmets as the
output.

Creating Attributes
Most of the functionality that is included with the Element node is the management of attributes. This
example shows how to add new attributes to an existing Element node and how to view attribute con-
tents. Creating attributes can be accomplished with the Document method createAttribute(...). It
can then be inserted into the tree with setAttributeNode(...). An even simpler method exists by
using the setAttribute(...) method on the Element node. This method allows you to work with
attribute names that are strings instead of attribute nodes. Listing 12-2 shows an example of how to cre-
ate an attribute and retrieve its value for display purposes.

LLiissttiinngg 1122--22:: UUssiinngg XXMMLL DDOOMM ttoo mmaanniippuullaattee aattttrriibbuutteess

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Working with Attributes</title>
<script type=”text/javascript” language=”javascript”>
var doc;

function btnCreateAndDisplayAttribute_Click()
{
loadDocument();
createAndDisplayAttribute();

}

function loadDocument()
{
doc = new ActiveXObject(“Microsoft.XMLDOM”);
doc.async = false;

(continued)

367

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 367

LLiissttiinngg 1122--22 (continued)

doc.load(“Products.xml”);
}

function createAndDisplayAttribute()
{
var docElement = doc.documentElement;
//Put the attribute myAtt=’hello’ on rootElement
docElement.setAttribute(‘CategoryID’, ‘1’);
//Display the value of the added attribute
result.innerText = docElement.getAttribute(‘CategoryID’);

}
</script>

</head>
<body>
<input type=”button” id=”btnCreateAndDisplayAttribute”
value=”Create and display attribute”
onclick=”btnCreateAndDisplayAttribute_Click()” />

<div id=”result”></div>

</body>
</html>

When you click the button control, the page displays the value of the CategoryID attribute, which is 1 in
this case.

Using the CharacterData Interface
The CharacterData interface provides the Node object with various properties and methods to manipu-
late text. These interfaces can handle very large amounts of text and can be implemented by the
CDATASection, Comment, and Text Nodes. The CharacterData interface has the following properties:

Property Description

data This property contains the data for this node, depending on node type

length This property is read-only and contains the length of the data string in
characters

The following table lists the methods for CharacterData Interface.

Property Description

appendData Adds the specified string to existing string data

deleteData Deletes the specified range of characters from string data

insertData Inserts a string of data at the specified position in the string

368

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 368

Property Description

replaceData Replaces the characters from the specified position in the string with the
supplied string data

substringData Returns a substring consisting of the specified range of characters

Look at the following simple example to understand the use of one of the methods of the CharacterData
interface.

var prodElement = doc.documentElement.firstChild;
var text = prodElement.firstChild.firstChild;
document.write(text.data + “
”);
var lastTwoCharacters = text.substringData(1, 2)
document.write(lastTwoCharacters + “
”);

The previous code displays the character data of the first ProductID element using the data. The
substringData() method gets the specified range of characters from the substring of the text (char-
offset = 1 and num-count= 2) and displays that specific data. The output produced by the page looks
as follows in the browser:

707
07

Using the Comment Interface
The Comment represents the content which appear between ‘<!—’ and ‘-->’ as a comment entry. The
Comment object does not have any properties of its own. It inherits the properties of Node objects as well
as CharacterData objects. It inherits the properties as well as the methods of Node and CharacterData
objects.

Using the Text Interface
The Text object represents the text of an Element or an Attr object. There is only one node of Text for each
block of text. The Text object has properties of Node and CharacterData objects. The Text is also a Node
object and therefore inherits the methods of Node objects. The Text interface has one method of its own
named splitText(number). This method splits the text in two parts, at the specified character, and
returns the rest of the text, till the end of the string into a new text node.

Using the CDATASection Interface
The CDATASection interface represents the content within the CDATA section brackets ![...]]. The
CDATASection provides characters that should not be parsed by the XML parser. The content of
CDATASection is stored as a childNode of a Text node. The CDATASection interface has no methods or
properties of its own but inherits those of the Text and Node objects.

369

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 369

If the CDATASection contains text, which includes HTML tags, the CDATASection object allows it to
escape from the XML parser. The content of the CDATASection is displayed without the brackets ![...
]]. You can use CDATASection interface to exclude HTML tags while parsing as shown here:

<?xml version=”1.0”?>
<Products>
<Product>
<ProductID></ProductID>
<Name><![CDATA[Cotton Shirt]]> </Name>

</Products>

The code required to handle a CDATASection is exactly the same as processing any other node since the
CDATASection is also a node.

Handling Errors in XML DOM
At times the XML parsing might generate errors due to reasons such as invalid XML, schema compliant
reasons, and so on. To process these errors, the Document object exposes a property called parseError
through which you can get more details about the exception. This object, derived from the interface
IXMLDOMParseError provides a set of properties to retrieve the error information. The following table
describes the commonly used properties of the IXMLDOMParseError object:

Property Description

reason Stores a string explaining the reason for the error

line Stores a long integer representing the line number for the error

errorCode Contains long integer error code. This property contains the value 0 if there
are no errors in the XML document

linepos Stores a long integer representing the line position for the error

srcText Stores a string containing the line that caused the error

You use the IXMLDOMParseError object to display the information about the errors encountered while
parsing an XML document, as shown here:

var doc = new ActiveXObject(“Microsoft.XMLDOM”);
doc.async = false;
doc.load(“Products.xml”);
if (doc.parseError.errorCode != 0)
{
alert(“Error Code: “ + doc.parseError.errorCode);
alert(“Error Reason: “ + doc.parseError.reason);
alert(“Error Line: “ + doc.parseError.line);

}
else
{
alert(doc.documentElement.xml);

}

370

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 370

In the previous code, you first create a new DOM object and then use the if construct to determine
whether the parseError property of this object returns any error code. If the error code is greater than
1, you display the details of the error indicating the error code, reason, and the line number where the
error occurred. Otherwise, you display a message box showing the XML of the document.

XML Transformation Using XSL
In this section, you see the steps involved in transforming the contents of an XML file into HTML using
the built-in support provided by XML DOM. You can accomplish this in the client side by invoking the
methods of XML DOM through JavaScript. First, let’s create the XSL file that will be used to transform
the Products.xml file as shown in Listing 12-3.

LLiissttiinngg 1122--33:: PPrroodduuccttss..xxssll ffiillee uusseedd ffoorr ttrraannssffoorrmmiinngg tthhee PPrroodduuccttss..xxmmll ffiillee

<?xml version=”1.0” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”html” />
<xsl:template match=”/”>
<table border=”1” cellSpacing=”1” cellPadding=”1”>
<center>
<xsl:element name=”tr”>
<xsl:element name=”td”>Product ID</xsl:element>
<xsl:element name=”td”>
<xsl:attribute name=”align”>center</xsl:attribute>
Name

</xsl:element>
<xsl:element name=”td”>Product Number</xsl:element>

</xsl:element>
<xsl:for-each select=”//Product”>
<!-- Each product on a separate row -->
<xsl:element name=”tr”>
<xsl:element name=”td”>
<xsl:value-of select=”ProductID” />

</xsl:element>
<xsl:element name=”td”>
<xsl:value-of select=”Name” />

</xsl:element>
<xsl:element name=”td”>
<xsl:value-of select=”ProductNumber” />

</xsl:element>
</xsl:element>

</xsl:for-each>
</center>

</table>
</xsl:template>
</xsl:stylesheet>

The XSL logic shown in Listing 12-3 simply loops through all the <Product> elements and for each ele-
ment it retrieves the values of the ProductID, Name, and ProductNumber elements and displays them
in the browser. Now that you have created the XSL file, look at the code of the Web page in Listing 12-4
to perform the transformation.

371

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 371

LLiissttiinngg 1122--44:: TTrraannssffoorrmmiinngg XXMMLL ttoo HHTTMMLL uussiinngg XXMMLL DDOOMM

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Transforming XML to HTML</title>
<script type=”text/javascript” language=”javascript”>
var xmlDoc;
var xslDoc;

function btnTransformXmlToHtml_Click()
{
loadDocuments();
tranformXmlToHtml();

}

function loadDocuments()
{
//Load the XML Document
xmlDoc = new ActiveXObject(“Microsoft.XMLDOM”);
xmlDoc.async = false;
xmlDoc.load(“Products.xml”);
//Load the XSL Document
xslDoc = new ActiveXObject(“Microsoft.XMLDOM”);
xslDoc.async = false;
xslDoc.load(“Products.xsl”);

}

function tranformXmlToHtml()
{
var output = xmlDoc.transformNode(xslDoc);
result.innerHTML = output;

}
</script>

</head>
<body>
<input type=”button” id=”btnTransformXmlToHtml” value=”Transform XML”
onclick=”btnTransformXmlToHtml_Click()” />

<div id=”result”></div>

</body>
</html>

The preceding Web page contains mostly JavaScript code that loads the XML and XSLT files into mem-
ory, processes them, and displays the results. First, you create an instance of the XML DOM and load
the Products.xml file into memory. Next, you create another instance of XML DOM and load the
Products.xsl file into memory. Since XSLT files are formatted as XML, you can load them just as you
would any other XML file:

You then transform the XML document using the XSL style sheet, and assign the HTML output of the
transformation to the innerHTML property of the div control.

372

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 372

function tranformXmlToHtml()
{
var output = xmlDoc.transformNode(xslDoc);
result.innerHTML = output;

}

The transformNode() method takes the object that holds the XSL file as an argument. Figure 12-3
shows how the output looks when you click the Transform XML button in the browser.

Figure 12-3

XML Validation Using XML DOM
As XML documents become more and more pervasive as a standardized way to exchange data, there is
an increasing need for the XML documents to be acceptable to different developers/users. To meet this
need, the XML document should conform to a standard structure. One of the ways you can represent
this standard structure is through XML Schema Definition (XSD) language. XML Schema is an XML-
based representation of the structure of an XML document. Through its support for data types and
namespaces, XML Schema has the potential to provide the standard structure for XML elements and
attributes.

To determine whether an XML document conforms to an XML Schema, the document must be validated
against that XML Schema. Through its support for XML validation, XML DOM allows you to validate
XML through its properties.

Before looking at the code required to validate the XML document, create the Products.xsd file that
will be used to validate the Products.xml file. (See Listing 12-5.)

373

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 373

LLiissttiinngg 1122--55:: PPrroodduuccttss..xxssdd sscchheemmaa

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema xmlns=”http://www.wrox.com/samples”
targetNamespace=”http://www.wrox.com/samples” attributeFormDefault=”unqualified”
elementFormDefault=”qualified” xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Products”>
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”Product”>
<xs:complexType>
<xs:sequence>
<xs:element name=”ProductID” type=”xs:unsignedShort” />
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”ProductNumber” type=”xs:string” />

</xs:sequence>
<xs:attribute name=”Category” type=”xs:string” use=”required” />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

To connect an XML schema to an XML document, you use an attribute named xsi:schemaLocation in
the document element to specify the URI of the document’s XML schema. To use this attribute so that
Internet Explorer will understand it, you assign it a text string, giving the namespace you are using in
your XML document, which is http://www.wrox.com/samples here, and the URI of the XML schema,
which is Products.xsd in this case. If the Products.xsd file is in the same directory as that of the
Products.xml file, you can set the xsi:schemaLocation attribute to http://www.wrox.com/
samples Products.xsd. Here is the modified Products.xml file using the namespace http://www
.wrox.com/samples.

<?xml version=”1.0” encoding=”utf-8”?>
<Products xmlns=”http://www.wrox.com/samples”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.wrox.com/samples Products.xsd”>
<Product Category=”Helmets”>
<ProductID>707</ProductID>

</Products>

Note that if you are not using a namespace in your XML document, you can use the
xsi:noNamespaceSchemaLocation attribute and simply specify the location of the XSD.

Now that you have seen the XML and the corresponding XSD schema, Listing 12-6 shows the complete
HTML page required for validating the Products.xml file with the Products.xsd file.

374

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 374

LLiissttiinngg 1122--66:: VVaalliiddaattiinngg aann XXMMLL ffiillee wwiitthh tthhee XXSSDD ffiillee

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Validating an XML Document</title>
<script type=”text/javascript” language=”javascript”>
var doc;
function btnValidate_Click()
{
loadDocument();

}

function loadDocument()
{
doc = new ActiveXObject(“MSXML2.DOMDocument.6.0”);
doc.resolveExternals = true;
doc.validateOnParse = true;
doc.async = false;
if (doc.load(“Products.xml”))
document.write(“Document is valid”);

else
displayErrorInfo();

}

function displayErrorInfo()
{
document.write(“Error code: “ + doc.parseError.errorCode + “
”);
document.write(“Error reason: “ + doc.parseError.reason + “
”);
document.write(“Error line: “ + doc.parseError.line);

}
</script>

</head>
<body>
<input type=”button” id=”btnValidate” value=”Validate XML Document”
onclick=”btnValidate_Click()” />

</body>
</html>

Note the use of the validateOnParse property that is set to true to indicate the parser that the XML
document needs to be validated at the time of parsing. In addition, you also set the resolveExternals
property of DOMDocument to true in order to use external XSD document for validation. If the XML
document is compliant with the XSD schema, you get a message indicating that the Document is valid.
If the document is not compliant, you get an error message indicating the details of the error code, rea-
son, and line.

375

Chapter 12: XML Document Object Model (DOM)

20_777779 ch12.qxp 3/1/07 11:48 PM Page 375

Summary
This chapter started with a brief introduction to XML DOM by discussing the role of XML DOM, its
advantages and the object model of XML DOM. After that, you looked at how to use the various objects
contained in the XML DOM. You also saw the steps involved in creating, reading, and modifying nodes
in an XML document using the various classes of XML DOM. In addition, you also understood the steps
involved in manipulating attributes stored in an XML document. Finally, you understood the various
functions supported by XML DOM including the use of transforming an XML document into HTML
using XSL, and the steps involved in validating an XML document.

376

Part V: Programming XML

20_777779 ch12.qxp 3/1/07 11:48 PM Page 376

SS iimmpp ll ee AAPP II ff oo rr XXMMLL ((SSAAXX))

The Simple API for XML (SAX) is an event-driven programming interface for XML parsing. It was
developed by the members of the xml-dev mailing list currently hosted by the Organization for
the Advancement of Structured Information Standards (OASIS) (oasis-open.org). SAX is not an
XML parser, but instead it is a set of interfaces implemented by many XML parsers. SAX was
developed as a standardized way to parse an XML, to enable more efficient analysis of large XML
documents. SAX is specified as a set of Java interfaces. Initially, if you were going to do any seri-
ous work with it, you had to be doing some Java programming, using JDK 1.1 or later. Now, how-
ever, a wide variety of languages have their own version of SAX.

In this chapter, you get an in-depth look at the features of SAX including its architecture, and pro-
cessing flow through examples. Specifically you learn how to,

❑ Configure a SAX parser and parse an XML document

❑ Handle elements, attribute lists, character data, and processing instructions

❑ Handle errors and warnings using SAX

❑ Search for specific elements in an XML document using SAX

❑ Write XML elements using SAX

❑ Validate an XML document with an XSD schema

❑ Understand the advantages and disadvantages of SAX

Introducing XML Parsing
There are two widely used approaches to parsing XML data:

❑ Tree-based APIs

❑ Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 377

The following sections discuss each of these approaches.

Tree-Based APIs
One of the most popular XML APIs at the moment is the Document Object Model, which is a standard
that was developed by the World Wide Web Consortium (w3.org). DOM is what is known as a tree-
based API, which means that all of the information and content from the original document must be
read into memory and stored in a tree structure before it can be accessed by a client program. After the
document has been parsed and stored as an in-memory tree structure, the client application has full
access to its contents. It is simple to follow references from one part of the document to another. It is also
easy to modify the document by adding and removing nodes from the tree.

Although this approach has some obvious advantages, it has some equally obvious disadvantages. The
size of the document affects the performance (and memory consumption) of the program. If the docu-
ment is very large, it may not be possible to store the entire thing in memory at one time. Also, the whole
document must be successfully parsed before any information is available to the client program.

A Simple API for XML (SAX)
It was to solve these and other problems that the members of the XML-DEV mailing list (www.xml.org)
developed the SAX. Unlike DOM, SAX is an event-driven API. Rather than building an in-memory copy
of the document and passing it to the client program, This API requires the client program to register
itself to receive notifications when the parser recognizes various parts of an XML document.

In the event-driven scenario, the API itself doesn’t allocate storage for the contents of the document. The
required content is passed to the event notification method, and then forgotten. Whether the document is
10 kilobytes or 10 megabytes, the application’s memory usage and relative performance remain constant.
Unlike in the tree-based approach, the client application notifications are received as the document is
parsed. This means it can begin processing before the entire document has been read. For many Internet-
based applications, where bandwidth may be an issue, this can be extremely useful.

There are, of course, drawbacks to this approach. Application developers are responsible for creating
their own data structures to store any document information they must reference later. Because no com-
prehensive model of the document is available in memory, SAX is unsuitable for sophisticated editing
applications. Also, for applications where random access to arbitrary points of the document is required
(such as an XSLT implementation), a tree-based API would be more appropriate.

Installing SAX
In reality, SAX is nothing more than a set of Java class and interface descriptions that document a system
for writing event-driven XML applications. The SAX specification (along with the source code for a set
of Java interfaces and classes) lives on its own Web site (www.saxproject.org) and is still maintained
and extended by the members of the XML-DEV mailing list. To download SAX, you can go to the home
page and then browse for the latest version, or you can go directly to the SourceForge project page at
http://sourceforge.net/project/showfiles.php?group_id=29449.

The distribution contains all the Java interfaces, the extension interfaces, some helper files, and the
documentation, but doesn’t include a SAX parser. To actually use SAX, you need to download one of the
many XML parsers that have been developed to work with SAX. The parser is the one that has a concrete

378

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 378

implementation of the various interfaces and classes that make up the org.xml.sax and
org.xml.sax.helpers Java packages. Some popular Java SAX parsers are shown in the following
table:

Parser Driver identifier Description

Xerces-J org.apache.xerces.parsers The Xerces parser, which is used throughout
.SAXParser this chapter, is maintained by the Apache

group. It is available at http://xml
.apache.org/xerces2-j.

AElfred2 gnu.xml.aelfred2.XmlReader AElfred2 parser is highly conformant as it
was written and modified by the creators of
SAX. It is available as part of the GNUJAXP
project at gnu.org/software/
classpathx/jaxp/.

Crimson org.apache.crimson.parser The Crimson parser was originally part of
.XMLReaderImpl the Crimson project at http://xml

.apache.org/crimson/. It is now included
as part of Sun’s Java API for XML Parsing
available at http://java.sun.com/xml.

Oracle oracle.xml.parser.v2.SAXParser Oracle maintains a SAX parser as part of its
XML toolkit. It can be downloaded from
the Oracle Technology Network at http://
otn.oracle.com/tech/xml/index.html.

XP com.jclark.xml.sax.SAX2Driver XP is an XML 1.0 parser written by James
Clark. A SAX2 driver was created for use
with the latest versions of SAX. More infor-
mation can be found at xmlmind.com/
_xpforjaxp/docs/.

In this chapter, I use the Apache XML parsing library developed as part of the Apache Xerces project.
You can download Apache Xerces project code from http://xml.apache.org/xerces2-j/ or
http://archive.apache.org/dist/xml/xerces-j/. After downloading the archive file, unzip it to
the desired folder and follow the instructions to set up your environment.

After that, set the CLASSPATH environment variable to the following:

❑ <SAX-Installation-Drive>\sax2r3\sax2.jar

❑ <Xerces-Installation-Drive>\Xerces-J\xerces-2_9_0\xercesImpl.jar

These options allow java.exe (the JDK Java runtime) to locate the SAX classes at runtime so you aren’t
required to supply their location on the command line.

You also need a copy of the Java 2 SDK to compile and execute your SAX application. The examples in
this book were compiled using the JDK version 1.5.10. As part of the Java set up, you must also set your
PATH variable to Java execution path.

379

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 379

SAX Architecture
In SAX, you can configure the parser with a variety of callback handlers, as shown in Figure 13-1.

Figure 13-1

When the parser scans an external stream that contains XML markup, it reports the various events
involved to those callback handlers. These events include but are not limited to the following:

❑ Beginning of the document

❑ End of the document

❑ Namespace mapping

❑ Errors in well-formedness

❑ Validation errors

❑ Text data

❑ Start of an element

❑ End of an element

The SAX API provides interfaces that define the contract for these callback handlers. When you write
XML applications that use SAX, you can write implementations for these interfaces and register them
with a SAX parser.

Basic SAX Application Flow
Every SAX application goes through the same basic steps to process an XML document.

1. It obtains a reference to an object that implements the XMLReader interface.

2. It creates an instance of an application-specific object that implements one or more of the various
SAX *Handler (DTDHandler, ContentHandler, ErrorHandler, and EntityResolver) interfaces.

XMLReaderFactory

XML File

Parses

ErrorHandler

ContentHandler

DTDHandler

EntityResolver

XMLReader
Creates

380

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 380

3. IT registers the object instance with the XMLReader object so that it will receive notifications as
XML parsing events occur.

4. It calls the XMLReader.parse() method for each XML document that needs to be processed by
the application. The object instance that was registered in Step 3 receives notifications progres-
sively as the document is parsed.

It is up to the application-specific object (or objects) to track and process the information that is delivered
via the various event notification methods that it implements. For example, an application that wants
to strip markup out of an XML document and leave only the text content must implement the
ContentHandler interface and its specific processing in the characters() event callback method.
Even though the setup for every SAX application is almost identical, the data structures and algorithms
that process the event notifications vary widely depending on what the application is designed to do.

SAX Packages and Classes
SAX contains the packages described in the following table:

Package Description

org.xml.sax Defines handler interfaces. Handler implementations of these inter-
faces are registered with parsers, which call the handler methods in
order to report parsing events and errors.

org.xml.sax.ext Contains two additional, non-mandatory handlers for dealing with
DTD declarations and lexical information.

org.xml.sax.helpers Provides default implementations for some of the core interfaces
defined in org.xml.sax.

Each of these packages has several classes. For reasons of brevity, I discuss only the important classes in
this chapter.

The SAXParser Class
is the SAXParser class is an abstract class that wraps an XMLReader implementation class. You obtain a
reference to this class by calling the newSAXParser() method on the factory class.

SAXParserFactory factory=SAXParserFactory.newInstance();
SAXParser parser=factory.newSAXParser();

After you have a SAXParser object, you can then specify the input for the parsing process using the
parser() method. The input to the parser can come from a variety of sources, such as InputStreams, files,
URLs, and SAX InputSources. You can open an InputStream on the document to be parsed and send the
reference to it as an argument to the parse method of the parser. Instead of using an InputStream, you can
pass an instance of the File class or a URL reference or a SAX InputSource as an argument to the parse
method. The InputSource class defined in the org.xml.sax package provides a single input source for
an XML entity. A single input source may be a byte stream and/or a character stream. It may also be a
public or system identifier.

381

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 381

As this parser object parses the document, the handler methods are called. Some of the important meth-
ods of the SAXParser class are as follows:

❑ parse— This is the most important method of this class. Several overloaded parse methods
take different parameters, such as File, InputSource, InputStream, and URI. For each of the
different input types, you also specify the handler to be used during parsing.

❑ getXMLReader— This method returns the XMLReader that is encapsulated by the implementa-
tion of this class.

❑ get/setProperty— These methods allow you to get and set the parser properties, such as the
validating parser.

The XMLReader Interface
The XMLReader interface is implemented by the parser’s driver and is mainly used for reading an XML
document. The interface allows you to register an event handler for document processing. Some of the
important methods of this interface are:

❑ parse— Two overloaded parse methods take input from either an InputSource object or a
String URI. The method parses the input source document and generates events in your han-
dler. The method call is synchronous and does not return until the entire document is parsed or
an exception occurs during parsing.

❑ setContentHandler— This method registers a content event handler. If the content event han-
dler is not registered, all the content events during parsing are ignored. It is possible to change
the content handler in the middle of parsing. If a new content handler is registered during pars-
ing, the parser immediately uses the new handler while processing the rest of the document.

❑ setDTDHandler— Like a content handler in the previous paragraph, this method registers a
DTD handler. You use DTDHandler to report notation and unparsed entity declarations to the
application. If the DTD handler is not registered, all DTD events are ignored. As with the con-
tent handler, the DTD handler can be changed during parsing. Because DTDs are supported
only for maintaining backward compatibility, you may not be using this handler frequently in
your applications.

❑ setEntityResolver— Like the previous two methods, setEntityResolver allows you to
define an EntityResolver that can be changed during processing.

❑ setErrorHandler— Allows you to handle errors generated during parsing.

Receiving SAX Events
To receive SAX events, you write a Java class that implements one of the SAX interfaces, which means
your class has all the same functions as the interface does. You specify that a class implements an inter-
face by declaring it like this:

public class ProductsReader implements ContentHandler

ProductsReader is the name of my new class, and ContentHandler is the name of the interface.
Actually, this is the most important interface in SAX, as it is the one that defines the callback methods for
content related events (that is, events about elements, attributes, and their contents). So what you are
doing here is creating a class that contains methods that a SAX-aware parser knows about.

382

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 382

The ContentHandler interface contains a whole series of methods, most of which you can ignore in the
normal course of events. Unfortunately, when you implement an interface, you have to provide imple-
mentations of all the methods defined in that interface. However, SAX provides you with a default,
empty implementation, called DefaultHandler. So rather than implement ContentHandler, you can
instead extend DefaultHandler, like this:

public class ProductsReader extends DefaultHandler

By extending the DefaultHandler class, you can trap specific events by picking and choosing which
methods to provide to your own implementations. If you leave things as they are, the base class
(DefaultHandler in this case) provides its own implementation of them for use by ProductsReader.
However, if you provide your own implementations of the methods, they are used instead. In the pre-
ceding example, the method invoked would now be ProductsReader.startDocument(). This might
do something totally different from DefaultHandler’s implementation.

Actually, DefaultHandler is a very important class because it also provides default implementations of
the three other core SAX interfaces: ErrorHandler, DTDHandler, and EntityResolver. Throughout
this chapter, I extend the DefaultHandler class to leverage the functionalities from any of the existing
SAX interfaces.

The DefaultHandler Class
The DefaultHandler class provides a default implementation for all the callback methods defined in
the following interfaces:

❑ ContentHandler— The class implementing this interface receives notifications on basic docu-
ment-related events such as the start and end of elements and character data.

❑ ErrorHandler— This interface provides the basic interface for SAX error handlers. The SAX
application implements this interface to provide customized error handling.

❑ DTDHandler— The class implementing this interface receives notification of basic DTD-related
events.

❑ EntityResolver— This interface provides a basic interface for resolving entities. The SAX
application implements this interface to provide customized handling for external entities.

You can use only the DefaultHandler in your application and override the desired methods from the
four handler interfaces. Some of the important methods of the DefaultHandler class are as follows:

❑ startDocument/endDocument— These are callback methods called by the parser whenever it
encounters a start and end of a parsed document.

❑ startElement/endElement— These are callback methods called by the parser whenever it
encounters a start and end of an element during parsing. The method receives the parameters
that indicate the local and qualified name of the element.

❑ characters— This method receives notification of character data inside an element during
parsing.

❑ processingInstruction— This method receives notification of a processing instruction dur-
ing parsing.

383

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 383

Using the XMLReader Interface
The primary entry point to any SAX implementation is the XMLReader interface. This interface contains
methods for the following:

❑ Controlling how the underlying XML parser operates (for example, validating versus non-
validating)

❑ Enabling and disabling specific SAX features, such as namespace processing

❑ Registering object instances to receive XML parsing notifications (via the xxxHandler interfaces)

❑ Initiating the parsing process on a specific document URI or input source (via the parse()
methods)

Before an application can use the XMLReader interface, it must first obtain a reference to an object that
implements it. The decision about how to support the XMLReader interface is left up to the imple-
menters of the particular SAX distribution. For instance, the Xerces package supplies a class called
org.apache.xerces.parsers.SAXParser that implements the XMLReader interface. Any application
that uses Xerces to provide SAX support can simply create a new instance of the SAXParser class and
use it immediately.

The SAX specification does define a special helper class (from the org.xml.sax.helpers package) called
XMLReaderFactory that is intended to act as a class factory for XMLReader instances. It has two static
methods for creating a new XMLReader object instance:

❑ createXMLReader()— Allows you to create an XMLReader using the system defaults

❑ createXMLReader(String className)— Allows you to create an XMLReader from the
supplied class name

Of course, both of these methods require that the class name of the class that supports the XMLReader
interface be known in advance. Here is the code required to create the XMLReader using the second
overload.

XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

In addition, you can obtain a reference to an XMLReader class instance by directly instantiating the
SAXParser class from the Xerces package inside its constructor:

XMLReader reader = (XMLReader)new org.apache.xerces.parsers.SAXParser();

Now that you have an XMLReader object instance to work with, you can register your class to receive
XML parse callback notifications. The following code shows the skeleton implementation required for
parsing an XML file.

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
public class ProductsReader extends DefaultHandler
{
public static void main(String[] args) throws Exception

384

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 384

{
System.out.println(“Start of Products...”);
ProductsReader readerObj = new ProductsReader();
readerObj.read(args[0]);
//add processing here

}

public void read(String fileName) throws Exception
{
XMLReader reader = XMLReaderFactory.createXMLReader
(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.parse(fileName);

}

public void startDocument()
{
//add processing here

}

//add other event handlers
//add other event handlers

}

The previous code uses the XMLReaderFactory.createXMLReader() method to get a reference to the
XMLReader object. After that, you invoke the setContentHandler() to register a content event han-
dler. If the application does not register a content handler, all events raised by the SAX parser are
ignored. In this case, you pass in the reference to the current context object that has the event handlers
for processing the events raised by the SAX parser.

reader.setContentHandler(this);

When you invoke the parse() method, you pass in the name of the XML file to be parsed.

reader.parse(fileName);

As the XML file is parsed, the SAX parser raises events, such as startDocument, endDocument, and so
on that will be discussed in the next section.

DefaultHandler Class
The DefaultHandler class, contained in the org.xml.sax.helpers package, is a helper class that is pri-
marily used as the base class for SAX2 applications. It provides default implementations for all of the
callbacks present in the SAX handler classes such as EntityResolver, DTDHandler, ContentHandler,
and ErrorHandler. You can extend this class when you need to implement only part of an interface.
The DefaultHandler class has a number of predefined methods, called callback methods that the SAX
parser calls:

❑ characters— Called by the SAX parser for text nodes

❑ endDocument— Called by the SAX parser when it sees the end of the document

❑ endElement— Called by the SAX parser when it sees the closing tag of an element

385

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 385

❑ startDocument— Called by the SAX parser when it sees the start of the document

❑ startElement— Called by the SAX parser when it sees the opening tag of an element

All the required callback methods are already implemented in the DefaultHandler class, but they
don’t do anything. That means you have to implement only the methods you want to use, such as
startDocument() to catch the beginning of the document or endDocument() to catch the end of the
document, as described later in this chapter. The following table lists the significant methods of the
DefaultHandler class.

Method Description

characters Handles text nodes

endDocument Handles the end of the document

endElement Handles the end of an element

error Handles a recoverable parser error

fatalError Reports a fatal parsing error

ignorableWhitespace Handles ignorable whitespace (such as that used to indent a docu-
ment) in element content

notationDecl Handles a notation declaration

processingInstruction Handles an XML processing instruction (such as a JSP directive)

resolveEntity Resolves an external entity

setDocumentLocator Sets a Locator object for document events

skippedEntity Handles a skipped XML entity

startDocument Handles the beginning of the document

startElement Handles the start of an element

startPrefixMapping Handles the start of a namespace mapping

unparsedEntityDecl Handles an unparsed entity declaration

warning Handles a parser warning

Before looking at an example of this, consider the XML document in Listing 13-1, which describes the
attributes of a set of products.

LLiissttiinngg 1133--11:: AA ssaammppllee XXMMLL ffiillee

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<Products>
<Product>
<ProductID>1</ProductID>
<Name>Adjustable Race</Name>

386

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 386

<ProductNumber>AR-5381</ProductNumber>
</Product>
<Product>
<ProductID>2</ProductID>
<Name>Bearing Ball</Name>
<ProductNumber>BA-8327</ProductNumber>

</Product>
<Product>
<ProductID>3</ProductID>
<Name>BB Ball Bearing</Name>
<ProductNumber>BE-2349</ProductNumber>

</Product>
<Product>
<ProductID>4</ProductID>
<Name>Headset Ball Bearings</Name>
<ProductNumber>BE-2908</ProductNumber>

</Product>
</Products>

The root element of this XML document is <Products>, which contains an arbitrary number of <Product>
elements. Each <Product> element, in turn, contains <ProductID>, <Name>, and <ProductNumber>
elements.

Now that you took a brief look at the methods, I go into details on how to use them starting with handling
the start and end of the document.

The startDocument() and endDocument() Methods
To handle the start and end of a document, you use the startDocument() and endDocument() methods.
These signify the beginning and end of events. Here is an example of using of these methods:

public void startDocument() throws SAXException
{
try{
System.out.println(“Start Document”);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

public void endDocument() throws SAXException
{
try{
System.out.println(“End Document”);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

387

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 387

The processingInstruction() Method
You can handle processing instructions by using the processingInstruction() method, which is
called automatically when the SAX parser finds a processing instruction. The target of the processing
instruction is passed to this method, as is the data for the processing instruction, which means you can
handle processing instructions as follows:

public void processingInstruction(String target, String data) throws SAXException
{
try{
System.out.println(“PI(Target= “ + target + “ Data= “ + data + “)”);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

Namespace Callbacks
This distinguishes between the namespace of an element, signified by an element prefix and an associ-
ated namespace URI, and the local name of an element. Two methods include a namespace,
startPrefixMapping() and endPrefixMapping(). These are invoked when a parser reaches the
beginning and end of a prefix mapping, respectively. A prefix mapping is declared using the xmlns
attribute for a namespace and the namespace declaration typically occurs as part of the root element.

The namespace URI is supplied as an argument to the startPrefixMapping() method. This URI is added
to namespaceMappings object within the body of the startPrefixMapping() method. The following
code shows an example of the startPrefixMapping() method:

public void startPrefixMapping (String prefix, String uri) throws SAXException
{
try{
namespaceMappings.put(uri,prefix);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

The mapping ends when the element that declared the mapping is closed, which triggers the end
PrefixMapping() method.

The endPrefixMapping() method, in the following code, removes the mappings when they are no
longer available:

public void endPrefixMapping(String prefix) throws SAXException
{
try{
for (Iterator i=namespaceMappings.keySet().iterator();i.hasNext();)
{
String uri=(String) i.next();
String thisPrefix=(String)namespaceMappings.get(uri);
if(prefix.equals(thisPrefix)){
namespaceMappings.remove(uri);

388

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 388

break;
}

}
}
catch(Exception e){
throw new SAXException(e.toString());

}
}

The startElement() and endElement() Methods
To handle the start of an element, use the startElement() method. This method is passed the name-
space URI of the element, the local (unqualified) name of the element, the qualified name of the element,
and the element’s attributes (as an Attributes object).

public void startElement(String uri,String localName,String qName,Attributes atts)
throws SAXException

{
try
{
//Display Start Element name
System.out.println(“Start Element : “ + qName);
//Determine prefix of a namespace
String prefix=(String)namespaceMappings.get(uri);
if(prefix.equals(“”))
{
prefix=”[None]”;

}
System.out.println(“ Element(Namespace:Prefix = ‘“ + prefix +
“‘ URI = ‘“ + uri + “‘)”);

//Process Attribute of each element
for(int i=0;i<atts.getLength();i++)
{
System.out.println(“ Attribute(name: ‘“ + atts.getLocalName(i) + “‘,
value = ‘“ + atts.getValue(i) + “‘)”);

String attURI=atts.getURI(i);
String attPrefix=””;
if(attURI.length() >0)
{
attPrefix=(String)namespaceMappings.get(uri);

}
if(attPrefix.equals(“”))
{
attPrefix=”[None]”;

}
if(attURI.equals(“”))
{
attURI=”[None]”;

}
System.out.println(“ Attribute(Namespace:Prefix = ‘“ + attPrefix +
“‘ URI = ‘“ + attURI + “‘)”);

}
}
catch(Exception e)
{

389

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 389

throw new SAXException(e.toString());
}

}

In the startElement() callback method, the parameters are the names of the elements and an
org.xml.sax.Attributes instance. This helper class contains references to the attributes within an
element and allows easy iteration through the attributes of the element. To refer to an attribute, use its
index or name. Helper methods, such as getURI(int index) and getLocalName(int index), provide
additional namespace information about an attribute.

In addition to the startElement() method, which is called when the SAX parser sees the beginning of
an element, you can also implement the endElement() method to handle an element’s closing tag. The
end of the element displays the complete name of the closed element.

public void endElement(String uri,String localName,String elemName)
throws SAXException

{
try
{
System.out.println(“End Element : \”” + elemName + “\””);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

Element Data Callback
This contains additional elements, textual data, or a combination of the two. In XML, the textual data
within elements is sent to an application through the characters() callback. This method is passed an
array of characters, the location in that array where the text for the current text node starts, and the
length of the text in the text node.

public void characters(char[] ch,int start,int length) throws SAXException
{
try
{
String s=new String(ch,start,length);
if((s.trim()).equals(“”)){}
else{
System.out.println(“Character Encountered :\”” + s.trim() + “\””);

}
}
catch(Exception e){
throw new SAXException(e.toString());

}
}

The ignorableWhitespace() Method
The ignorableWhitespace() method reports white space, often by using the characters() method.
This occurs when no DTD or XML schema is referenced. The constraints in a DTD or a schema specify

390

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 390

that no character data is allowed between the start of one element and the subsequent start of another
element. If a reference to a DTD is removed, the white spaces will trigger the characters() callback
instead of the ignorableWhitespace() callback.

public void ignorableWhitespace(char[] ch, int start, int length)
throws SAXException

{
try
{
//Ignores whitespaces or call the characters method
//characters(ch, start, length);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

By default, the SAX parser also calls ignorableWhitespace when it finds whitespace text nodes, such
as whitespace used for indentation. If you want to handle that text like any other text, you can simply
pass it on to the characters method you just implemented.

The skippedEntity() Method
The skippedEntity() method is issued when an entity is skipped by a nonvalidating parser. The call-
back gives the name of the entity that can be displayed as the output. The following code shows the
empty body of the skippedEntity() method:

public void skippedEntity(java.lang.String name) throws SAXException
{
try{
System.out.println(“Entity : “ + name);

}
catch(Exception e){
throw new SAXException(e.toString());

}
}

The setDocumentLocator() Method
The setDocumentLocator() method sets an org.xml.sax.Locator for use in any other SAX event
associated with the application. The Locator class has several methods, such as getLineNumber() and
getColumnNumber(), which return the current location of the parsing process within an XML file. The
following code gives the definition of the setDocumentLocator() method:

public void setDocumentLocator(Locator locator)
{
//Locator object can be saved for later use in application
this.locator=locator;

}

391

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 391

Handling Errors and Warnings
The ErrorHandler interface is another callback interface provided by SAX that can be implemented by
an application to receive information about parsing problems as they occur. The ErrorHandler inter-
face specifies three notification functions to be implemented by a client application:

Method Description

warning Called for abnormal events that are not errors or fatal errors

error Called when the XML parser detects a recoverable error. For instance, a vali-
dating parser would throw this error when a well-formed XML document
violates the structural rules provided in its DTD

fatalError Called when a non-recoverable error is recognized. Non-recoverable errors
are generally violations of XML well-formedness rules (for instance, forget-
ting to terminate an element open tag)

The process for registering to receive notifications on the ErrorHandler interface is similar to that for
registering the DefaultHandler interface. First, an object that implements the ErrorHandler interface
must be instantiated. The new instance is then passed to the XMLReader.setErrorHandler() method
so that the SAX parser is aware of its existence.

As you can see, SAX makes it easy to handle warnings and errors. You can implement the warning()
method to handle warnings, the error() method to handle errors, and the fatalError() method to
handle errors that the SAX parser considers fatal enough to make it stop processing. Before you handle
the errors, you must invoke the setErrorHandler() method as follows:

public void read(String fileName) throws Exception
{
XMLReader reader = XMLReaderFactory.createXMLReader
(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.setErrorHandler(this);
reader.parse(fileName);

}

Once you have invoked the setErrorHandler() method, you must implement one of the notification
methods as follows:

public void warning(SAXParseException e) throws SAXException
{
System.out.println(“Warning: “);
displayErrorInfo(e);

}

public void error(SAXParseException e) throws SAXException
{
System.out.println(“Error: “);
displayErrorInfo(e);

}

public void fatalError(SAXParseException e) throws SAXException

392

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 392

{
System.out.println(“Fatal error: “);
displayErrorInfo(e);

}

private void displayErrorInfo(SAXParseException e)
{
System.out.println(“ Public ID: “ + e.getPublicId());
System.out.println(“ System ID: “ + e.getSystemId());
System.out.println(“ Line number: “ + e.getLineNumber());
System.out.println(“ Column number: “ + e.getColumnNumber());
System.out.println(“ Message: “ + e.getMessage());

}

The displayErrorInfo() helper method displays the details of the exception through the various
methods of the SAXParseException object.

Searching in an XML File
You can search for a value in an XML file using the methods that the DefaultHandler and XMLReader
interfaces provide. Listing 13-2 shows the ProductsSearch.java application that searches for a spe-
cific value in the specified XML file. First, you extend the DefaultHandler class through the
ProductsSearch class. The startDocument() method contains statements that prompt the end user to
enter the product number. The characters() method contains statements that display information
such as the product id, name, and product number for the matching product in the console.

LLiissttiinngg 1133--22:: SSeeaarrcchhiinngg iinn aann XXMMLL ffiillee

import java.io.*;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class ProductsSearch extends DefaultHandler
{
String key = null;
String currentTagName = null;
String productNumber = null;
String productID = null;
String name= null;
int flag = 0;

public static void main(String[] args) throws Exception
{
System.out.println(“Start of Products...”);
ProductsSearch readerObj = new ProductsSearch();
readerObj.read(args[0]);

}

public void read(String fileName) throws Exception
{

(continued)

393

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 393

LLiissttiinngg 1133--22 (continued)

XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.parse(fileName);

}

public void startDocument() throws SAXException
{
System.out.println(“Start document”);
InputStreamReader istream = new InputStreamReader(System.in);
BufferedReader bufRead = new BufferedReader(istream);
System.out.print(“Enter the Product Number:”);
try
{
key = bufRead.readLine();

}
catch (IOException e){ }
if (key.length() == 0)
{
System.out.println(“No Product Number is entered”);
System.exit(0);

}
}

public void endDocument() throws SAXException
{
if (flag == 0)
System.out.println(“No matching entry found...”);

System.out.println(“End document”);
}

public void startElement(String uri, String name, String qName, Attributes atts)
{
currentTagName = qName;

}

public void endElement(String uri, String name, String qName)
{}

public void characters(char ch[], int start, int length)
{
String value = new String(ch, start, length);
if (productID == null && currentTagName.equals(“ProductID”))
{
productID = value;

}
if (name == null && currentTagName.equals(“Name”))
{
name = value;

}
if (currentTagName.equals(“ProductNumber”))

394

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 394

{
if (key.equals(value))
{
System.out.println(“*******”);
System.out.println(“Product ID:” + productID);
System.out.println(“Product Name:” + name);
System.out.println(“Product Number:” + key);
System.out.println(“*******”);
flag = 1;

}
}
if (currentTagName.equals(“Product”))
{
productID = null;
name = null;
productNumber = null;

}
}

}

In the previous code, you set the name of the current element in a private variable named
currentTagName, which is used later inside the characters() method.

You actually compare the entered product number with the <ProductNumber> elements in the
Products.xml file in the characters() method. Note that the sequence of the elements contained in
the <Product> element is very important to enable the matching code to generate the desired results.
To get the desired search output based on the product number, you need to ensure that the
<ProductNumber> element is the last element inside each of the <Product> elements in the
Products.xml file.

Figure 13-2 shows the console window that prompts the user to enter the product number to be
searched.

Figure 13-2

In this case, I entered the product number BE-2908. The output is shown in Figure 13-3.

395

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 395

Figure 13-3

The previous figure shows the details of the product that has the product number BE-2908.

Writing XML Contents Using SAX
When compared to DOM, writing an XML document using SAX isn’t straightforward because of its
sequential processing nature. To accomplish this, you need to manually insert the right XML element at
the right location. To insert an element, you use the following:

❑ Use the startElement() method to insert the element’s start tag

❑ Use the characters() method to insert the text content of the element

❑ Use the endElement() to insert the element’s end tag

Listing 13-3 shows the code required to add a new element named <Discount> as a child element to
each of the <Product> elements.

LLiissttiinngg 1133--33:: WWrriittiinngg XXMMLL ccoonntteennttss uussiinngg SSAAXX

import java.io.*;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
public class ProductsWriting extends DefaultHandler
{
static int numberOfLines = 0;
static String indentation = “”;
static String text[] = new String[1000];

public static void main(String[] args) throws Exception
{
System.out.println(“Start of Products...”);
ProductsWriting readerObj = new ProductsWriting();
readerObj.read(args[0]);
try

396

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 396

{
FileWriter writer = new FileWriter(“Products_New.xml”);
for (int index = 0; index < numberOfLines; index++)
{
writer.write(text[index].toCharArray());
writer.write(‘\n’);

}
writer.close();

}
catch (Exception e)
{
e.printStackTrace(System.err);

}
}

public void read(String fileName) throws Exception
{
XMLReader reader = XMLReaderFactory.createXMLReader
(“org.apache.xerces.parsers.SAXParser”);

reader.setContentHandler(this);
reader.setErrorHandler(this);
reader.parse(fileName);

}

public void startDocument()
{
text[numberOfLines] = indentation;
text[numberOfLines] += “<?xml version=\”1.0\” encoding=\””+
“UTF-8” + “\”?>”;

numberOfLines++;
}

public void processingInstruction(String target, String data)
{
text[numberOfLines] = indentation;
text[numberOfLines] += “<?”;
text[numberOfLines] += target;
if (data != null && data.length() > 0)
{
text[numberOfLines] += ‘ ‘;
text[numberOfLines] += data;

}
text[numberOfLines] += “?>”;
numberOfLines++;

}

public void startElement(String uri, String localName,
String qualifiedName, Attributes attributes)

{
text[numberOfLines] = indentation;
indentation += “ “;
text[numberOfLines] += ‘<’;
text[numberOfLines] += qualifiedName;
if (attributes != null)
{

(continued)

397

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 397

LLiissttiinngg 1133--33 (continued)

int numberAttributes = attributes.getLength();
for (int loopIndex = 0; loopIndex < numberAttributes; loopIndex++)
{
text[numberOfLines] += ‘ ‘;
text[numberOfLines] += attributes.getQName(loopIndex);
text[numberOfLines] += “=\””;
text[numberOfLines] += attributes.getValue(loopIndex);
text[numberOfLines] += ‘“‘;

}
}
text[numberOfLines] += ‘>’;
numberOfLines++;

}

public void characters(char characters[], int start, int length)
{
String characterData = (new String(characters, start, length)).trim();
if(characterData.indexOf(“\n”) < 0 && characterData.length() > 0)
{
text[numberOfLines] = indentation;
text[numberOfLines] += characterData;
numberOfLines++;

}
}

public void endElement(String uri, String localName, String qualifiedName)
{
indentation = indentation.substring(0, indentation.length() - 4);
text[numberOfLines] = indentation;
text[numberOfLines] += “</”;
text[numberOfLines] += qualifiedName;
text[numberOfLines] += ‘>’;
numberOfLines++;
if (qualifiedName.equals(“ProductNumber”))
{
startElement(“”, “Discount”, “Discount”, null);
characters(“10%”.toCharArray(), 0, “10%”.length());
endElement(“”, “Discount”, “Discount”);

}
}

public void warning(SAXParseException exception)
{
System.err.println(“Warning: “ + exception.getMessage());

}

public void error(SAXParseException exception)
{
System.err.println(“Error: “ + exception.getMessage());

}

public void fatalError(SAXParseException exception)

398

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 398

{
System.err.println(“Fatal error: “ + exception.getMessage());

}
}

In the preceding lines of code, the endElement() method is where the majority of the work occurs
including identifying the location where the <Discount> element needs to be inserted. Since you want
to insert the <Discount> element right next to <ProductNumber>, you check for the presence of
ProductNumber as the name of the element. After you figure out the exact location, you insert the new
element through the combination of startElement(), characters(), and endElement(), methods.

Figure 13-4 shows the contents of the Products_New.xml file when viewed in the browser.

Figure 13-4

XML Validation Using SAX
By default, the Xerces SAX parser is non-validating. This means that even if a document contains a DTD,
the parser doesn’t check the document contents to make sure that they conform to its rules. Enabling
validation requires the use of the XMLReader.setFeature() method. SAX offers this method to pro-
vide different sets of features in an extensible way. You invoke the XMLReader.setFeature() method
to enable the schema validation behavior.

399

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 399

public void read(String xmlFileName, String xsdSchemaName) throws Exception
{
String validationFeature = “http://xml.org/sax/features/validation”;
String schemaFeature = “http://apache.org/xml/features/validation/schema”;
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setProperty
(“http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation”,
xsdSchemaName);

reader.setFeature(validationFeature, true);
reader.setFeature(schemaFeature, true);
reader.setContentHandler(this);
reader.setErrorHandler(this);
reader.parse(xmlFileName);

}

To set a feature on either org.apache.xerces.parsers.SAXParser, you use the method
setFeature(String, boolean). To query a feature, you use the SAX getFeature(String)method.
You can see the complete listing of features that you can set at http://xerces.apache.org/xerces-j/
features.html.

Before looking at the complete code, consider the XSD file in Listing 13-4, which is named Products.xsd
and is used for validating the Products.xml file.

LLiissttiinngg 1133--44:: PPrroodduuccttss..xxssdd ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Products”>
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”Product”>
<xs:complexType>
<xs:sequence>
<xs:element name=”ProductID” type=”xs:unsignedByte” />
<xs:element name=”Name” type=”xs:string” />
<xs:element name=”ProductNumber” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Listing 13-5 shows the complete code required to validate the Products.xml file with the Products.xsd
file. To catch the events raised by the parser, you override the methods of the ErrorHandler interface
such as warning(), error(), fatalError().

LLiissttiinngg 1133--55:: VVaalliiddaattiinngg aann XXMMLL ffiillee wwiitthh XXSSDD SScchheemmaa

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;

400

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 400

import org.xml.sax.*;
import org.xml.sax.helpers.*;
public class ProductsSchemaValidation extends DefaultHandler
{
public static void main(String[] args) throws Exception
{
System.out.println(“Start of Products...”);
ProductsSchemaValidation readerObj = new ProductsSchemaValidation();
readerObj.read(args[0], args[1]);

}

public void read(String xmlFileName, String xsdSchemaName) throws Exception
{
String validationFeature = “http://xml.org/sax/features/validation”;
String schemaFeature = “http://apache.org/xml/features/validation/schema”;
XMLReader reader =
XMLReaderFactory.createXMLReader(“org.apache.xerces.parsers.SAXParser”);

reader.setProperty
(“http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation”,
xsdSchemaName);

reader.setFeature(validationFeature, true);
reader.setFeature(schemaFeature, true);
reader.setContentHandler(this);
reader.setErrorHandler(this);
reader.parse(xmlFileName);

}

public void startDocument() throws SAXException
{
System.out.println(“Start of the document”);

}

public void endDocument() throws SAXException
{
System.out.println(“End of the document”);

}

public void startElement(String uri, String name, String qName, Attributes atts)
{
if (“”.equals(uri))
System.out.println(“Start element: “ + qName);

else
System.out.println(“Start element: {“ + uri + “}” + name);

}

public void endElement(String uri, String name, String qName)
{
if (“”.equals(uri))
System.out.println(“End element: “ + qName);

else
System.out.println(“End element: {“ + uri + “}” + name);

}

public void warning(SAXParseException e) throws SAXException

(continued)

401

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 401

LLiissttiinngg 1133--55 (continued)

{
System.out.println(“Warning: “);
displayErrorInfo(e);

}

public void error(SAXParseException e) throws SAXException
{
System.out.println(“Error: “);
displayErrorInfo(e);

}

public void fatalError(SAXParseException e) throws SAXException
{
System.out.println(“Fatal error: “);
displayErrorInfo(e);

}

private void displayErrorInfo(SAXParseException e)
{
System.out.println(“ Public ID: “ + e.getPublicId());
System.out.println(“ System ID: “ + e.getSystemId());
System.out.println(“ Line number: “ + e.getLineNumber());
System.out.println(“ Column number: “ + e.getColumnNumber());
System.out.println(“ Message: “ + e.getMessage());

}
}

If you run the program passing in the Products.xml and Products.xsd as command line arguments, it
will work fine, since the XML file is compliant with the XSD file. However, if you change the root ele-
ment of the Products.xsd file from Products to Products1 and rerun the program, you will see the
output shown in Figure 13-5.

Figure 13-5

The output shown in Figure 13-5 clearly proves that validation works fine and because of that the vali-
dation violation is reported by the parser.

402

Part V: Programming XML

21_777779 ch13.qxp 3/1/07 11:48 PM Page 402

Advantages and Disadvantages of SAX
Being event based, SAX offers several benefits to its user. At the same time, it also comes with certain
disadvantages. Both sides of this coin are presented in this section.

SAX presents four particularly compelling advantages, each of which is presented here:

❑ SAX generates the events continually while processing a document. The document analysis can
begin immediately, and you need not wait to do the analysis until the entire document is pro-
cessed. This is equivalent to streaming media, where the media contents are rendered immedi-
ately and you need not wait until the entire media is read.

❑ SAX examines the document contents as it reads the document and immediately generates events
on the processing application. Thus, it need not store the data that it has already processed. This
puts fewer constraints on the application memory requirements.

❑ Because the document’s contents are not stored in memory, it is easier to process very large
documents as compared to other processing techniques such as DOM. Other techniques that
require the entire document to be read into memory before processing can sometimes place
severe constraints on system resources.

❑ The application need not process the entire document if it is interested in a certain criterion.
After that criterion is met, further processing can be abandoned. Other techniques require the
document to be parsed fully before any processing can be done.

SAX does come with certain disadvantages:

❑ SAX is similar to a one-pass compiler. After it reads part of the document, it cannot navigate
backward to reread the data it has processed, unless you start all over again.

❑ Because SAX does not store the data that it has processed, you cannot modify this data and store
it back in the original document.

❑ Because SAX does not create an in-memory document structure, you cannot build an XML doc-
ument by using a SAX parser.

Summary
SAX is an excellent API for analyzing and extracting information from large XML documents without
incurring the time and space overheads associated with the DOM. In this chapter, you learned how
to use SAX to catch events passed to you by a parser, by implementing a known SAX interface,
DefaultHandler. You used this to extract some simple information from an XML document. You also
looked at error handling, and found out how to implement sophisticated intelligent parsing, and report-
ing errors. In addition you looked at how to search, update and validate an XML document using SAX.

403

Chapter 13: Simple API for XML (SAX)

21_777779 ch13.qxp 3/1/07 11:48 PM Page 403

21_777779 ch13.qxp 3/1/07 11:48 PM Page 404

AA jj aa xx

Ajax is a new term for a relatively old technique. Ajax is an acronym coined by Jesse James Garrett
of Adaptive Path, standing for Asynchronous JavaScript And XML. Although it is an acronym,
people tend to use it without capitalizing each letter.

The core idea behind Ajax is the use of JavaScript within the browser to transfer and process XML
from the server. The asynchronous refers to the fact that this transfer occurs on a background
thread, allowing the client to continue to interact with the Web page. Asynchronous download,
combined with the fact that only relatively small amounts of XML are transferred, reduces the
need for round tripping the entire browser page. This creates a Web application that seems more
performant.

This chapter will look at Ajax, and how to add it to your applications. It looks at the main compo-
nents of any Ajax solution — JavaScript and the XMLHttpRequest object. While not a complete ref-
erence on either, the chapter provides basic information on these two topics. In addition, several
popular Ajax libraries are highlighted.

The history of Ajax begins around the time of Internet Explorer 5.0, when the XMLHttpRequest
object (Microsoft.XMLHTTP) was added to the objects accessible from client-side script.

JavaScript is a scripting language created by Netscape to provide dynamic functionality in
Navigator. Originally, it was called LiveScript, but it was later renamed to associate it with Java,
which was becoming popular at the time. JavaScript is a loosely-typed, scripting language. That is,
it is not compiled. The code is executed through an interpreter (built into most modern browsers).
In addition, data types are limited, and variables can change type based on the data stored. For
syntax, it takes many cues from the C/C++ family of programming languages. Therefore, you
should expect to end each line with a semicolon and use braces ({}) to identify code blocks.
JavaScript is a standard (ECMA), so you may hear it referred to as ECMAScript.

22_777779 ch14.qxp 3/1/07 11:49 PM Page 405

Adding JavaScript to a Web Page
You add JavaScript to a Web page in one of two ways: using a script tag, or by adding short blocks of
JavaScript directly to events associated with tags on a Web page.

The script tag is the more common form of adding JavaScript to a Web page. The JavaScript can be
included within the tag, or the code may be contained within a separate file referenced by the tag.

//script block
<script language=”javascript” type=”text/javascript”>

alert(“Hello world”);
</script>

//script in external file
<script type=”text/javascript” src=”/script/somefile.js”></script>

Note that the code identifies the type as text/javascript, which is the official MIME type for
JavaScript content. You could also use this form when including the JavaScript as a script block, but this
is less common.

One problem with adding JavaScript is dealing with browsers that do not accept JavaScript. This is
much less of a problem now that most modern browsers can process JavaScript, but a few clients out
there are still using Mosaic or Lynx, so it’s good technique to comment out (using the HTML comment
markers <!-- and -->) the JavaScript to prevent it from appearing in the text of the page on these
browsers. Note that this is not necessary if you are including the JavaScript via an external file.

// Commenting out JavaScript for older browsers
<script language=”javascript”>
<!--

//your JavaScript here
//-->
</script>

Notice that the last line in the JavaScript block actually has both the JavaScript (//) and HTML (-->)
comments. This is to prevent the JavaScript interpreter from processing the HTML comment.

Functions in JavaScript
You can write your JavaScript in one of two ways: Either use simple statements, or write one or more
functions. Loose statements are executed when the script is loaded, whereas functions are called, typi-
cally in response to button clicks or other events. Writing functions reveals one of the first major differ-
ences between JavaScript and other C-derived languages.

function sayHello() {
alert(“Hello World”);

}

Notice that the function does not require the addition of the return type. The alert() method is a stan-
dard JavaScript method that produces a message box containing the text passed in (see Figure 14-1).

406

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 406

Figure 14-1

In addition to allowing you to create your own functions, JavaScript includes some standard methods
you can use in your scripts. Three of these are useful when interacting with users: alert, confirm, and
prompt. Alert displays a message box (see Figure 14-1) containing text you specify.

Confirm is similar, but provides OK/Cancel buttons (see Figure 14-2). This enables you to ask simple
questions from your scripts.

Figure 14-2

Finally, prompt provides a text field, enabling user input (see Figure 14-3).

Figure 14-3

Because JavaScript is text that is interpreted at runtime, it enables different methods of processing than
do C# or Java. This is evident in the eval method: This method takes a block of JavaScript and executes
it. It is possible to build up a string containing code based on user input and to execute it on demand.
This is a powerful (albeit ripe for misuse) feature that you might want to use in the right circumstances.

Data Types in JavaScript
You are not required to identify the types you use when creating variables. However, it is still a good
idea to declare the variables before use. This is done with the var keyword.

var someVariable, someOtherVariable, aThirdVariable;

The previous statement declares three variables that can hold any data type.

407

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 407

Although JavaScript is a loosely-typed language, it is also object-oriented. You can create your own
objects (see Listing 14-1) or make use of the built-in objects. Four of the most common built-in objects in
JavaScript are the String, Date, Boolean, and Math objects. These objects provide a number of useful
static and instance methods. Some of these methods are shown in the following table.

Object Method/Property Description

String length Returns the length of the string

String indexOf Returns the position of the desired substring (0 based)

String lastIndexOf Returns the last position of the desired substring (0 based)

String substring Extracts a substring from a string and returns it

String toLowerCase Converts the string to lowercase and returns it

String toUpperCase Converts the string to all uppercase and returns it

Date getDate Returns the day of the month (1-31)

Date getDay Returns the day of the week (0-6)

Date getMonth Returns the month of the year (0-11)

Date getYear Returns the year

Date getFullYear Returns the four-digit year

Date getTime Returns the number of milliseconds since 0:00 GMT
January 1, 1970

Date parse Converts a string that looks like a date to a date object

Date set* Set versions of the above get* methods for Date

Math min Returns the smaller of two numbers

Math max Returns the larger of two numbers

Math random Returns a random number between 0 and 1

Math PI Returns the value of pi

LLiissttiinngg 1144--11:: CCrreeaattiinngg oobbjjeeccttss iinn JJaavvaaSSccrriipptt

function Person(first, last) {
this.first=first;
this.last = last;

}
Person.prototype.toString = function() {
return this.first + “ “ + this.last;

}

var p = new Person(“John”, “Doe”);
alert(p.toString());

408

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 408

Language Features of JavaScript
The commonly used looping and conditional blocks of C/C++ are also available in JavaScript (see
Listing 14-2). These include if..else, switch, for loops, while loops, and do..while loops.

LLiissttiinngg 1144--22:: CCoonnddiittiioonnaall aanndd lloooopp bblloocckkss iinn JJaavvaaSSccrriipptt

function isPrime(value) {
var result = true;

for(i=2; i<=Math.sqrt(value);i++) {
if(Math.round(value/i) == value/i) {

result = false;
break;

}
}
return result;

}

function getGreeting() {
var currentTime = new Date();
var result;
switch(currentTime.getDay()) {

case 5:
result = “TGIF”;
break;

case 6:
result = “Saturday”;
break;

case 0:
result = “Sunday”;
break;

default:
result = “Just another work day”;
break;

}

return result;
}

In addition to the expected for loops, JavaScript also supports for..in loops. These enable you to iter-
ate over an array or other object that contains a collection of items (see Listing 14-3). The iterator value is
set to the index of the item during each loop through the for..in loop.

As you can see from the highlighted code in Listing 5-3, objects are stored as arrays using the property
names as keys. You can also iterate over all the properties of an object using the for..in syntax.

LLiissttiinngg 1144--33:: UUssiinngg tthhee ffoorr....iinn lloooopp

var people = new Array();
people[0] = new Person(“John”, “Bull”);
people[1] = new Person(“Jane”, “Doe”);

for(var person in people) {

(continued)

409

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 409

LLiissttiinngg 1144--33 (continued)

alert(people[person].toString());

for(var prop in people[1]) {
alert(prop + “: “ + people[person][prop]);

}
}

One area of code that always needs attention is error handling. JavaScript supports the try..catch
form of exception handling. You wrap the section that might cause an exception in a try block. If an
exception occurs, the flow of the code moves to the catch block (see Listing 14-4). There you can handle
the error or provide more information to the user as appropriate.

LLiissttiinngg 1144--44:: TTrryy....ccaattcchh bblloocckkss iinn JJaavvaaSSccrriipptt

try {
var answer=prompt(‘Enter an equation’, ‘6*8’);
alert(eval(answer));

} catch(e) {
alert(‘Could not evaluate that equation’);

}

In Listing 14-4, the eval method is used to execute the equation entered. If you use the default equation,
this should result in a message box showing 48. However, if you enter an equation with an error or with
code that cannot be evaluated, the message box shows the error message.

XMLHttpRequest
XMLHttpRequest is an object first added to Internet Explorer 5.0 (as the Microsoft.XMLHTTP ActiveX
object), and it is core to Ajax. XMLHttpRequest is used to make HTTP queries from a Web page, gener-
ally retrieving XML. You can tell that a lot of thought went into the name of the object. The developers
of Mozilla (Netscape Navigator and Firefox) obviously recognized the value of this object, and so they
added it to those browsers as well. Recently, the World Wide Web Consortium (W3C) started an effort to
standardize the functionality of this object as well. In addition, Microsoft has announced that this object
would also be available in Internet Explorer 7.

The XMLHttpRequest object can make either synchronous or asynchronous requests. Synchronous
requests are like any other normal application call: You make the request, and when the data is returned,
your code moves on to the next line. This is simple, but remember that a Web request is being made here —
a request that may take some time to complete. If the request is made over a slow link, it could take a lot
of time, and your Web page will be not responsive during this time. That is, the user will be staring at a
page that doesn’t allow him to enter any more data or click buttons until the code has run. Therefore, you
should always make asynchronous requests when working with the XMLHttpRequest object. With an
asynchronous request, when you make the call to download the data, it happens on a background thread,
allowing the code to continue and the main Web page to keep dealing with the user. Obviously, if your
code is happening on another thread, some code must process the result when the XMLHttpRequest call is
completed. You identify this function when you make the call to download data.

410

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 410

Creating an XMLHttpRequest object is slightly more complex than it should be. It is implemented as
one of two ActiveX objects in Internet Explorer (depending on the version), but it is a natively available
object in Firefox, Opera, and Safari. You must create a method to create this object. Many people write a
routine that uses the User Agent to decide how to create it (see Listing 14-5). However, methods similar
to this are inherently fragile. New browser versions come out, browser agent strings change, or browsers
can be set to impersonate other browsers. Instead, you should use code similar to Listing 14-6 to create
the XMLHttpRequest object.

LLiissttiinngg 1144--55:: CCrreeaattiinngg aann XXMMLLHHttttppRReeqquueesstt oobbjjeecctt tthhee wwrroonngg wwaayy

var browser=navigator.userAgent.toLowerCase();
var majorVersion = parseInt(navigator.appVersion);
var minorVersion = parseFloat(navigator.appVersion);
var isIE = ((browser.indexOf(“msie”) != -1) && (browser.indexOf(“opera”) == -1));
var isMozilla == (browser.indexOf(‘mozilla’)!=-1);
var req;

if(isIE) {
if(majorVersion = 7) {
req = new XMLHttpRequest();

} else if (majorVersion > 6) {
req = new ActiveXObject(“Microsoft.XMLHTTP”);

} else if (majorVersion > 4) {
req = new ActiveXObject(“Msxml2.XMLHTTP”);

}
} else {
req = new XMLHttpRequest();

}

LLiissttiinngg 1144--66:: CCrreeaattiinngg aann XXMMLLHHttttppRReeqquueesstt oobbjjeecctt tthhee ccoorrrreecctt ccrroossss bbrroowwsseerr wwaayy

function getReqObj(){
var result=null;

if(window.XMLHttpRequest) {
result = new XMLHttpRequest();

} else {
try {

result=new ActiveXObject(“Msxml2.XMLHTTP”);
} catch(e){

result=null;
}

}

return result;
}

Because exceptions require some time to process, it is best to attempt to avoid them if possible. There-
fore, you make a check to window.XMLHttpRequest. If the object is available (the code is running
within Firefox, Opera, Safari, or Internet Explorer 7), the remainder of the code and any possible excep-
tions are avoided. Next, the code attempts to create the Msxml2.XMLHTTP ActiveX object. This is the cur-
rent version of the object, and the name is the version agnostic request.

411

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 411

The good news is that with Internet Explorer 7.0, the XMLHttpRequest object will become a native
object. This means that, at some point (when you want to forget about supporting Internet Explorer 5-6),
the preceding code can be simplified to:

var req = new XMLHttpRequest();

After you have created an instance of the XMLHttpRequest object, review the methods and properties it
makes available. (See the following table.)

Method Description

abort Cancels the current request. Because most of your requests should
be asynchronous, this method is a useful method for canceling
long-running requests.

getAllResponseHeaders Returns a string containing all response headers for the request.
Each name:value pair is separated by CR/LF. Note that this value
can only be retrieved if the readyState (see the following) is 3 or
4. With other states, it should always be null.

getResponseHeader Returns a string containing the value for a requested response
header. Note that this value can only be retrieved if the
readyState (see the following) is 3 or 4. With other states it
should always be null.

open Opens a new request, preparing for a call. If an existing request is
in progress, this is reset. A number of overridden versions of this
method are available (see text).

send Sends the request to the URI assigned in the call to open and pre-
pares the object to receive the returned data. The send method
takes a single parameter, which can be either a block of text or
XML document.

setRequestHeader Adds a custom header to the request. This can be useful for
authentication (providing a magic token in the headers of the
request), or to modify the behavior of the called service (the
header could provide additional parameters for the call or change
the identification of the User Agent).

addEventListener Available only with the Mozilla version of the object. Associates an
event listener to the object. This can be used to override the behav-
ior of the object or to limit other code from accessing the results of
the call.

dispatchEvent Available only with the Mozilla version of the object. Triggers an
event that other code may respond to. This can be useful to bubble
the events normally if the addEventListener captures all
returned events.

openRequest Available only with the Mozilla version of the object.

412

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 412

Method Description

overrideMimeType Available only with the Mozilla version of the object.

removeEventListener Available only with the Mozilla version of the object. Disconnects
an event listener connected via addEventListener.

In addition to the methods listed in the preceding table, some of the implementation provides a number
of properties that can assist you when you are working with the XMLHttpRequest object. The following
table shows those properties:

Property Type Description

onreadystatechange function/ OnReadyStateChange provides a hook for
event listener you to add a routine to provide handling for

asynchronous requests. The method associated
with the event is called when the asynchronous
method completes.

readyState enumeration A read-only value describing the current status
of the request. This must be one of the following
values:

❑ 0 (Uninitialized): The object has been created,
but no open method has been called yet.

❑ 1 (Open): Open has been called, but not send.

❑ 2 (Sent): Send has been called, but no data has
been received yet.

❑ 3 (Receiving): Data is partially available.

❑ 4 (Loaded): All data and headers have been
received. This is the state most code needs
before processing the result.

responseBody byte[] Only available when using the Internet Explorer
version of the object. This property contains the
raw content of the response as an array of bytes.
It can be helpful when you are using the
XMLHttpRequest object to return non-text data
such as a media file.

responseText string Returns the body of the response as a string. If the
readyState is 3, this may not be the complete
returned content.

Table continued on following page

413

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 413

Property Type Description

responseXML XML Returns the body of the response as an XML
Document document. Note that this property is really only

useful if you are returning XML from the server. If
the readyState is 3, the entire document is not
yet available, and the document may not be well
formed.

status int (short) The returned HTTP status code for the request.
For example, 200 means a successful request.
Note that this is only available if the readyState
is 3 or 4.

statusText string The returned HTTP status code text for the request.
For example, if the status is 500, the statusText
property can provide more information on the rea-
son for the error. Note that this is only available if
the readyState is 3 or 4.

As you can see from the preceding table, the actual target of the request is set using the open method.
The simplest version of this method takes two parameters: method and URI. Method is the HTTP
method (typically GET or POST) that the request will use. URI represents the target of the call.

var req = GetReqObj();
req.open(“GET”, “someendpoint.php”);

In addition to these two parameters, three other parameters are optional:

❑ async — A Boolean value that determines whether the request should be made asynchronously
or synchronously. Generally, you want to make your XMLHttpRequest calls asynchronously.
Synchronous calls prevent the user from interacting with the rest of your Web page, thereby
reducing the overall value of using Ajax. Listing 14-7 shows the basic process when making
asynchronous requests.

❑ user — A string identifying the credentials that should be used when processing the request.

❑ password — A string identifying the password for the user passed in the previous parameter.

LLiissttiinngg 1144--77:: PPsseeuuddooccooddee ffoorr XXMMLLHHttttppRReeqquueesstt ccaallllss

//Create the XMLHttpRequest object
var req = getReqObj();
//set the URL and method and configure call as asynchronous
req.open(“GET”, “http://someendpoint”, true);
//set the function that will respond when the call is complete
req.onreadystatechange = MyFunc;
req.send(data);

414

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 414

The onreadystatechange property identifies a function that is called whenever the status of the call
changes. Therefore, you must determine the overall status of the request in this function. That is, you
should determine if the status is 3 (loading) or 4 (complete) before processing any data. Statuses 1 and 2
may be useful to report to your users, however.

The DOM
The last of the major components that make Ajax work is the DOM or Document Object Model. The
DOM is the weak link in the process — not because it fails, but because each browser uses slightly differ-
ent objects to make up the DOM. This means the methods and properties exposed by those objects are
different as well. Adding Ajax functionality that works cross browser usually means making one of four
choices:

❑ Ignore the browsers you’re not interested in. Many developers target a particular browser and
version, usually based on their Web traffic. This solution makes most sense for internal applica-
tions that allow you to control the client software. However, for public-facing applications, this
choice can have a nasty side effect of alienating potential or current customers. Although sup-
porting only one (or a few) browsers reduces your test needs and increases the chances of
success, it also sends the message to users of other browsers, “We don’t care about you.”
You should at least strive to provide for users of other browsers. People using your selected
browser(s) can have the Ajax experience, whereas other users receive a Web page that requires
round-tripping (but is still functional).

❑ Use only a common subset of functionality that is exposed by all target browsers. By limiting
your use of browser-specific features, you increase your chances of success at the expense of
adding functionality that may be easier or richer in some browsers. This is the safe option. It
does require a fair bit of discipline, however, because you must remember what features work
across all browsers and limit yourself to use only those features. Usually the restrictions make
this option quite difficult.

❑ Degrade appropriately. This is one of the more common solutions. It can also be described as,
“Keep trying until something works.” Using this technique, you first try the most common solu-
tion, perhaps attempting to retrieve a particular object. If that fails, you then try the next most
common solution. This continues until you either run out of possibilities or you run out of
options. For example, a common need is to locate a field in a form based on its ID. Internet
Explorer exposes a document.all collection, which is non-standard. Other browsers may or may
not support this collection, although current versions of Opera and Firefox (but not Safari) do. If
you use a feature such as this, you should check the returned object. If it is null, you should use
another method to retrieve the object.

❑ Have your framework treat all browsers the same. This is a curious option, but it can be quite
appealing. The code wrapping the DOM can expose methods making all selected browsers look
the same. That is, you create DOM methods where the underlying browser doesn’t support
them. Microsoft’s AJAX Extensions uses this technique to provide all browsers with a DOM
similar to Internet Explorer.

The end result, however, is that unless you choose to ignore certain browsers, you should test in a vari-
ety of browsers and, preferably, in multiple versions of those browsers before releasing any Ajax applica-
tion. If you have an existing Web application, you can use your Web server log files to identify which
browsers are commonly used for your site to determine which ones you should support.

415

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 415

Objects in the DOM
The following table shows some of the major objects provided by the DOM. As the name DOM implies,
the document is the only object described by the W3C standard on the DOM; however, the other objects
are provided by most modern browsers.

Object Description

document Contains methods and properties related to the document (or page)
currently open in the browser. You use this object to retrieve the elements
of the page.

location Contains methods and properties related to the current URL. The main
use here is to send the user to another page, but you can also extract
portions of the URL as needed.

navigator Contains methods and properties related to the browser. This information
can be useful in querying the capabilities of the browser.

window Contains methods and properties related to the browser window. This is
typically used to resize the browser or change the visibility of elements
such as status bars.

Of the objects in the previous table, the most important or, at least, the most frequently used is the docu-
ment object. This object enables you to retrieve, process, or change the contents of the current document.
The total number of collections and child objects of this object are staggering: You could literally write a
book about them (there so are many). A certain subset of these child objects and methods are used most
frequently by developers. These objects and methods enable navigation through the items on the page,
allow changes to their properties, and permit the addition of new items. Just a few of the child objects of
document are listed in the following table.

Object Discussion

all[] This child collection is only available with Internet Explorer and is not
part of the W3C standard. Still, if all your clients are using Internet
Explorer, it can be a handy shortcut. This collection contains all the
important items for a Web page: images, links, stylesheets, and forms.
The all[] collection can be used to retrieve individual items or iterate
over the collection, looking for items to process.

forms[] A collection of all the forms on the Web page. This is typically used to
locate form elements, such as text fields, for processing.

documentElement The root node of the document. This node is used to further drill down
into the document structure.

body Represents the content of the body of the document.

416

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 416

The following table discusses some of the important methods of document.

Method Discussion

createElement(tagName) Creates a new element and adds it to the current document.

getElementById This is the main method you work with when using Ajax. This
method returns the selected element.

getElementsByTagName This common method returns all elements of a given type.
Typically, this is used as the input into a loop for further
processing.

write Writes content to the current document. Note that this content
does not appear if the user looks at the source of the page.
Therefore, many sites use this method to write information that
should remain somewhat protected. This is not a foolproof
method, however, because any use of a HTTP monitoring
application or JavaScript debugger shows the content.

In addition to the objects listed in the preceding table and the document object, a number of other objects
exist in the DOM. They relate to the objects that normally occur in HTML forms and on pages. For exam-
ple, a button object relates to the buttons you can add to HTML forms.

Events in the DOM
In addition to supporting methods and properties, many objects in the DOM also support events. You
can connect your code to react to these events using the syntax:

object.eventHandlerName = JavaScript_function;

Event handlers in the DOM can be identified by names that start with on. Using them is similar to the
onrequestchange you saw earlier with the XMLHttpRequest object. You assign a JavaScript function
to the event handler. When the event occurs, the code in your method is executed. For example, use the
following code to trap the button.onClick event that occurs when the button is clicked:

button.onclick=someJSFunction;

A possible problem with the preceding syntax is that it removes any previous handler that may have
been set on the onclick event handler. Because of this, you should use the syntax:

// Internet Explorer
button.attachEvent(‘click’, someJSFunction);

// DOM compliant browsers
Button.addEventListener(‘click’, someJSFunction, false);

417

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 417

The previous form adds the function as a handler for the onclick method, but does this in addition to
any existing handlers. This means that your trapping the event does not break any other code that may
already be listening to the event.

Putting It All Together
Now that you’ve seen the three constituent parts of Ajax, it’s time to connect them to add some simple
Ajax functionality to a Web page. To explore how JavaScript, XMLHttpRequest and the DOM interact,
I’ll create an application to look up contact phone numbers (see Figure 14-4). The solution uses a simple
HTML page as a client (with JavaScript) and an ASP.NET HTTP handler as the server. It should be possi-
ble to convert this server-side component to any other server-side Web technology.

Figure 14-4

The server-side of the solution queries an XML file to retrieve any company or contact that matches the
currently entered data, returning up to 10 items that match. Part of the XML file queried is shown in
Listing 14-8.

LLiissttiinngg 1144--88:: CCoonnttaacctt iinnffoorrmmaattiioonn ffiillee

<customers>
<customer id=”ALFKI”>
<company>Alfreds Futterkiste</company>
<contact>Maria Anders</contact>
<phone>030-0074321</phone>

</customer>
<customer id=”ANATR”>
<company>Ana Trujillo Emparedados y helados</company>
<contact>Ana Trujillo</contact>

418

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 418

<phone>(5) 555-4729</phone>
</customer>
<customer id=”ANTON”>
<company>Antonio Moreno Taquería</company>
<contact>Antonio Moreno</contact>
<phone>(5) 555-3932</phone>

</customer>
<customer id=”AROUT”>
<company>Around the Horn</company>
<contact>Thomas Hardy</contact>
<phone>(171) 555-7788</phone>

</customer>
<customer id=”BERGS”>
<company>Berglunds snabbköp</company>
<contact>Christina Berglund</contact>
<phone>0921-12 34 65</phone>

</customer>
<customer id=”BLAUS”>
<company>Blauer See Delikatessen</company>
<contact>Hanna Moos</contact>
<phone>0621-08460</phone>

</customer>
...
</customers>

In order to retrieve both companies and contacts that match the query, the XPath combines the two
queries, using the XPath function starts-with to identify desired nodes. As starts-with is case-
sensitive, it is also necessary to use the translate function to perform the search in a case-insensitive
way. The full XPath query for any company or customer that starts with fr is:

customers/customer[starts-with(translate(company,
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ‘abcdefghijklmnopqrstuvwxyz’), ‘fr’)
or starts-with(translate(contact, ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
‘abcdefghijklmnopqrstuvwxyz’), ‘fr’)]

The translate function converts a string to another string based on a mapping. The syntax looks like
the following:

translate(string-to-convert, mapping-string, result-string)

Whenever the code encounters one of the characters in the mapping-string in the string-to-convert, it is
replaced with the character at the same position in the result-string. Therefore, using the code shown previ-
ously, any alphabetic character is replaced with the lowercase equivalent. Note that this only includes basic
letters. Any accented characters should be added to both the second and third parameters in the call to
translate. When you do this, make certain that the lowercase character in the third parameter is in the same
position as the character in the second parameter. Two starts-with clauses are needed because one
searches for items matching the company name, whereas the second includes items matching on the con-
tact name. Listing 14-9 shows the output of the preceding query when applied to the contact list. Notice
how the query (fr) matches the start of both companies and contacts.

419

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 419

LLiissttiinngg 1144--99:: SSeelleecctteedd ccoonnttaaccttss

<customers>
<customer id=”BLONP”>
<company>Blondesddsl père et fils</company>
<contact>Frédérique Citeaux</contact>
<phone>88.60.15.31</phone>

</customer>
<customer id=”CENTC”>
<company>Centro comercial Moctezuma</company>
<contact>Francisco Chang</contact>
<phone>(5) 555-3392</phone>

</customer>
<customer id=”FRANK”>
<company>Frankenversand</company>
<contact>Peter Franken</contact>
<phone>089-0877310</phone>

</customer>
<customer id=”FRANR”>
<company>France restauration</company>
<contact>Carine Schmitt</contact>
<phone>40.32.21.21</phone>

</customer>
<customer id=”FRANS”>
<company>Franchi S.p.A.</company>
<contact>Paolo Accorti</contact>
<phone>011-4988260</phone>

</customer>
<customer id=”LONEP”>
<company>Lonesome Pine Restaurant</company>
<contact>Fran Wilson</contact>
<phone>(503) 555-9573</phone>

</customer>
</customers>

Listing 14-10 shows the server-side code that performs the query on the XML and returns the resulting
XML. Although it is written for ASP.NET, it could be written in PHP, JSP, ColdFusion, or other server-
side code.

LLiissttiinngg 1144--1100:: AA sseerrvveerr--ssiiddee qquueerryy

<%@ WebHandler Language=”C#” Class=”CustomerLookup” %>

using System;
using System.Web;
using System.Web.Caching;
using System.Globalization;
using System.Xml;
using System.Xml.XPath;
using System.Text;

420

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 420

using System.IO;

public class CustomerLookup : IHttpHandler {

private const String dataFile = “app_data/contactList.xml”;
private const String cacheKey = “contactList”;
private const Int32 maxResults = 10;

private HttpContext myContext = null;
private String xQuery = @”customers/customer[starts-with(translate(company,

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’, ‘abcdefghijklmnopqrstuvwxyz’), ‘{0}’)
or starts-with(translate(contact, ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
‘abcdefghijklmnopqrstuvwxyz’), ‘{0}’)]”;

public void ProcessRequest (HttpContext context) {
myContext = context;
String result = String.Empty;
String query = context.Request[“q”];
if (!String.IsNullOrEmpty(query)) {

result = GetContactList(query, maxResults);
}

context.Response.ContentType = “text/xml”;
context.Response.Write(result);

}

public bool IsReusable {
get {

return false;
}

}

private String GetContactList(String root, Int32 count) {
StringBuilder result = new StringBuilder();
String filename = myContext.Server.MapPath(dataFile);
String data = LoadAndCache(filename);
String query = String.Empty;
XmlDocument doc = new XmlDocument();
XPathNavigator nav = null;
int i = 0;

doc.LoadXml(data);
query = String.Format(xQuery, root);
nav = doc.CreateNavigator();

XPathNodeIterator iter = nav.Select(query);
XmlWriterSettings settings = new XmlWriterSettings();
settings.Encoding = Encoding.UTF8;
settings.OmitXmlDeclaration = true;

using (XmlWriter w = XmlWriter.Create(result, settings)) {

(continued)

421

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 421

LLiissttiinngg 1144--1100 (continued)

w.WriteStartDocument();
w.WriteStartElement(“result”);
while (iter.MoveNext()) {

w.WriteNode(iter.Current,false);
i++;
if (i == count) {

break;
}

}
w.WriteEndElement();
w.WriteEndDocument();

}

return result.ToString();
}

private String LoadAndCache(String filename) {
String result = String.Empty;

result = myContext.Cache[cacheKey] as String;
if (String.IsNullOrEmpty(result)) {

using (StreamReader reader = File.OpenText(filename)) {
result = reader.ReadToEnd();

}
myContext.Cache.Add(cacheKey, result,

new CacheDependency(filename),
Cache.NoAbsoluteExpiration, Cache.NoSlidingExpiration,
CacheItemPriority.Normal, null);

}

return result;
}

}

The bulk of the code for an ASP.NET HTTP handler is in the ProcessRequest method. This is called for
each request, and the developer is responsible for writing the output. This output is generated by the
GetContactList method. The GetContactList method first loads the XML file (and caches the data
for performance); then it executes the query using the current data typed by the user. The resulting data
is wrapped in a <result> element (see Figure 14-5).

The interface for the client application is intentionally simple and would likely be part of a more com-
plex page. The idea is that the user can type in the search field, and the server-side code is called by
JavaScript on that page. Listing 14-11 shows the code for the client page and JavaScript.

422

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 422

Figure 14-5

LLiissttiinngg 1144--1111:: CClliieenntt--ssiiddee ccooddee

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax Contact Lookup</title>
<script type=”text/javascript” src=”script/getReqObj.js”></script>

<script language=”javascript” type=”text/javascript”>

(continued)

423

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 423

LLiissttiinngg 1144--1111 (continued)

<!--

var req;

function getContacts() {
var q = document.getElementById(“q”).value;
if(“” != q) {

req = getReqObj();

if(null != req) {
req.open(“GET”, “customerlookup.ashx?q=” + q, true);
req.onreadystatechange = Process;
document.getElementById(“contactList”).innerHTML = “Working”;
req.send(null);

}
} else {

document.getElementById(“contactList”).innerHTML = “”;
}

}

function Process() {
if(4 == req.readyState) {

if(200 == req.status) {
//success
var data = req.responseXML;
var result = “”;
var node = data.documentElement.firstChild;

while(null != node) {
var child = node.firstChild;
result += “” + child.firstChild.nodeValue + “ ”;
child = child.nextSibling;
result += “(“ + child.firstChild.nodeValue + “): ”;
child = child.nextSibling;
result += child.firstChild.nodeValue;
result += “
”;
node = node.nextSibling;

}

document.getElementById(“contactList”).innerHTML = result;
} else {

document.getElementById(“contactList”).innerHTML = req.statusText;
}

}
}

// -->
</script>

424

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 424

</head>
<body>
<form>

Enter the first few letters of a company or contact:
<input id=”q” type=”text” onkeyup=”getContacts();”/>

<div id=”contactList”></div>

</form>
</body>
</html>

425

Chapter 14: Ajax

The other data format: JSON
When processing the returned XML from an XMLHttpRequest call, you are essentially
left to your own devices and the DOMDocument. Although this is not really a handi-
cap (only a bit of extra friction and a few lines of code), you should know that many
developers avoid XML entirely. Instead, these developers use JSON (JavaScript Object
Notation, pronounced Jason) as a data-exchange format. JSON is a serialized form of
JavaScript objects. For example, the data returned from a server-side component simi-
lar to the CustomerLookup component, but returned using JSON instead of XML looks
like the following:

{ “customers”: { “customer”: [
{“id”: “DRACD”,
“company”: “Drachenblut Delikatessen”,
“contact”: “Sven Ottlieb”,
“phone”: “0241-039123”},

{“id”: “DUMON”,
“company”: “Du monde entier”,
“contact”: “Janine Labrune”,
“phone”: “40.67.88.88”},

{“id”: “FISSA”,
“company”: “FISSA Fabrica Inter. Salchichas S.A.”,
“contact”: “Diego Roel”,
“phone”: “(91) 555 94 44”},

{“id”: “LACOR”,
“company”: “La corne d’abondance”,
“contact”: “Daniel Tonini”,
“phone”: “30.59.84.10”},

{“id”: “SPECD”,
“company”: “Spécialités du monde”,
“contact”: “Dominique Perrier”,
“phone”: “(1) 47.55.60.10”},

{“id”: “WANDK”,
“company”: “Die Wandernde Kuh”,
“contact”: “Rita Müller”,
“phone”: “0711-020361”}

]
}};

22_777779 ch14.qxp 3/1/07 11:49 PM Page 425

The JavaScript file containing the cross-browser code for retrieving the XMLHttpRequest object is
included, and this method is used to create the object. The first step is to identify the URL and HTTP
method that will be used for the page. Notice that the true parameter is included to ensure the request
is made asynchronously. If this parameter is not included, the request could cause the page to stop
responding to the user while the query is being completed. Next, because this call is done asynchronously,
you must set the onreadystatechange to point to the method that responds when the state of the
request changes. Finally, the send method sends the request to the desired URL.

Each time the state of the request changes, the method pointed to by the onreadystatechange prop-
erty is called. Therefore, you must determine if you are currently at a state where data has been retrieved
(reqObj.readyState == 4) before you continue. Similarly, you should examine the status property
to ensure that the request succeeded (reqObj.status == 200). At this point, you can use the various
response properties (responseXML, responseText, and responseBody in Internet Explorer) to retrieve
the data for further processing. Using the responseXML provides you with a DOMDocument object that
can be used to process the data, using the familiar firstChild, nextSibling, and nodeValue proper-
ties. In addition, if cross-browser support is not required, you use the methods of the DOMDocument
specific to your implementation (for example, the childNodes collection). The resulting data is pushed
into the contactList div element (see Figure 14-6). Notice that the list of items changes as you type in
the text box — without the flicker that might occur if a page round-trip were required to update the list.

Figure 14-6

426

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 426

As you can see, the syntax is basically name:value pairs. However, the braces ({}) create an object or hash,
whereas the brackets ([]) create an array. In the preceding example, an object is created that consists of an
array of customer hashtables. Each hashtable is populated with the properties of each customer.

The benefit of JSON data is that you can use the JavaScript eval method to convert it back into JavaScript
hashtables and arrays. This converts the code required for dumping the returned data into the target div to
the following:

function getContacts() {
var result = “”;
for(var i = 0; i < jsonObj.customer.length; i++) {

result += “” + jsonObj.customer[i].company + “ ”;
result += “(“ + jsonObj.customer[i].contact + “): ”;
result += jsonObj.customer[i].phone + “
”;

}
document.getElementById(“contactList”).innerHTML = result;

}

Now that you know that JSON exists and what it looks like, we can go back to ignoring it. This is a book on
XML, after all.

Ajax Libraries
New Ajax libraries have been appearing almost daily since the term was coined. Most are targeted at one
of the main Web development frameworks (JSP, ASP.NET, or PHP), but many others work well with any
platform or even simple HTML pages. The libraries themselves range from simple libraries that make
communication between client and server easier to libraries of widgets that use JavaScript to support
editing. The benefit of using one of these libraries is that it can reduce the amount of code you must
write to add Ajax support to your applications.

427

Chapter 14: Ajax

Mashups
With the number of services growing by the week, many developers are finding that
communicating with one service just isn’t enough. They are beginning to combine the
data and features of multiple services, creating new services: for example, looking up
store locations via a geocoding service and then plotting them on a map. These combi-
nation services have become known as mashups. Notice that I use mashup (without a
hyphen), whereas a similar trend of combining music from multiple artists to create a
new song is usually termed mash-up. Many authors use a single term for both or inter-
change the two words, however. Still, try to use the correct word the next time you’re
discussing your latest efforts at a cocktail party. With so many services providing
online data or APIs, the number of potential mashups is rapidly becoming unlimited.
The Web site Programmable Web (programmableweb.com) is a great resource to find
useful services, as well as to locate known and potential combinations.

22_777779 ch14.qxp 3/1/07 11:49 PM Page 427

Some of the more notable Ajax libraries include the following: (Note, this list is hardly comprehensive.
Dozens of other Ajax libraries are out there for all platforms, with more appearing every week)

❑ Microsoft AJAX Library, ASP.NET 2.0 AJAX Extensions, and the ASP.NET AJAX Control
Toolkit — A collection of ASP.NET Ajax tools from Microsoft, formerly known as the “Atlas”
project. This library works well with Internet Explorer, Firefox, and Safari. Although the exten-
sions and control library are intended for use with Microsoft’s ASP.NET, the core AJAX library
can be used with other frameworks as well. Microsoft has demonstrated how it works with
PHP pages.

❑ Prototype — Not an Ajax library per se, but a very useful tool for any JavaScript work. Prototype
makes creating cross-browser JavaScript easier, and it adds a number of methods for doing com-
mon code procedures. Many other libraries, such as Script.aculo.us and moo, are written on top
of the functionality provided by Prototype.

❑ Script.aculo.us — Not a standalone library, Script.aculo.us works with Prototype to create a
number of common user interface Ajax functions. It is built into Ruby on Rails, and provides
much of the Ajax functionality of that framework. Although it is part of Ruby on Rails, it works
well with any Web application framework or even with simple HTML pages. In addition, the
functionality it provides works cross-browser.

❑ AjaxPro — This is an Ajax library that targets Microsoft’s ASP.NET framework, written by
Michael Schwarz, and available in open source or commercial versions. It provides a quick
method of adding Ajax support to Web applications. It works with ASP.NET 1.1 as well as 2.0.

❑ Echo2 — A library of Ajax-enabled controls to add to Java-based Web applications. Works well
across all common browsers.

❑ Symfony — A PHP5-based Ajax framework. Works well cross-browser. In addition to Ajax, it
also includes support for templating and other Web application functionality.

Although a direct comparison of Ajax libraries is impractical and unfair because each developer’s needs
for platform and functionality vary, it is worth looking at how these libraries can be used to add com-
mon Ajax methods to your Web pages.

Using the Microsoft AJAX Library to Add Ajax
Functionality

Microsoft AJAX is a set of technologies that extend ASP.NET 2.0 to add Ajax functionality. In addition
to the library, Microsoft provides the AJAX Extensions that extends the HTML elements emitted by
ASP.NET and the AJAX Control Toolkit that adds Ajax support to specific controls.

At the core of the Microsoft ASP.NET AJAX Extensions is the ScriptManager control. This outputs the
appropriate JavaScript to the client, and provides cross-browser support. In addition, a number of addi-
tional controls, such as the UpdatePanel, are available.

Figure 14-7 shows an example of using Microsoft AJAX to create a simple RSS reader. When the drop-
down list is changed, the list box is populated with the items from the selected RSS feed. Selecting items
from the list causes the contents of the RSS item to be displayed on the right-hand side of the form.
Because of the use of Ajax, the updates do not require any postbacks.

428

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 428

Figure 14-7

Listing 14-12 shows the source code for the RSS reader application. It uses the AJAX Extensions, and the
RSSToolkit library written by Dmitry Robson of the ASP.NET team (see Resources).

LLiissttiinngg 1144--1122:: TThhee RRSSSS RReeaaddeerr wwiitthh tthhee MMiiccrroossoofftt AAJJAAXX EExxtteennssiioonnss

<%@ Page Language=”C#” %>

<%@ Register Assembly=”RssToolkit” Namespace=”RssToolkit” TagPrefix=”rss” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>

protected void FeedList_SelectedIndexChanged(object sender, EventArgs e) {
this.RssData.Url = this.FeedList.SelectedValue;
this.PostList.DataBind();

}

protected void PostList_SelectedIndexChanged(object sender, EventArgs e) {
this.RssData.Url = this.FeedList.SelectedValue;
this.ItemBody.Text =

this.RssData.Channel.Items[this.PostList.SelectedIndex].Attributes[“description”];
}

</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title>Simple RSS Reader using Microsoft ASP.NET 2.0 AJAX Extensions</title>
<link href=”styles.css” rel=”stylesheet” type=”text/css” />

</head>

(continued)

429

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 429

LLiissttiinngg 1144--1122 (continued)

<body>
<h1>Simple RSS Reader using Microsoft ASP.NET 2.0 AJAX Extensions</h1>
<form id=”form1” runat=”server”>
<asp:ScriptManager ID=”sm” runat=”server” EnablePartialRendering=”true” />

<div>
<asp:DropDownList runat=”server” ID=”FeedList”

OnSelectedIndexChanged=”FeedList_SelectedIndexChanged”
Width=”380px” AutoPostBack=”true” EnableViewState=”false”>
<asp:ListItem Text=”Select a feed from the list” Value=”” />
<asp:ListItem Text=”MSDN: XML”
Value=”http://msdn.microsoft.com/xml/rss.xml” />

<asp:ListItem Text=”’Atlas’ Forum”
Value=”http://forums.asp.net/rss.aspx?ForumID=1007&Mode=0” />

</asp:DropDownList>

<div class=”leftContent”>

<asp:UpdatePanel runat=”server” ID=”ListPanel”>
<ContentTemplate>

<asp:ListBox runat=”server” ID=”PostList”
DataSourceID=”RssData” DataTextField=”title”
AutoPostBack=”true”
OnSelectedIndexChanged=”PostList_SelectedIndexChanged”
Rows=”8”
CssClass=”leftContent” Width=”274px”
EnableViewState=”false”>

</asp:ListBox>
</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger ControlID=”FeedList”

EventName=”SelectedIndexChanged” />
</Triggers>

</asp:UpdatePanel>

</div>
<div class=”rightContent”>

<asp:UpdatePanel runat=”server”
UpdateMode=”Conditional”
ID=”ItemPanel”>

<ContentTemplate>
<asp:Label ID=”ItemBody” runat=”server” />

</ContentTemplate>
<Triggers>

<asp:AsyncPostBackTrigger ControlID=”PostList”
EventName=”SelectedIndexChanged” />

</Triggers>
</asp:UpdatePanel>

<rss:RssDataSource ID=”RssData” runat=”server”
Url=”http://msdn.microsoft.com/rss.xml” />

</div>
</div>

430

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 430

</form>
</body>
</html>

The first step in using the AJAX Extensions is to load the ScriptManager control. This must be included
within a control that includes the runat=”server” attribute. At runtime, this renders the appropriate
JavaScript block to the client. With Internet Explorer, the code generated becomes:

<script src=”/AtlasReader/WebResource.axd?d=AUY39WO
iwTRIogu9AIMyv6Z5UsRE7EaRGPSTsch0K6Lyz2EON7S15vqL-
bgMC0KchPDT06BtbeFjyRdgUFdpkB6kgBIS3V36a7l7XfDiYLz-
EYY1MiTpqdR4XfUdtZYO0L6toHqkLPPJbUJy038yHwt9ninEaeJ4
FkHeGh3sdKA1&t=632980743289843750” type=”text/javascript”>
</script>

The Web resource actually points to about 11K lines of JavaScript code used by the rest of the frame-
work. The EnablePartialRendering property means that only those sections of the page that have
changed will be updated. This ensures that flickering is kept to a minimum.

Listing 14-13 contains the stylesheet used for the sample. The two selectors .leftContent and
.rightContent cause the two sections to appear side by side.

LLiissttiinngg 1144--1133:: SSttyylleess..ccssss

body {
font-family:Verdana,Arial, Sans-Serif;
font-size:0.8em;

}

.leftContent
{

float:left;
width: 250px;
padding-right: 30px;
border-right: solid 1px black;

}

.rightContent
{

padding-left: 30px;
margin: 5px 5px 5px 5px;

}

The black box of the AJAX Extensions is the UpdatePanel. This control is used as a marker by the
attached JavaScript code (that is, it does not produce any HTML output in itself). It identifies the controls
that will be updated dynamically and the events that trigger the updates. In the preceding code, there
are two UpdatePanels. One updates the Listbox that is populated with the post titles, and the other
updates the content of each post item. The Triggers section of the control identifies the events that cause
the contained controls to be updated. The code listed is actually executed on the server-side via Ajax,
and the results are rendered to the page. The end result is a better experience for your clients, with less
flicker and more feedback.

431

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 431

Using Prototype to Add Ajax Functionality
Prototype is a popular library, created by Sam Stephenson, which contains not only Ajax functionality
but also a number of shortcuts for general JavaScript programming. Although it is not as large or full-
featured as some of the other libraries, it has so many helpful shortcuts that many other libraries (such as
Script.aculo.us that follows) are built on top of Prototype.

Listing 14-14 shows the client-side code for the contact lookup application created earlier. It has been
modified to use Prototype and shows some of the added functionality of this library.

LLiissttiinngg 1144--1144:: CClliieenntt--ssiiddee ccooddee uussiinngg PPrroottoottyyppee

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head>

<title>Ajax Contact Lookup</title>
<script type=”text/javascript” src=”scripts/prototype.js”></script>

<script language=”javascript” type=”text/javascript”>
<!--

function getContacts() {
if(“” != $F(“q”)) {

var url=”customerlookup.ashx”;
var parms = “q=” + $F(“q”);
var target=”contactList”;
var ajax = new Ajax.Updater(target,

url,
{method: “get”,
parameters: parms,
onComplete: updateContent,
onFailure: reportError
});

} else {
$(“contactList”).innerText = “”;

}
}
function reportError(request) {

$F(“contactList”) = request.statusText;
}

function updateContent(req) {
var resp = req.responseXML;
var result = “”;

var node = resp.documentElement.firstChild;
var nodes = resp.getElementsByTagName(‘customer’);
for(i=0;i<nodes.length;i++) {

result += dumpRow(nodes[i]);
}

$(“contactList”).innerHTML = result;
}

function dumpRow(row) {

432

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 432

var child = row.firstChild;
var result = “”;
result += “” + getValue(child) + “ ”;
child = child.nextSibling;
result += “(“ + getValue(child) + “): ”;
child = child.nextSibling;
result += getValue(child);
result += “
”;
return result;

}

function getValue(node) {
return Try.these(

function() {return node.firstChild.nodeValue;},
function() {return node.text;}

);
}

// -->
</script>
</head>
<body>
<form>

Enter the first few letters of a company or contact:
<input id=”q” type=”text” onkeyup=”getContacts();”/>

<div id=”contactList”></div>

</form>
</body>
</html>

The first step in using Prototype is to include the library on the page. You can download Prototype from
http://prototype.conio.net. The current version (as of this writing) is 1.4.0.

One of the most common tasks developers face when building JavaScript applications is accessing the
elements on a page, particularly form fields. Prototype includes two handy shorthand functions for
returning this data: $(name) returns the element on the page, whereas $F(name) returns the value of
the item. Although not earth-shattering in complexity, these two functions can save a lot of typing. In
addition to these two functions, two others not shown include $H(object) for creating hashtables, and
$A(object) for creating arrays.

In addition to the JavaScript shortcuts, Prototype also includes Ajax functionality in the form of three
main classes:

❑ Ajax.Request — used to make individual requests to server-side code. This object wraps the
XMLHttpRequest object, and makes it easier to add simple requests that work cross-browser.

❑ Ajax.Updater — used to update a region of the Web page based on server-side code. This object
extends the Ajax.Request object to automatically change the contents of a named region of the
page based on the returned data.

❑ Ajax.PeriodicalUpdater — used to update a region of the Web page based on server-side code at
regular intervals. This object extends the Ajax.Updater, adding timer functionality so that the
update happens as the timer fires.

433

Chapter 14: Ajax

22_777779 ch14.qxp 3/1/07 11:49 PM Page 433

Prototype alone may be enough to help you with your Ajax applications. Alternatively, one of the
libraries that use Prototype as a starting point could be just what you need to make your Web applica-
tions more dynamic.

Ajax Resources
A huge number of resources are available for learning more about Ajax. The concept has blossomed, cre-
ating cottage industries of Ajax libraries, conferences, and even online magazines offering information.

❑ http://adaptivepath.com/publications/essays/archives/000385.php— The essay
that coined the term Ajax and repopularized the use of JavaScript.

❑ wrox.com/WileyCDA/WroxTitle/productCd-0471777781.html— Professional Ajax book
from Wrox (ISBN: 0-471-77778-1).

❑ http://prototype.conio.net/— Home to the Prototype JavaScript framework.

❑ http://script.aculo.us/— Home to the Scriptaculous JavaScript framework.

❑ http://atlas.asp.net/— Home of Microsoft’s AJAX Extensions for adding Ajax support to
ASP.NET 2.0 applications.

❑ http://www.ajaxpro.info— Home of the Ajax.NET framework for adding Ajax support for
ASP.NET applications.

❑ nextapp.com/platform/echo2/echo/ — Home of the Echo2 framework for adding Ajax sup-
port for Java Web applications.

❑ symfony-project.com/— Home of the Symfony framework for adding Ajax support for
PHP5 Web applications.

❑ http://blogs.msdn.com/dmitryr/archive/2006/03/26/561200.aspx— Dmitry
Robson’s blog post announcing his RSS Toolkit for ASP.NET.

Summary
Ajax can help make your browser-based applications appear faster and more like desktop applications.
It requires a working knowledge of JavaScript and may cause a few more debugging headaches, but it
can create a dynamic view of your application that results in more productive, happier clients. The bene-
fits for clients who access your Web application over slower connections are even greater, because these
clients can appreciate the reduced round-tripping. For larger Ajax implementations, you can look at a
pre-existing Ajax library, or you can roll your own (everyone else has, it seems).

434

Part V: Programming XML

22_777779 ch14.qxp 3/1/07 11:49 PM Page 434

XXMMLL aanndd ..NNEETT

Microsoft has been working for years to make using XML in the .NET world as easy as possible.
You can’t help but notice the additional capability and the enhancements to overall XML usage
introduced in new each version of the .NET Framework. In fact, Bill Gates highlighted Microsoft’s
faith in XML in his keynote address at the Microsoft Professional Developers Conference 2005 in
Los Angeles. He stated that XML is being pushed deeper and deeper into the Windows core each
year. If you look around the .NET Framework, you will probably agree.

In addition to a series of namespaces in the .NET Framework that deal with XML and other XML-
related technologies, you also find support for XML in Microsoft’s products such as Visual Studio
2005, ASP.NET, ADO.NET, SQL Server, BizTalk, and a plethora of others.

This and the following two chapters step away from focusing on a specific XML technology.
Instead, they focus on how specific vendors’ technologies use XML. This chapter takes a look at
XML in the .NET world, while the next few chapters look at XML in the worlds of Java, PHP, and
more. You start by looking specifically at the Microsoft’s embrace of XML.

The Serialization of XML
The .NET Framework makes it rather simple to serialize an object, such as a class, to XML. This
has a lot of value in that you can take any objects you create in the .NET world, serialize them to
XML, and then transport this XML over the wire or save it to disk for later retrieval. The serializa-
tion of an object means that it is written out to a stream, such as a file or a socket (this is also
known as dehydrating an object). The reverse process can also be performed: An object can be dese-
rialized (or rehydrated) by reading it from a stream.

For this entire process, the .NET Framework provides you with the System.Xml.Serialization
namespace. This namespace contains all the classes and interfaces you need to support the serial-
ization and deserialization of objects to and from XML.

23_777779 ch15.qxp 3/1/07 11:49 PM Page 435

Serializing Using the XmlSerializer Class
For an example of the serialization capabilities supported by the .NET Framework, you can create a C#
console application. In this console application, you first create a class to be serialized to XML using the
XmlSerializer class found in the System.Xml.Serialization namespace. Listing 15-1 provides you
with the class you will use first. Place this class inside the project of the console application.

LLiissttiinngg 1155--11:: AA ssiimmppllee ccllaassss tthhaatt wwiillll llaatteerr bbee uusseedd iinn tthhee sseerriiaalliizzaattiioonn pprroocceessss

using System;
using System.Collections.Generic;
using System.Text;

namespace XmlSerializationProject
{

public class StockOrder
{

private string _symbol;
private int _quantity;
private DateTime _OrderTime = DateTime.Now;

public string Symbol
{

get { return _symbol; }
set { _symbol = value; }

}

public int Quantity
{

get { return _quantity; }
set { _quantity = value; }

}

public DateTime OrderTime
{

get { return _OrderTime; }
set { _OrderTime = value; }

}
}

}

After the StockOrder class is in place in your console application project, the next step is to populate
some of the properties this class exposes and use the XmlSerializer to convert the object to XML. The
code for the console application is shown in Listing 15-2.

LLiissttiinngg 1155--22:: SSeerriiaalliizziinngg tthhee SSttoocckkOOrrddeerr ccllaassss ttoo XXMMLL

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject

436

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 436

{
class Program
{

static void Main(string[] args)
{

try
{

XmlSerializer classSerialization =
new XmlSerializer(typeof(StockOrder));

StockOrder so = new StockOrder();
so.Symbol = “MSFT”;
so.Quantity = 100;

classSerialization.Serialize(Console.Out, so);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

In the previous listing, the Serialize method of the XmlSerializer instance is what you use to serial-
ize the object to a specified stream. In the case of Listing 15-2, the Serialize instance is using two
parameters — the first specifying the stream (in this case, Console.Out) and the second specifying the
object to be serialized (in this case, so). The output generated from this simple application is illustrated
in Figure 15-1.

Figure 15-1

The output shows that each public property is represented as an XML element which has the same name
as the exposed property from the StockOrder class. Along that vein, the root element of the XML docu-
ment has the same name as the class —StockOrder.

As with a typical XML document, the output includes a version specification of the XML as well as the
encoding attribute with the value of IBM437. This encoding value is used because the console applica-
tion really ends up using the TextWriter object to output the XML. Using some other type of object, the
XmlTextWriter object, for instance, enables you more direct control over the encoding type used in the
XML creation.

437

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 437

Besides the encoding attribute, a couple of namespaces are added to the XML document on your behalf:

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

The end result shows that the simple object that was created has been output with a single set of results
to the console application through the use of the XmlSerializer object. Next, you examine how you go
about changing some of the output that is generated for you by the .NET Framework.

Changing the Output of the Serialized Object
The XML serialization that was generated and displayed in Figure 15-1 may be acceptable for your
object serialization, but then again, you might want to modify the output so that it is more to your lik-
ing. For instance, if you want to change the name used for the root node, you can easily accomplish this
task through the use of XmlRootAttribute class as shown in Listing 15-3.

LLiissttiinngg 1155--33:: UUssiinngg tthhee XXmmllRRoooottAAttttrriibbuuttee ccllaassss ttoo cchhaannggee tthhee rroooott eelleemmeenntt’’ss nnaammee

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject
{

class Program
{

static void Main(string[] args)
{

try
{

XmlRootAttribute ra = new XmlRootAttribute();
ra.ElementName = “ReutersStockOrder”;

XmlSerializer classSerialization =
new XmlSerializer(typeof(StockOrder), ra);

StockOrder so = new StockOrder();
so.Symbol = “MSFT”;
so.Quantity = 100;

classSerialization.Serialize(Console.Out, so);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

438

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 438

Using the XmlRootAttribute class, you can programmatically alter how the XmlSerializer object
serializes the respective class to XML. In this case, Listing 15-3 simply changes the name of the root ele-
ment by first creating an instance of the XmlRootAttribute class and then using the ElementName
property to make an assignment.

After you have instantiated the XmlRootAttribute class and set it up as desired, you assign the
instance to the serialization process by adding it as a parameter in the instantiation of the
XmlSerializer object.

XmlSerializer classSerialization = new XmlSerializer(typeof(StockOrder), ra);

Employing the code from Listing 15-3, you get the results illustrated in Figure 15-2.

Figure 15-2

In addition to changing the name used in the root element programmatically, you can also accomplish
the same task declaratively directly in the StockOrder.cs file. This is illustrated in Listing 15-4.

LLiissttiinngg 1155--44:: CChhaannggiinngg tthhee nnaammee uusseedd iinn tthhee rroooott eelleemmeenntt ddeeccllaarraattiivveellyy

using System;
using System.Collections.Generic;
using System.Text;

namespace XmlSerializationProject
{

[XmlRoot(ElementName = “ReutersStockOrder”)]
public class StockOrder
{

// Code removed for clarity
}

}

Using the XmlRoot attribute prior to the class declaration is another way to accomplish this task. Within
the attribute declaration, you can use the ElementName named property to provide an overriding name
for the root element — in this case, ReutersStockOrder. This could also have been accomplished using
the following syntax:

[XmlRoot(“ReutersStockOrder”)]
public class StockOrder
{

// Code removed for clarity
}

439

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 439

In addition to the ElementName property, other properties include: DateType, IsNullable, and
Namespace. Listing 15-5 shows an example of adding a new property, a namespace, to the generated
output.

LLiissttiinngg 1155--55:: AAddddiinngg aa nnaammeessppaaccee ttoo tthhee sseerriiaalliizzeedd oouuttppuutt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject
{

[XmlRoot(ElementName = “ReutersStockOrder”,
Namespace = “http://www.reuters.com/namespaces/”)]

public class StockOrder
{

// Code removed for clarity
}

}

Listing 15-5 not only changes the name used in the root element, but it also adds another namespace to
this root element. The results are shown in Figure 15-3.

Figure 15-3

You can also programmatically add namespaces and prefixes to the serialization process through the use
of the XmlSerializerNamespaces class. This is illustrated in Listing 15-6:

LLiissttiinngg 1155--66:: AAddddiinngg nnaammeessppaacceess aanndd pprreeffiixxeess ttoo tthhee sseerriiaalliizzaattiioonn pprroocceessss

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject
{

class Program
{

static void Main(string[] args)
{

try
{

XmlSerializer classSerialization =

440

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 440

new XmlSerializer(typeof(StockOrder));

XmlSerializerNamespaces serName =
new XmlSerializerNamespaces();

serName.Add(“reu”, “http://www.reuters.com/ns/”);
serName.Add(“lip”, “http://www.lipperweb.com/ns/”);

StockOrder so = new StockOrder();
so.Symbol = “MSFT”;
so.Quantity = 100;

classSerialization.Serialize(Console.Out, so, serName);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

The changes made to the console application include the addition of the XmlSerializerNamespaces
class. In the application, an instance of this class is created (serName), and using the Add method allows
you to define a prefix (reu or lip) as well as the namespace — both string values. The other and final
change to the application is the parameter XmlSerializerNamespaces, which is added to the
Serialize method of the XmlSerializer object instance (classSerialization).

After the prefixes and namespaces are in place in the application and ready to use, the next step is to
change the StockOrder.cs file so that these namespaces are utilized by either the entire class or by par-
ticular properties declared in the class. This is illustrated in Listing 15-7.

LLiissttiinngg 1155--77:: UUttiilliizziinngg nnaammeessppaacceess iinn tthhee SSttoocckkOOrrddeerr..ccss ffiillee

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject
{

[XmlRoot(Namespace=”http://www.lipperweb.com/ns/”)]
public class StockOrder
{

private string _symbol;
private int _quantity;
private DateTime _OrderTime = DateTime.Now;

[XmlElement(Namespace=”http://www.reuters.com/ns/”)]
public string Symbol
{

(continued)

441

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 441

LLiissttiinngg 1155--77 (continued)

get { return _symbol; }
set { _symbol = value; }

}

public int Quantity
{

get { return _quantity; }
set { _quantity = value; }

}

public DateTime OrderTime
{

get { return _OrderTime; }
set { _OrderTime = value; }

}
}

}

From Listing 15-7, you can see that by simply using the XmlRoot and XmlElement attributes, the same
programmatically declared namespaces can be used in the serialization process. The nice thing is that
the prefixes will be properly placed in the appropriate elements contained in the XML document as well.
This is illustrated in Figure 15-4.

Figure 15-4

The results show that through the use the XmlRoot attribute, the root element and all the elements but
one (<Symbol>) are provided with the appropriate namespace prefixes. <Symbol> was written as
<reu:Symbol> because the declarations done by the XmlRoot attribute are overridden through the use
of the XmlElement attribute.

Not only can you declaratively alter the serialized output by adding an attribute before the class declara-
tion in the StockOrder.cs file (as shown previously), but you can also perform a similar operation by
adding an XmlElement attribute before any property declarations contained in the same class.

For instance, if you look at the <OrderTime> element in Figure 15-4, note that you are getting back a
very detailed version (universal time) of DateTime.

2005-10-04T11:09:32.1608608-5:00

What if you wanted this to be a different type of date, one that is easily passed to other bits of code?
Using the XmlElement attribute, you can assign data types to use for your properties. This is illustrated
in Listing 15-8.

442

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 442

LLiissttiinngg 1155--88:: AAssssiiggnniinngg aa ssppeecciiffiicc ddaattaa ttyyppee ttoo aann eelleemmeenntt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml.Serialization;

namespace XmlSerializationProject
{

public class StockOrder
{

private string _symbol;
private int _quantity;
private DateTime _OrderTime = DateTime.Now;

public string Symbol
{

get { return _symbol; }
set { _symbol = value; }

}

public int Quantity
{

get { return _quantity; }
set { _quantity = value; }

}

[XmlElement(DataType = “date”)]
public DateTime OrderTime
{

get { return _OrderTime; }
set { _OrderTime = value; }

}
}

}

Just as you used the XmlRoot attribute before the class declaration, you can easily add XmlElement
attributes to any of your properties to further refine how the XML will be serialized. In this case, the
DataType value is given a value of date, which is an XML-Schema-defined data type. The new output
of serialized XML is shown in Figure 15-5.

Figure 15-5

In addition to the DataType property for the XmlElementAttribute class, you can also use the
attributes detailed in the following table.

443

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 443

Public Property Description

DataType Allows you to get or set the XML Schema defined data type of the XML
element (for example, date).

ElementName Allows you to get or set the name of the element that will be generated.

Form Allows you to get or set a value that specifies whether the element is
qualified.

IsNullable Allows you to determine whether the XmlSerializer object should serial-
ize elements where a null value is held. This property takes a Boolean
value.

Namespace Allows you to get or set a namespace for a particular XML element.

Order Allows you to get or set the order in which elements are serialized or
deserialized.

Type Allows you to get or set the object type that is used to represent the XML
element.

TypeId Provides a unique identifier.

Deserializing XML
After an extensive look at the serialization process, next take a look at how you can reverse this process
and deserialize an XML document back into a usable object in your code. For this, you use the same
XmlSerializer object, but instead of using the Serialize method, you make use of the object’s
Deserialize method.

For an example of using the Deserialize method, you first establish a serialized object in a flat file.
Listing 15-9 shows the MyXML.xml file that you need for this example.

LLiissttiinngg 1155--99:: TThhee MMyyXXMMLL..xxmmll ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<MultiStockOrder>
<StockOrderMultiple>
<StockOrder>
<Symbol>MSFT</Symbol>
<Quantity>100</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>
<StockOrder>
<Symbol>INTC</Symbol>
<Quantity>110</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>

444

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 444

<StockOrder>
<Symbol>RTRSY</Symbol>
<Quantity>200</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>
</StockOrderMultiple>

</MultiStockOrder>

Instead of an XML file with just a single stock order in an XML file, this XML file has an array of orders
(3), which will all be deserialized and placed into an array of your customized type, StockOrder. Next,
you create a new class that contains an array of StockOrder objects in your console application. This
class, MultiStockOrder.cs, is displayed in Listing 15-10.

LLiissttiinngg 1155--1100:: AA ccllaassss rreepprreesseennttiinngg aann aarrrraayy ooff SSttoocckkOOrrddeerr oobbjjeeccttss

using System;
using System.Collections.Generic;
using System.Text;

namespace XmlSerializationProject
{

public class MultiStockOrder
{

public StockOrder[] StockOrderMultiple;
}

}

This class and the previous StockOrder.cs class define the syntax that your XML document from
Listing 15-9 takes. Figure 15-6 illustrates just this.

Figure 15-6

Next, deserializing this into a usable object is rather simple in .NET. Listing 15-11 shows how the
MultiStockOrder object is deserialized from a file on disk, MyXML.xml and how the file’s contents
are used.

445

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 445

LLiissttiinngg 1155--1111:: TThhee ddeesseerriiaalliizzaattiioonn ooff XXMMLL ttoo tthhee MMuullttiiSSttoocckkOOrrddeerr oobbjjeecctt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.Serialization;
using System.IO;

namespace XmlSerializationProject
{

class Program
{

static void Main(string[] args)
{

try
{

FileStream dehydrated = new
FileStream(“C:/MyXML.xml”, FileMode.Open);

XmlSerializer serialize = new
XmlSerializer(typeof(MultiStockOrder));

MultiStockOrder myOrder = new MultiStockOrder();
myOrder = (MultiStockOrder) serialize.Deserialize(dehydrated);

foreach(StockOrder singleOrder in myOrder.StockOrderMultiple)
{

Console.WriteLine(“{0}, {1}, {2}”,
singleOrder.Symbol,
singleOrder.Quantity,
singleOrder.OrderTime.ToShortDateString());

}

dehydrated.Close();
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

The Deserialize method takes a few constructions. Some of them include the following:

Deserialize(Stream)
Deserialize(TextReader)
Deserialize(XmlReader)

446

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 446

From this list, you can see that the Deserialize method takes a couple of possible inputs. The first, is a
stream, and from the code Listing 15-11, you can determine this is what is being used (a FileStream
object). Other possibilities include a TextReader object, or even an XmlReader object, which you look at
shortly.

In Listing 15-11, first the FileStream object is used to pull the data from the MyXML.xml file. Then, as
before, the XmlSerializer object is instantiated, but this time it is cast as a new object type —
MultiStockOrder. From there, an instance of the MultiStockOrder is created and populated through
the deserialization of the XmlSerializer.

myOrder = (MultiStockOrder) serialize.Deserialize(dehydrated);

At this point, the MultiStockOrder instance (myOrder) contains everything that was stored in the
MyXML.xml file. Now the job is to iterate through each of the single orders contained in the class
instance. This is done by using a foreach statement where each of the values for each order is output to
the console. In the end, the console application produces the results illustrated in Figure 15-7.

Figure 15-7

From this example, you can see that it is quite easy to serialize objects to XML and then deserialize that
XML back into a usable object.

XmlWriter
Don’t think of an XML document as just a string of characters and angle brackets that form a larger doc-
ument; instead, it is an InfoSet or a representation of data as an object. When writing XML to a stream or
a file, you might think it’s easiest to simply use string concatenation to build a large string that you then
write to a stream or file. I strongly warn against taking this approach. A far better approach is to use the
.NET Framework, which provides you with an XML writer through the XmlWriter class.

XmlWriter is an abstract class that allows you to specify an uncached, forward-only stream that writes
an XML document. The style in which the XML document is created is controlled by the
XmlWriterSettings class. The XmlWriterSettings class, which is new to .NET 2.0, enables you to
configure the behavior of the XmlWriter object even before you instantiate it.

Writing XML Using XmlTextWriter
Before venturing into the XmlWriterSettings class, take a look at a simple example of using the
XmlTextWriter to construct an XML document to be written to disk. XmlTextWriter is a class that
implements XmlWriter and enables you to output XML to files or an open stream. An example of this is
illustrated in Listing 15-12.

447

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 447

LLiissttiinngg 1155--1122:: UUssiinngg tthhee XXmmllTTeexxttWWrriitteerr ccllaassss ttoo ccoonnssttrruucctt XXMMLL ttoo bbee wwrriitttteenn ttoo ddiisskk

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.Serialization;
using System.IO;

namespace XmlSerializationProject
{

class Program
{

static void Main(string[] args)

{
try
{

XmlSerializer classSerialization =
new XmlSerializer(typeof(StockOrder));

StockOrder so = new StockOrder();
so.Symbol = “MSFT”;
so.Quantity = 100;

XmlTextWriter tw = new
XmlTextWriter(“C:/MyXml.xml”, Encoding.UTF8);

classSerialization.Serialize(tw, so);
tw.Close();

Console.Write(“Written to disk”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

The code in Listing 15-12 continues some of the previous examples illustrated using the StockOrder
class. This example again uses the XmlSerializer class to serialize an object to XML using the
Serialize method. However, this time instead of outputting the results to a console application, an
instance of the XmlTextWriter class is used as the output destination.

The XmlTextWriter class is being instantiated as follows:

XmlTextWriter tw = new XmlTextWriter(“C:/MyXml.xml”, Encoding.UTF8);

448

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 448

In this case, the first parameter points to the file to be created and the second parameter specifies the
encoding to use for the XML document. Other possible encodings include:

❑ ASCII

❑ BigEndianUnicode

❑ Default

❑ Unicode

❑ UTF32

❑ UTF7

❑ UTF8

In this example, UTF8 is used as the encoding, and the results are specified to be written to the file
MyXml.xml located in the root directory. After the XmlTextWriter object is in place, the next step is to
use the XmlSerializer object, which takes an instance of XmlWriter in one of its constructions.

classSerialization.Serialize(tw, so);

In this case, being passed to the Serialize method includes the instance of the XmlTextWriter object
(tw) and an instance of the StockOrder object (so). After running the application, you get a message
that the XML has been written to disk. Looking into the root directory, you find the MyXml.xml file with
the results illustrated in Figure 15-8.

Figure 15-8

You can notice a few things from the output displayed in Figure 15-8. First, the encoding has indeed
been specified as you want it — to UTF8. You can find this in the XML document’s <?xml> declaration.
The other item to pay attention to (because it isn’t as apparent from looking at the figure) is that I have
the MyXml.xml document open in Notepad with word-wrapping turned off. The XML document is writ-
ten out in a single, long string. Although this is fine for computers and programs, it isn’t always that
helpful to any humans who might have to open and alter the XML contents from time to time.

449

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 449

Writing XML Using XmlWriter
Next, instead of using the XmlTextWriter object to write your serialized XML to disk, take a look
at performing the same operation with the XmlWriter object. This enables you to use the
XmlWriterSettings object later to play around with the XML output. The following table details the
properties of the XmlWriterSettings class.

Property Initial Value Description

CheckCharacters True This property, if set to True, performs a character
check on the contents of the XmlWriter object.
Legal characters can be found at www.w3.org/
TR/REC-xml#charsets.

CloseOutput False Allows you to close the XmlWriter instance and if
set to true, allows to also close the underlying
stream.

ConformanceLevel Conformance Allows the XML to be checked to make sure that it
Level. follows certain specified rules. Possible
Document conformance-level settings include Document,

Fragment and Auto.

Encoding Encoding. Defines the encoding of the XML generated.
UTF8

Indent False Defines whether the XML generated should be
indented. Setting this value to true properly
indents child nodes from parent nodes.

IndentChars Two spaces Specifies the number of spaces by which child
nodes are indented from parent nodes. This setting
only works when the Indent property is set to
true.

NewLineChars \r\n Assigns the characters that are used to define line
breaks.

NewLineHandling NewLine Deals with the normalization of line breaks in the
Handling. output. Possible settings include Replace,
Replace Entitize, and None.

NewLineOnAttributes False Defines whether a node’s attributes should be writ-
ten to a new line in the construction. This occurs
only if the property is set to true.

OmitXmlDeclaration False Defines whether an XML declaration should be
generated in the output. This omission only occurs
if this property is set to true.

OutputMethod Xml Defines the output to use. Possible settings include
Xml, Html, Text, and AutoDetect.

450

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 450

Using the XmlWriterSettings object, you can alter how the XML is written to disk. Instead of just a
straight line of XML, use this new object to change this and some other settings. This is illustrated in
Listing 15-13.

LLiissttiinngg 1155--1133:: UUssiinngg tthhee XXmmllWWrriitteerrSSeettttiinnggss oobbjjeecctt ttoo aalltteerr tthhee XXMMLL oouuttppuutt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.Serialization;
using System.IO;

namespace XmlSerializationProject
{

class Program
{

static void Main(string[] args)

{
try
{

XmlSerializer classSerialization =
new XmlSerializer(typeof(StockOrder));

StockOrder so = new StockOrder();
so.Symbol = “MSFT”;
so.Quantity = 100;

XmlWriterSettings settings = new XmlWriterSettings();
settings.CheckCharacters = true;
settings.Encoding = Encoding.Unicode;
settings.Indent = true;

XmlWriter xw = XmlWriter.Create(“C:/MyXml.xml”, settings);

classSerialization.Serialize(xw, so);
xw.Close();

Console.Write(“Written to disk”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

In this bit of code, before the XmlSettings object is created, an instance of the XmlWriterSettings is
created and certain properties are assigned values to change elements like the encoding and to break up

451

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 451

the lines and indent the XML generated. After the XmlWriterSettings object is established, you assign
this instance of the XmlWriterSettings object to the XmlWriter object. This is done through the
XmlWriter object’s Create method.

Looking at the new MyXml.xml file in the root directory, you see the following results after running this
console application. (See Figure 15-9.)

Figure 15-9

In this instance of opening the XML document in Notepad, I still have the Word Wrap feature turned off,
but (as you can) see the XML contains the proper line breaks and indents. This makes the XML more
readable and manageable. Also, because the encoding was set in through the XmlWriterSettings
object to Encoding.Unicode, the encoding specified in the XML document is now set to utf-16.

Writing XML Programmatically Using XmlWriter
You can also use the XmlWriter object to create XML programmatically. This is illustrated in Listing
15-14.

LLiissttiinngg 1155--1144:: BBuuiillddiinngg XXMMLL pprrooggrraammmmaattiiccaallllyy wwiitthh tthhee XXmmllWWrriitteerr oobbjjeecctt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.IO;

namespace XmlProject
{

class Program
{

static void Main(string[] args)

{
try
{

XmlWriterSettings settings = new XmlWriterSettings();
settings.CheckCharacters = true;

452

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 452

settings.Encoding = Encoding.Unicode;
settings.Indent = true;

XmlWriter xw = XmlWriter.Create(“C:/MyXml.xml”, settings);
xw.WriteStartDocument();
xw.WriteStartElement(“StockOrder”);
xw.WriteStartElement(“Symbol”);
xw.WriteValue(“MSFT”);
xw.WriteEndElement(); // Symbol
xw.WriteStartElement(“Quantity”);
xw.WriteValue(100);
xw.WriteEndElement(); // Quantity
xw.WriteStartElement(“OrderTime”);
xw.WriteValue(DateTime.Now.ToUniversalTime());
xw.WriteEndElement(); // OrderTime
xw.WriteEndElement(); // StockOrder
xw.WriteEndDocument();

xw.Close();

Console.Write(“Written to disk”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

First, establish any settings via the XmlWriterSettings class. In this case, you use the same settings
form as before — setting the encoding and providing line breaks and indentation as appropriate. From
there, the XmlWriter is established through the Create method passing in the string of the file to write
to and the instance of the XmlWriterSettings class.

From there, the XML Infoset is created using some of the many methods that are available to the
XmlWriter class. The idea here is to open an element, add any required attributes, add any values, and
then close the element. You need to perform this write in a procedural manner. Before any elements can
be added, however, you must open the document itself. This is done through the WriteStartDocument
method.

xw.WriteStartDocument();

After the document has been started, or opened, the next step is to create the first element in the docu-
ment. Of course, the first element created is the root element —StockOrder. This is done by using the
WriteStartElement method.

xw.WriteStartElement(“StockOrder”);

453

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 453

Whenever you start (or open) an element, you must also end (or close) the element. As you can see from
the previous example, however, the StockOrder element is not closed until the end of the document.
You have to shut the elements in the appropriate order to achieve a properly structured XML document.
The root element’s closing node doesn’t appear till the very end of the document, and this is where you
use the WriteEndElement method for the StockOrder element.

xw.WriteEndElement();

After you start an element using the WriteStartElement method, your next step is to either start creat-
ing some attributes for that particular element, give the element a value, or close the element (if the ele-
ment will be empty). An example of writing a value to an element is shown here:

xw.WriteValue(DateTime.Now.ToUniversalTime());

After you have completed creating the document and closed all the elements contained in the document,
the last step is to end the document using the WriteEndDocument method.

xw.WriteEndDocument();

Finally, you can’t write the document to disk (as is specified in the Create method of the XmlWriter
instance) until you instantiate the Close method of the instance.

xw.Close();

Running this console application produces an XML file, MyXml.xml (as specified programmatically in
this example).

XmlReader
The XmlReader class is an abstract class that allows you to specify an uncached, forward-only access
to XML data. Similar to the way the XmlWriter class utilizes the XmlWriterSettings class, the style
in which the XML document is read is controlled by the XmlReaderSettings class. The
XmlReaderSettings class, which is new to .NET 2.0, allows you to configure the behavior of the
XmlReader object before you even instantiate it.

For an example of this, try reading some XML from a file on disk. Use one of the previously presented
XML files, as shown in Listing 15-15.

LLiissttiinngg 1155--1155:: TThhee MMyyXXmmll..xxmmll ffiillee tthhaatt tthhee XXmmllRReeaaddeerr wwiillll uuttiilliizzee

<?xml version=”1.0” encoding=”utf-8”?>
<MultiStockOrder>
<StockOrderMultiple>
<StockOrder>
<Symbol>MSFT</Symbol>
<Quantity>100</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>
<StockOrder>

454

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 454

<Symbol>INTC</Symbol>
<Quantity>110</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>
<StockOrder>
<Symbol>RTRSY</Symbol>
<Quantity>200</Quantity>
<OrderTime>2005-10-04</OrderTime>

</StockOrder>
</StockOrderMultiple>

</MultiStockOrder>

With the XML file in place, the next step is to build a console application that can read through this XML
document and work with some of the elements and their values. This is illustrated in Listing 15-16.

LLiissttiinngg 1155--1166:: UUssiinngg tthhee XXmmllRReeaaddeerr oobbjjeecctt ttoo rreeaadd tthhee MMyyXXmmll..xxmmll ffiillee

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.IO;

namespace XmlProject
{

class Program
{

static void Main(string[] args)

{
try
{

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;
settings.CheckCharacters = true;

FileStream myStockOrders = new
FileStream(“C:/MyXml.xml”, FileMode.Open);

XmlReader xr = XmlReader.Create(myStockOrders, settings);

while (xr.Read())
{

if (xr.NodeType == XmlNodeType.Element &&
“Symbol” == xr.LocalName)

{
Console.WriteLine(xr.Name + “ “ +

xr.ReadElementContentAsString());
}

(continued)

455

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 455

LLiissttiinngg 1155--1166 (continued)

}

xr.Close();

Console.WriteLine(“Done”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

As you review this bit of code, note that the first step is to instantiate the XmlReaderSettings class and
assign it some values. In this case, the IgnoreWhitespace, IgnoreComment, and the CheckCharacters
properties are set. After the XmlReaderSettings instance is ready to go, the next step is to retrieve the
XML file through the use of the FileStream object and assign both the XML document and the settings
applied through the XmlReaderSettings object to the XmlReader object (xr).

The Read() method of the XmlReader reads true if there is anything to be read in the document,
including whitespace, comments, and similar items. This is why these items are set to be ignored
through the XmlReaderSettings instance in the program. Because of this, a check is done on the ele-
ment being read to determine if it is an XML element using the NodeType property, and then a second
check is done to see if the element has the name Symbol by comparing it to the LocalName property.

if (xr.NodeType == XmlNodeType.Element && “Symbol” == xr.LocalName)
{

// Code removed for clarity
}

After the element is found, its name (it will be Symbol if it passed the check) and the value of the ele-
ment are then written to the console.

Console.WriteLine(xr.Name + “ “ + xr.ReadElementContentAsString());

In this case, the name of the element is retrieved through the Name property, and the value of the
element is retrieved through the ReadElementContentAsString method. In addition to the
ReadElementContentAsString method, you can use many other data types as well (this is also
explained in more detail shortly).

Once run, the console application produces the results illustrated in Figure 15-10.

456

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 456

Figure 15-10

Reading XML with a Schema Validation
One problem with the XML reading example from the previous section is that the code can process any
XML document, and if that document contains a <Symbol> element somewhere in its contents, then the
node’s name and value are used by the console application. This is a problem because you are really
interested in processing only XML documents for stock orders that follow the MyXml.xml document pat-
tern. This is why working with XML schemas is such a powerful tool.

The nice thing with the XmlReader object is that you can provide an XSD schema to be applied to an
inputted document through the XmlReaderSettings class. Listing 15-17 shows an example of this vali-
dation check on the retrieved XML document.

LLiissttiinngg 1155--1177:: PPeerrffoorrmmiinngg sscchheemmaa vvaalliiddaattiioonnss wwiitthh tthhee XXmmllRReeaaddeerr iinnssttaannccee

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.Schema;
using System.IO;

namespace XmlProject
{

class Program
{

static void Main(string[] args)
{

try
{

XmlSchemaSet mySchema = new XmlSchemaSet();
mySchema.Add(null, “C:/MyXml.xsd”);

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.IgnoreComments = true;
settings.CheckCharacters = true;
settings.Schemas.Add(mySchema);
settings.ValidationType = ValidationType.Schema;
settings.ValidationFlags =

XmlSchemaValidationFlags.ReportValidationWarnings;
settings.ValidationEventHandler += new

ValidationEventHandler(settings_ValidationEventHandler);

FileStream myStockOrders = new

(continued)

457

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 457

LLiissttiinngg 1155--1177 (continued)

FileStream(“C:/MyXml.xml”, FileMode.Open);

XmlReader xr = XmlReader.Create(myStockOrders, settings);

while (xr.Read())
{

if (xr.NodeType == XmlNodeType.Element &&
“Symbol” == xr.LocalName)

{
Console.WriteLine(xr.Name + “ “ +

xr.ReadElementContentAsString());
}

}

xr.Close();

Console.WriteLine(“Done”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

static void settings_ValidationEventHandler(object sender,
ValidationEventArgs e)

{
throw new Exception(“Your XML is invalid.”);

}
}

}

As you look over the code, note that the first step is to import in the System.Xml.Schema namespace
because you want to use the XmlSchemaSet class in your code. The XmlSchemaSet, which is a new class
as of the .NET Framework 2.0, is an object to represent the XSD document that you want to validate the
XML data to. The creation of the XmlSchemaSet instance is done using the Add method.

XmlSchemaSet mySchema = new XmlSchemaSet();
mySchema.Add(null, “C:/MyXml.xsd”);

Now that the schema you want to use is ready and in place, the next step is to add this instance to the
XmlReaderSettings object that is created.

settings.Schemas.Add(mySchema);
settings.ValidationType = ValidationType.Schema;
settings.ValidationFlags = XmlSchemaValidationFlags.ReportValidationWarnings;
settings.ValidationEventHandler += new

ValidationEventHandler(settings_ValidationEventHandler);

458

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 458

First off, the schema stored in the XmlSchemaSet is associated with the XmlReaderSettings instance
by using the Schemas.Add method and passing in the XmlSchemaSet instance, mySchema. Next, you
declare through the ValidationType property that you are specifying a schema. Other options include:
Auto, DTD, None, and XDR. From there, you then specify through the ValidationFlags property that
you are interested in reporting validation warnings, and then you simply make an association to a vali-
dation event handler to handle any validation errors that might occur. It is important to note that the
Auto and XDR options of the ValidationType property are obsolete in the .NET Framework 2.0.

When you are running the console application against an XML document that doesn’t follow the rules
defined in the MyXml.xsd schema, you see something similar to what is illustrated in Figure 15-11.

Figure 15-11

Casting XML Types to .NET-Compliant Types
.NET CLR-compliant types are not 100% inline with XML types. For this reason, the .NET Framework
2.0 has introduced some new methods in the XmlReader that simplify the process of casting from one of
these XML types to .NET types.

You saw an earlier example of this being done with one of the new classes. Using the
ReadElementContentAs method, you can easily perform the required casting.

string userName =
(string) myXmlReader.ReadElementContentAs(typeof(System.String), null);

DateTime myDate =
(DateTime) myXmlReader.ReadElementContentAs(typeof(System.DateTime), null);

A whole series of direct casts through new classes are available:

❑ ReadElementContentAsBase64

❑ ReadElementContentAsBinHex

❑ ReadElementContentAsBoolean

❑ ReadElementContentAsDateTime

459

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 459

❑ ReadElementContentAsDecimal

❑ ReadElementContentAsDouble

❑ ReadElementContentAsFloat

❑ ReadElementContentAsInt

❑ ReadElementContentAsLong

❑ ReadElementContentAsObject

❑ ReadElementContentAsString

This makes it easy to perform operations like those shown in Listing 15-17:

Console.WriteLine(xr.Name + “ “ + xr.ReadElementContentAsString());

Reading XML Using XPathDocument
XmlReader is great, don’t get me wrong; but it is a forward-only, non-cached way of reading XML data.
Sometimes, instead of reading XML in this way, you want to hold the XML Infoset in memory while you
jump from one point in the document to another to query the information you are interested in using.

XPath (discussed heavily in Chapter 10) is a great way to query XML for what you want. For this reason,
the class, XPathDocument, in the .NET Framework. XPathDocument stores the XML data in memory
and allows you to jump to any point of the document using XPath queries.

Note that if you are interested in altering or writing to the XML document in any manner, then you want
to use the .NET Framework class, XmlDocument to accomplish this task. XmlDocument allows for read-
ing and writing of an XML document, while XPathDocument allows only reading. With that said , if you
are interested in just reading from the XML document, then you want to use XPathDocument because it
is easier to use and performs better than XmlDocument does.

For an example of reading an XML document using the XPathDocument object, again turn to the stock
order XML file, MyXml.xml, and use XPath to query a list of stock symbols from the document. This is
illustrated in Listing 15-18.

LLiissttiinngg 1155--1188:: QQuueerryyiinngg XXMMLL uussiinngg XXPPaatthh aanndd tthhee XXPPaatthhDDooccuummeenntt oobbjjeecctt

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.Xml.XPath;
using System.IO;

namespace XmlProject
{

class Program
{

460

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 460

static void Main(string[] args)
{

try
{

FileStream myStockOrders = new
FileStream(“C:/MyXml.xml”, FileMode.Open);

XPathDocument myDocument = new XPathDocument(myStockOrders);
XPathNavigator docNavigation = myDocument.CreateNavigator();

foreach(XPathNavigator node in
docNavigation.Select
(“//MultiStockOrder/StockOrderMultiple/StockOrder/Symbol”))

{
Console.WriteLine(node.Value.ToString());

}

Console.WriteLine(“Done”);
Console.ReadLine();

}
catch (System.Exception ex)
{

Console.Error.WriteLine(ex.ToString());
Console.ReadLine();

}
}

}
}

To use the XPathDocument class, you should first import the System.Xml.XPath namespace into the
application. From the example in Listing 15-18, you can see that the instantiation of the XPathDocument
object is passed the FileStream object which holds the MyXml.xml file contents.

Then, using a foreach command, you are able to iterate through everything retrieved from the XPath
query —//MultiStockOrder/StockOrderMultiple/StockOrder/Symbol. For each item found with
this XPath query, the value of the element is printed to the screen of the console application giving you
the results shown in Figure 15-12.

Figure 15-12

XML in ASP.NET 2.0
Most Microsoft-focused Web developers have usually relied on either Microsoft SQL Server or Microsoft
Access for their data storage needs. Today, however, a considerable amount of data is stored in XML for-
mat, so considerable inroads have been made toward improving Microsoft’s core Web technology to
work easily with this format.

461

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 461

The XmlDataSource Server Control
ASP.NET 2.0 introduced a series of data source controls to bridge the gap between your data stores (such
as XML) and the data-bound controls at your disposal. These new data controls not only enable you to
retrieve data from various data stores, but they also let you easily manipulate the data (using paging,
sorting, editing, and filtering) before the data is bound to an ASP.NET server control.

With XML being as important as it is, a specific data source control has been added to ASP.NET 2.0 just
for retrieving and working with XML data. The XmlDataSource control enables you to connect to your
XML data and to use this data with any of the ASP.NET data-bound controls. Just like the SqlDataSource
and the ObjectDataSource controls (which are some of the other data source controls), the
XmlDataSource control also enables you not only to retrieve data, but also to insert, delete, and update
data items. With the world turning more and more to XML data formats, such as Web services, RSS
feeds, and more, this control is a valuable resource for your Web applications.

To show the XmlDataSource control in action, first create a simple XML file and include this file in your
application. Listing 15-19 shows a simple XML file of Russian painters that you can use.

LLiissttiinngg 1155--1199:: PPaaiinntteerrss..xxmmll

<?xml version=”1.0” encoding=”utf-8” ?>
<Artists>

<Painter name=”Vasily Kandinsky”>
<Painting>

<Title>Composition No. 218</Title>
<Year>1919</Year>

</Painting>
</Painter>
<Painter name=”Pavel Filonov”>

<Painting>
<Title>Formula of Spring</Title>
<Year>1929</Year>

</Painting>
</Painter>
<Painter name=”Pyotr Konchalovsky”>

<Painting>
<Title>Sorrento Garden</Title>
<Year>1924</Year>

</Painting>
</Painter>

</Artists>

Now that the Painters.xml file is in place, the next step is to use an ASP.NET DataList control and to
connect this DataList control to an <asp:XmlDataSource> control. This is illustrated in Listing 15-20.

LLiissttiinngg 1155--2200:: UUssiinngg aa DDaattaaLLiisstt ccoonnttrrooll ttoo ddiissppllaayy XXMMLL ccoonntteenntt

<%@ Page Language=”C#”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>XmlDataSource</title>

462

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 462

</head>
<body>

<form id=”form1” runat=”server”>
<asp:DataList ID=”DataList1” Runat=”server” DataSourceID=”XmlDataSource1”>

<ItemTemplate>
<p><%# XPath(“@name”) %>

<i><%# XPath(“Painting/Title”) %></i>

<%# XPath(“Painting/Year”) %></p>

</ItemTemplate>
</asp:DataList>

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”~/Painters.xml” XPath=”Artists/Painter”>
</asp:XmlDataSource>

</form>
</body>
</html>

This is a simple example, but it shows you the power and ease of using the XmlDataSource control. You
should pay attention to only two attributes in this example. The first is the DataFile attribute. This
attribute points to the location of the XML file. Because the file resides in the root directory of the appli-
cation, it is simply ~/Painters.xml. The next attribute included in the XmlDataSource control is the
XPath attribute. The XmlDataSource control uses XPath for the filtering of XML data. In this case, the
XmlDataSource control is taking everything within the <Painter> set of elements. The value
Artists/Painter means that the XmlDataSource control navigates to the <Artists> element and then
to the <Painter> element within the specified XML file.

The DataList control next must specify the DataSourceID as the XmlDataSource control. In the
<ItemTemplate> section of the DataList control, you can retrieve specific values from the XML file by
using XPath commands. The XPath commands filter the data from the XML file. The first value retrieved
is an element attribute (name) that is contained in the <Painter> element. If you are retrieving an
attribute of an element, you preface the name of the attribute with an @ symbol. In this case then, you
simply specify @name to get at the painter’s name. The next two XPath commands go deeper into the
XML file and get the specific painting and the year of the painting. Remember to separate nodes with a /.
When run in the browser, this code produces the results illustrated in Figure 15-13.

Figure 15-13

463

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 463

Besides working from static XML files like the Painters.xml file shown earlier, the XmlDataSource file
has the capability to work from dynamic, URL-accessible XML files. One popular XML format that is
pervasive on the Internet today is the blog or weblog. Blogs, or personal diaries, can be viewed in the
browser, through an RSS-aggregator, or just as pure XML.

As you look at my blog in Figure 15-14, you can see the XML it produces directly in the browser. (You
can find a lot of blogs to play with for this example at weblogs.asp.net.)

Figure 15-14

Now that you know the location of the XML from the blog, you can use this XML with the
XmlDataSource control and display some of the results in a DataList control. The code for this example
is shown in Listing 15-21.

464

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 464

LLiissttiinngg 1155--2211:: WWoorrkkiinngg wwiitthh aann RRSSSS ffeeeedd

<%@ Page Language=”C#”%>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>XmlDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:DataList ID=”DataList1” Runat=”server” DataSourceID=”XmlDataSource1”>

<HeaderTemplate>
<table border=”1” cellpadding=”3”>

</HeaderTemplate>
<ItemTemplate>

<tr><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

</ItemTemplate>
<AlternatingItemTemplate>

<tr bgcolor=”LightGrey”><td><%# XPath(“title”) %>

<i><%# XPath(“pubDate”) %></i>

<%# XPath(“description”) %></td></tr>

</AlternatingItemTemplate>
<FooterTemplate>

</table>
</FooterTemplate>

</asp:DataList>

<asp:XmlDataSource ID=”XmlDataSource1” Runat=”server”
DataFile=”http://geekswithblogs.net/evjen/Rss.aspx”
XPath=”rss/channel/item”>
</asp:XmlDataSource>

</form>
</body>
</html>

Looking at the code in Listing 15-21, you can see that the DataFile points to a URL where the XML is
retrieved. The XPath property filters out all the <item> elements from the RSS feed. The DataList con-
trol creates an HTML table and pulls out specific data elements from the RSS feed, such as the <title>,
<pubDate>, and <description> elements.

Running this page in the browser, you get something similar to the results shown in Figure 15-15.

465

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 465

Figure 15-15

This approach also works with XML Web services, even ones for which you can pass in parameters
using HTTP-GET. You just set up the DataFile value in the following manner:

DataFile=”http://www.someserver.com/GetWeather.asmx/ZipWeather?zipcode=63301”

The XmlDataSource Control’s Namespace Problem
One big issue with the XmlDataSource control is that when you are using the XPath capabilities of the
control, it is unable to understand namespace qualified XML. The XmlDataSource control chokes on any
XML data that contain namespaces and, for this reason, it is important to yank out any prefixes and
namespaces that are contained in the XML.

To make this a bit easier, the XmlDataSource control includes the attribute TransformFile. This
attribute applies your XSLT transform file to the XML pulled from the XmlDataSource control. That
means you can use an XSLT transform file to transform your XML so that the prefixes and namespaces
are completely removed from the overall XML document. An example of this XSLT document is illus-
trated in Listing 15-22.

466

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 466

LLiissttiinngg 1155--2222:: BBuuiillddiinngg aann XXSSLLTT ddooccuummeenntt wwhhiicchh rreemmoovveess aallll pprreeffiixxeess aanndd nnaammeessppaacceess

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”*”>

<!-- Remove any prefixes -->
<xsl:element name=”{local-name()}”>

<!-- Work through attributes -->
<xsl:for-each select=”@*”>

<!-- Remove any attribute prefixes -->
<xsl:attribute name=”{local-name()}”>

<xsl:value-of select=”.”/>
</xsl:attribute>

</xsl:for-each>
<xsl:apply-templates/>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Now with this XSLT document in place within your application, you can use the XmlDataSource control
to pull XML data and to strip that data of any prefixes and namespaces.

<asp:XmlDataSource ID=”XmlDataSource1” runat=”server”
DataFile=”NamespaceFilled.xml” TransformFile=”~/RemoveNamespace.xsl”
XPath=”ItemLookupResponse/Items/Item”></asp:XmlDataSource>

The Xml Server Control
Since the very beginning of ASP.NET, there has always been a server control called the Xml server con-
trol. This control performs the simple operation of XSLT transformation upon an XML document. This
control is rather easy to use. All you do is point to the XML file you wish to transform using the
DocumentSource attribute and indicate the XSLT transform file using the TransformSource attribute.

To see this in action, use the Painters.xml file that was shown in Listing 15-19. The next step is to cre-
ate your XSLT transform file. The process is shown in Listing 15-23.

LLiissttiinngg 1155--2233:: TThhee XXSSLLTT ttrraannssffoorrmmaattiioonn ffiillee

<?xml version=”1.0” encoding=”utf-8”?>

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>
<body>
<h3>List of Painters & Paintings</h3>
<table border=”1”>

(continued)

467

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 467

LLiissttiinngg 1155--2233 (continued)

<tr bgcolor=”LightGrey”>
<th>Name</th>
<th>Painting</th>
<th>Year</th>

</tr>
<xsl:apply-templates select=”//Painter”/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match=”Painter”>
<tr>
<td>
<xsl:value-of select=”@name”/>

</td>
<td>
<xsl:value-of select=”Painting/Title”/>

</td>
<td>
<xsl:value-of select=”Painting/Year”/>

</td>
</tr>

</xsl:template>

</xsl:stylesheet>

With the XML document and the XSLT document in place, the final step is to combine the two using the
Xml server control provided by ASP.NET. This is illustrated in Listing 15-24.

LLiissttiinngg 1155--2244:: CCoommbbiinniinngg tthhee XXMMLL aanndd XXSSLLTT ddooccuummeennttss uussiinngg tthhee XXmmll sseerrvveerr ccoonnttrrooll

<%@ Page Language=”C#” %>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>XmlDataSource</title>
</head>
<body>

<form id=”form1” runat=”server”>
<asp:Xml ID=”Xml1” runat=”server” DocumentSource=”~/Painters.xml”
TransformSource=”~/PaintersTransform.xsl”></asp:Xml>

</form>
</body>
</html>

The end result is shown in Figure 15-16.

468

Part V: Programming XML

23_777779 ch15.qxp 3/1/07 11:49 PM Page 468

Figure 15-16

Summary
From this chapter, I hope you learned how committed Microsoft is to putting XML capabilities into its
overall framework. XML use in the world will only continue to grow, and for this reason, Microsoft is
working to make it easier and easier with each release to use XML data from end-to-end in your applica-
tions, workflow-processes, and more.

This chapter takes a good look at some of the more important XML capabilities provided in the .NET
Framework 2.0, but this is just a scratch on the surface. This topic is really deserving of an entire book of
its own.

469

Chapter 15: XML and .NET

23_777779 ch15.qxp 3/1/07 11:49 PM Page 469

23_777779 ch15.qxp 3/1/07 11:49 PM Page 470

XXMMLL aanndd JJaavv aa

In this chapter, you examine how XML and Java work together. In some ways XML and Java are
excellent bedfellows; they’re both children of the 1990s and fit in well with modern concepts of
Internet and Web-based application architectures, and they both have a solid foundation in
Unicode. When it comes to the details, however, there’s sometimes a mismatch: For example, the
mapping from XML Schema data types to classes in the Java class library is less than perfect.

Java and XML can interact in many different ways. This chapter takes a bottom-up approach, start-
ing with the lowest-level interfaces and working steadily upward. The most important interfaces
are covered in detail elsewhere in this book, so this chapter gives more of an overview: a compara-
tive study of the different interfaces, explaining their capabilities and their strengths and weak-
nesses. Its goal is to enable you to choose the right interface for the job at hand without necessarily
providing a detailed reference for each class and method.

At the lowest level, Java applications can read and write lexical XML, that is, XML represented in
character form with angle-bracket markup. Reading lexical XML is called parsing; writing lexical
XML is called serialization (although that term is overloaded, unfortunately). The first section of
the chapter discusses how a Java application can interact with a parser and a serializer.

The next level up is the construction of tree-based representations of XML documents in memory.
The best-known tree model is the DOM, which is described in more detail in Chapter 13. However,
DOM has come under some criticism in the Java world, and a number of attempts have been made
to create better models. At least three such programs have a significant user base, namely JDOM,
DOM4J, and XOM. I give a brief overview of these models to help you make an informed choice.

What DOM and these other tree models have in common is that they are generic object models:
They use Java objects to represent elements, attributes, and text nodes. Wouldn’t it be better to
translate these generic objects into objects that reflect the semantics of the information you want to
manipulate, such as customers, orders, and products? This brings us to the next level up, which is
data binding: the capability to define the mapping between the XML representation of data and a
Java object model.

24_777779 ch16.qxp 3/1/07 11:49 PM Page 471

But there’s a higher level still. Rather than writing your business logic in Java, which involves moving
the data between a Java representation and an XML representation, you can write the business logic in
declarative languages such as XPath, XSLT, and XQuery, where the data is manipulated entirely in its
native XML form. Java, however, still has a role in controlling the overall structure of the application and
linking together modules written in these special-purpose languages. So in the final part of the chapter,
you examine how Java relates to these declarative XML-processing languages.

Reading and Writing XML
This first section of the chapter looks at how you can manipulate lexical XML (XML as a character or byte
stream) from a Java application. You look first at the input side (parsing), then at output (serialization).

Because this is a bottom-up approach to the chapter, it risks giving too much prominence to these inter-
faces. Remember that these are low-level interfaces. They represent the foundation on which other
things are built. You may find that you never have to use these interfaces directly because you can take
advantage of the superstructure built on top of them. But it’s worth knowing that they are there and that
they offer things you can’t achieve at a higher level of the stack.

Parsing from Java
Until recently, the only standard low-level interface for parsing from Java was the SAX interface. SAX is
sufficiently important that the whole of Chapter 13 is devoted to it. This section starts with a quick
overview of SAX and then moves on to a new contender in this area, the StAX interface.

SAX: Push Parsing
SAX is a push interface. The parser is in control: It reads the XML input stream, and when it finds some-
thing of interest like a start tag, an end tag, or a processing instruction, it notifies the application by call-
ing an appropriate method. The application registers a ContentHandler with the parser; the
ContentHandler implements methods such as startElement(), endElement(), characters(),
comment(), and processingInstruction(). The parser calls these methods when the relevant events
occur.

That’s a very cursory overview, of course, but you can afford to take a bird’s eye view because all the
detail is covered in Chapter 13.

Writing Java applications to use the SAX interface is traditionally considered to be rather difficult. The
reasons for this include the following:

❑ Programmers like to be in control. It’s difficult to write an application as a set of methods with-
out knowing which method is going to be called next. Of course, that’s exactly what you have to
do when you write a GUI application that responds to events such as button clicks; but know-
ing that doesn’t make it any easier.

❑ Closely related to this, it can be hard to keep track of the context. If an element representing, say,
an invoice has a flexible structure, it can be hard to know what processing to perform as each
event occurs, and where to put the logic, for example, that assigns a value to fields that were
absent from the input.

472

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 472

SAX is, however, extremely efficient. The interface is designed to avoid unnecessary creation of objects,
which is always an expensive operation in Java. If you’re not careful you can throw away all these per-
formance benefits at the application level, but that’s a general characteristic of low-level interfaces.

One of the nice features of SAX is that it lends itself very well to the construction of pipelines. A pipeline
consists of a sequence of processing stages, each of which takes XML as its input and produces XML as
its output. In principle, the XML that passes from one stage to another could be represented any way
you like: It could be as a file of lexical XML or as a DOM tree in memory, for example. It might seem like
an abstract notion to represent an XML document as a sequence of events pushed from one stage of the
pipeline to the next, and it certainly isn’t one that comes naturally to many people. But it’s actually a
very effective way of doing it. Unlike lexical XML, you avoid the overhead of having one stage in the
pipeline serialize the XML, while the next stage parses it again. And unlike when you use a DOM or
other tree representations, you don’t need to tie down memory — this, of course, becomes increasingly
important as the size of your documents increases. (It’s also important if you are processing many con-
current transactions.)

Figure 16-1 shows a typical push pipeline implemented using SAX. At the source of the pipeline is a
SAX parser followed by a schema validation stage, followed by two application-level processing stages
that manipulate the content before passing it to a SAX-based serializer that acts as the final destination.
One of the advantages of such a pipeline is that the different stages don’t all have to use the same tech-
nology: You can write SAX-based pipeline filters in XSLT or XQuery as well as in Java.

Figure 16-1

SAX parsers are widely available. The field has consolidated so that most people nowadays use Xerces,
a product that originated in IBM and was donated to the Apache project. It is probably installed on your
machine as a built-in component of the Sun JDK — that’s if you’re using J2SE 5.0. In JDK 1.3 and 1.4, a
different parser, called Crimson, was bundled in. Of course, one of the reasons for having standard inter-
faces is that it’s possible to swap one implementation with another without applications noticing. Other
SAX parsers you might come across include one from Oracle (part of the Oracle XDK toolkit), and if you
use the GNU Classpath library, its default SAX parser is Ælfred2.

You come back to pipelines in a moment, after looking at the new alternative for low-level parsing,
namely StAX.

XML
output

XML
input

Parser Validator
Application

Stage 1
Application

Stage 2
Serializer

arrows indicate direction of calls from one component to another

PUSH PUSH PUSH PUSH

473

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 473

StAX: Pull Parsing
When Microsoft came out with its XML tools for the .NET platform (see Chapter 15), it decided to
include a parser with a very different API, referred to as a pull API. Instead of having the parser in con-
trol, calling the application when it comes across something of interest, the application is now in control,
executing a series of getNext() calls to ask the parser for more data. It’s not clear to what extent StAX
was actually based on the .NET ideas, but it’s certainly true to say that .NET popularized this alternative
approach to low-level parsing, and the Java community responded to the interest that Microsoft created.

For many programmers, this style of interface comes naturally. It’s easier to call on a service than to be
called by it; it makes it easier to understand the flow of control and the sequence of events, and easier to
see where to put the conditional logic that says, “If the next thing is an X, do this; if it’s a Y, then do
that.”

When it was first proposed, many advocates of pull parsing claimed that it was potentially faster. I think
the case for that is unproven. In the quest for ultimate parsing speed, many apparently small things can
make a big difference. For example, it’s important to minimize the number of times characters are
moved from one buffer to another. This is affected by the fine detail of the API design, but it’s unclear
that either pull or push interfaces are superior in this regard. The best parsers in both categories seem to
be within 20 percent of each other in processing speed (I won’t say which way, because they are playing
leapfrog with each other), and in my view this is unlikely to be significant in terms of overall application
performance.

The StaX interface, also known as JSR (for Java Specification Request) 173, has been in gestation for a
long time. The initiative came from BEA Systems back in 2002, bringing together previous projects that
had previously lacked critical mass. But StAX doesn’t find its way into the Java mainstream until J2SE
6.0, which many users won’t be adopting until 2008 or beyond. The years in between have been rather
frustrating for users keen to try the technology, with long intervals between parser releases that turned
out to be rather buggy and with poor interoperability between the different products. One of the best
implementations at the time of writing is probably Woodstox, written by Tatu Saloranta
(woodstox.codehaus.org).

One of the attractions of a pull interface for parser vendors is that you can layer a push interface on top
of a pull interface, but not the other way around. This is illustrated in Figure 16-2.

Here a control program pulls data from the parser (by calling its getNext() method) and pushes it to
the application (by calling the SAX ContentHandler methods such as startElement(), endElement(),
and so on).

Note how this is another example of a pipeline. In a pipeline, the components can either pull data from
the previous stage in the pipeline, or they can push data to the next stage. The problem is that only one
component can be in charge. Upstream from that component, everyone has to pull; downstream, every-
one has to push. The Figure 16-3 illustrates this.

474

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 474

Figure 16-2

Figure 16-3

If you want to connect a pipeline that pushes data to one that pulls it, you can do this in two ways.

❑ The first pipeline can build a tree in memory (for example, a DOM), and the second pipeline can
read from the tree, as shown in Figure 16-4.

❑ The two pipelines can operate in different threads or processes, which allows more than one
control loop. This requires some fairly difficult concurrent programming and is not to be
attempted lightly; the overhead of coordinating multiple threads can quickly eliminate any per-
formance gains. Typically, the two threads communicate via a cyclic buffer holding a queue of
events, as shown in the diagram that follows.

XML
output

XML
input

Parser
Application

Stage 2
Application

Stage 3
SerializerApplication

Stage 1

arrows indicate direction of calls

PULL PUSHPULL PUSH

XML
input PULL PUSH

Pull
Parser

Push
Converter Application

Push Parser

arrows indicate direction of calls

475

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 475

Figure 16-4

One of the potential attractions of the StAX pull interface is that in time, you can pull data not only from
a parser analyzing lexical XML, but from other sources of XML. For example, an XSLT or XQuery engine
enables you to read the results of a transformation or query into your application using this style of API.
Of course, this is equally true of SAX, but it might well be an area where the added programming conve-
nience proves decisive.

So far I’ve discussed the principles of StAX. Because it’s not yet well-established enough to justify a
chapter of its own in this book, the following sections go into a little more detail to make the ideas more
concrete.

StAX, in fact, offers two pull APIs, the cursor API and the iterator API. Why two? Because one optimizes
performance, whereas the other optimizes usability. The team that defined the specification wasn’t
prepared to trade one for the other. You can regard the iterator API as a layer on top of the cursor API,
making it a bit more user-friendly. The implementation, however, doesn’t necessarily work that way
internally.

In the lower-level cursor API, the interface offered by the parser is called XMLStreamReader. Its main
methods are hasNext(), which tests whether there are more parsing events to come, and next(),
which gets the next such event. The next() method returns an integer identifying the event, for exam-
ple START_ELEMENT, END_ELEMENT, CHARACTERS, or COMMENT. You can request further details of the
current event from the XMLStreamReader. For example, if you are positioned on a START_ELEMENT
event, you can call getName() to determine the name of the element. One reason this API is efficient is
that it doesn’t give you any information unless you actually ask for it. (However, the efficiency is limited
by the fact that a conformant XML parser is obliged to check that the XML is well-formed. For example it
must detect when an element name contains invalid characters even if the application doesn’t ask to see
the element name).

Attributes and namespaces can also be read directly from the XMLStreamReader. After a START_ELEMENT
event, a call on getAttributeCount() tells you how many attributes the element has, and you can
then call methods such as getAttributeName(N) and getAttributeValue(N) to find details of the
Nth attribute. Similar methods are available for namespace declarations (which in StAX are not treated
as attributes).

The higher-level API in StAX is the iterator API, presented by the interface XMLEventReader. This has
two similar methods hasNext() and nextEvent() that you can use to read though the input document.

Application
Stage 2

Application
Stage 3

Application
Stage 1

PULL PULLPUSHPUSH

Application
Stage 4

DOM

476

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 476

Unlike the next() method of the cursor API, however, nextEvent returns an Event object, which pro-
vides properties directly to the current event. When it encounters an element start tag, the relevant event
can be cast to a StartElement event, which offers a method getAttributeByName() to find the
attribute with a given qualified name. The iterator API also maintains the full namespace context on your
behalf. So if the document contains attributes such as xsi:type, whose value contains a QName, you can
use this namespace context to see what namespace the prefix xsi refers to, without having to track all the
namespace declarations in your application. Clearly, this interface is likely to be a bit less efficient because
it is collecting information just in case you happen to need it.

Both the iterator and the cursor API allow you to do something that’s not possible in SAX, namely to
skip forward. For example, if you hit the start tag of an element that you’re not interested in, you can
fast-forward to the corresponding end tag. This gives a potential performance boost by reducing unnec-
essary chit-chat and also simplifies your application code, which no longer has to deal with the events
for the unwanted subtree.

Another thing that’s much easier to do cleanly in a pull API rather than a push API is to abandon pro-
cessing. If you have read as much of the document as you need to see, in StAX you just stop reading.
(It’s a good idea to issue a close() to give the parser a chance to tidy up, but if you don’t, the garbage
collector will take care of it eventually.) In SAX, the only way an application can ask the parser to stop is
to throw an exception. That’s much messier: For a start, exceptions are expensive, and also, it can be dif-
ficult to distinguish it from a real application error, especially when the application is part of a complex
pipeline.

I hope you’ve learned enough about pull parsing to give you a feel for whether this is an interface you
should look at more closely. If it is, then you can find plenty of reference information on the Web. The
best place to look is probably the J2SE 6.0 JavaDoc specification in package javax.xml.stream and its
subpackages. You don’t actually need J2SE 6.0 to use StAX, however. Parsers such as Woodstox come
with a copy of the interface definitions that you need.

Writing XML (Serialization)
Having looked at the interfaces available to a Java program for reading XML, you can now turn to the
other side of the coin: How do you write a file containing lexical XML?

One option is simply to create a PrintWriter and write to it:

PrintWriter w = new PrintWriter(new File(“output.xml”));
w.write(“<a>here is some XML”);
w.close();

This isn’t something I would recommend, although I have to admit I’ve done it often enough myself
when I was in a hurry. The main traps to avoid are the following:

❑ Make sure that special characters in text and attribute nodes are properly escaped, for example
that & is written as & and < as <

❑ You need to make sure that the character encoding of the file as written to disk matches the
character encoding specified in the XML declaration.

❑ It’s entirely your responsibility to make sure that the document is well-formed, for example that
all namespaces are properly declared.

477

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 477

There’s also a more subtle reason why this is not the preferred interface. After you’ve committed your
code to writing lexical XML (angle brackets, escaped ampersands and all), you won’t be able to deploy
your application so readily in a pipeline. Pipelines are the key to writing reusable software components
in an XML-based application (which is why I keep coming back to the subject), and you should always
bear in mind that someone else might one day want to modify the output of your program by adding a
postprocessing stage to the pipeline. Unless you write your XML using a higher-level interface than
basic print statements, this won’t be possible without expensive reparsing.

Furthermore, if you use an XML serialization library, you can probably tweak the output in many ways
without changing your application. An obvious example is switching indentation on or off: Indented
output makes life much easier if the XML must be read by human beings, but it can add significant over-
head when transmitted over a network.

So now, look at the alternatives. In this section, you see approaches that enable your Java application to
write directly to a serializer. If you’ve got the data in a tree representation such as DOM or one of the
other tree models discussed later in the chapter, you can also serialize directly from the tree. But you
don’t want to build a tree in memory just so that you can serialize it.

Using a JAXP Serializer
In its very first incarnations, the JAXP (Java API for XML Processing) suite of interfaces provided control
over two aspects of XML processing: XML parsing, and XSLT transformation. You look at the transfor-
mation API more closely later in this chapter. It so happens that the XSLT specification includes the defi-
nition of a serializer that converts XSLT’s internal tree representation of XML into lexical XML output.
It uses an <xsl:output> declaration in the stylesheet to control the details of how this is done. The
designers of the JAXP interface decided to structure the interface so that you can invoke the serialization
component whether or not you have done a transformation.

In fact, no class or interface in JAXP explicitly calls itself a serializer. Instead, something called an iden-
tity transformer can convert one representation of XML (provided as a Source) into a different represen-
tation (the Result), without modifying the XML en route. Three kinds of Source objects are defined: a
DOMSource, a SAXSource, and a StreamSource, as well as three kinds of Result objects: DOMResult,
SAXResult, and StreamResult. An IdentityTransformer can convert any kind of Source into any
kind of Result. Moreover, implementers can provide additional kinds of Source or Result, further
adding to the possibilities.

Because a StreamResult represents XML lexically, any identity transformer that produces a
StreamResult as its output is acting as an XML serializer.

To serialize XML from a Java application, you want the identity transformer in the form of a
TranformerHandler. The way you achieve this is:

TransformerFactory factory = TransformerFactory.newInstance();
TransformerHandler serializer =

((SAXTransformerFactory)factory).newTransformerHandler();
serializer.setResult(new StreamResult(new File(“output.xml”)));

Technically, before doing this, you should check that the TransformerFactory is one that offers this
optional feature, but as far as I know all the implementations in common use do.

478

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 478

The interface TransformerHandler extends the SAX ContentHandler interface, so you can now write
your output by calling the ContentHandler methods:

serializer.startDocument();
serializer.startElement(“”, “a”, “a”, new AttributesImpl());
String s = “some XML content”;
serializer.characters(s.toCharArray(), 0, s.length());
serializer.endElement(“”, “a”, “a”);
serializer.endDocument();

This approach has a number of advantages. The serialization library takes care of all the details of escap-
ing and character encoding, reducing the risk of bugs in your application. And because you are writing
to the standard ContentHandler interface, it’s easy to change your application so it pipes the output
into a different ContentHandler, one which performs further application processing rather than doing
immediate serialization.

You can also set serialization properties using this interface. Here’s an example that illustrates how to do
this. The output is serialized as HTML (which will only be useful, of course, if the elements you are writ-
ing are valid HTML elements — but that applies equally to any vocabulary).

Transformer trans = serializer.getTransformer();
trans.setOutputProperty(OutputKeys.METHOD, “html”);
trans.setOutputProperty(OutputKeys.INDENT, “yes”);
trans.setOutputProperty(OutputKeys,ENCODING, “iso-8859-1”);

Serializing Using StAX
I’ve already discussed StAX as a pull parser API, which is how most people think of it. But in fact, StAX
has a push API as well. The SAX ContentHandler interface, used in the previous section, was primarily
designed as an interface allowing an XML parser to push events to a Java application. This explains why
it’s a little bit clumsy when you use it, as you just did, to push events from a Java application to a serial-
izer. By contrast, the StAX push API is designed primarily to allow applications to push events to other
components, such as serializers, so it is more user-friendly from the point of view of the component
doing the pushing.

As with the pull API, the StAX push API comes in two flavors. The cursor-level interface is called
XMLStreamWriter (mirroring XMLStreamReader), whereas the iterator-level interface is
XMLEventWriter (mirroring XMLEventReader).

Here’s how you might serialize a simple document using the XMLStreamWriter interface:

XMLOutputFactory factory = XMLOutputFactory.newInstance();
XMLStreamWriter serializer = factory.createXMLStreamWriter(

new FileOutputStream(new File(“output.xml”)));
serializer.writeStartDocument(“iso-8859-1”, “1.0”);
serializer.writeStartElement(“”, “a”);
serializer.writeCharacters(“some XML content”);
serializer.writeEndElement();
serializer.writeEndDocument();

479

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 479

You can also call setProperty() on the XMLStreamWriter object to set serialization properties, but
unlike the JAXP interface, it has no standard property names. You have to look in the documentation to
see what properties are available for your chosen implementation. Woodstox, for example, has a prop-
erty that allows you to control whether empty elements should be written in minimized form (such as
<empty/>).

The StAX serialization interface is slightly more convenient to use than the JAXP ContentHandler
interface, but I will probably continue to use the SAX interface until StAX implementations are more
widely available and offer serialization properties similar to those available in JAXP. Some features, such
as HTML serialization, are available only through the JAXP interface.

This completes a tour of the lowest level of XML interfaces for Java, the interfaces for reading and writing
lexical XML. In the next section, you explore the next level: generic tree models for XML.

XML Tree Models
Chapter 12 is devoted to a detailed exposition of the DOM, the most commonly used tree model for
XML. Once again, in this section, you step back from the details to look at the role of the DOM as part of
the wider picture of Java interfaces to XML. It also discusses some of the alternative tree models that
have appeared in the Java world, specifically JDOM, DOM4J, and XOM.

It’s easy to see why tree models are popular. It’s much easier to manipulate the content of an XML docu-
ment at the level of a tree of nodes than it is to deal with events in the order they are reported by a
parser. This method puts the application back in control. Rather than dealing with the data in the order it
appears in the document (which is the case when you use either a push or a pull parser interface), a tree
representation of the document in memory enables you direct access, navigating around the structure to
locate the information that your application needs. It’s rather like the difference between processing a
sequential file (who does that nowadays?) and using a database.

One of the two problems with tree models is performance. Tree models tend to take up a lot of memory
(ten times the original source document size is not untypical), and they also take time to build because of
the number of objects that need to be allocated. The other disadvantage is that navigation around the
structure can be extremely tedious. Most tree models allow you to mix low-level procedural navigation
(getFirstChild(), getNextSibling() and so on) with the use of XPath expressions for a more
declarative approach, but using XPath brings its own performance penalty because it usually involves
parsing and optimizing XPath expressions on the fly.

The DOM interface, although it remains the most popular tree model used in the Java world, has prob-
lems of its own. Most of these stem from its age: It was designed originally to handle HTML rather than
XML, and it was first adapted to handle XML before namespaces were invented. The result is that
namespaces still feel very much like a bolt-on extra. Another significant problem is that DOM was
devised (by W3C) as a programming-language-independent interface, with Java being just one of the
language bindings. This means that many of its idioms are very un-Java-like. This includes its exception
handling, the way that collections (lists and maps) are handled, the use of shorts to represent enumer-
ated constants, and many other details. This problem is partly cosmetic, but there is a deeper impact
because it diminishes the extent to which DOM code fits well architecturally into the Java world view.

480

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 480

Because DOM was developed by a standards committee, it has grown rather large. In fact, the W3C
working group no longer exists, having been replaced by an interest group. The specifications are no
longer being developed, and some of the work that was done by the working group is now in a some-
what undefined state of limbo. But the material that was published as formal Recommendations is quite
large enough. Not all of this has yet made it into Java, which confuses the issue further. Some parts that
have made it into Java, notably the Event model, go well beyond what one expects to find in a tree repre-
sentation of XML documents and are far more concerned with user-interface programming in the
browser (or elsewhere). This reflects the historical origins of the DOM as the underpinning object model
for Dynamic HTML.

The DOM, remember, is a set of interfaces — not an implementation. Several implementations of these
interfaces exist: in fact, there can be any number. You can write your own implementation if you want,
and this is not just a fanciful notion. By writing a DOM interface to some underlying Java data source,
you can make the data appear to the world as XML, and thus make it directly accessible to any XML pro-
cess that accepts DOM input, for example XSLT transformations and XQuery queries.

The fact that DOM is a set of interfaces with multiple implementations, combined with the fact that it is
a large and complex specification, leads inevitably to the result that different implementations are not
always as compatible as one would like. It can be difficult to write application code to DOM interfaces
that actually works correctly with all implementations. It’s very easy to make assumptions that turn out
to be faulty: I once wrote the test

if (x instanceof Element) ...

in a DOM application. It failed when it ran on the Oracle DOM implementation because in that imple-
mentation some objects that are not element nodes nevertheless implement the DOM Element interface.
This is perfectly legal according to the specification, but not what one might expect.

A further criticism of the DOM is that it doesn’t reflect modern thinking as to the true information model
underlying XML. It retains information that most applications don’t care about, such as CDATA sections
and entity references. It throws away some information that applications do care about, such as DTD-
defined attribute types, and it models namespaces in a way that makes them very difficult to process.

For some users, the final straw is that DOM isn’t even stable. Unlike its policy with every other interface
in the JDK class library, Sun’s policy for DOM allowed incompatible changes to be made to the interfaces
in J2SE 5.0, with the result that it can be quite difficult to write applications that work on multiple ver-
sions of the JDK. This affects providers of DOM interfaces more than users, but since the interface is only
as good as the products that implement it, the effect is a general decline in support for DOM as a pre-
ferred interface.

Alternatives to DOM
A number of alternatives to DOM have been proposed to address the shortcomings outlined in the pre-
vious section. You look at three of them: JDOM, DOM4J, and XOM. Each of these has an open source
implementation and an active user community. None of them is actually part of the JDK, which creates
the serious disadvantage that the interfaces are not recognized by other APIs in the Java family such as
JAXP and XQJ (discussed later in this chapter). However, as you see in this chapter, this has not meant
that they are islands of technology with no interoperability.

481

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 481

JDOM
JDOM, produced by a team led by Jason Hunter, was the first attempt to create an alternative tree model.

JDOM’s main design aim was to be significantly easier to use than DOM for the Java programmer. The
most striking difference in its design is that it uses concrete classes rather than interfaces. All the com-
plexities and abstractions of factory classes and methods are avoided, which is a great simplification.
The decision has another significant effect, which has both advantages and disadvantages: There is only
one JDOM. If you write an application that works on a JDOM tree, it will never work on anything else.
You can’t make a different tree look like a JDOM tree by implementing the JDOM interfaces; the best you
can do is to bulk copy your data into a JDOM tree. This might seem like a significant disadvantage, but
most people won’t need to do this. The big advantage, however, is that because there is only one JDOM,
it has no compatibility problems with different implementations.

Another striking feature of the JDOM model is that no abstract class represents a node. Each of the vari-
ous kinds of node has its own concrete class, such as Element, Comment, and ProcessingInstruction,
but there is no generic class that all nodes belong to. This means that you end up using the class Object a
lot. A generic interface called Parent exists for nodes that can have children (element and document
nodes), and there is also a generic class for nodes that can be children (text nodes, comments, elements,
and so on), but nothing for the top level. When programming using JDOM, I have found this is a bewil-
dering omission.

This small example gives a little feel of the navigation interfaces in JDOM. Suppose you have an XML
document like the one that follows, and you have this data in a JDOM tree that you want to copy to a
Java HashMap:

<currencies>
<currency code=”USD”>1.00</currency>
<currency code =”EUR”>0.79</currency>
<currency code =”GBP”>0.53</currency>
<currency code =”JPY”>118.29</currency>
<currency code =”CAD”>1.13</currency>

</currency>

Here’s the Java code to do it:

HashMap map = new HashMap();
Document doc = new SaxBuilder().build(new File(‘input.xml’));
for (Iterator d = doc.getDescendants(); d.hasNext();) {

Object node = d.next():
if (node instanceof Element and

((Element)node).getName().equals(“currency”)) {
map.put(node.getAttributeValue(“code”), node.getValue());

}
}

All the tree models struggle with the problem of how to represent namespaces. JDOM, true to its philos-
ophy, concentrates on making the easy cases easy. Elements and attributes have a three-part name (pre-
fix, local name, and namespace URI). Most of the time, that’s all you need to know. Occasionally, in some
documents, you may need to know about namespaces that have been declared even if they aren’t used
in any element or attribute names (they might be used in a QName-valued attribute such as xsi:type).

482

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 482

To cover such cases, an element also has a property getAdditionalNamespaces(), which returns
namespaces declared on the element, excluding its own namespace. If you want to find all the name-
spaces that are in scope for an element, you have to read this property on the element itself, on its parent,
and so on — all the way up the tree.

An effect of this design decision is that when you make modifications to a tree, such as moving an ele-
ment or renaming it, the namespaces usually take care of themselves, except in the case where your doc-
ument contains QName-valued attributes. In that case, you must take great care to ensure that the
namespace declarations remain in scope.

JDOM comes with a raft of “adapters” that allow data to be imported and exported from/to a variety of
other formats including, of course, DOM and SAX. To create a tree by parsing XML, you simply write

Document doc = new SaxBuilder().build(new File(‘input.xml’));

Serialization is equally easy: you can serialize the whole document by writing

new XMLOutputter().output(doc, System.out);

If you want to customize the way that serialization is done, you can supply the XMLOutputter
with a Format object on which you set preferences. For example, you can set the option
setExpandEmptyElements() to control whether empty element tags are used.

JDOM also provides interfaces to allow XPath or XSLT access to the document. This exploits the JAXP
interfaces to allow different XSLT and XPath processors to be selected. Of course, you can only choose
one that understands the JDOM model. (In fact, Saxon has support for JDOM and doesn’t use this mech-
anism: You can wrap a JDOM document in a wrapper that allows Saxon to recognize it directly as a
Source object.)

Overall, the keynote of JDOM is simplicity. Simplicity is its strength, but also its weakness. It makes easy
things easy, but it can also make difficult things rather hard or impossible.

For more information about JDOM and to download the software, visitjdom.org/.

DOM4J
DOM4J started as an attempt to build a better JDOM. It is sometimes said that it is a fork of JDOM, but I
don’t think this is strictly accurate in terms of the actual code. Rather, it is an attempt to redo JDOM the
way some people think it should have been done.

Unlike JDOM, DOM4J uses Java interfaces very extensively. All nodes implement the Node interface, and
this has sub-interfaces for Element, Attribute, Document, CharacterData, and so on. These inter-
faces, in turn, have abstract implementation classes, with names such as AbstractElement, and
AbstractDocument. AbstractElement has two concrete subclasses: DefaultElement, which is the
default DOM4J class representing an element node, and BaseElement, which is a helper class designed
to allow you to construct your own implementation. (Why would you want your own implementation?
Essentially, you use it to add your own data to a node or use methods that allow you to navigate more
easily around the tree.)

483

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 483

So you can see immediately that in contrast to JDOM, this is heavy engineering. The designers have
taken the theory of object-oriented programming and applied it rigorously. The result is that you can do
far more with DOM4J than you can with JDOM, but you must be a rather serious developer to want all
this capability.

Here’s the same code that you used earlier for JDOM reworked for DOM4J.

HashMap map = new HashMap();
Document doc = ...;
Element root = doc.getRootElement();
for (Iterator d = root.elementIterator(“currency”); d.hasNext();) {

Element node = (Element)d.next():
map.put(node.attributeValue(“code”), node.getStringValue());

}

It’s not a great deal different. DOM4J methods are a bit more strongly typed than their JDOM equiva-
lents, but any benefit you get from this is eliminated by the fact that both interfaces were designed
before Java generics hit the scene in J2SE 5.0. That means the objects returned by iterators have to be cast
to the expected type. The DOM4J code is a bit shorter because you have a wider range of methods to
choose from, but the downside of that is that you have a longer spec to wade through before you find
them!

In addition to the simple navigational methods that allow you to get from a node to its children, parent,
or siblings, DOM4J offers some other alternatives. For example you can define a Visitor object which
visits nodes in the tree, having its visit() method called to process each node as it is traversed: This
feels strangely similar to writing a SAX ContentHandler, except that the visit() method is free to navi-
gate from the node being visited to its neighbors.

An interesting feature of DOM4J is that it’s possible to choose implementation classes for the DOM4J
nodes that implement DOM interfaces as well as DOM4J interfaces. In principle, this means you can
have your cake and eat it, too. However, I’m not sure how useful this really is in practice. Potentially, it
creates a lot of extra complexity.

Like JDOM, the DOM4J package includes facilities allowing you to build a DOM4J tree from various
sources, including lexical XML, SAX, StAX, and DOM, and to export to various destinations, again
including lexical XML, SAX, StAX, and DOM. The serialization facilities work in a very similar way to
JDOM. DOM4J also has a built-in XPath 1.0 engine, and you can use it with JAXP XSLT engines.

So if you can sum up JDOM by saying it is about simplicity, you can say the DOM4J is about solid sup-
port for advanced object-oriented development approaches and design patterns.

DOM4J is found at dom4j.org/.

XOM
The most recent attempt to create the perfect tree model for XML in the Java world is XOM. The focus of
the XOM project is 100% fidelity and conformance to the XML specifications and standards. In particu-
lar, it attempts to do a much better job than previous models of handling namespaces. XOM is devel-
oped by Elliotte Rusty Harold, and although it’s open source, he maintains strong control to ensure that
the design principles are adhered to.

484

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 484

It’s worth asking why namespaces are such a problem. In lexical XML, a namespace declaration on a
particular element binds a prefix to a namespace URI. This prefix can be used anywhere within the con-
tent of this element as a shorthand for the namespace URI. When you come to apply this to a tree model,
this creates a number of problems:

❑ Are the prefixes significant, or can a processor substitute one prefix for another at whim? After
much debate, the consensus now is that you have to try to preserve the original prefixes for two
reasons: First, because users have become familiar with them, and second, they can be used in
places (such as XPath expressions within attribute content) where the system has no chance of
recognizing them and, therefore, changing them.

❑ If prefixes are significant, what happens when an element becomes detached from the tree
where the prefix is defined? Tree models support in-situ updates, and they have all struggled
with defining mechanisms that allow update of namespace declarations without the risk of
introducing inconsistencies.

As well as concentrating on strict XML correctness, XOM also has some interesting internal engineering,
designed to reduce the problems that occur when you use tree models to represent very large docu-
ments. XOM allows you to build the tree incrementally, to discard the parts of the document you don’t
need while the tree is being built, to process nodes before tree construction has finished, and to discard
parts of the tree you have finished with. This makes it a very strong contender for dealing with docu-
ments whose size is 100Mb or larger.

Like JDOM, XOM uses classes rather than interfaces. Harold justifies this choice vigorously and elo-
quently: He claims that interfaces are more difficult for programmers to use, and more important, inter-
faces do not enforce integrity. You can write a class that ensures that the String passed to a particular
method will always be a valid XML name, but you cannot write an interface that imposes this constraint.
In addition, an interface can’t impose a rule that one method must be called before another method is
called. When you work with interfaces, you recognize the possibility of multiple implementations, and
you have no control over the quality or interoperability of the various implementations. This is all good
reasoning, but it does mean that, just as there is only one JDOM, there is only one XOM. You can’t write
a XOM wrapper around your data so that XOM applications can access it as if it were a “real” XOM tree.

XOM does allow and even positively encourages the base classes (such as Element, Attribute, and so
on) to be subclassed. The design has been done very carefully to ensure that subclasses can’t violate the
integrity of the system. Many methods are defined as final to ensure this. Users sometimes find this
frustrating, but it’s done with good reason. The capability to subclass means that you can add your own
application-dependent information to the nodes, and you can add your own navigation methods. So
you might have a method getDollarValue() on an Invoice element that returns the total amount
invoiced without exposing to the caller the complex navigation needed to find this data.

At the level of navigational methods, XOM is not so very different from JDOM and DOM4J. Here’s that
familiar fragment of code rewritten for XOM, to prove it:

HashMap map = new HashMap();
Document doc = ...;
Element root = doc.getRootElement();
Elements currencies = root.getChildElements(“currency”);
for (int i=0; i<currencies.size(); i++) {

Element node = currencies.get(i):
map.put(node.getAttributeValue(“code”), node.getValue());

}

485

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 485

One interesting observation is that this is the first version of this code that doesn’t involve any Java cast-
ing. In the absence of Java generics, XOM has defined its own collection class Elements (rather like
DOM’s NodeList) to achieve type safety.

It won’t come as a surprise to learn that XOM also comes with converters to and from DOM and SAX;
you can build a document by creating a Builder using any SAX parser (represented by an XMLReader
object). It also has interfaces to XSLT and XPath processors; and, of course, XOM also has its own
serializer.

Closely related to XOM, but a quite separate package from a different developer (Wolfgang Hoschek) is
a toolkit called NUX. This integrates XOM tightly with the Saxon XPath and XQuery engine and with
StAX parsers such as Woodstox. It offers binary XML serialization options and a number of features
geared towards processing large XML documents at high speed in streaming mode. For users with large
documents and a need for high performance, the combination of XOM, Saxon, and NUX is almost cer-
tainly the most effective solution available unless the user wants to pay large amounts of money.

So the keywords for XOM are strict conformance to XML standards and high performance engineering,
especially for large documents.

You can find out more about XOM at.xom.nu/, and about NUX at http://dsd.lbl.gov/nux/. Saxon
(which has both open source and commercial versions) is at saxonica.com/.

This concludes our tour of the Java tree models. You don’t have any reference information to help you
actually program against these models, but there’s enough here to help you decide which is right for you
and to find the detail you need online.

In the next section of the chapter, you move up a level in the tier of Java XML interfaces, to discuss data
binding.

Java/XML Data Binding
So far, the interfaces you’ve been looking at don’t try to hide the fact that the data you are working with
is XML. Documents consist of elements, attributes, text nodes, and the like. When you manipulate them
at the level of a sequential parser API like SAX or StAX, or at the level of a document object model like
DOM, JDOM, DOM4J, or XOM, you must understand what elements, attributes, and text nodes are, and
how they relate to each other.

The idea of data binding is to move up a level. To find out the zip code of an address, you no
longer need to call element(“address”).getAttributeValue(“zipcode”); instead you call
address.getZipCode().

In other words, data binding maps (or binds) the elements and attributes of the XML document represen-
tation to objects and methods in your Java program whose structure and representation reflect the
semantics of the data you are modeling, rather than reflecting the XML data model.

It’s probably true to say that data binding works better for data-oriented XML than for document-oriented
XML. In fact, some data binding products have difficulty coping with some of the constructs frequently
found in document-oriented XML, such as comments and mixed content. These products aren’t actually

486

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 486

aiming to achieve fidelity to the XML representation. A number of products and interfaces implement this
general idea. The accepted standard, however, is the JAXB interface, also referred to on occasion as JSR
(Java Specification Request) 31. JAXB brings together the best ideas from a number of previous technolo-
gies, but it hasn’t completely displaced them: You may find yourself working with the open-source Castor
product, for example, which has similar concepts but is not JAXB-compliant. Other products you might
come across include JBind, Quick, and Zeus. Some more specialized products use similar concepts: The
C24 Integration Objects package, for example, focuses on conversions between different XML-based and
non-XML formats for financial messages. It achieves the interoperability by means of a data binding
framework.

JAXB is technically a specification rather than a product, but for many users the term is synonymous
with the reference implementation, which comes as part of the Java Web Services Developers Pack
(JWSDP). The JAXB 2.0 specification was finalized during 2006, but because this is only a broad
overview, you don’t need to be too concerned with the differences.

Data binding generally starts with an XML Schema description of the XML data. Among the consider-
able advantages to using an XML Schema, rather than (for example) a DTD, the most obvious one is that
XML Schema defines a rich set of data types for the content of elements and attributes (dates, numbers,
strings, Booleans, URIs, durations, and so on). Less obviously, XML Schema has also gone to great
lengths to ensure that when you validate a document against a schema you don’t get just a yes/no
answer and perhaps some error messages. You get a copy of the document (the so-called PSVI, or post-
schema-validation-infoset) in which every element and attribute has been annotated with type informa-
tion derived from the schema. In fact, some of the restrictions in XML Schema (that are so painful when
you use it for validation) are there explicitly to support data binding. The notorious UPA (Unique
Particle Attribution) rule says that a model is ambiguous (and, therefore, invalid) if more than one way
of matching the same data exists. Data binding requires conversion of an XML element to a Java object,
and the schema determines which class of object you end up with. It’s not enough, for example, to say
that a book can consist of a sequence of chapters followed by a sequence of appendices; you must be
able to decide without any ambiguity (and also without backtracking) whether the element you’re now
looking at is a chapter or an appendix. For Relax NG, it would be good enough to say, “If it could be
either, that’s fine; the document is valid.” But for XML Schema, that’s not good enough because the XML
Schema is about more than validation.

I can explain it with an example. Here’s an XML structure containing a name and address:

<customer>
<name>
<first>Jean</first>
<last>Dupont</last>

</name>
<address>
<line>18bis rue d’Anjou</line>
<line/>
<postal-code>75008</postal-code>
<city>Paris</city>
<country>France</country>

</address>
</customer>

487

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 487

Mapped to Java, you might want to see:

Class Customer {
PersonalName getName();
Address getAddress();

}

Class PersonalName {
String getFirstName();
String getLastName();

}

Class Address {
List<String> getAddressLines();
String getPostalCode();
String getCity();
String getCountry();

}

It can get more complicated than this, of course. For example, one might want ID/IDREF links in the
XML to be represented as methods that traverse the relationships between Java objects.

Rather than starting with an XML document instance and converting it to a set of Java objects, a data
binding tool starts with an XML schema and converts it to a set of Java classes. These classes can then be
compiled into executable code. Typically, the executable code contains methods that construct the Java
objects from the XML document instance (a process called marshalling) or that create the XML document
instance from the Java objects (called unmarshalling).

The process of creating class definitions from a schema can be fully automated. You then end up with a
default representation of each construct in the schema. However, you can often get a much more effec-
tive representation of the schema if you take the trouble to supply extra configuration information to
influence the way the class definitions are generated. JAXB provides two ways of doing this: You can
add the information as annotations to the source schema itself, or you can provide it externally. Using
external configuration information is more appropriate if you don’t control the schema (for example, if
you are defining a Java binding for an industry schema such as FpML).

Although it’s usual to start with an XML Schema, JAXB also allows you to work in the opposite direc-
tion. Instead of generating a set of Java classes from a schema, you can generate a schema from a set of
Java classes. The model is pleasingly symmetric, as you can see from Figure 16-5.

In JAXP, a Java class is generally derived from an element definition in the schema. Most of the cus-
tomization options are concerned with how the Java class name relates to the name of the XML element
declaration. This is used to get a name that fits in with Java naming conventions, and also to resolve con-
flicts when the same name is used for more than one purpose.

Java package names are derived by default from the XML namespace URI. For example, the namespace
URI http://www.example.com/ipo converts to the java package name com.example.ipo. This
works well if you stick to the recommended naming conventions — but very badly if you don’t!

488

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 488

Figure 16-5

Within the package, a number of interfaces represent the complex types defined in the schema, and a
number of interfaces represent the element declarations. A class, ObjectFactory, allows instances of
the elements to be created. Further classes are generated to represent enumeration data types in the
schema by using the Java type-safe enumeration pattern.

Within an element, attributes and simple-valued child elements are represented as properties (with get-
ter and setter methods). Complex-valued child elements map to further Java classes (this includes any
element that is allowed to have attributes, as well as elements that can have child elements).

The following table shows a default mapping of the built-in types defined in XML Schema to data types
in Java. Some of these are straightforward; others require more discussion.

XML Schema Type Java Data Type

xs:string java.lang.String

xs:integer java.math.BigInteger

xs:int int

xs.long long

xs:short short

xs:decimal java.math.BigDecimal

xs:float float

xs:double double

xs:boolean boolean

xs:byte byte

Table continued on following page

XML
Instance

Documents

Schema

Java
Object

Instances

Java
Classes

489

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 489

XML Schema Type Java Data Type

xs:QName javax.xml.namespace.QName

xs:dateTime javax.xml.datatype.XMLGregorianCalendar

xs:base64Binary byte[]

xs:hexBinary byte[]

xs:unsignedInt long

xs:unsignedShort int

xs:unsignedByte short

xs:time javax.xml.datatype.XMLGregorianCalendar

xs:date javax.xml.datatype.XMLGregorianCalendar

xs:gYear, gYearMonth, javax.xml.datatype.XMLGregorianCalendar
gMonth, gMonthDay, gDay

xs:anySimpleType java.lang.Object (for elements), java.lang.String (for
attributes)

xs:duration javax.xml.datatype.Duration

xs:NOTATION javax.xml.namespace.QName

xs:anyURI java.lang.String

Notice how, in some cases, no suitable class is available in the core Java class library, so new classes had
to be invented. This is particularly true for the date and time types because although a lot of commonal-
ity exists between the XML Schema dates and times and classes such as java.util.Date, many differ-
ences exist in the details of how things such as timezones are handled.

One might have expected xs:anyURI to correspond to java.net.URI. It doesn’t because the detailed
rules for the two are different —xs:anyURI accepts URIs whether or not they have been %HH encoded,
whereas java.net.URI corresponds more strictly to the RFC definitions.

For derived types, the rules are quite complex. For example, a user-defined type in the schema derived
from xs:integer whose value range is within the range of a java int is mapped to a java int.

List-valued elements and attributes (that is, a value containing a space-separated sequence of simple
items) are represented by a Java List. Union types in the schema are represented using a flag property in
the Java object to indicate which branch of the union is chosen.

When you do the mapping in the opposite direction, from Java to XML Schema, you aren’t restricted to
the types in the right-hand column of the preceding table. For example, if your data uses the
java.util.Date type, this is mapped to an xs:dateTime in the schema.

After you have established the Java class definitions, customized as far as you consider necessary, you
can unmarshall an XML document to populate the classes with instances. Suppose that you started with

490

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 490

the sample purchase order schema published in the W3C primer (http://www.w3.org/TR/
xmlschema-0/), and that the relevant classes are generated into package accounts.ipo.

Start by creating a JAXBContext object, naming this package, and then adding an Unmarshaller:

JAXBContext jaxb = JAXBContext.newInstance(“accounts.ipo”);
Unmarshaller u = jaxb.createUnmarshaller();

Now you can unmarshall a purchase order from its XML representation:

PurchaseOrder ipo =
(PurchaseOrder)u.unmarshall(new FileInputStream(“order.xml”));

And now you can manipulate this as you would any other Java object:

Items items = ipo.getItems();
for (Iterator iter = items.getItemList().iterator(); iter.hasNext()) {

ItemType item = (ItemType)iter.next();
System.out.println(item.getQuantity());
System.out.println(item.getPrice());

}

Marshalling (converting a Java object to the XML representation) works in a very similar way using the
method

Marshaller.marshal(Object jaxbElement, ...);

Marshalling involves converting values to a lexical representation, and this can be customized with the
help of a DatatypeConverter object supplied by the caller.

I hope this overview of JAXB gives you the flavor of the technology and helps you to decide whether it’s
appropriate for your needs. If you’re handling data rather than documents, and if you have a lot of busi-
ness logic processing the data in Java form, then JAXB or other data binding technologies can certainly
save you a lot of effort. This suggests that they are ideal in a world where applications are Java-centric,
with XML being used around the edges to interface the applications to the outside world. It’s probably
less appropriate in an application architecture where XML is central. In that case, you are probably writ-
ing the business logic in XSLT or XQuery, and that brings us to the subject of the next and final section of
this chapter.

Controlling XSLT, XQuery, and XPath Processing from Java
XSLT, XQuery, and XPath are well-covered in other chapters of this book, and none of that information is
repeated here. Rather, the aim here is to show how these languages work together with Java.

In many cases, Java is used simply as a controlling framework to collect the appropriate parameters, fire
off an XSLT transformation, and dispose of the results. For example, you may have a Java servlet whose
only real role in life is to deal with an incoming HTTP request by running the appropriate transforma-
tion. Today, that is probably an XSLT transformation. In the future, XQuery may play an increasing role,
especially if you use an XML database.

491

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 491

The key here is to decide which language the business logic is to be written in. You can write it in Java,
and then use XSLT simply to format the results. My own inclination, however, is to use XSLT and
XQuery as fourth-generation application development languages, containing the bulk of the real busi-
ness logic. This relegates Java to the role of integration glue, used to bind all the different technology
components together.

It is possible to mix applications written in different languages, however. The best approach to doing this
in the XML world is the pipeline pattern: Write a series of components, each of which transforms one
XML document into another; and then string them together, one after another, in a pipeline. The different
components don’t have to use the same technology: Some can be XSLT, some XQuery, and some Java.

The components in a pipeline must be managed using some kind of control structure. You can write this
yourself in Java; or you can use a high-level pipeline language. The pipeline might well start with an
XForms processor that accepts user input from a browser window and feeds it into the pipeline for pro-
cessing. Different stages in the pipeline might handle input validation (perhaps using a schema proces-
sor), database access, and output formatting. No standards exist for high-level pipeline languages yet,
but the W3C has started work in this area, and in the meantime, a number of products are available (take
a look at Orbeon for an example: www.orbeon.com). You can also implement the design pattern using
frameworks such as Cocoon.

Why are pipelines so effective? First, they provide a very effective mechanism for component reuse. By
splitting your work into a series of independent stages, the code for each stage becomes highly modular
and can be deployed in other pipelines. The second reason is that pipelines can be dynamically reconfig-
ured to meet different processing scenarios. For example, if management asks for a report about particu-
lar activity, it’s easy to add a step at the appropriate place in the pipeline that monitors the relevant data
flow and “siphons off” a summarized data feed without changing the existing application except to
reconfigure the pipeline.

The reason for discussing pipelines here (yet again) is that this kind of thinking has influenced the design
of the APIs you are about to look at — in particular, the JAXP API for controlling XSLT transformations.

XPath APIs fit less well into the structure of this section. If you’re using XPath from Java on its own,
you’re probably using it in conjunction with one of the object models discussed in the second section of
this chapter (DOM, JDOM, DOM4J or XOM). That’s likely to be a Java-centric architecture, using XPath
essentially as a way of navigating around the tree-structured XML representation without all the tedious
navigation code that’s needed otherwise. For that reason, this section does not cover XPath in any detail.
Instead, it focuses on the JAXP interface for XSLT, and the XQJ interface for XQuery.

These APIs all have very different origins. The JAXP transformation API was created (originally under
the name TrAX) primarily by the developers of the first four XSLT 1.0 engines to appear on the Java
scene around 1999–2000: James Clark’s original xt processor, Xalan, Saxon, and Oracle. All these had
fairly similar APIs, and TrAX was developed very informally to bring them together. It only became a
reality, however, when Sun decided to adopt it and formalize the specification as part of the JDK, devel-
oping the XML parser part of the JAXP API at the same time. This history shows why one of the impor-
tant features of JAXP is that it enables users to select from multiple implementations (that is to choose an
XML parser and an XSLT processor) without having compile-time dependencies on any implementation
in their code.

492

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 492

XQJ, the XQuery API for Java, was a much later development than JAXP, just as XQuery standardization
itself lags behind XSLT by about seven years (and counting). By this stage, the Java Community Process
was much more formalized (and politicized), so development was slower and less open. Like JAXP,
however, development was driven by vendors. The key participants in the XQJ process were database
vendors, and as a result, the specification has a strong JDBC-like feel to it. It supports the notion that
there is a client and a server who communicate through a Connection. Some XQJ implementations might
not actually work that way internally, but that’s the programming style.

Let’s now look at these two families of interfaces in turn.

JAXP: The Java API for XML Processing
In its original form, JAXP contained two packages: the javax.xml.parsers package to control XML
parsing, and javax.xml.transform to control XSLT transformation and serialization. More recently,
other packages have been added, notably javax.xml.validation to control schema validation (not
only XML Schema, but other schema languages such as Relax NG), and javax.xml.xpath for stan-
dalone XPath processing. In addition, the javax.xml.datatype package contains classes defining Java-
to-XML data type mappings (you saw these briefly in the previous section on JAXB data binding), and
the javax.xml.namespace package contains a couple of simple utility classes for handling namespaces
and QNames.

Be a bit careful about which versions of these interfaces you are using. Java JDK 1.3 was the first version
to include XML processing in the JDK, which was achieved by including JAXP 1.1. (Previously, JAXP
had been a component that you had to install separately.) JDK 1.4 moved forwards and incorporated
JAXP 1.2, whereas JDK 1.5 (or J2SE 5.0 as the Sun marketing people would like us to call it) rolled on
to JAXP 1.3. If you want the schema validation and XPath support, or support for DOM level3, you
need JAXP 1.3. This comes as standard with JDK 1.5, as already mentioned, but you can also download
it to run on JDK 1.4. Unfortunately, it’s a messy download and installation because it only comes as part
of the very large Java Web Services Developer Pack product. To make matters worse, if you develop an
application that uses JAXP 1.3, you’re not allowed to distribute JAXP 1.3 with the application. Your end
users have to download it and install it individually. Perhaps Sun is just trying to encourage you to
move forward to J2SE 5.0.

The same story occurs again with JAXP 1.4, which contains the StAX Streaming API and pull parser dis-
cussed at the beginning of this chapter. JAXP 1.4 is bundled with J2SE 6.0. You can get a freestanding
download for J2SE 5.0, but it changes every week, so I’m not sure I’d recommend it for serious work.

Also note that when you download or install JAXP, you get both the interface and a reference implemen-
tation (usually the Apache implementation). This generates some confusion about whether JAXP is
merely an API or a specific product. In fact, it’s the API — that’s what the “A” stands for — and the prod-
uct serves as a reference implementation because an API with nothing behind it is very little use.

You’ll look at these packages individually in due course. But first, look at the factory mechanism which
is shared (more-or-less) by all these packages, for choosing an implementation.

The JAXP Factory Mechanism
The assumption behind the JAXP factory mechanism is that you, as the application developer, want to
choose the particular processor to use (whether it’s an XML parser, an XSLT processor, or a schema val-
idator). But you also want the capability to write portable code that works with any implementation,

493

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 493

which means your code must have no compile-time dependencies on a particular product’s implementa-
tion classes: It should be possible to switch from one implementation to another simply by changing a
configuration file.

The same mechanism is used for all these processors, but the XSLT engine is the example here. JAXP
comes bundled with the Apache Xalan engine, but many people use it with other processors, notably
Saxon because that supports the more advanced XSLT 2.0 language specification.

You start off by instantiating a Factory class:

TransformerFactory factory = TransformerFactory.newInstance();

This looks simple, but it’s actually quite complex. TransformerFactory is a concrete class, delivered as
part of the JAXP package. It’s actually a factory in more than one sense. The real TransformerFactory
class is a factory for its subclasses — its main role is to instantiate one of its subclasses, and there is one in
every JAXP-compliant XSLT processor. Its subclasses, as you see later, act as factories for the other
classes in the particular implementation. The Saxon implementation, for example, is class
net.sf.saxon.TransformerFactoryImpl.

So if you organize things so that Saxon is loaded, then you find that the result of this call is actually an
instance of net.sf.saxon.TransformerFactoryImpl. It’s often a good idea to put a message into
your code at this point to print out the name of the actual class that was loaded, because many problems
can occur if you think you’re running one processor and you’re actually running another. Another tip
is to set the Java system property jaxp.debug to the value true (you can do this with the switch
-Djaxp.debug=true on the command line). This gives you a wealth of diagnostic information that
shows which classes are being loaded and why.

How does the master TransformerFactory decide which implementation-specific
TransformerFactory to load? This is where things can get tricky. The procedure works like this:

1. Look to see if there is a Java system property named javax.xml.transform.Transformer
Factory. If there is, its value should be the name of a subclass of TransformerFactory. For
example, if the value of the system property is net.sf.saxon.TransformerFactoryImpl,
Saxon should be loaded.

2. Look for the properties file lib/jaxp.properties in the directory where the JRE (Java run-
time) resides. This can contain a value for the property javax.xml.transform.Transformer
Factory, which again should be the required implementation class.

3. Search the classpath for a JAR file with appropriate magic in its JAR file manifest. You don’t
need to worry here what the magic is: The idea is simply that if Saxon is on your classpath,
Saxon gets loaded.

4. If all else fails, the default TransformerFactory is loaded. In practice, at least for the Sun JDK,
this means Xalan.

A couple of problems can arise in practice, usually when you have multiple XSLT processors around. If
you’ve got more than one XSLT processor on the classpath, searching the classpath isn’t very reliable. It
can also be difficult to pick up your chosen version of Xalan, rather than the version that shipped with
the JDK (which isn’t always the most reliable).

494

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 494

As far as choosing the right processor is concerned, my advice is to set the system property. Searching
the classpath is simply too unpredictable, especially in a complex Web services environment, where sev-
eral applications may actually want to make different choices. In fact, if the environment gets really
tough, it can be worth ignoring the factory mechanism entirely and just instantiating the chosen factory
directly:

TransformerFactory factory = new net.sf.saxon.TransformerFactoryImpl();

But if you don’t want that compile time dependency, setting the system property within your code
seems to work just as well:

System.setProperty(“javax.xml.transform.TransformerFactory”,
“net.sf.saxon.TransformerFactoryImpl”);

TransformerFactory factory = TransformerFactory.newInstance();

Another problem with the JAR file search is that it can be very expensive. With a lot of JAR files on the
classpath, it sometimes takes longer to find an XML transformation engine than to do the transforma-
tion. Of course, you can and should reduce the impact of this by reusing the factory. You should never
have to instantiate it more than once during the whole time the application remains running.

You’ve seen the mechanism with regard to the TransformerFactory for XSLT processors, and the same
approach applies (with minor changes) to factories for SAX and DOM parsers, schema validators, XPath
engines, and StAX parsers.

One difference is that some of these factories are parameterized. For the schema validator, you can ask
for a SchemaFactory that handles a particular schema language (for example XML Schema or Relax
NG), and for XPath you can request an XPath engine that works with a particular document object
model (DOM, JDOM, and so on). These choices are expressed through URIs passed as string-valued
parameters to the newInstance() method on the factory class. Although they appear to add flexibility,
a lot more can also go wrong. One of the things that can go wrong is that some processors have been
issued with manifests that the JDK doesn’t recognize, because of errors in the documentation. Again,
the answer is to keep things as simple as you can by setting system properties explicitly.

The JAXP Parser API
The SAX and DOM specifications already existed before JAXP came along, so the only contribution
made by the JAXP APIs is to provide a factory mechanism for choosing your SAX or DOM implementa-
tion. Don’t feel obliged to use it unless you really need the flexibility it offers to deploy your application
with different parsers. Even then, you might find better approaches: For example SAX2 introduced its
own factory mechanism shortly after JAXP first came out, and many people suggest using the SAX2
mechanism instead (the XMLReaderFactory class in package org.xml.sax.helpers).

For SAX, the factory class is called javax.xml.parsers.SAXParserFactory. Its newInstance()
method returns an implementation-specific SAXParserFactory; you can then call the method
newSAXParser() on that to return a SAXParser object, which is in fact just a thin wrapper around the
org.xml.sax.XMLReader object that does the real parsing.

The DOM mechanism is similar. The factory class is named javax.xml.parsers
.DocumentBuilderFactory; after you have an implementation-specific DocumentBuilderFactory,
you can call newDocumentBuilder() to get a DocumentBuilder object, which has a parse() method
that takes lexical XML as input and produces a DOM tree as output.

495

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 495

After you’ve instantiated your parser you’re in well-charted waters that are discussed elsewhere in this
book.

If you’re adventurous, you can write your own parser. Your creation doesn’t have to do the hard work of
parsing XML; it can delegate that task to a real parser written by experts. It can just pretend to be a
parser by implementing the relevant interfaces and making itself accessible to the factory classes. You
can exploit this idea in a number of ways. Your parser, when it is loaded, can initialize configuration set-
tings on the real parser underneath, so your parser is, in effect, just a preconfigured version of the stan-
dard system parser. Also, your parser can filter the communication between the application and the real
parser underneath. For example, you could change all the attribute names to uppercase or you could
remove all the whitespace between elements. This is just another way of exploiting the pipeline idea,
another way of configuring the components in a pipeline so that each component does just one job. SAX
provides a special class XMLFilterImpl to help you write a pseudo-parser in this way.

The JAXP Transformation API
The interface for XSLT transformation differs from the parser interface in that it isn’t just a layer of fac-
tory methods; it actually controls the whole process.

It’s, therefore, quite a complex API, but (as is often the way) 90% of the time you only need a small
subset.

As discussed earlier, you start by calling TransformerFactory.newInstance() to get yourself an
implementation-specific TransformerFactory.

You can then use this to compile a stylesheet, which you do using the rather poorly named
newTemplates() method. This takes as its argument a Source object, which defines where the
stylesheet comes from. (A stylesheet is simply an XML document, but it can be represented in many dif-
ferent ways.) Source is a rather unusual interface, in that it’s really just a marker for the collection of
different kinds of sources that the particular XSLT engine happens to understand. Most accept the three
kinds of Source defined in JAXP, namely a StreamSource (lexical XML in a file), a SAXSource (a
stream of SAX events, perhaps but not necessarily from an XML parser), and a DOMSource (a DOM tree
in memory). Some processor may accept other kinds of Source; for example, Saxon accepts source
objects that wrap a JDOM, DOM4J, or XOM document node.

The next stage is to create a Transformer, which is the object that actually runs the transformation. You
do this using the newTransformer() method on the Templates object. The Templates object (essen-
tially, the compiled stylesheet in memory) can be used to run the same transformation many times, typi-
cally on different source documents or with different parameters — perhaps in different threads.
Creating the compiled stylesheet is expensive, and it’s a good idea to keep it around in memory if you’re
going to use it more than once. By contrast, the Transformer is cheap to create, and its main role is just
to collect the parameters for an individual run of the stylesheet; so my usual advice is to use it once only.
Certainly, you must never try to use it to run more than one transformation at the same time.

Here’s a simple example that shows how to put this together. It transforms source.xml using stylesheet
style.xsl to create an output file result.html, setting the stylesheet parameter debug to the value no.

TransformerFactory factory = TransformerFactory.newFactory();
Source styleSrc = new StreamSource(new File(“style.xsl”));
Templates stylesheet = factory.newTemplates(styleSrc);

496

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 496

Transformer trans = stylesheet.newTransformer();
trans.setParameter(“debug”, “no”);
Source docSrc = new StreamSource(new File(“source.xml”));
Result output = new StreamResult(new File(“result.html”));
trans.transform(docSrc, output);

You can call various methods to configure the Transformer, for example to supply values for the
<xsl:param> parameters defined in the stylesheet, but its main method is the transform() method
which actually runs the transformation. This takes two arguments: a Source object, which this time rep-
resents the source document to be transformed, and a Result object, which describes the output of the
transformation. Like Source, this is an interface rather than a concrete class. An implementation can
decide how many different kinds of Result it will support. Most implementations support the three
concrete Result classes defined in JAXP itself, which mirror the Source classes: StreamResult for
writing (serialized) lexical XML, SAXResult for sending a stream of events to a SAX ContentHandler,
and DOMResult for writing a DOM tree.

That’s the essence of the transformation API. It’s worth it to be familiar with a few variations, if only to
learn which methods you don’t need for a particular application:

❑ As well as running an XSLT transformation you can run a so-called identity transformation,
which simply copies the input to the output unchanged. To do this, you call the factory’s
newTemplates() method without supplying a source stylesheet. Although an identity transfor-
mation doesn’t change the document at the XML level, it can be very useful because it can con-
vert the document from any kind of Source to any kind of Result, for example from a
SAXSource to a DOMResult or from a DOMSource to a StreamResult. If your XSLT processor
supports additional kinds of source and result, this becomes even more powerful.

❑ Rather than running the transformation using the transform() method, you can run it as a fil-
ter in a SAX pipeline. In fact, you can do this in two separate ways. One way is to create a
SAXTransformerFactory and call its newTransfomerHandler() method. The resulting
SAXTransformerHandler is, in fact, a SAX ContentHandler that can be used to receive (and,
of course, transform) the events passed by a SAX parser to its ContentHandler directly. The
other way, also starting with a SAXTransformerHandler, is to call the newXMLFilter()
method to get an XMLFilter, which as you saw earlier is a pretend-XML-parser. This pretend
parser can be used to feed its output document in the form of SAX events to an application that
is written in the form of a SAX ContentHandler to process SAX output.

One little subtlety in this example is worth mentioning. The class StreamSource
has various constructors, including one that takes an InputStream. Instead of giv-
ing it a new File as the input, you can give it a new FileInputStream. But there’s a
big difference: With a File as input, the XSLT processor knows the base URI of the
source document or stylesheet. With a FileInputStream as input, all the XSLT pro-
cessor sees is a stream of bytes, and it has no idea where they came from. This means
that it can’t resolve relative URIs, for example those appearing in xsl:include and
xsl:import. You do have the option to supply a base URI separately using the
getSystemId() method on the Source object, but it’s easy to forget to do it.

497

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 497

The SAXTransformerFactory also allows the stylesheet to be processed in a pipeline in a simi-
lar way, but this feature is rarely needed.

❑ The JAXP interface allows you to supply two important plug-in objects: an ErrorListener,
which receives notification of errors and decides how to report them, and a URIResolver,
which decides how URIs used in the stylesheet should be interpreted (a common use is to get a
cached copy of documents from local filestore, identified by a catalog file). Be aware that the
ErrorListener and URIResolver supplied to the TransformerFactory itself are used at
compile time, whereas those supplied to the Transformer are used at runtime.

The JAXP Validation API
New in JAXP 1.3, the validation API allows you to control validation of a document against a schema.
This is a schema with a small s. The API is designed to be independent of the particular schema technol-
ogy you use. The idea is that it works equally well with DTDs, XML Schema, or Relax NG, and perhaps
even other technologies such as Schematron.

Validation is often done immediately after parsing, and, of course, it can be done inline with parsing —
that is, as the next step in the processing pipeline. But it can make sense to do validation at other stages
in the pipeline as well. For example it is useful to validate that the output of a transformation is correct
XHTML. The validation API is, therefore, quite separate from the parsing API (and some validators —
Saxon is an example — are distributed independently of any XML parser).

The API itself is modelled very closely on the transformation API. The factory class is called
SchemaFactory, and its newInstance() method takes as a parameter a constant identifying the
schema language you want to use. With the resulting implementation-specific SchemaFactory object,
you can call a newSchema() method to parse a source schema to create a compiled schema, in much the
same way as newTemplates() gives you a compiled stylesheet. The resulting Schema object has a
method newValidator() that, as you would expect, returns a Validator object. This is the analog of
the Transformer in the transformation API, and sure enough, it has a validate() method with two
arguments: a Source to identify the document being validated, and a Result to indicate the destination
of the post-validation output document. (You can omit this argument if you only want a success/failure
result.)

If you want to do validation in a SAX pipeline, the Schema object offers another method
newValidatorHandler(). This returns a ValidatorHandler that, like a TransformerHandler,
accepts SAX events from an XML parser and validates the document that they represent.

Here’s an example that validates a document supplied in the form of a DOM, creating a new DOM rep-
resenting the post-validation document. As well as having attribute values normalized and defaults
expanded, it differs from the original by having type annotations, which can be interrogated using meth-
ods available in DOM level 3 such as Node.getTypeInfo().

SchemaFactory schemaFactory =
SchemaFactory.newInstance(“http://www.w3.org/2001/XMLSchema”);

// create a grammar object.
Schema schemaGrammar = schemaFactory.newSchema(new File(“schema.xsd”));
Validator schemaValidator = schemaGrammar.newValidator();
//validate xml instance against the grammar.
schemaValidator.validate(new StreamSource(“instance.xml”));
System.err.println(“Validation successful”);

498

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 498

After the discussion of the main components of the JAXP API, move on now to XQJ, the Java API for
XQuery, or rather, as the order of the initials implies, the XQuery API for Java. (If you think that’s an
arbitrary distinction, you need to study the byzantine politics involved in defining the name.)

XQJ: The XQuery API for Java
Unlike the other APIs discussed in this chapter, XQJ is not a completely stable specification at the time of
writing. You can get early access copies of the specifications, but there is no reference implementation
you can download and play with. Nevertheless, it’s implemented in a couple of products already (for
example, Saxon and the DataDirect XQuery engine), and it seems very likely that many more will follow.
A great many XQuery implementations are trying to catch a share of what promises to be a big market.
They won’t all be successful, so using a standard API is a good way to hedge your bets when it comes to
choosing a product.

Because the detail might well change, in this chapter, you get an overview of the main concepts.

XQJ does reuse a few of the JAXP classes, but it’s obvious to the most casual observer that it comes from
a different stable. In fact, it owes far more to the design of data-handling APIs like JDBC.

The first object you encounter is an XQDataSource. Each implementation has to provide its own
XQDataSource object. Unlike JAXP, there’s no factory that enables you to choose the right one; that’s left
to you (or to a framework such as J2EE) to sort out. You can think of an XQDataSource as an object that
represents a database.

From this object you call getConnection() to get a connection to the database. The resulting
XQConnection object has methods like getLoginTimeout(), so it’s clear that the designers are think-
ing very much in client-server terms with the connection representing a communication channel
between the client and the server. Nevertheless, it’s sufficiently abstract that it’s quite possible for an
implementation to run the server in the same thread as the client (which is what Saxon does).

After you’ve got a connection, you can compile a query. This is done using the prepareExpression()
method on the Connection object. This architecture means that a compiled query is closely tied not only
to a specific database but to a specific database connection. The result of the method is an
XQPreparedExpression object. Rather surprisingly, this fulfills the roles of both the Templates and
the Transformer objects in the JAXP transformation API. You can set query parameters on the
XQPreparedExpression object, which means that it’s not safe to use it in multiple threads at the same
time. (This feels like a design mistake that might well be corrected before the final spec is frozen.)

You can then evaluate the query by calling the executeQuery() method on the XQPreparedExpression.
This returns an XQResultSequence, which is a representation of the query results that has characteristics
of both a List and an Iterator. In fact, two varieties of XQResultSequence exist, one of which allows only
forward scrolling through the results, whereas the other allows navigation in any direction.

The items in the query result are represented using an object model that’s fairly close to the abstract
XDM data model defined in the XQuery specification itself. The items in the sequence are XQItem
objects. These can be either nodes or atomic values. If they are nodes, you can access them using the
getNode() method which returns a DOM representation of the node; if they are atomic values you can
access the value using a method such as getBoolean() or getInt() according to the actual type of the
value. (The mapping between XML Schema data types and Java types seems to be slightly different from
the one that JAXB uses.)

499

Chapter 16: XML and Java

24_777779 ch16.qxp 3/1/07 11:49 PM Page 499

Some interesting methods allow the results of a query to be presented using other APIs discussed in this
chapter. For example, getItemAsStream() returns a StAX stream representation of a node in the query
results, whereas writeItemToSAX() allows it to be represented as a stream of SAX events.

For more details of the XQJ interface, you can download the early access specifications from http://jcp
.org/en/jsr/detail?id=225. But this is not yet a mature specification, so you must carefully investi-
gate how the interface is implemented in different products.

Summary
In this chapter, you have taken a lightning tour through the main places where Java and XML meet. You
started with the lowest level interfaces — the streaming pull and push parser APIs, SAX and StAX. Then
you moved up a level to the various tree-structured document object models: DOM, JDOM, DOM4J,
and XOM.

For data centric applications where the business logic resides in Java, you looked at Java XML data
binding interfaces, typified by the JAXP specification. Then you examined the interfaces used to control
high-level, XML-based languages such as XSLT and XQuery from a Java application framework.

Some of these APIs are covered in much more detail elsewhere in this book. For others, you have to go
to the reference materials for the APIs, which can, in every case, be found online. Although there isn’t
enough detail in this chapter to enable you to write code using any of these interfaces, you should now
have enough background to enable you to study the reference manuals. You have already acquired a
broad understanding of the key concepts and, in particular, an understanding of the range of different
interfaces available and their relationship to each other.

500

Part V: Programming XML

24_777779 ch16.qxp 3/1/07 11:49 PM Page 500

DDyynnaammiicc LLaanngguuaaggeess aanndd XXMMLL

Although much attention is currently directed to Java and .NET, many developers work with
dynamic programming languages such as Perl, Python, and Ruby. Dynamic languages differ from
languages such as Java or C# in that the variables are usually not fixed to a particular type. For
example, the following code fragment is perfectly valid in a dynamic language:

var x;
x = 5;
x = “testing”;

Notice that the variable declaration does not identify the type of the variable, and that it may be used
to store numeric, string or even object values. In most dynamic languages, the variable declaration is
not even needed: You can simply begin to use a variable. Some languages, such as Python and Ruby,
go even further, supporting what has become known as duck typing. With duck typing, a variable is
treated as a particular type as long as it supports the same method and property calls as the desired
type does. That is, if a block of code is expecting a method called toString, then any object may be
used as long as it supports a toString method. This demonstrates a powerful feature in dynamic
languages, the ability to rapidly prototype and test a block of code. (The term duck typing derives
from the old expression, “If it walks like a duck, and quacks like a duck, it must be a duck.”)

Dynamic languages are frequently also known as scripting languages, as many of them are inter-
preted languages that may be used directly from the command-line, without requiring a separate
compilation step. These two features — dynamic variables and flexibility in release — outline the
benefits many developers see in dynamic languages: It is very easy to rapidly develop and iterate
applications written in dynamic languages. In addition, some programming concepts are much
more difficult to implement in statically typed languages when compared with dynamic languages.

Dynamic languages are also ideal for manipulating XML. Most have strong text-manipulation
capabilities, and libraries for processing XML in a variety of ways. This chapter looks at three of
the most commonly used dynamic languages (Perl, Python, and Ruby). For each of these lan-
guages, it will show some of the common methods of using these languages to read and write
XML and related technologies.

25_777779 ch17.qxp 3/1/07 11:50 PM Page 501

Perl
Perl is one of the oldest, and most powerful of the scripting languages. Originally created by Larry Wall
in 1987, he wanted to name it Pearl, after the Parable of the Pearl. However, that name was already taken
by another programming language, so he shortened it to Perl. Later, the name has been said to be an
acronym (Practical Extraction and Report Language), however this name is a fairly contrived example of
creating the acronym after the fact.

Perl is available for most, if not all, platforms and is currently at version 5.8. Its forte is text-processing,
and it is typically used in scenarios where you need to search through large amounts of text to find the
information you need, such as processing log files. This section focuses on the most basic XML parsers
available in Perl, showing you techniques for reading and writing XML using the commonly available
libraries for Perl. Note, however, that Perl supports a great many more libraries and methods of working
with XML: see Programming Perl ISBN 0-596-00027-8 (aka “The Camel Book”) for more details on Perl.
The samples in this section were created using ActivePerl 5.8.8 (Build 819), but they should work with
any Perl installation with few or no changes.

Reading and Writing XML
Perl supports three main types of parsers for working with XML: tree-based, object-based, and stream-
based. Each is useful in different situations. Object-based parsers convert the XML into Perl objects,
enabling you to work with XML without keeping track of angle brackets. Tree-based parsers enable you
to work with the XML in memory, moving forward and backward as needed to process the XML. Finally,
stream-based parsers move rapidly through the XML document, raising events that you can use in your
code to process the XML. Generally, object-based parsers “feel” the most natural for those used to deal-
ing with a programming language. Rather than deal with XML as a separate format, object-based parsers
enable the developer to use the techniques they already know to work with the format. Tree-based
parsers are generally based on the XML DOM, and thus are the easiest to port between languages. They
create a common model in memory, of the XML as a tree with a single root, and branches reaching out to
terminal leaf nodes. Finally, stream-based parsers are generally the fastest if you need forward-only
access to the XML. In addition, they usually have the lowest memory requirements because they only
store a portion of the document in memory at any time. These parsers are best if you need only a small
part of the XML file, or if you will only need to process the file once, and in order.

Reading XML
The simplest library for processing XML with Perl is named, strangely enough, XML::Simple. This
library was originally created for processing configuration files, but it can be used with many XML files.
It is an object-based parser, converting the XML into Perl data structures, such as hashrefs and arrays.
XML::Simple has two main methods: XMLin loads a block of XML and converts it into a mixture of
arrays and associative arrays, whereas XMLout does the opposite. In Perl, arrays are zero-based lists of
items, and associative arrays are collections of name-value pairs. Listing 17-1 shows how this library can
be used to process the XML that is shown in Listing 17-2.

LLiissttiinngg 1177--11:: UUssiinngg XXMMLL::::SSiimmppllee ttoo rreeaadd XXMMLL wwiitthh PPeerrll

use XML::Simple;

my $file = ‘customers.xml’;

502

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 502

default behaviour
print “Default behaviour\n”;
my $doc = XMLin($file);
print XMLout($doc->{customer}->{ALFKI});
print “\n============================\n”;

Coerces structure into arrays (outputs as elements)
print “Output as elements\n”;
my $doc = XMLin($file, ForceArray=>1);
print XMLout($doc->{customer}->{ALFKI});
print “\n============================\n”;

Does not use id as key, creates array of customers
print “Display 0th customer\n”;
my $doc = XMLin($file, KeyAttr=>[]);
print XMLout($doc->{customer}->[0]);
print “\n============================\n”;

Return selected elements
print “Return selected elements\n”;
my $doc = XMLin($file);
print $doc->{customer}->{AROUT}->{contact}->{phone}, “\n”;

LLiissttiinngg 1177--22:: SSaammppllee XXMMLL uusseedd iinn rreeaaddiinngg ssaammpplleess

<customers>
<customer id=”ALFKI”>
<company>Alfreds Futterkiste</company>
<address>
<street>Obere Str. 57</street>
<city>Berlin</city>
<zip>12209</zip>
<country>Germany</country>

</address>
<contact>
<name>Maria Anders</name>
<title>Sales Representative</title>
<phone>030-0074321</phone>
<fax>030-0076545</fax>

</contact>
</customer>
<customer id=”ANATR”>
<company>Ana Trujillo Emparedados y helados</company>
<address>
<street>Avda. de la Constitución 2222</street>
<city>Mexico D.F.</city>
<zip>05021</zip>
<country>Mexico</country>

</address>
<contact>
<name>Ana Trujillo</name>
<title>Owner</title>

(continued)

503

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 503

LLiissttiinngg 1177--22 (continued)

<phone>(5) 555-4729</phone>
<fax>(5) 555-3745</fax>

</contact>
</customer>
<customer id=”ANTON”>
<company>Antonio Moreno Taqueria</company>
<address>
<street>Mataderos 2312</street>
<city>Mexico D.F.</city>
<zip>05023</zip>
<country>Mexico</country>

</address>
<contact>
<name>Antonio Moreno</name>
<title>Owner</title>
<phone>(5) 555-3932</phone>

</contact>
</customer>
.
.
.

</customers>

In the previous code, the directive use XML::Simple; loads it into your script. It uses the XMLIn com-
mand to import the XML, and XMLout to print it to the system console. Each of the runs loads the same
file, but using the various parameters to force the in-memory representation to change. Listing 17-3
shows the output of the code in Listing 17-1.

504

Part V: Programming XML

Installing Perl modules
To use XML::Simple in your Perl scripts, first ensure that you have it as part of your
distribution. It is included with the ActivePerl distribution by default. If you do not
have this library installed, you can install it from Comprehensive Perl Archive Network
(CPAN). CPAN is a Web site (cpan.org) that provides a common location for finding
and downloading Perl libraries. As of this writing, there are almost 11,000 modules
available. These range from modules for specific operating systems, image and text
processing, and, of course, XML handling. The XML::Simple page on CPAN is at
http://search.cpan.org/~grantm/XML-Simple-2.16/lib/XML/Simple.pm.

Perl interpreters generally have the capability of automatically downloading and com-
piling modules from CPAN. This means that you generally do not need to navigate
manually through the CPAN site, find the module you need, download it, and com-
pile. If you do not have the module installed, or if there is a more recent version of the
module available, the code will be downloaded and Perl will attempt to compile the
module. This compilation generally means you need a make program (such as
nmake.exe or dmake.exe) available on your computer, and on the system path. Once
downloaded and compiled, the module will be available to your applications.

25_777779 ch17.qxp 3/1/07 11:50 PM Page 504

LLiissttiinngg 1177--33:: RReeaaddiinngg XXMMLL wwiitthh XXMMLL::::SSiimmppllee

Default behaviour
<opt company=”Alfreds Futterkiste”>
<address city=”Berlin” country=”Germany” street=”Obere Str. 57” zip=”12209” />

<contact name=”Maria Anders” fax=”030-0076545” phone=”030-0074321”
title=”Sales Representative” />

</opt>

============================
Output as elements
<opt>
<address>
<city>Berlin</city>
<country>Germany</country>
<street>Obere Str. 57</street>
<zip>12209</zip>

</address>
<company>Alfreds Futterkiste</company>
<contact>
<name>Maria Anders</name>
<fax>030-0076545</fax>
<phone>030-0074321</phone>
<title>Sales Representative</title>

</contact>
</opt>

============================
Display 0th customer
<opt id=”ALFKI” company=”Alfreds Futterkiste”>
<address city=”Berlin” country=”Germany” street=”Obere Str. 57” zip=”12209” />

<contact name=”Maria Anders” fax=”030-0076545” phone=”030-0074321”
title=”Sales Representative” />

</opt>

============================
Return selected elements
(171) 555-7788

By default, XML::Simple converts the document into a hashref (associative array). Therefore, the first
customer appears in memory as shown in Listing 17-4. Each of the elements in the original XML file is
now represented as a name-value pair.

LLiissttiinngg 1177--44:: SSttrruuccttuurree ooff tthhee ccuussttoommeerr iinn mmeemmoorryy

$VAR1 = {
‘address’ => {

‘country’ => ‘Germany’,
‘zip’ => ‘12209’,
‘city’ => ‘Berlin’,

(continued)

505

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 505

LLiissttiinngg 1177--44 (continued)

‘street’ => ‘Obere Str. 57’
},

‘contact’ => {
‘fax’ => ‘030-0076545’,
‘name’ => ‘Maria Anders’,
‘title’ => ‘Sales Representative’,
‘phone’ => ‘030-0074321’

},
‘company’ => ‘Alfreds Futterkiste’

};

You have a number of options for adjusting the resulting structure. For example, the ForceArray
parameter of XMLin converts each element into an array. Listing 17-5 shows the resulting in-memory
structure.

LLiissttiinngg 1177--55:: SSttrruuccttuurree ooff tthhee ccuussttoommeerr iinn mmeemmoorryy wwiitthh FFoorrcceeAArrrraayy

$VAR1 = {
‘address’ => [

{
‘country’ => [‘Germany’],
‘zip’ => [‘12209’],
‘city’ => [‘Berlin’],
‘street’ => [‘Obere Str. 57’]

}
],

‘contact’ => [
{
‘fax’ => [‘030-0076545’],
‘name’ => [‘Maria Anders’],
‘title’ => [‘Sales Representative’],
‘phone’ => [‘030-0074321’]

}
],

‘company’ => [‘Alfreds Futterkiste’]
};

In addition to the XML::Simple module, Perl supports a number of other XML processing modules.
Stream-based parsing is available from the XML::Parser module. In fact, this module forms the basis of
many of the other XML parsers for Perl, including XML::Simple. When using XML::Parser in stream-
ing mode, you supply up to three handlers; these are called for the start, end, and contents of each tag.
Listing 17-6 shows a script to count the occurrences of cities in the customer file.

LLiissttiinngg 1177--66:: CCoouunnttiinngg cciittiieess wwiitthh ssttrreeaamm--bbaasseedd ppaarrssiinngg

use XML::Parser;

my $file = ‘customers.xml’;

my $parser = new XML::Parser();

506

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 506

my %cities;
my $flag = 0;

sub start_handler {

my $p = shift;
my $elem = shift;

if ($elem =~ /city/) {
$flag = 1;

}
}

sub end_handler {
my $p = shift;
my $elem = shift;
if ($elem =~ /customers/) {
foreach $city (keys %{$cities}) {
print $city, “: “, %{$cities}->{$city}, “\n”;

}
}

}
sub char_handler {
if($flag) {
my ($p, $data) = @_;
$cities->{$data}++;
$flag = 0;

}
}

$parser->setHandlers(Start => \&start_handler,
End => \&end_handler,
Char => \&char_handler);

$parser->parsefile($file);

Three handlers are defined and assigned to the parser. Of the three, only char_handler may need some
explanation; it is called for each text element in the XML.

The code creates a hash table. The key for each of the elements in the hash table will be the city names,
while the value will be the count of that city. As the XML needs to be read only once, using a streaming
parser such as XML::Parser means that the code should run faster than it might with another form of
parser, as the parser itself does not need to create any additional memory structures. In start_handler,
which is called at the beginning of each element, the code determines if it is in the city element, setting
a flag if so. If not, it continues. Similar code could handle multiple elements. If the flag is set, the
char_handler routine increments the count for that city in the hash and turns off the flag. Finally,
when the end of document is reached in end_handler, the count of each city is dumped to the output.
Listing 17-7 shows a portion of the output of this script.

507

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 507

LLiissttiinngg 1177--77:: OOuuttppuutt ooff tthhee PPeerrll ssttrreeaamm--bbaasseedd ppaarrssiinngg

Reims: 1
Barquisimeto: 1
Mexico D.F.: 5
Strasbourg: 1
Graz: 1
Lille: 1
Leipzig: 1
Charleroi: 1
Bruxelles: 1
Resende: 1
San Francisco: 1
Eugene: 1
Warszawa: 1
Elgin: 1

Writing XML
Writing XML with Perl and XML::Simple is a matter of building up the correct structure in memory and
using XMLout to write the resulting XML structure. The items in an array are converted into elements,
whereas the items in a hashref are converted into attributes. The code in Listing 17-8 shows how to cre-
ate a simple in-memory structure. Note that the formatting is for clarity; the definition of the structure
could fit on one line.

LLiissttiinngg 1177--88:: WWrriittiinngg XXMMLL wwiitthh XXMMLL::::SSiimmppllee

use XML::Simple;

my $cfg = {‘version’ => ‘1.0’,
‘section’ => {
‘name’ => ‘Section 1’,
‘setting’ => [

{
‘name’ => ‘Setting#1’,
‘value’ => ‘Value#1’

},
{
‘name’ => ‘Setting#2’,
‘value’ => ‘Value#2’

},
{
‘name’ => ‘Setting#3’,
‘value’ => ‘Value#3’

}
]

}
};

write out Perl variable
print XMLout($cfg, RootName=>’configuration’, XMLDecl=>1);

508

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 508

The XMLout command takes the memory structure created and writes the XML version to the console.
As there was no root node defined in the $cfg variable, only the value for the version, this is added dur-
ing the call to XMLout. In addition, the standard XML declaration is included by including the XMLDecl
parameter. If you were creating this XML to be part of a larger structure, you would likely avoid this
step. Listing 17-9 shows the output of this script.

LLiissttiinngg 1177--99:: OOuuttppuutt ooff wwrriittiinngg XXMMLL wwiitthh XXMMLL::::SSiimmppllee

<?xml version=’1.0’ standalone=’yes’?>
<configuration version=”1.0”>
<section name=”Section 1”>
<setting name=”Setting#1” value=”Value#1” />
<setting name=”Setting#2” value=”Value#2” />
<setting name=”Setting#3” value=”Value#3” />

</section>
</configuration>

Support for Other XML Formats
Beyond XML::Simple and XML::Parser, many other modules exist for working with XML and Perl.
CPAN (see the Resources section later in this chapter) lists over 3700 current modules; they include
everything from simple processing, through specific XML formats such as Atom or DocBook, to XSLT
and XSL:FO processors. Some of the most notable modules include:

❑ XML::Parser::PerlSAX — A stream-based parser with full SAX support.

❑ XML::Twig — A tree-based parser, optimized for working with extremely large documents.
Documents can be loaded entirely in memory or chunked to conserve memory.

❑ XML::DOM — A tree-based parser with W3C DOM support. Good for porting DOM code, but
rather non-Perl.

Python
Python is an interpreted scripting language that has been around for quite some time. It was created by
Guido van Rossum in 1990. The name is not derived from the snake, but is in fact a reference to the tele-
vision show, “Monty Python’s Flying Circus.” This reference tends to be repeated throughout Python
code, resulting in many samples making reference to spam and parrots.

Python has many of the text-processing features of Perl, but with a more readable syntax and more
object-orientation. One of the core tenets of Python coding is that readability is more important than
brevity. While it may take more code in Python to perform a given task compared to some languages
(most notably Perl), you are much more likely to understand just what the code is intended to do, even
months later. In addition to text-processing, the breadth of libraries means that Python can write just
about any type of application. It has been embraced fairly strongly by Web developers. The first version
of Microsoft’s Site Server was written in Python. In addition, the popular video-sharing site YouTube is
reported to be written, “almost entirely in Python.”

509

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 509

Python is available for almost every platform imaginable, including the new IronPython implementation
for Microsoft’s .NET platform. The current version as of this writing is 2.5. This section focuses on some
of the more commonly used XML parsers. As with Perl, there are many more modules available. The
Python Cheese Shop Web site (python.org/pypi) is the official central repository of Python modules.
As of this writing, it lists over 1850 packages, of which there are approximately 50 for working with
XML. While this seems lower than other languages, this is likely due to the strength of the core XML
modules. For more details on Python, see Beginning Python (ISBN 978-0-7645-9654-4) or the Python Web
site (python.org). The samples in this section were created using the Windows version of Python ver-
sion 2.5.

Reading and Writing XML
Since Python 2, the standard library includes support for processing XML, including modules that
include DOM, SAX, pull, and object-based syntaxes.

The DOM implementation is a tree-based model, and is modeled on the W3C DOM implementation.
As with other DOM implementations, the result is an in-memory structure that contains the whole docu-
ment. You can then move forward and backward through the document as necessary. SAX and pull pro-
vide lighter-weight models for reading XML. The SAX parsing is similar to the other implementations:
You provide a number of event handlers that are called while the document is being read. Pull parsers,
on the other hand, are generally called in a loop. Each time through the loop, the current position is
advanced. Both SAX and pull parsers are best when you need to read through a document in a forward-
only fashion, or when the document is quite large. Finally, object-based parsers convert the XML into
Python data structures. While this provides the most natural, or Pythonic, means of working with XML,
it is also typically the least portable code.

Reading XML
The DOM support in Python is included in the xml.dom and xml.dom.minidom libraries. The xml.dom
library is a full implementation of the W3C DOM, while the xml.dom.minidom was designed as a
lightweight version of the DOM, removing support for some of the less used features. Although reading
XML with the DOM may not be the most “Pythonesque” means of processing XML, it is the most
portable technique. For more details on the DOM, see Chapter 12. Listing 17-10 shows loading the
customers.xml file using Python with the minidom library.

LLiissttiinngg 1177--1100:: LLooaaddiinngg XXMMLL uussiinngg DDOOMM iinn PPyytthhoonn

from xml.dom.minidom import parse

doc = parse(“customers.xml”)
print doc.documentElement.childNodes.length

print “=========”
print “\tusing toxml”
print “Print first customer”
print doc.documentElement.childNodes[1].toxml()
print “=========”
print “\tusing toprettyxml”
print doc.documentElement.childNodes[1].toprettyxml()

print “=========”
print “getElementsByTagName returns array of customers”

510

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 510

customers = doc.getElementsByTagName(“customer”)
print customers[15].toprettyxml(‘..’, ‘\n’)

print “=========”
print “Return Attribute”
print customers[34].attributes.item(0).value

In order to use the DOM objects, you import them into the Python script. The first line in the preceding
code imports the parse object, which is used to load the local file. There is also a parseString object
that is used to load string data containing XML. At this step, the memory structure of the XML docu-
ment is generated. After it is loaded, you can use the DOM methods described in Chapter 12 to
extract the nodes in the document. Each of the nodes in the minidom have the methods toxml() and
toprettyxml() included. These methods are non-standard, and are used to export the node in XML.
The difference between the two is that the toprettyxml supports the addition of parameters for alter-
ing the format. In the code in Listing 17-10, the code retrieves the first child of the root element, and
prints it to the console. The first call, using toxml looks like the code in Listing 17-11 (extra lines have
been removed).

LLiissttiinngg 1177--1111:: OOuuttppuutt uussiinngg ttooxxmmll

using toxml
Print first customer
<customer id=”ALFKI”>
<company>
Alfreds Futterkiste

</company>
<address>
<street>
Obere Str. 57

</street>
<city>
Berlin

</city>
<zip>
12209

</zip>
<country>
Germany

</country>
</address>
<contact>
<name>
Maria Anders

</name>
<title>
Sales Representative

</title>
<phone>
030-0074321

</phone>
<fax>
030-0076545

</fax>
</contact>

</customer>

511

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 511

In contrast, the default printout using toprettyxml creates a more compact document, as seen in
Listing 17-12.

LLiissttiinngg 1177--1122:: OOuuttppuutt uussiinngg ttoopprreettttyyxxmmll

using toprettyxml
<customer id=”ALFKI”>

<company>Alfreds Futterkiste</company>
<address>
<street>Obere Str. 57</street>
<city>Berlin</city>
<zip>12209</zip>
<country>Germany</country>

</address>
<contact>
<name>Maria Anders</name>
<title>Sales Representative</title>
<phone>030-0074321</phone>
<fax>030-0076545</fax>

</contact>
</customer>

Alternately, you can use the properties of the toprettyxml to alter the characters used to indent the
lines and the character to use at the end of lines.

Rather than use the DOM, you may want to use stream-based parsing. Tree-based parsers that provide a
DOM interface have a bit of a bad reputation for memory use. This is because they must load the entire
XML document into memory and create the in-memory representation of the DOM. Stream-based
parsers, such as those based on SAX, do not have this limitation, because they hold only a small fraction
of the document in memory at any one time. They are also incredibly fast at processing files. The major
problem with stream-based processors, however, is that they are forward-only. If you want to move
backwards through the document, stream-based parsers do not give you this capability. For more details
on SAX, see Chapter 13. The Python SAX parser is defined in the xml.sax library. Within that library,
there are three main functions that are used.

Class Description

make_parser Creates a SAX parser. Before using this parser, you must set the class that will
perform the processing. This class must inherit from xml.sax.handler
.ContentHandler.

parse Calls the ContentHandler to process the document. The class needs to be
created first using make_parser. Takes a file as a parameter.

parseString Calls the ContentHandler to process the document. The class needs to be
created first using make_parser. Takes a string as a parameter.

Listing 17-13 shows using the SAX parser with Python.

512

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 512

LLiissttiinngg 1177--1133:: PPaarrssiinngg XXMMLL wwiitthh SSAAXX uussiinngg PPyytthhoonn

from xml.sax import make_parser
from xml.sax.handler import ContentHandler

file = “customers.xml”

class CityCounter(ContentHandler):
def __init__(self):
self.in_city = 0
self.cities = {}

def startElement(self, name, attrs):
if name == ‘city’:
self.in_city = 1

def endElement(self, name):
if name == ‘customers’:
for city, count in self.cities.items():
print city, “: “, count

def characters(self, text):
if self.in_city:
self.in_city = 0
if self.cities.has_key(text):
self.cities[text] = self.cities[text] + 1

else:
self.cities[text] = 1

#main routine
p = make_parser()
cc = CityCounter()
p.setContentHandler(cc)
p.parse(file)

As with other SAX-based parsers, you create one or more methods that are called by the parser when
specific XML nodes are processed. In this case, the three methods are created in a class that inherits from
the default SAX content handler (xml.sax.handler.ContentHandler). This enables chaining, in case
you wanted to have multiple SAX processors working on the same XML file. This class is assigned to
the parser using the setContentHandler method. In addition, you could use the setErrorHandler
method to identify a handler that will be called if an error occurs during the processing of the XML.
When the parse method of the SAX parser begins the processing, your methods are called as needed.
Just as with other SAX implementations, the startElement method is called at the beginning of each
element, endElement for the close of the element, and characters is called for the content of the ele-
ment. You can test this script on the command line using the command (assuming that Python.exe is
on your system path):

python streamcustomers.py

Listing 17-14 shows a portion of the output of this script.

513

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 513

LLiissttiinngg 1177--1144:: OOuuttppuutt ooff tthhee PPyytthhoonn SSAAXX pprroocceessssoorr

Boise : 1
Leipzig : 1
Caracas : 1
Strasbourg : 1
Lille : 1
Barcelona : 1
Oulu : 1
Aachen : 1
Warszawa : 1
Marseille : 1
Montreal : 1
Mannheim : 1
Elgin : 1
Reggio Emilia : 1
Toulouse : 1
Walla Walla : 1
Madrid : 3
San Cristobal : 1
Sevilla : 1
Kobenhavn : 1
Munchen : 1
Bruxelles : 1
London : 6
Helsinki : 1
Lisboa : 2
Portland : 2
Seattle : 1
Bräcke : 1

Writing XML
Just as Python has methods for reading, it also has a number of ways to write XML.

XML Bookmark Exchange Language (XBEL) is an XML format defined by the Python XML Special
Interest Group as a format for applications to share Web browser bookmarks. It has many of the features
of OPML, but has the advantage that it is not tied as closely to the implementation of one program as
OPML is. In addition, it has a DTD, enabling validation. You can read more about the XBEL format at the
XBEL Resources page (http://pyxml.sourceforge.net/topics/xbel/). Listing 17-15 shows the
creation of a small XBEL file using Python.

LLiissttiinngg 1177--1155:: WWrriittiinngg XXMMLL wwiitthh PPyytthhoonn

from xml.dom.minidom import getDOMImplementation
from xml.dom import EMPTY_NAMESPACE

class simpleXBELWriter:

def __init__(self, name):

514

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 514

impl = getDOMImplementation()
doctype = impl.createDocumentType(“xbel”,
“+//IDN python.org//DTD XML Bookmark Exchange Language 1.0//EN//XML”,
“http://www.python.org/topics/xml/dtds/xbel-1.0.dtd”)

self.doc = impl.createDocument(EMPTY_NAMESPACE,
“xbel”, doctype)

self.doc.documentElement.setAttribute(“version”, “1.0”)

root = self.doc.createElement(“folder”)
self.doc.documentElement.appendChild(root)

def addBookmark(self, uri, title, desc=None):
book = self.doc.createElement(“bookmark”)
book.setAttribute(“href”, uri)

t = self.doc.createElement(“title”)
t.appendChild(self.doc.createTextNode(title))
book.appendChild(t)

if(desc):
d = self.doc.createElement(“desc”)
d.appendChild(self.doc.createTextNode(desc))
book.appendChild(d)

self.doc.getElementsByTagName(“folder”)[0].appendChild(book)

def Print(self):
print self.doc.toprettyxml()

w = simpleXBELWriter(“Some useful bookmarks”)
w.addBookmark(“http://www.geekswithblogs.net/evjen”,
“Bill Evjen’s Weblog”)

w.addBookmark(“http://www.acmebinary.com/blogs/kent”,
“Kent Sharkey’s Weblog”)

w.addBookmark(“http://www.wrox.com”,
“Wrox Home Page”,
“Home of great, red books”)

w.Print()

Just as with other DOM implementations, you create each node at the document level and append it
where necessary. In the code in Listing 17-15, a doctype is first created, to enable validating parsers to
check the resulting document. This uses the doctype defined for XBEL documents.

The basic structure of an XBEL document is a root node (xbel) containing multiple folder elements. The
sample shown in Listing 17-15 creates only a single folder and inserts all bookmarks into it. In a more
robust implementation of an XBEL generator, you would want to enable multiple nested folders. Title
and, optionally, description elements are added to each bookmark. Listing 17-16 shows the resulting
XML.

515

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 515

LLiissttiinngg 1177--1166:: AA ccrreeaatteedd XXBBEELL ddooccuummeenntt

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE xbel PUBLIC
“+//IDN python.org//DTD XML Bookmark Exchange Language 1.0//EN//XML”
“http://www.python.org/topics/xml/dtds/xbel-1.0.dtd”>

<xbel version=”1.0”>
<folder>
<bookmark href=”http://www.geekswithblogs.net/evjen”>
<title>Bill Evjen’s Weblog</title>

</bookmark>
<bookmark href=”http://www.acmebinary.com/blogs/kent”>
<title>Kent Sharkey’s Weblog</title>

</bookmark>
<bookmark href=”http://www.wrox.com”>
<title>Wrox Home Page</title>
<desc>Home of great, red books</desc>

</bookmark>
</folder>

</xbel>

Support for Other XML Formats
As you might expect, what you have seen is only the tip of a huge iceberg. Python has a number of addi-
tional libraries for working with XML. Some of the most notable ones are:

❑ xml.marshal — Part of the PyXML distribution. This library enables a simple means of convert-
ing between Python objects and XML.

❑ XSLT — A number of XSLT processors are available for Python, including 4XSLT, Pyana, and
libxslt.

❑ Web services — A number of Python Web service clients exist, including XML-RPC (xmlrpclib)
and SOAP (SOAPpy).

Ruby
Ruby is an interpreted scripting language, designed with object-orientation and simplicity in mind. It
was written by Yukihiro “Matz” Matsumoto in 1995. He wanted to create a language that used the best
parts of his favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp). At the same time, he wanted to
create a language that was expressive. That is, one that was simple to use and understand, but with a
great deal of power. The name is a slight tribute to Perl, as Matz decided that keeping with the name of a
precious gem would be appropriate.

Ruby has many of the features of Perl and Python, as well as features of more academic languages. It
shares the text-processing capabilities of Perl and Python, as well as the dynamic nature of these lan-
guages. From the more academic languages, Ruby obtained lambda expressions — powerful inline func-
tions — as well as strict object-orientation. It is this last feature that truly distinguishes Ruby from the
previous two languages. While both Perl and Python have some aspects of object-orientation, they are

516

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 516

more or less recent additions to the language. Ruby, on the other hand, was designed around the con-
cepts of object-oriented programming. Recently, Ruby has grown in popularity, partly because of its
completeness, but also due to the increasing popularity of a Web interface written to use it: Ruby on
Rails.

Reading and Writing XML
Ruby has support for both reading and writing XML via the REXML library. This library is part of the
base Ruby class library. This library was originally modeled off of the Electric XML library. This library
was written in Java by The Mind Electric. However, the API is designed to fit into the Ruby way of
doing things. This means, “Keep the common case simple, and the uncommon, possible.” As such, the
API does not completely follow standards, such as the W3C DOM. Instead, it forms a close, but more
easily developed model.

Reading XML
Ruby has two main methods for reading XML content:

❑ A tree-based method that is similar, but not identical, to working with the DOM. While it main-
tains the XML file in a tree-based memory structure, it does not provide all the methods
required by the W3C DOM implementation. Although this makes porting code that uses the
W3C model more difficult to port to Ruby, it means that the resulting API is closer to the natural
way of working with Ruby.

❑ A stream-based method based on SAX2. This method more closely follows the SAX model, as
described in Chapter 13. The core parser handles three events: one that occurs at the beginning
of each element, one at the end, and one for text nodes. You provide the parser with a file or
block of XML to process, and it begins executing the methods in order. Although SAX process-
ing is much faster than DOM processing, it is inherently a forward-only pass through the XML.
In Ruby, you create a SAX parser by inheriting from a class, and overriding the appropriate
methods (see below).

While some differences between the Ruby tree-based model and the W3C DOM are minor, they can
trip you up. See the following table for some of the mostly commonly encountered differences between
the two.

W3C DOM method Ruby equivalent Description

documentElement root or root_node Returns the root element of the XML file

addChild << or add Adds a new node to the document tree.

childNodes get_elements Returns the collection of elements
below the current element.

attributes attribute Returns the collection of attributes for the
selected element. Attributes can be identified
by numerical index (starting with 1) or the
name of the attribute.

Table continued on following page

517

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 517

W3C DOM method Ruby equivalent Description

firstChild elements[1] The elements method returns the collection
of child elements of the selected element.
Children can be identified by numerical
index (starting with 1), string name, or via an
XPath statement.

nextSibling next_element Returns the next sibling when iterating
through a set of elements.

getElementsByTagName get_elements Both methods take an XPath statement, and
return the collection of elements that match
that statement.

Listing 17-17 shows some of the methods of REXML in use on the customer.xml file shown earlier
(Listing 17-2).

LLiissttiinngg 1177--1177:: RReeaaddiinngg XXMMLL wwiitthh RRuubbyy

require “rexml/document”
include REXML

doc = Document.new(File.new(‘customers.xml’), ‘r’)

puts “>>Print the full first element”
puts doc.root.elements[1]

puts
puts “>>Print the id of the first customer”
puts doc.root.elements[‘customer’].attributes[‘id’]

puts
puts “>>Select an element via an XPath and display it”
puts doc.elements[“//customer[@id=’HUNGC’]”]

puts
puts “>>Iterate over child elements”
el = doc.elements[“//customer[@id=’ANTON’]”]
puts el.elements[“company”].text
el.elements[“contact”].each_element{|e| puts e.name+ “: “ +e.text }

puts
puts “>>Select elements via XPath and display child elements”
el2 = doc.each_element(“//customer/address[country=’Canada’]/city”){|e| puts
e.text}

Listing 17-16 begins with a required statement to load in the REXML library’s document handling. Next,
REXML is included, so that all references to objects in that namespace don’t need the REXML prefix (that
is, Document.new, not REXML::Document.new). The file is loaded into a Document object. It is at this
point that the tree structures are built up in memory. The first highlighted line in the listing shows one

518

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 518

difference between the REXML structure and the W3C DOM. The root element in Ruby is root, rather
than the documentElement in the DOM.

Elements can be extracted from the document via the elements method. Notice that the first element is
numbered 1, rather than 0. Alternatively, the name of the element or attribute can be used to identify the
item in the collection. The third highlighted line in the preceding code shows a third method: Each of the
collection methods (elements and attributes), as well as the each_??? methods accept an XPath
statement to restrict the selection.

The last two samples in the previous listing show the each_element method that iterates over child ele-
ments. This is a shorthand method for doc.elements.each. As described earlier, the each_element
also accepts an XPath statement to restrict the returned children. The output of the code in Listing 17-17
should look similar to Listing 17-18.

LLiissttiinngg 1177--1188:: OOuuttppuutt ooff RRuubbyy ttrreeee--bbaasseedd pprroocceessssiinngg

>>Print the full first element
<customer id=’ALFKI’>

<company>Alfreds Futterkiste</company>
<address>
<street>Obere Str. 57</street>
<city>Berlin</city>
<zip>12209</zip>
<country>Germany</country>

</address>
<contact>
<name>Maria Anders</name>
<title>Sales Representative</title>
<phone>030-0074321</phone>
<fax>030-0076545</fax>

</contact>
</customer>

>>Print the id of the first customer
ALFKI

>>Select an element via an XPath and display it
<customer id=’HUNGC’>

<company>Hungry Coyote Import Store</company>
<address>
<street>City Center Plaza 516 Main St.</street>
<city>Elgin</city>
<region>OR</region>
<zip>97827</zip>
<country>USA</country>

</address>
<contact>
<name>Yoshi Latimer</name>
<title>Sales Representative</title>
<phone>(503) 555-6874</phone>
<fax>(503) 555-2376</fax>

</contact>

(continued)

519

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 519

LLiissttiinngg 1177--1188 (continued)

</customer>

>>Iterate over child elements
Antonio Moreno Taquería
name: Antonio Moreno
title: Owner
phone: (5) 555-3932

>>Select elements via XPath and display child elements
Montreal
Tsawassen
Vancouver

In addition to the methods listed previously, the Ruby XML implementation includes a number of meth-
ods that are designed to get information on the structure of the document. These methods use common
Ruby idioms, making the code feel more Ruby-like. The following table outlines some of these methods.

Method Description

each_element Iterates over the child elements of the selected element. Can be passed
an XPath statement to restrict the elements iterated over.

has_elements? Returns true if the current node has child elements.

has_attributes? Returns true if the current node has attributes.

has_text? Returns true if the current node has a child text node.

text= Assigns a value as the inner text for an element.

Listing 17-19 shows some of these methods being used to query the structure of the XML.

LLiissttiinngg 1177--1199:: GGeettttiinngg ssttrruuccttuurree iinnffoorrmmaattiioonn wwiitthh RRuubbyy

require “rexml/document”
include REXML

doc = Document.new(File.new(‘customers.xml’), ‘r’)

#get information about element
el = doc.elements[“//customer[@id=’RICAR’]”]
if el.has_attributes?
puts el.name+ “ has attributes”
el.attributes.each {|name, value| puts name+ “: “ +value}

end

def dump_element(e)
if e.has_elements?
puts
puts e.name+ “ has children”

520

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 520

e.each_element{|el| dump_element(el)}
else
if e.has_text?
puts e.name+ “: “ +e.text

end
end

end

if el.has_elements?
dump_element(el)

end

Listing 17-20 shows the output of the preceding code.

LLiissttiinngg 1177--2200:: XXMMLL SSttrruuccttuurree IInnffoorrmmaattiioonn

customer has attributes
id: RICAR

customer has children
company: Ricardo Adocicados

address has children
street: Av. Copacabana, 267
city: Rio de Janeiro
region: RJ
zip: 02389-890
country: Brazil

contact has children
name: Janete Limeira
title: Assistant Sales Agent
phone: (21) 555-3412

In addition to the tree-based document parsing, REXML supports a stream-based parser. With this tech-
nique, you create one or more listener classes with methods that are called as the document is processed.
You create a listener class by inheriting from the StreamListener class. You must then override the
methods of the StreamListener class to provide the implementation you desire. The following table
describes the most common methods you should override.

Method Description

tag_start Called when the parser first encounters a new tag. The name of the new element
will be passed to the method, as well as the attributes for the element. The attributes
are provided in an array of name-value pairs. This method is usually used to pre-
pare for the processing by identifying the elements you are interested in.

tag_end Called when the parser encounters the end of an element. This is usually used to
undo whatever settings where enabled when the corresponding tag_start method
was called, such as turning off flags or decrementing counters.

text Called when the parser encounters a text node. This is often where the bulk of the
processing occurs when using stream-based parsers.

521

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 521

Listing 17-21 shows some of these methods processing the customers XML file.

LLiissttiinngg 1177--2211:: RReeaaddiinngg XXMMLL uussiinngg ssttrreeaammss wwiitthh RRuubbyy

require ‘rexml/document’
require ‘rexml/streamlistener’
include REXML
include Parsers

class Listener
include StreamListener
def initialize
@cities = Hash.new(0)
@flag = false
end

def tag_start(name, attributes)
if name == ‘city’
@flag = true

end
end

def tag_end(name)
if name == ‘customers’ #end of document
puts
dump_list

end
end

def text(text)
if @flag
puts “Adding “ +text
@cities[text] = @cities[text] + 1
@flag = false

end
end

def dump_list()
puts “>> Count of each city”
@cities.each {|key, value| puts key+ “: “ +value.to_s }
puts “===”

end
end

listener = Listener.new
parser = StreamParser.new(File.new(“customers.xml”), listener)
parser.parse

The Listener class includes the StreamListener mixin and contains five methods, three of which are
used by the streaming parser (tag_start, tag_end and text). The tag_start method is called as each
new tag is reached by the parser, whereas tag_end is called at the end.

522

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 522

The tag_start method receives two parameters: the name of the element and an array containing the
keys and values of the attributes for that element. As the code is identifying cities, it simply sets a flag if
the parser has reached a city element.

The counting is done within the text method. As this will be called many times throughout the life of the
application, however, it uses the @flag variable to determine if it is within a city element. If this is the
case, the entry for the city in the hash table @cities is incremented. As Ruby is a dynamic language, if
the city did not have an entry in the hash table, one would be created at this point, and the value set to 1.
Finally, the flag is turned off. This could also have been done in the tag_end method.

Once the end of the document has been reached (identified by the tag_end method being called on the
customers end element), the contents of the hash table are printed to the console. This method uses a
Ruby block to print each entry in the @cities hash table.

Listing 17-22 shows a portion of the output from the code in Listing 17-21.

LLiissttiinngg 1177--2222:: OOuuttppuutt ooff tthhee RRuubbyy ssttrreeaamm--bbaasseedd pprroocceessssoorr

Adding Lyon
Adding Reims
Adding Stuttgart
Adding Oulu
Adding Resende
Adding Seattle
Adding Helsinki
Adding Warszawa

>> Count of each city
Stuttgart: 1
Butte: 1
Kobenhavn: 1
Tsawassen: 1
London: 6
Brandenburg: 1
Cunewalde: 1
Marseille: 1
Berlin: 1
Sao Paulo: 4
Portland: 2
Lyon: 1
Albuquerque: 1
Warszawa: 1
Lille: 1
Frankfurt a.M.: 1

Writing XML
Writing XML with the REXML library is quite simple. The Document class is used to create the new doc-
ument, whereas Element and Attribute classes add elements and attributes, respectively.

523

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 523

Writing XML using Ruby is significantly different from using the W3C DOM. Instead of sticking with
the API used with the DOM, the authors of the Ruby library chose to follow common Ruby idioms. The
following table outlines some of these methods.

Method Description

Document.new new(source = nil, context = {})
Constructor for the Document class. Creates a new document, using
the provided file, string, or IO stream. If no parameter is supplied,
it creates the document in memory. The context parameter is
deprecated.

XMLDecl.new XMLDecl.new(version, encoding, standalone)
Returns the XML declaration string. Defaults are: version=1.0,
encoding=UTF-8, and standalone=false.

Element.new new (arg = UNDEFINED, parent=nil, context=nil)
Creates a new element. The arg parameter can either be a string,
providing a name for the newly created element, or another ele-
ment, meaning that this new element is a shallow copy of the pro-
vided element. If parent is provided, the newly created element is a
child of the parent. The context parameter provides a number of
options for the content of the element.

Element.add_element add_element(arg=nil, arg2=nil)
Adds a new child element. The two arguments are the name of the
newly added element and an optional hashtable containing the
attributes for the new element. For example, the line in Listing
17-17 below:

book3 = folder.add_element(“bookmark”,
{“href”=>”http://www.wrox.com”})

Element.add_attribute add_attribute(key, value=nil)
Adds a new child attribute. The first parameter can be either an
existing Attribute object, which would be copied into the parent
element, or a string, in which case that becomes the name of the
new attribute. The second parameter provides the value of the
attribute.

Element.<< << item
An alias for the add method. This is handy shorthand for adding
new elements to the document.

Listing 17-23 shows the creation of a simple XBEL (XML Bookmarks Exchange Language) document
using REXML. Note that this sample uses a number of different techniques on purpose; it shows the
choices available for creating new elements and attributes.

524

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 524

LLiissttiinngg 1177--2233:: WWrriittiinngg XXMMLL wwiitthh RRuubbyy

require “rexml/document”
include REXML

doc = Document.new
doc << XMLDecl.new
doc << Element.new(“xbel”)
doc.root.attributes[“version”] = “1.0”

folder = Element.new(“folder”)
folder << Element.new(“title”).add_text(“Some useful bookmarks”)

book1 = folder.add_element(“bookmark”)
book1.add_attribute(“href”, “http://www.geekswithblogs.net/evjen”)
book1.add_element(“title”).add_text(“Bill Evjen’s Weblog”)

book2 = Element.new(“bookmark”)
book2.add_attribute(“href”, “http://www.acmebinary.com/blogs/kent”)
book2 << Element.new(“title”) << Text.new(“Kent Sharkey’s Weblog”)
folder << book2

book3 = folder.add_element(“bookmark”, {“href”=>”http://www.wrox.com”})
book3 << Element.new(“title”) << Text.new(“Wrox Home Page”)
book3 << Element.new(“desc”) << Text.new(“Home of great, red books”)

doc.root.add_element(folder)
doc.write(File.new(“output.xml”, “w”), 2)

First, the REXML library is loaded with the require statement, and aliased with the include REXML
statement. This eliminates the inclusion REXML:: at every use of the library. The XML document is cre-
ated, and the standard XML declaration added. Next, the root element is added, along with an attribute.

Listing 17-24 shows the resulting XML document.

LLiissttiinngg 1177--2244:: OOuuttppuutt ffrroomm RRuubbyy

<?xml version=’1.0’?>
<xbel version=’1.0’>
<folder>
<title>Some useful bookmarks</title>
<bookmark href=’http://www.geekswithblogs.net/evjen’>
<title>Bill Evjen's Weblog</title>

</bookmark>
<bookmark href=’http://www.acmebinary.com/blogs/kent’>
<title>Kent Sharkey's Weblog</title>

</bookmark>
<bookmark href=’http://www.wrox.com’>
<title>Wrox Home Page</title>
<desc>Home of great, red books</desc>

</bookmark>
</folder>

</xbel>

525

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 525

New elements can be created either standalone (with Element.new), or as part of the existing structure
(with add_element). Similarly, attributes can be added via add_attribute, or using Attribute.new.
Finally, the append method (<<) is overridden to permit adding either elements or attributes. The choice
in methods allows you to either select the method that works best for you or for the situation at hand.

Notice from the output that the text is automatically encoded in the case of the single quote characters.
In addition, other characters not appropriate in XML files (such as & or “) will be encoded. This behavior
can be overridden by adding the :raw value to the context (for Element.new). You may use this format
when you are writing the entries to a CDATA block or other location where the characters may actually
be valid.

Support for Other XML Formats
The base libraries for Ruby also include support for creating and accessing Web services using either
SOAP or XML-RPC. In addition, they provide support for working with RSS and W3C XML Schemas.
External libraries are generally installed as Ruby gems, a packaging format built into Ruby. As of this
writing, there are approximately 1200 Ruby gems, many providing support for various XML formats.
Some of the more notable Ruby gems include:

❑ Amrita2 — An XHTML templating engine that provides for the transformation of XML docu-
ments into XHTML. It is similar in concept to XSLT, but does not follow that standard.

❑ FeedTools — A powerful library for working with RSS, Atom and CDF (Channel Definition
Format) files.

❑ XMPP4R — A library for communicating with the XML format used by the Jabber instant mes-
senger protocol.

Summary
Dynamic languages provide their own benefits when working with XML. Their ability to rapidly proto-
type and iteratively develop a solution make writing routines for reading or writing XML faster than
their static cousins like Java or C#. When your compilation cycle is reduced to the time it takes to save
the file you are working on, you can be more productive with your code. In addition, as each of these
languages has been available for quite some time, many libraries have been created for working with
common XML formats. Many even provide a variety of techniques for working with XML: from tree-
based syntaxes that work like the W3C DOM, through stream-based interfaces like SAX, all the way to
object-based syntaxes that make XML work like the native objects of the language.

Perl, through its powerful implementation of regular expressions, is almost synonymous with text pro-
cessing. As XML is simply text, it should come as no surprise that Perl works quite well with XML.
Whether it is through a low level API, such as XML::Simple, more capable APIs (such as XML::Parser),
or through a library for a specific syntax (such as the SOAP or SVG libraries), Perl provides a capable, if
slightly opaque, language for processing XML.

The breadth of libraries for Python truly expresses a common motto of Python, “Batteries included.” If
you need simply to manipulate XML for a configuration file, or other simple format, you can make use
of the powerful built-in functionality. If you need to read or write a specific format of XML, it is almost

526

Part V: Programming XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 526

guaranteed that there is a library out there to help you. This, combined with the expressiveness of the
Python language makes it an ideal choice for developing with XML.

Although Ruby does not have native support for a wide variety of XML formats, its native XML han-
dling with REXML provides a rapid means of reading and writing just about any format. Support for
creating and calling Web services and other common syntaxes, such as RSS, XML-RPC and others is a
nice added bonus. While the total number of libraries is generally less than for Perl or Python, those that
are integrate so easily into the nature of the language that it sometimes seems like they were always part
of the language.

Resources
A number of additional resources are available for working with Perl, Python, and Ruby and XML.

Perl Resources
❑ Perl Home Page —perl.org

❑ CPAN, the Comprehensive Perl Archive Network (Collection of Perl Libraries) —cpan.org/

❑ Perl.com (Great source of Perl information) —perl.com/

Python Resources
❑ Python Home Page —python.org

❑ Python Package Index (Collection of Python Libraries) —http://cheeseshop.python.org

❑ Starship Python (another great collection of libraries) —http://starship.python.net/
index.html

❑ Iron Python Home Page (.NET implementation of Python) —gotdotnet.com/
workspaces/workspace.aspx?id=ad7acff7-ab1e-4bcb-99c0-57ac5a3a9742

Ruby Resources
❑ Ruby Home Page —ruby-lang.org

❑ Ruby XML —rubyxml.com

❑ The Ruby Garden (Collection of Ruby Libraries) —rubygarden.org/

❑ Ruby Forge (Central location for Ruby Open Source applications) —rubyforge.com

527

Chapter 17: Dynamic Languages and XML

25_777779 ch17.qxp 3/1/07 11:50 PM Page 527

25_777779 ch17.qxp 3/1/07 11:50 PM Page 528

Part VI

XXMMLL SSee rr vv ii cc ee ss

Chapter 18: RSS and Atom

Chapter 19: Web Services

Chapter 20: SOAP and WSDL

Chapter 21: Advanced Web Services

Chapter 22: REST

26_777779 pt06.qxp 3/1/07 11:50 PM Page 529

26_777779 pt06.qxp 3/1/07 11:50 PM Page 530

RRSSSS aanndd AAttoomm

“Content is King!”

“Content is everywhere.”

“It’s all about the content.”

It’s obvious from these comments that spring up frequently in newsgroups, forums, technical arti-
cles, and elsewhere that many people consider content important. However, just what is content
and how do you get it in and out of your applications?

Content is the actual information on a Web site — the technical articles, the blog posts, the media
files. Content is basically everything on your average Web site except the navigation elements and
advertisements.

You share your content with others when they visit your Web site. If the content on your site
changes over time, and people want to stay current on that information, they must check your
site frequently to see if anything has changed. Different solutions have been proposed to this
problem — from push technologies such as PointCast to pull technologies such as CDF (Channel
Definition Format), RSS, and Atom. Although push technologies have fallen by the wayside, RSS
and Atom are increasing in importance, especially because they are used in Weblogs (blogs), news
sites, and podcasting.

Although RSS and Atom are generally thought of in terms of Web sites, they also have importance
for non-Web applications. A database or desktop application can provide a feed of updates via RSS
or Atom. Client applications can use this feed to stay in sync.

This chapter looks at means of reading and writing these two families of XML formats.

27_777779 ch18.qxp 3/1/07 11:50 PM Page 531

What Is RSS?
When you discuss RSS, you have to specify which format of RSS you mean. RSS has gone through a
number of iterations since it was first published as RSS 0.90 by Netscape back in 1999. The following
table discusses the versions of RSS you are likely to encounter.

Version (Year) Comments

0.90 (1999) RDF Site Summary was the initial public version of RSS and was
intended as a syndication format for their portal (my.netscape.com). As
the title indicates, it was based on the Resource Description Framework
(RDF). More information on this version is available from the specifica-
tion page listed in the resource section at the end of this chapter.

0.91 (1999 and 2000) Netscape’s version was a simplification of the 0.90 version. It removed
the need for the document to be RDF compatible. A DTD was available
for validation as part of the specification.

Dave Winer’s version was (in his own words) a cleanup of Netscape’s
0.91. In addition, it was an attempt to maintain forward momentum of
RSS. The specification is similar to Netscape’s RSS 0.91 with the removal
of the DTD requirement. This was the most available version of RSS for
a while, although I think it is now surpassed by RSS 2.0.

0.92 (2000) An updated version of Userland’s 0.91 specification. This version was
fairly broadly available, and a number of feeds in this format are still
available today. The most important additions to 0.91 were the
enclosure and category elements of item.

1.0 (2000) A new version initially created to be less ambiguous than previous ver-
sions. RSS 1.0 has no relation to the previous versions and was based on
RDF. This version is described in this specification.

2.0 (2002) Also known as version 0.94. This is an updated version of 0.92 that
includes optional elements. There is no relationship between version 1.0
and 2.0. This is the first version in the 0.9x/2.0 family that included sup-
port for extending RSS via namespaces directly in the specification.

With all these versions “in the wild,” you may be confused about how to write code to process RSS.
However, these versions really fit into two main families: the RSS 0.9 x/2.0 family and the RSS 1.0 fam-
ily. As each new version of the 2.0 family was designed, developers maintained backward compatibility
as much as possible. Therefore, a parser written to work with version 2.0 should work with versions 0.91
and 0.92 as well. Listing 18-1 shows a sample RSS 2.0 document, and Listing 18-2 shows an RSS 1.0
document.

LLiissttiinngg 1188--11:: AA ssaammppllee RRSSSS 22..00 ffeeeedd

<?xml version=”1.0” encoding=”utf-8”?>
<rss xmlns:dc=”http://purl.org/dc/elements/1.1/” version=”2.0”>
<channel>
<title>MSDN: Microsoft XML Developer Center</title>

532

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 532

<link>http://msdn.microsoft.com/xml/</link>
<description>The latest information from the Microsoft XML Developer

Center.</description>
<language>en-us</language>
<pubDate>Sat, 22 Oct 2005 13:01:25 GMT</pubDate>
<lastBuildDate>Sat, 22 Oct 2005 13:01:25 GMT</lastBuildDate>
<generator>MSDN RSS Service 1.1.0.0</generator>
<ttl>1440</ttl>
<item>
<title>XML for Fun: Displaying Your iTunes Library</title>
<description>In this week’s article we’ll show you how to extract your song

library as XML from iTunes so that you can use the data from within other
applications as well.</description>
<link>http://msdn.microsoft.com/coding4fun/xmlforfun/ITunesLib/default.aspx</link>

<dc:creator>Peter Bernhardt</dc:creator>
<guid isPermaLink=”false”>Titan_1166</guid>
<pubDate>Fri, 24 Jun 2005 17:13:48 GMT</pubDate>

</item>
<item>
<title>Introduction to XQuery in SQL Server 2005</title>
<description>Discover how XQuery works in SQL Server 2005: the FLWOR

statement, operators in XQuery, the if-then-else construct, XML constructors,
built-in XQuery functions, type casting operators, and more.</description>

<link>http://msdn.microsoft.com/sql/default.aspx?pull=/library/en-
us/dnsql90/html/sql2k5_xqueryintro.asp</link>

<dc:creator>Prasadarao K. Vithanala</dc:creator>
<guid isPermaLink=”false”>Titan_851</guid>
<pubDate>Wed, 15 Jun 2005 18:42:31 GMT</pubDate>

</item>
</channel>

</rss>

Important points to note in this feed are:

❑ The root element is rss.

❑ There is no defined schema for this feed type, nor is there a default namespace.

❑ It uses namespaces to provide extensions.

Listing 18-2 shows a sample RSS 1.0 feed.

LLiissttiinngg 1188--22:: AA ssaammppllee RRSSSS 11..00 ffeeeedd

<?xml version=’1.0’ encoding=’utf-8’?>
<rdf:RDF
xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’
xmlns:dc=’http://purl.org/dc/elements/1.1/’
xmlns=’http://purl.org/rss/1.0/’>
<channel rdf:about=’http://www.xml.com/’>
<title>XML.com</title>
<link>http://www.xml.com/</link>
<description>XML.com Articles and Weblogs</description>
<dc:rights>Copyright 2005, O’Reilly Media, Inc.</dc:rights>

(continued)

533

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 533

LLiissttiinngg 1188--22 (continued)

<dc:language>en-us</dc:language>
<items>
<rdf:Seq>
<rdf:li rdf:resource=’http://www.xml.com/pub/a/2005/11/09/fixing-ajax-
xmlhttprequest-considered-harmful.html’ />
<rdf:li rdf:resource=’http://www.xml.com/pub/a/2005/11/09/rexml-processing-xml-in-
ruby.html’ />
</rdf:Seq>
</items>
</channel>
<item rdf:about=’http://www.xml.com/pub/a/2005/11/09/fixing-ajax-xmlhttprequest-
considered-harmful.html?CMP=OTC-TY3388567169’>
<title>Fixing AJAX: XmlHttpRequest Considered Harmful</title>
<link>http://www.xml.com/pub/a/2005/11/09/fixing-ajax-xmlhttprequest-considered-
harmful.html?CMP=OTC-TY3388567169</link>
<description><![CDATA[<img src=’http://www.xml.com/2005/11/09/graphics/111-
bad_httpreq.gif’ width=’111px’ height=’91px’ alt=’tile image’ align=’left’ />Jason
Levitt shows us how to work around XmlHttpRequest restrictions in order to get more
joy from third-party web services.]]></description>
<dc:creator>Jason Levitt</dc:creator>
<dc:date>2005-11-09T15:20:36-08:00</dc:date>
</item>
<item rdf:about=’http://www.xml.com/pub/a/2005/11/09/rexml-processing-xml-in-
ruby.html?CMP=OTC-TY3388567169’>
<title>REXML: Processing XML in Ruby</title>
<link>http://www.xml.com/pub/a/2005/11/09/rexml-processing-xml-in-
ruby.html?CMP=OTC-TY3388567169</link>
<description><![CDATA[<img src=’http://www.xml.com/2005/11/09/graphics/111-
ruby.gif’ width=’111px’ height=’91px’ alt=’tile image’ align=’left’ />Ruby web
apps, including those built with Rails, don’t always use XML to represent data. But
sometimes you just don’t have a choice. Koen Vervloesem shows us how to process XML
in Ruby using Ruby Electric XML (REXML).]]></description>
<dc:creator>Koen Vervloesem</dc:creator>
<dc:date>2005-11-09T15:16:47-08:00</dc:date>
</item>
</rdf:RDF>

Major points to note in this example are:

❑ The root element is rdf:RDF. RSS 1.0 depends heavily on the Resource Description Framework
(RDF) specification.

❑ The use of namespaces to provide extension support.

❑ Heavy reliance on Dublin Core to provide metadata, such as post date/time, creator, and
language.

❑ The use of rdf:about to provide an URI for each major element (channel, item).

❑ The use of the rdf:Seq block to identify the order of the items in the feed.

❑ The use of CDATA blocks to encode HTML content in the description (this is actually common
in RSS 2.0 feeds as well).

534

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 534

Specifications
The specifications for RSS 2.0 and 1.0 vary in their stringency and guidance when building feeds.
Although much of the information is self-explanatory, it’s worth discussing some areas in detail, because
they are common sources of error.

RSS 2.0
RSS 2.0 is arguably the most common RSS feed produced today, as well as being the simplest specifica-
tion (running about 10 pages). However, it is also the most misinterpreted of the three main syndication
formats.

The core structure of an RSS 2.0 feed consists of:

❑ A root node of rss, with a version attribute (should be 2.0).

❑ One (and only one) channel node within the rss node. This node serves as a container for the
remainder of the document and provides information about the feed. The following table dis-
cusses the elements of the channel node. Other elements may be added if the namespace is
included in the feed.

❑ One or more item nodes within the channel node. These are the individual items of the feed.

Required /
Element Optional Notes

title Required A name for the feed. This is typically the same as the name
for the site or application it comes from.

link Required The URL for the Web site producing the feed. In the case of
application-specific feeds, this should be to a site providing
more information on the content of the feed.

description Required A longer description of the source and content of the feed.

language Optional The language the channel is written in, using the language-
locale format. For example, en-us for the United States
English, fr-ca for Canadian French, or fr-be for Belgian
French.

copyright Optional Any copyright notice for the content in the feed.

managingEditor Optional The e-mail address of the person responsible for the content
of the feed.

webMaster Optional The e-mail address for the person responsible for the techni-
cal source of the feed. Typically, this is the same as managin-
gEditor, but it may be different if one person creates the feed
and another makes it available for reading.

Table continued on following page

535

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 535

Required /
Element Optional Notes

pubDate Optional The last publication date for the feed. See following sidebar
on Dates and RSS because this is one of the primary sources
for errors and incompatibilities in RSS 2.0 feeds.

lastBuildDate Optional Similar to the pubDate, the lastBuildDate is the date (and
time) when the feed was last built. Generally, pubDate and
lastBuildDate are the same. However, if the feed needs to be
changed without publishing a new item (such as when there
is a correction or update), only lastBuildDate changes. This
date could be used by a client to determine if an update has
occurred, although this is rarely done.

category Optional The name of a category describing the content of the feed.
Multiple category elements may exist in the channel.

generator Optional The application used to create the feed. Basically for infor-
mation only.

docs Optional The URL of the RSS 2.0 specification —http://
blogs.law.harvard.edu/tech/rss. This serves a similar
purpose to a namespace URL by providing a location to get
more information about the structure of the feed.

cloud Optional A rarely used element identifying the cloud Web service that
can be used to notify clients of changes to the feed. I have
never seen such a service, and most RSS processors actually
only make use of the ttl element shown next.

ttl Optional “Time To Live” is the time (in minutes) that clients should
wait before re-querying the feed. This should be set to a value
based on the average change frequency of the RSS feed. For
example, a news site might update hourly, so the ttl value
should be 60. Alternatively, a personal RSS feed might update
occasionally, so a value of daily (1440) would be good enough.

image Optional Information used to attach a graphic for the feed. This is
sometimes used to customize the appearance of the feed
icon for aggregators, but is rarely used by aggregators.

rating Optional A rarely used element containing the PICS rating — that is,
the Platform for Internet Content Selection, a standard way
of identifying the type and rating of content. The intent is to
enable teachers and parents to manage what children may
be exposed to on the Internet. This is only useful if your
Web site requires a PICS rating.

textInput Optional A rarely used element (I don’t think I’ve ever seen this out-
side of the specification, and even the specification states:
“The purpose of the textInput element is something of a
mystery.”). Best to just ignore this field and move on.

536

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 536

Required /
Element Optional Notes

skipHours Optional A rarely used element (I don’t think I’ve ever seen this out-
side of the specification).

skipDays Optional A rarely used element (I don’t think I’ve ever seen this out-
side of the specification). This is a hint to applications read-
ing the feed that no updates are permitted on the days listed
(space delimited).

537

Chapter 18: RSS and Atom

Dates and RSS
RSS 2.0 uses the slightly outdated RFC 822 for its date format. This format has the gen-
eral structure:

Day of Week, Year Month Day Hour:Minute:Second Timezone

where Day of Week is an optional value. For example, the following are all valid date
formats based on the specification:

❑ Tue, 15 Nov 2005 16:00:01 PDT

❑ 13 Feb 2006 07:37:00-0800

❑ Wed, 02 Oct 2002 13:00:00 GMT

This format can get confusing in that the time zone value can be any of the following:
UT, GMT, EST, EDT, CST, CDT, MST, MDT, PST, PDT, Z, A, M, N, or a numeric offset
(+/-0000 to +/-1200). These refer to Greenwich Mean Time (UT or Universal Time), a
US-centric time zone and Military time (the A, M or N values, although these are gen-
erally considered deprecated) or an offset. Making it slightly worse, RSS 2.0 also allows
two-digit years. All this variability means that parsing these dates can be difficult. For
.NET developers, this is a problem because .NET supports a later RFC, 1123. This RFC
simplified the date structure to remove the support for US time zones. In addition, it
removed the requirement of the day of week value. While the day of the week value
may appear, it is not required. Dates compatible with RFC 1123 are also compatible
with the older RFC 822, but not vice versa.

However, the default parser in .NET throws an exception when passed any of the US
time zones. That is, DateTime.Parse(“Tue, 15 Nov 2005 16:00:01 PDT”) throws an
exception as this format is no longer supported with the later RFC.

RSS 1.0 avoids many of these issues (as does Atom, as we shall see soon) by using the
ISO 8601 standard for its date format:

Year-Month-DayTHour:Minute:SecondTimeZone

Where time zone can either be Z for Universal Time or the time zone offset in numeric
form (+/-Hours:Minutes e.g. -08:00 or +5:00)

27_777779 ch18.qxp 3/1/07 11:50 PM Page 537

The following table discusses the elements of the item node:

Element Required / Optional Notes

title Optional (see notes) The title of the item. This is usually the headline.
Although optional, it is highly recommended if
you want a useful feed. One of title or description
must be present in a feed.

link Optional (see notes) The URL of the item. This can be omitted for infor-
mation-only feeds, but this is rare. The content of
this element is also interpreted differently by some
sites. Most feeds use this element to point to the
URL of the main post. However, posts that refer to
content that exists elsewhere, such as a blog post
about a Web site, actually point to the original Web
site, not the blog post. Either use is acceptable, as
long as you are consistent.

description Optional (see notes) Either the excerpt or the full post. This is one of
those “religious arguments” frequent in the com-
puter industry. Many people believe that the feed
should only contain a brief excerpt of the actual
post, requiring users to go to the Web site to read
the full post. This form reduces the overall band-
width of the feed, particularly when large posts are
syndicated. Alternatively, it does reduce the overall
value of the feed, especially for aggregating sites.

author Optional The e-mail address of the author of the post. This is
included here primarily for feeds that may contain
posts by multiple authors.

category Optional The name of a category describing the content of
the feed. Multiple category elements may exist in
the item. Client applications can use these cate-
gories to organize or filter the content.

comments Optional URL of a page for entering comments.

538

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 538

Element Required / Optional Notes

enclosure Optional For a long time, this was a rarely used element.
Then came podcasting, and it became a popular
tag. The enclosure element is used to identify an
external media item associated with this item.
Often, it is a music item or video. Applications pro-
cessing this element (podcasting software) down-
load this media item automatically. The enclosure
element takes the form:
<enclosure url=”url” length=”bytes”
type=”mime” />

Where url is the URL of the item, bytes is the
length of the item (in bytes, as a courtesy to appli-
cations downloading it), and mime is the MIME
type of the media. For example:

<enclosure
url=”http://www.cbc.ca/quirks/media/2005
-2006/mp3/qq-2006-02-11.mp3”
length=”22280320” type=”audio/mpeg”/>

guid Optional A string uniquely identifying the item. This is one
of the other major inconsistencies in the RSS speci-
fication. Many RSS feeds use the URL of the post
here, with the optional attribute isPermaLink set
to true:
<guid
isPermaLink=”true”>http://www.foo.com/
23.html</guid>
Other sites use it simply as a URI:
<guid
isPermaLink=”false”>Titan_5052</guid>

The only required consistency is that within the
feed, the guid element should be unique. Beyond
that, you’re on your own.

pubDate Optional The date and time of the posting in RFC 822 format

source Optional A rarely used element. This is essentially a self ref-
erence to the feed URL for the item in case it is
viewed separately. It takes the form:
<source url=”url to feed”>Feed
title</source>

539

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 539

RSS 2.0 is certainly easy to create, and it is broadly accepted. Parsing these feeds from multiple sources
can be a bit of a headache, however, because of the variability in the interpretation of the specification
and lack of an XML schema for validation. Because of this, I highly recommend use of an online valida-
tor, such as www.feedvalidator.org.

RSS 1.0
RSS 1.0 is a very extensible syndication format based on the W3C’s Resource Description Framework
(RDF). Although not as simple as RSS 2.0 (the specification is 18 pages to RSS 2.0’s 10 pages, not count-
ing the additional pages of the RDF specification), it certainly has fewer ambiguities. When referring to
the acronym for RSS 1.0, it expands to RDF Site Summary in a nicely recursive acronym of an acronym. It
is the logical child of RSS 0.9 (but not 0.91 or 0.92) and improves on that format. The main goals were to
standardize the then orphaned RSS 0.9 and enable additional expansion and evolution by adding mod-
ules. In addition, the specification is much more precise, reducing misinterpretation.

540

Part VI: XML Services

Categories versus tags
There are two primary ways of identifying the topic of an item in a feed. Although the
RSS 2.0 specification includes the comments element, some blogging engines do not
support creating or adding categories. This limitation has led to the tagging movement,
originally proposed by Technorati. The idea of either format is to identify the general
scope of the content of the feed item. That is, to mark it as being about photography,
music, or the Olympics. Software processing the feed would then associate items with
the same category or tag.

The category element is an optional element for each item, and an item can include
multiple category elements. The format is:
<category domain=”taxonomy”>value</category>
The domain value is optional and should point to the URI describing the category’s
taxonomy. Just as with a namespace URI, this could be a schema or other description of
the structure of the categories, or it could be a unique value for each category. For
example, MSDN includes categories in the article feeds.

<category domain=”mscomdomain:Subject”>XML</category>

The tag element is something that can be added to the body of the description of an
item and is a simple HTML anchor tag:
value
The href for the taxonomy should point to the URL of any site that organizes content
by tag. The suggested default is http://www.technorati.com/tag/[tagname], but
it could also be Wikipedia, Flickr, Delicious, or other site, as long as the last item on the
query string is the tag name. For example:

XML

You can make the choice of category versus tag, if the blogging engine or other RSS
generator doesn’t support the addition of category tags. However, even if your blog-
ging engine supports adding categories, you may want to also provide tags. They are a
low-weight way of adding information to the feed. In addition, using a tag enables
your content to be combined with the growing body of other content associated with
that tag.

27_777779 ch18.qxp 3/1/07 11:50 PM Page 540

The core structure of an RSS 1.0 feed consists of:

❑ A root node of RDF from the rdf namespace (http://www.w3.org/1999/02/22-rdf-
syntax-ns#).

❑ One (and only one) channel node within the RDF element. This contains information about the
channel itself. The following table discusses the common elements of this node.

❑ An items element within the channel element. This includes pointers to all the item elements
of the feed, in order.

❑ One or more item nodes. Note that (unlike in RSS 2.0) these are not contained within the chan-
nel node, but are child elements of the RDF element. The following table discusses the elements
of the item nodes.

❑ Optionally, one image node. This node is associated with the feed and is usually an icon (88x31
pixels) for the home site.

❑ Optionally, one textinput node.

❑ Liberal use of the rdf:about attribute to provide extra information for the elements. This
attribute is required for the channel, image, item, and textinput nodes. The following table dis-
cusses the standard elements of the RSS 1.0 channel.

Required /
Element Optional Notes

title Required A name for the feed. This is typically the same as the name for
the site or application it comes from.

link Required URL to the home page for the feed.

description Required A description of the channel’s content.

image Required Occasionally used. This element is only required if an image
(see notes) element is also in the feed. It is typically an icon (88x31 pixels)

used by the site.

items Required A listing of pointers to the item nodes elsewhere in the docu-
ment. This is used to provide the order of the items using an
rdf:Seq (sequence) element:
<rdf:Seq>

<rdf:li rdf:resource=’http://url.to.item1’ />

<rdf:li rdf:resource=’http://url.to.item2’ />

<rdf:li rdf:resource=’http://url.to.item3’ />

</rdf:Seq>

Table continued on following page

541

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 541

Required /
Element Optional Notes

textinput Required Not frequently used. This element is required only if a
(see notes) textinput element is also used in the feed. Contains a pointer

to that textinput with an rdf:resource attribute:

rdf:about Required An XML attribute that points to the URI identifying the chan-
nel. Generally, this is the URL of the feed, but this is not
required.

The following table discusses the standard elements of the RSS 1.0 item.

Required /
Element Optional Notes

title Required The title or headline of the item.

link Required The URL of the item.

description Optional A brief description or excerpt of the item.

In addition to the channel and item elements, RSS 1.0 feeds can also include image and textinput
elements. These elements are rarely used. If they do exist, however, you also need matching elements in
the channel to point to them. The image element is used to provide a graphic for the feed, typically an
icon. The textinput element is a bit of a throwback to the days when pages contained their own search
mechanism (for example, the isindex tag) and is intended to provide a mechanism for searching the
RSS feed.

In addition to the core RSS elements, RSS 1.0 also includes support for extensibility through modules.
These are namespace-identified extensions that add information to the feed. The three most commonly
used modules are:

❑ Dublin Core — Standard metadata elements used here, and in RDF generally. These include
items such as author, date, language, and so on.

❑ Syndication — Provides hints to readers about how frequently the feed should be updated. This
fits the same role as the skipDays, ttl, and skipHours elements of RSS 2.0.

❑ Content — One of the ongoing discussions around RSS is whether the description should hold
the entire body of the item. If it is just an excerpt, the content:encoded element can be used to
hold the entire post.

Although RSS 1.0 is slightly more difficult to read and write than RSS 2.0, it has the benefit of being a
more accurate specification. That is, with less ambiguity in the specification, multiple implementations
of RSS 1.0 are more likely to match. This is definitely not the same for RSS 2.0, where it sometimes seems
that each person creating a feed has interpreted the specification differently.

542

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 542

What Is Atom?
As you saw in the discussion of the various semicompatible variants of RSS, it can be anything but Really
Simple. Partly because of this complexity and partly because of the management of the RSS 2.0 specifica-
tion, some developers decided to begin work on Atom. The idea was to take the best features of RSS and
fix the parts that caused confusion during implementation.

The core structure of an Atom 1.0 feed consists of:

❑ The root node is feed, with a pointer to the Atom namespace
(http://www.w3.org/2005/Atom).

❑ Channel information in the feed itself as child elements.

❑ One or more entry elements, containing the content.

❑ One curious feature of Atom is that the root node could also be a single entry. Although you
probably won’t encountered this often when processing an Atom feed, it does mean that entries
can be isolated from the overall feed and still remain valid.

Listing 18-3 shows a simple Atom 1.0 feed.

LLiissttiinngg 1188--33:: AA ssaammppllee AAttoomm 11..00 ffeeeedd

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<feed xmlns=”http://www.w3.org/2005/Atom” xml:lang=”en-US”>
<title type=”html”>AtomEnabled.org</title>
<subtitle type=”html”>Your one stop shop for all Atom API and syndication
information.</subtitle>

<link href=”http://www.atomenabled.org/atom.xml” rel=”self”/>
<link href=”http://www.atomenabled.org” rel=”alternate” title=”AtomEnabled.org”
type=”text/html”/>
<id>tag:blogger.com,1999:blog-6356614</id>
<updated>2005-09-15T13:33:06Z</updated>
<generator uri=”http://www.blogger.com/” version=”5.15”>Blogger</generator>
<div class=”info” xmlns=”http://www.w3.org/1999/xhtml”>This is an Atom formatted
XML site feed. It is intended to be viewed in a Newsreader or syndicated to another
site. Please visit the Blogger Help for more
info.</div>
<convertLineBreaks
xmlns=”http://www.blogger.com/atom/ns#”>false</convertLineBreaks>
<entry xmlns=”http://www.w3.org/2005/Atom”>
<author>
<name>Sam Ruby</name>
</author>

(continued)

543

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 543

LLiissttiinngg 1188--33 (continued)

<published>2005-09-15T06:27:00-07:00</published>
<updated>2005-09-15T13:33:06Z</updated>
<link href=”http://www.atomenabled.org/2005/09/atomenableds-atom-feed.php”
rel=”alternate” title=”AtomEnabled’s Atom Feed” type=”text/html”/>
<id>tag:blogger.com,1999:blog-6356614.post-112679118686717868</id>
<title type=”html”>AtomEnabled’s Atom Feed</title>
<content type=”xhtml” xml:base=”http://www.atomenabled.org” xml:space=”preserve”>
<div xmlns=”http://www.w3.org/1999/xhtml”>This site’s Atom feed has been converted to Atom
1.0. Addionally, the Feed Validator is no
w issuing deprecation warnings whenever it encounters Atom 0.3 feeds.</div>
</content>
<draft xmlns=”http://purl.org/atom-blog/ns#”>false</draft>
</entry>
<entry xmlns=”http://www.w3.org/2005/Atom”>
<author>
<name>Sam Ruby</name>
</author>
<published>2005-07-31T13:08:00-07:00</published>
<updated>2005-08-01T02:37:13Z</updated>
<link href=”http://www.atomenabled.org/2005/07/introduction-to-atom.php”
rel=”alternate” title=”Introduction to Atom” type=”text/html”/>
<id>tag:blogger.com,1999:blog-6356614.post-112284122983872666</id>
<title type=”html”>Introduction to Atom</title>
<content type=”xhtml” xml:base=”http://www.atomenabled.org” xml:space=”preserve”>
<div xmlns=”http://www.w3.org/1999/xhtml”>An introduction to The
Atom Syndication Format has been placed into the Developers > Syndication section
of this website.</div>
</content>
<draft xmlns=”http://purl.org/atom-blog/ns#”>false</draft>
</entry>
</feed>

Important points to note about this feed are:

❑ The root element of the document is feed.

❑ Use of namespaces to provide extensions.

❑ Content for each entry marked to identify the encoding type of the element (text, html, or xhtml).

The following table discusses the channel information elements.

544

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 544

Required /
Element Optional Notes

title Required A name for the feed. This is typically the same as the name for
the site or application it comes from.

link Optional The URL of the feed. In addition to the URL itself, the link
(but highly element should have the rel=”self” attribute to identify this
recommended) URL as the one for the feed.

In addition to this URL, the feed may have additional link ele-
ments pointing to related links with a rel=”alternate”
attribute and the MIME type. For example, in addition to the
link for the Atom feed, you may also include a link to the host-
ing Web site:

<link rel=”self” href=”http://debar.com/foo/
feed.atom” />

<link rel=”alternate” href=”http://debar.com/foo”
type=”text/html” />

<link rel=”license” href=” http://creativecommons
.org/licenses/by/2.5/” type=”application/rdf+xml”

id Required A unique identifier (URI) for the feed.

updated Required The date and time the feed was last changed. See Dates and
Atom for details.

author Required The creator of the feed. The author field, like most of the
(see notes) people-related elements in Atom, is in the form:

<author>

<name>Foo deBar</name>

<uri>http://debar.com/blogs/foo</uri>

<email>foo@debar.com</email>

</author>

Only name is required.

The author element must either exist on every entry or in the
feed. If you are certain there will be an author for every entry,
you can treat it as optional here, and vice versa. It definitely
doesn’t hurt to have it in both places.

Table continued on following page

545

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 545

Required /
Element Optional Notes

category Optional Multiple category elements can exist in Atom feeds. They are
similar to the category elements in RSS. They provide informa-
tion about the topic of the content. The structure of the category
element is different from that in RSS, however. In Atom, a cate-
gory has term, scheme, and label attributes:

<category term=”xml” scheme=”scheme” label=”XML” />

Term is the only required attribute and represents the category
or topic of the feed. Scheme is the organizing set of categories
(or taxonomy). Label is a human-readable version of the term,
if needed.

generator Optional The application generating the Atom feed. A place for genera-
tors to either brag about their accomplishments or provide the
target for user-anger.

icon Optional A URL to a graphic for the feed. Generally, this would be an
icon or other small graphic. It should generally be square.

logo Optional A URL to a graphic for the feed. This differs from icon in that
it should be twice as wide as it is high.

rights Optional The rights conferred for the item, such as “copyright 2006
Foo deBar.”

subtitle Optional An extra catchy phrase for the feed.

546

Part VI: XML Services

Dates and Atom
With all the variability possible when you process dates with RSS, it is almost refresh-
ing to deal with dates in Atom. All dates must be in the RFC 3339 format (or the ISO
8601 or W3C date format if you’d rather look at those sites):

YYYY-MM-DDTHH:MM:SS-hh:mm (alternately the Z character can be used instead of a
time zone)

For example, all the following are valid dates for Atom:

2006-02-21T16:28:00-08:00

2006-01-01T12:00:00.00Z

2005-04-01T13:29:43.2+01:00

27_777779 ch18.qxp 3/1/07 11:50 PM Page 546

The Atom entry element can also be the root node in a document. If it is, the Atom namespace should be
attached to the entry node. Most of the other entry features and child elements are similar to those in RSS.
The following table covers the entry node elements used by Atom.

Required /
Element Optional Notes

title Required The title for the entry. The title should not contain markup, but
should be plain text.

id Required A unique identifier for the entry. This may be a URI, but
you should not assume that the URI is actually the URL for
the item.

updated Required The date and time the entry was last updated (or created). See
Dates and Atom for more details.

category Optional See the category description under the feed element 18-in a
previous table. There can be multiple category elements per
entry.

content Optional The content of the entry. In addition to the content itself, there
should be a type attribute. The type attribute identifies the for-
mat of the content and should be one of the standard MIME
types. Typically, type=”text”, type=”html” or
type=”xhtml” are the most common type values.

If the content element is empty, there should be a summary ele-
ment (containing the content).

author Required The person who created the entry. This element can be optional
(see notes) if the feed itself contains an author. However, in the interest of

making parsing easier, it’s probably a good idea to include the
author element for each entry as well.

contributor Optional The person responsible for the entry. This differs from
the author element in that there is only one author, but many
people may have contributed information leading to the cre-
ation of the entry. Multiple contributor elements may exist
per entry.

Table continued on following page

547

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 547

Required /
Element Optional Notes

link Optional The URL of the entry, or the content pointed at by the entry.
Multiple links per entry may exist, but they should differ by
the type and/or hreflang. Each link should have the following
attributes:

* href=The URL of the item (Required).

* rel=Optional attribute describing the relationship of the
link to the content. One of self (the content is the entry itself),
related (the link points to related information, such as company-
specific information), alternate (the link points at another form
of the entry, such as a PDF version), enclosure (the link points at
a large file, such as audio or video), or via (the link points to the
original source of the entry).

* type=Optional MIME type of the content referenced by
the link.

* hreflang=Optional language of the content pointed at by
the href. This enables you to have multiple translations pointed
at by the same entry.

* title=Optional text to display for the link

* length=Optional length (in bytes) of the content referenced
by the link.

published Optional Date and time the entry was created. See Dates and Atom for
more details.

rights Optional Any copyright information associated with the entry.

source Optional Information about the original source of the Atom entry. Because
a feed may actually contain entries created from multiple Atom
feeds, this element can be used to provide information about the
original feed for the entry.

summary Optional A short version of the content. This should have a type
attribute (as described under content earlier). It should be
different from the content (an excerpt or abstract) if present.

Reading RSS and Atom
Reading RSS basically breaks down into two main activities: parsing the channel information and pars-
ing the items. Generally, it is the items that are more important. If you are parsing only one or two feeds
or feeds from the same source, it can be a fairly easy process. However, if you are trying to create a

548

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 548

generic RSS reader, or even just a reader that works with both RSS 1.0 and 2.0 feeds, it is a different mat-
ter. Some feeds ignore date; others may ignore pubDate and add a Dublin Core date instead. Similarly,
in some feeds the guid element points to a URN, whereas in others it is a URL. Some put the entire post
into the description, whereas others include a content:body element. In short, writing a good, gen-
eral-purpose RSS parser is difficult, and the lack of a DTD or XML Schema doesn’t make things easier. It
is impossible or even really difficult, but you must be aware of variability when writing the parser and
try to test it on multiple feeds.

In addition to the general RSS variability, RSS 1.0 and 2.0 have radically different structures. If you are
provided only a URL to an RSS feed, you should try to determine which of these two you have. To deter-
mine which you have, you can either use the MIME type or the document itself. The MIME type of an
RSS 1.0 document should be application/rdf+xml, whereas the MIME type of an RSS 2.0 document
should be application/rss+xml. (Atom documents should be application/atom+xml for those who
don’t want to extrapolate.) However, many feeds are actually encoded using the MIME type text/xml.
This means that you can’t use MIME type alone to differentiate the feed type. The root node can also be
used to identify most documents. RSS 2.0 uses rss as a root node, whereas RSS 1.0 uses RDF and Atom
feed. Further differentiating the feed type usually isn’t necessary, as RSS 2.0 feeds should also be valid
0.91(Userland) or 0.92 feeds.

Reading Atom is similar to reading RSS, except that it is a much more predictable affair. Because the
Atom specification is far more easily interpreted than the RSS 2.0 specification, developers are more
likely to get it right. The one major cause of errors is that many feeds are still in Atom 0.3 format — the
version that was available before ratification of the standard. This is mostly accurate compared with
Atom 1.0, but a few notable differences exist. The following table outlines these differences.

Item Notes

namespace In 0.3, the namespace was http://purl.org/atom/ns#, whereas for
1.0, it is http://www.w3.org/2005/Atom.

version 0.3 required the addition of a version attribute (as in RSS 2.0). This
requirement has been removed.

subtitle This element was named tagline in 0.3.

rights This element was named copyright in 0.3.

updated This element was named modified in 0.3.

published This element was named issued in 0.3.

category This element did not exist in 0.3.

icon This element did not exist in 0.3.

logo This element did not exist in 0.3.

source This element did not exist in 0.3.

id This element optional for the feed in 0.3; now it is required for both feed
and entry elements.

549

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 549

Reading with .NET
Either of the two .NET idioms for dealing with XML (XmlReader, and XmlDocument) can be used for
reading RSS and Atom documents. The benefits and consequences of each of these technologies are
discussed in the following sections.

It might be tempting to make assumptions about the structure of the document — such as assuming that
the title element is always the first child of an item. However, unless you have created all of the feeds
you are processing, this will likely cause a break — quickly and when it puts you in the worst light (like
during a demo to your CEO). Either use XPath statements to retrieve the appropriate elements or use
conditional logic to retrieve the correct elements.

XmlDocument
XmlDocument is probably the one many people start with, loading the document into a DOM for pro-
cessing. It certainly has the benefit of ease of use and familiarity. After it is loaded, you can use the
SelectNodes and SelectSingleNode to extract the nodes you’d like. Alternately, you can walk the
DOM, processing the feed as needed. Listing 18-4 shows a simple Console application that displays
information from an Atom 1.0 feed.

Although it is simple, it is overkill to use the XmlDocument. It takes time and memory to build up the
DOC structure in memory. In addition, the DOM is best when you need bi-directional access to the con-
tent. If you intend to go forward only through the feed, you are probably better served by the
XmlReader. Listing 18-4 shows how to use XmlDocument to read Atom 1.0.

LLiissttiinngg 1188--44:: UUssiinngg XXmmllDDooccuummeenntt ttoo rreeaadd AAttoomm 11..00

using System;
using System.Xml;

class Reader {
[STAThread]
static void Main(string[] args) {

if (args.Length < 1) {
Console.WriteLine(“Simple Atom Reader”);
Console.WriteLine(“Usage: simplereader <URL to RSS 2.0 feed>”);
Console.WriteLine(@”\tsimplereader

http://www.oreillynet.com/pub/feed/20”);
} else {

XmlDocument doc = new XmlDocument();
doc.Load(args[0]);
XmlNamespaceManager mgr = new XmlNamespaceManager(doc.NameTable);
mgr.AddNamespace(“atom”, “http://www.w3.org/2005/Atom”);
XmlElement root = doc.DocumentElement;

//display some items from the feed
Console.WriteLine(“Feed Information”);
Console.WriteLine(“Title:\t\t{0}”,

root.SelectSingleNode(“atom:title”, mgr).InnerText);
Console.WriteLine(“Subtitle:\t{0}”,

root.SelectSingleNode(“atom:subtitle”, mgr).InnerText);
Console.WriteLine(“URL:\t\t{0}”,

root.SelectSingleNode(“atom:link[@rel=’self’]/@href”,

550

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 550

mgr).InnerText);

Console.WriteLine(“Items”);
foreach (XmlNode item in doc.SelectNodes(“//atom:entry”, mgr)) {

Console.WriteLine(“\tTitle:\t\t{0}”,
item.SelectSingleNode(“atom:title”, mgr).InnerText);

Console.WriteLine(“\tLink:\t\t{0}”,
item.SelectSingleNode(“atom:link/@href”, mgr).InnerText);

XmlNode contentNode = item.SelectSingleNode(“atom:summary”, mgr);
//default to showing the summary,
// but show the content if it is available
if(null == contentNode) {

contentNode = item.SelectSingleNode(“atom:content”, mgr);
}

if (null != contentNode) {
Console.WriteLine(contentNode.InnerText);

}

Console.WriteLine();
}

Console.WriteLine(“Press Enter to end program”);
Console.ReadLine();

}
}

}

Because Atom actually lists a namespace, it’s best to use an XmlNamespaceManager when working with
Atom documents. The DOM. XmlNamespaceManager makes it easier to identify elements when you are
using the SelectNodes and SelectSingleNode methods.

551

Chapter 18: RSS and Atom

Displaying safe RSS
As RSS and Atom become more popular and because it is so easy to simply display the
existing feed content on Web pages, it is becoming more and more important to ensure
what you display is safe. Many HTML tags can be used to hijack pages, and these should
be stripped before displaying the page. Although it is not absolutely necessary when re-
displaying feeds you trust (ones you’ve created and no others), it is incredibly important
to remove tags that might allow someone to alter or break your pages. There are three
main solutions. I’ll call them Safest, Safer, and Safish.

The safest solution is to remove all HTML tags from the content. However, this is hardly
a useful suggestion in most cases because the tags (especially links) are the most useful
part of the post. The next (Safer) solution is to wrap the displayed tag in an IFrame with
the security=”restricted” attribute. This limits the capabilities of the code, prevent-
ing script from running and the display of new browser windows. However, this
attribute has limited availability (only in Internet Explorer 6.0 SP1); therefore, it is not a
valid solution except for intranet scenarios. Therefore, the Safish solution is likely the
best option in most scenarios. Before displaying HTML from an arbitrary feed, you
should strip out the elements and attributes listed in 18-the following table.

27_777779 ch18.qxp 3/1/07 11:50 PM Page 551

Element/Attribute Reason

script Running any form of script from unknown sources is a request to have
your Web site hacked.

object These tags add ActiveX, Java, or other non-HTML elements to the page.
embed ActiveX objects, in particular, are dangerous because they have full access
applet to the client machine; however, any of these items can perform nasty

tricks by being embedded in a browser.

frame These tags allow for the addition of sub pages to a Web page. Apart
iframe from likely breaking the layout of your page, they can be used by an
frameset unscrupulous feed provider to execute code or otherwise manipulate

the client.

on{something} Similar to script removal, action attributes (such as onclick, onblur, or
others) can be used to execute script.

meta These tags should only appear in the head of HTML pages and not in RSS
link feeds. In addition, browsers should not interpret them if they are in the

body of a page (as they would be if they are from an RSS or Atom feed).
However, to be safe, they should be stripped.

style Both style elements and attributes can be used to import graphics and
other items that can have a detrimental effect on your pages. Although
most added style information is harmless, it is still better to be safe. Even
more or less harmless style information can have a detrimental effect, if it
overrides a global style. For example adding, “a {color: #fff;}” to
styles, can cause all anchor tags to change in appearance.

img Although these tags can both be used to execute mischief on your Web
a pages, their removal is only optional. Likely, these tags are the main rea-

sons you’re thinking of displaying the RSS feed(s). Therefore, I’ll leave
this decision up to you. (Personally, I’d leave them in, but only link to RSS
feeds I trusted.)

XmlReader
XmlReader, as you saw in Chapter 16, is the low-level, pull parser in .NET. You use the methods of the
XmlReader to pull elements and attributes from the XML. XmlReader is a forward-only parser, meaning
that you cannot go backwards through the XML. As only a small fraction of the content is in memory at
any time, XmlReader excels when working with large documents for speed and memory usage. Listing
18-5 shows using XmlReader to serialize RSS 2.0 content into the RssFeed class. (To save space, not all
properties are shown).

LLiissttiinngg 1188--55:: RReeaaddiinngg RRSSSS 22..00 wwiitthh XXmmllRReeaaddeerr

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.IO;

552

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 552

namespace Wrox.ProXml {
public class RssFeed {

#region Private Members
private Dictionary<String, String> _properties =

new Dictionary<String, String>();
private List<RssEntry> _entries = new List<RssEntry>();

#endregion

#region C’tors
public RssFeed() {

//set up default properties
this.Title = String.Empty;
this.Link = String.Empty;
this.Description = String.Empty;
this.Language = “en-us”;
this.Copyright = “copyright 2006”;
this.ManagingEditor = string.Empty;
this.PubDate = DateTime.Now.ToString(“R”);

}

#endregion

#region Properties
public Dictionary<String, String> Properties {

get { return _properties; }
}
public List<RssEntry> Entries {

get { return _entries; }
}
public string Title {

get { return this.Properties[“title”]; }
set { this.Properties[“title”] = value; }

}
public string Link {

get { return this.Properties[“link”]; }
set { this.Properties[“link”] = value; }

}
public string Description {

get { return this.Properties[“description”]; }
set { this.Properties[“description”] = value; }

}
public string Language {

get { return this.Properties[“language”]; }
set { this.Properties[“language”] = value; }

}
public string Copyright {

get { return this.Properties[“copyright”]; }
set { this.Properties[“copyright”] = value; }

}
public string ManagingEditor {

get { return this.Properties[“managingEditor”]; }

(continued)

553

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 553

LLiissttiinngg 1188--55 (continued)

set { this.Properties[“managingEditor”] = value; }
}
public string PubDate {

get { return this.Properties[“pubDate”]; }
set { this.Properties[“pubDate”] = value; }

}
#endregion

#region Read XML
public void Load(String filename) {

XmlReader reader = null;
XmlReaderSettings settings = new XmlReaderSettings();

settings.CheckCharacters = true;
settings.CloseInput = true;
settings.IgnoreWhitespace = true;

reader = XmlReader.Create(filename, settings);
this.Load(reader);

}
public void Load(Stream inputStream) {

XmlReader reader = null;
XmlReaderSettings settings = new XmlReaderSettings();

settings.CheckCharacters = true;
settings.CloseInput = true;
settings.IgnoreWhitespace = true;

reader = XmlReader.Create(inputStream, settings);
this.Load(reader);

}
public void Load(XmlReader inputReader) {

inputReader.MoveToContent();

//move into the channel

while (inputReader.Read()) {

if (inputReader.IsStartElement() && !inputReader.IsEmptyElement) {
switch (inputReader.LocalName.ToLower()) {

case “channel”:
//do nothing in this case
break;

case “item”:
//delegate parsing to the RssEntry class
RssEntry entry = new RssEntry();
entry.Load(inputReader);
this.Entries.Add(entry);
break;

default:

554

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 554

string field = inputReader.LocalName;
this.Properties[field] = inputReader.ReadString();
break;

}
}

}
}
#endregion

}
}

The class uses a Dictionary to track the properties and an array for the child items. The Dictionary
allows for the growth of the class to store necessary properties, including additional namespaces if they
are added to the RSS. To make processing the class friendlier, additional named properties are created
for title, link, description, and other elements of the RSS.

The Load method (highlighted in the listing) processes the RSS to populate the Dictionary. The addi-
tional two Load methods are provided to make it easier for end users to create the XmlReader that pro-
cesses the RSS. The processing is fairly basic: the content of the child elements of the channel element
are moved over as is to the properties Dictionary. Parsing of the item elements is delegated to the
RssEntry class, as shown in Listing 18-6.

LLiissttiinngg 1188--66:: RReeaaddiinngg RRSSSS iitteemmss wwiitthh XXmmllRReeaaddeerr

using System;
using System.Collections.Generic;
using System.Text;
using System.Xml;
using System.IO;

namespace Wrox.ProXml {
public class RssEntry {

private Dictionary<String, String> _properties =
new Dictionary<String, String>();

public RssEntry() {
//set up default properties
this.Title = String.Empty;
this.Link = String.Empty;
this.Description = String.Empty;

}

#region Properties
public Dictionary<String, String> Properties {

get { return this._properties; }
}
public String Title {

get { return this.Properties[“title”]; }
set { this.Properties[“title”] = value; }

}

(continued)

555

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 555

LLiissttiinngg 1188--66 (continued)

public String Link {
get { return this.Properties[“link”]; }
set { this.Properties[“link”] = value; }

}
public String Description {

get { return this.Properties[“description”]; }
set { this.Properties[“description”] = value; }

}
#endregion

public void Load(System.Xml.XmlReader inputReader) {
while (inputReader.Read()) {

if (inputReader.Name == “item” &&
inputReader.NodeType == XmlNodeType.EndElement) {
break;

}
if (inputReader.IsStartElement() && !inputReader.IsEmptyElement) {

String field = inputReader.LocalName;
this.Properties[field] = inputReader.ReadString();

}
}

}
}

}

As with the RssFeed, a Dictionary is used to store the values of the RSS elements.

After you have the RSS feed serialized into the RssFeed and RssEntry classes, displaying them
becomes easy, as Listing 18-7 shows.

LLiissttiinngg 1188--77:: UUssiinngg tthhee RRssssFFeeeedd aanndd RRssssEEnnttrryy ccllaasssseess

RssFeed feed = new RssFeed();
feed.Load(this.UrlField.Text);
MessageBox.Show(String.Format(“Title: {0}\nItems: {1}”,

feed.Title, feed.Entries.Count.ToString()),
“Feed Information”);

foreach (RssEntry entry in feed.Entries) {
MessageBox.Show(entry.Description, entry.Title);

}

Reading RSS with Java
Reading RSS with Java is basically the same as with .NET. One method of reading RSS and Atom popu-
lar with Java developers (that is not available as part of the standard .NET class library) is Simple API
for XML (SAX). This is an event-based parser for XML. The SAX code reads the XML and calls methods
in your code when it encounters new elements, text, or errors in the document. This mechanism makes
parsing small documents (like RSS feeds) fast and requires low memory overhead. See Chapter 14 for
more details on SAX. Listing 18-8 shows reading RSS 1.0 documents with SAX.

556

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 556

LLiissttiinngg 1188--88:: RReeaaddiinngg RRSSSS 11..00 wwiitthh SSAAXX

package com.wrox.proxml;

import java.io.*;
import java.util.Stack;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

public class RSSReader extends DefaultHandler {
static private Writer out;
static String lineEnd = System.getProperty(“line.separator”);

Stack stack = new Stack();
StringBuffer value = null;

public static void main(String args []) {
// create an instance of RSSReader
DefaultHandler handler = new RSSReader();

try {
// Set up output stream
out = new OutputStreamWriter(System.out, “UTF8”);

// get a SAX parser from the factory
SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();

// parse the document from the parameter
emit(“Feed information for “ + args[0] + lineEnd);
saxParser.parse(args[0], handler);

} catch (Exception t) {
System.err.println(t.getClass().getName());
t.printStackTrace(System.err);

}
}

public void startElement(String namespaceURI,String sName,
String qName,Attributes attrs) throws SAXException {
String eName = sName; // element name
if (“”.equals(eName)) eName = qName; // namespaceAware = false
stack.push(eName);
value = new StringBuffer();

}

public void endElement(String namespaceURI,String sName,String qName)
throws SAXException {
String element = null;
String section = null;

(continued)

557

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 557

LLiissttiinngg 1188--88 (continued)

if(!stack.empty()){
element = (String)stack.pop();

}
if(!stack.empty()){

section = (String)stack.peek();
}

if (null != element && null != section){
if (section.equalsIgnoreCase(“channel”)) {

if(element.equalsIgnoreCase(“title”)) {
emit(“Title:\t” + value + lineEnd);

} else if (element.equalsIgnoreCase(“link”)){
emit(“Link:\t” + value + lineEnd);

}
} else if (section.equalsIgnoreCase(“item”)) {

if(element.equalsIgnoreCase(“title”)) {
emit(“\tTitle:\t” + value + lineEnd);

} else if (element.equalsIgnoreCase(“description”)) {
emit(“\t” + value + lineEnd);

}
}

}
}

public void characters(char buf [], int offset, int len)
throws SAXException {
String s = new String(buf, offset, len);
value.append(s);

}

private static void emit(String s) throws SAXException {
try {
out.write(s);
out.flush();

} catch (IOException e) {
throw new SAXException(“I/O error”, e);

}
}

}

The code sets up the handlers for startElement and endElement and parses the RSS 1.0 document.
At the start of each element, the new element is added to a Stack, and a new StringBuffer is created
to hold the contents of the element. Most of the processing takes place in the endElement handler. This
pops the element name that is ending off of the stack and determines where in the document the current
element is located.

558

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 558

Writing RSS and Atom
Writing RSS or Atom is definitely easier than reading it. All you need to do is decide on the flavor you’d
like to output and stick with it, validating as you go. The prime reasons feeds fail to validate are that users
have neglected to ensure that dates are in correct format and all additional namespaces are included in the
feed. Even enclosures or other more advanced features are fairly easy to add to feeds.

Writing with .NET
Writing RSS or Atom with .NET is easiest with the XmlWriter class. It provides methods for adding
attributes and child elements, and it can write to either files or streams. Listings 18-9 and 18-10 show
the extensions to the RssFeed and RssEntry classes to include saving RSS feeds.

LLiissttiinngg 1188--99:: WWrriittiinngg RRSSSS 22..00 wwiitthh XXmmllWWrriitteerr

public void Save(string filename) {
XmlWriter writer = null;
XmlWriterSettings settings = new XmlWriterSettings();
settings.CheckCharacters = true;
settings.CloseOutput = true;
settings.Encoding = Encoding.UTF8;

writer = XmlWriter.Create(filename, settings);
this.Save(writer);

}

public void Save(System.IO.Stream outputStream) {
XmlWriter writer = null;
XmlWriterSettings settings = new XmlWriterSettings();
settings.CheckCharacters = true;
settings.CloseOutput = true;
settings.Encoding = Encoding.UTF8;

writer = XmlWriter.Create(outputStream, settings);
this.Save(writer);

}

public void Save(System.Xml.XmlWriter outputWriter) {
outputWriter.WriteStartDocument();
outputWriter.WriteStartElement(“rss”);
outputWriter.WriteAttributeString(“version”, “2.0”);
outputWriter.WriteStartElement(“channel”);
outputWriter.WriteElementString(“title”, this.Title);
outputWriter.WriteElementString(“link”, this.Link);
outputWriter.WriteElementString(“description”, this.Description);
outputWriter.WriteElementString(“language”, this.Language);
outputWriter.WriteElementString(“copyright”, this.Copyright);
outputWriter.WriteElementString(“managingEditor”, this.ManagingEditor);
outputWriter.WriteElementString(“pubDate”, this.PubDate);

(continued)

559

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 559

LLiissttiinngg 1188--99 (continued)

foreach (RssEntry entry in this.Entries) {
entry.Save(outputWriter);

}

outputWriter.WriteEndElement(); //channel

outputWriter.WriteEndElement(); //rss
outputWriter.WriteEndDocument();
outputWriter.Close();

}

The three overloaded methods provide the user of the RssFeed class with flexibility when saving the
output. However, the first two delegate to the third that creates the RSS using the XmlWriter class.
Creating XML using the XmlWriter can sometimes feel a little repetitive, because you are repeatedly
calling the various WriteXXX methods. However, this is preferable (in my opinion) to using the classes
of the XML DOM to build up the structure in memory. Remember to close the XmlWriter or call
Flush() to ensure the content is actually written.

LLiissttiinngg 1188--1100:: WWrriittiinngg RRSSSS 22..00 iitteemmss wwiitthh XXmmllWWrriitteerr

public void Save(System.Xml.XmlWriter outputWriter) {
outputWriter.WriteStartElement(“item”);
outputWriter.WriteElementString(“title”, this.Title);
outputWriter.WriteElementString(“link”, this.Link);
outputWriter.WriteElementString(“description”, this.Description);
outputWriter.WriteEndElement(); //item

}

Writing with Java
Choices for writing RSS or Atom with Java are slightly more limited. Using only the core J2SE class
library, your best choice is the DOM. Other libraries exist to make it easier, such as StAX, JDOM, or even
serializing to and from Java objects. Listing 18-11 shows creating an RSS 2.0 document using the DOM.

LLiissttiinngg 1188--1111:: WWrriittiinngg RRSSSS 22..00 wwiitthh DDOOMM

package com.wrox.proxml;

import java.io.*;
import javax.xml.*;
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
import org.w3c.dom.*;

public class RSSWriter {

560

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 560

Document doc;
Element channel;

public RSSWriter() {
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = factory.newDocumentBuilder();
doc = builder.newDocument();
Element rss = doc.createElement(“rss”);
rss.setAttribute(“version”, “2.0”);
doc.appendChild(rss);
channel = doc.createElement(“channel”);
rss.appendChild(channel);

} catch (Exception ex){
ex.printStackTrace();

}
}

public void setFeedTitle(String title){
this.addElement(channel, “title”, title);

}
public void setFeedLink(String link) {

this.addElement(channel, “link”, link);
}
public void setFeedDescription(String description){

this.addElement(channel, “description”, description);
}

public Element addItem(String title, String link, String desc){
Element item = doc.createElement(“item”);
addElement(item, “title”, title);
addElement(item, “link”, link);
addElement(item, “description”, desc);
addElement(item, “guid”, link).setAttribute(“isPermaLink”, “false”);
channel.appendChild(item);
return item;

}

public void Save(OutputStream out){
try {

Transformer transformer =
TransformerFactory.newInstance().newTransformer();
Source source = new DOMSource(doc);
Result output = new StreamResult(out);
transformer.transform(source, output);

} catch (TransformerException tex) {
tex.printStackTrace();

}
}

(continued)

561

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 561

LLiissttiinngg 1188--1111 (continued)

private Element addElement(Element parent, String name, String value){
Element el = doc.createElement(name);
el.setTextContent(value);
parent.appendChild(el);
return el;

}

public static void main(String[] args) {
RSSWriter writer = new RSSWriter();
writer.setFeedTitle(“Test feed”);
writer.setFeedLink(“http://www.example.com”);
writer.setFeedDescription(“Sample RSS 2.0 feed”);
writer.addItem(“Item 1”,

“http://www.example.com/1”,
“Some more lengthy description of item 1”);

writer.addItem(“Item 2”,
“http://www.example.com/2”,
“Description of the second item”);

writer.Save(System.out);
}

}

The DOM makes it easy to create and manipulate XML documents. The only mistake users make when
working with the DOM is to forget to appendChild when adding elements to the DOM. For this reason,
and to reduce repetition in the code, I’ll usually create one or more addElement methods as shown in
the preceding sample. This encapsulates the creation of the element and appends the new element at the
appropriate location in the document.

Class Libraries Available for Processing RSS and Atom
Rather than process the RSS with the XML functionality natively, you may want to use an RSS parsing
library. Generally, these hide many of the ambiguities in the different feed types and make your life a
little easier. Some of the more notable RSS parsing libraries are:

❑ RSS.NET (http://www.rssdotnet.com/) — Library for RSS 2.0 feeds for .NET.

❑ My.Blogs (http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnvs05/html/MyBlogsGetStart.asp) — A library for parsing and creating RSS 1.0,
RSS 2.0 and Atom feeds. Written in and designed for Visual Basic 2005 developers.

❑ Rome (http://wiki.java.net/bin/view/Javawsxml/Rome) — A Java library for processing
RSS 1.0, 2.0 and Atom feeds (as well as a few more arcane versions, such as both versions of 0.91).
This library also supports extensions to add parsing for additional namespaces.

❑ RSSLib4J (http://sourceforge.net/projects/rsslib4j/) — Library for processing RSS
1.0 and 2.0 feeds in Java.

❑ Atom.NET (http://atomnet.sourceforge.net/) — Library for processing Atom feeds with
.NET. Sadly, this library is still not 1.0 compliant.

562

Part VI: XML Services

27_777779 ch18.qxp 3/1/07 11:50 PM Page 562

Summary
Atom and RSS provide a means of sharing information and providing a (relatively) standard means of
notifying users of change. The rise of blogs, podcasts, and RSS aggregators mean that more and more
people are using RSS, even if they are not aware of it. Most common browsers even handle and display
RSS and Atom. In addition, future versions of Windows will ship with built-in infrastructure for down-
loading and displaying these feeds. RSS and Atom are rapidly becoming an important dialect of XML.

Resources
Specifications and tools can help you when processing RSS and Atom. In addition, see the preceding sec-
tion on class libraries available for processing feeds.

❑ RSS 2.0 specification. http://blogs.law.harvard.edu/tech/rss

❑ RSS 1.0 specification. http://web.resource.org/rss/1.0/spec

❑ Atom 1.0 specification — IETF RFC 4287 (.ietf.org/rfc/rfc4287.txt). Although it reads
like any official protocol document (don’t read while operating heavy machinery, or when you
shouldn’t be sleeping), it is precise and informative.

❑ FeedValidator — Online RSS/Atom validator (feedvalidator.org). You should always use
this tool to test your feed before releasing it into the wild. It is capable of validating any of the
common RSS feed versions, Atom, and many of the common extensions (such as Dublin Core).
You can alternatively download and use this locally. It is written in Python.

563

Chapter 18: RSS and Atom

27_777779 ch18.qxp 3/1/07 11:50 PM Page 563

27_777779 ch18.qxp 3/1/07 11:50 PM Page 564

WWeebb SSee rr vv ii cc ee ss

If there is one term in this book that you will hear more than any other in the halls of information
technology, it is the term Web services. Computer magazines, Web sites, and other sources have
many reasons to tout the benefits of this XML-based technology. It is simply a powerful and exten-
sible way of moving datasets from one point to another in this cyber world we live in today.

Over the last few years, Web services have grown from being a concept the industry has simply kept
its eye on, to a reality that is now planned for in quite a number of recurring IT projects. Web services
are filling a need that has existed in the IT industry for some time now, and the major vendors of the
world are literally rushing in with solutions that their customers can use to address this need.

This chapter looks at the Web services world (at least to the extent possible in the limited space
this chapter offers), including how some of the major vendors of the world make it rather simple
for you to build and consume Web services using their tools and technologies. After this chapter,
the next few chapters include more discussion on SOAP, WSDL, and the WS-* specifications.

Why Web Services?
One of the first steps in understanding Web services and why so much hype surrounds them is to
first understand the problems that they are meant to address. Ever since the industry has moved
away from monolithic mainframe computers to the client/server model, users have been wonder-
ing how to move data and calculations from one point in the enterprise to another. The Web ser-
vices model is simply a step toward solving this problem.

Web services are meant to address the problems of connecting disparate systems, creating single
repositories, and working towards the holy grail of programming — code reuse. Typically in a major
enterprise, you rarely find that the computing thought of an entire organization and its data repos-
itories reside on a single vendor’s platform. In most instances, organizations are made up of a
patchwork of systems — some based on Unix, some on Microsoft, and some on other systems.
There probably won’t be a day when everything resides on a single vendor’s platform, and all the

28_777779 ch19.qxp 3/1/07 11:50 PM Page 565

data moves seamlessly from one server to another. For that reason, various systems must be able to talk
to one another despite their differences. If disparate systems can communicate easily, moving unique
datasets around the enterprise becomes a simple process that eliminates the need for replication of sys-
tems and data stores.

Instead of being looked at as only a means to represent data as XML was viewed when first introduced,
the markup language has now become a structure that can bring the necessary integration into the enter-
prise. XML’s power comes from the fact that it can be used regardless of the platform, language, or data
store of the system using it to expose datasets.

XML is considered ideal for data representation purposes because it enables developers to structure XML
documents as they see fit. For this reason, it is also a bit chaotic. Sending self-structured XML documents
between dissimilar systems doesn’t make a lot of sense — it requires custom building of both the exposure
and consumption models for each communication pair.

Vendors and the industry as a whole, however, soon realized that XML needed a specific structure. If
rules are in place to clarify communication, the communication between the disparate systems becomes
just that much easier. With rules in place, tool vendors can automate the communication process and the
creation of all components for applications using the defined communication protocol.

The industry came together with the goal of defining a common ground for communication, and it set-
tled on using SOAP (Simple Object Access Protocol) as the standard XML structure. The problem that
SOAP solved was not a new one. Previous attempts at a solution included component technologies such
as Distributed Component Object Model (DCOM), Remote Method Invocation (RMI), Common Object
Request Broker Architecture (CORBA), and Internet Inter-ORB Protocol (IIOP). These first efforts failed
because each of these technologies was either driven by a single vendor or (worse yet) was very vendor-
specific. It was, therefore, impossible to implement any of these across the entire industry.

SOAP enables you to expose and consume calculations, complex data structures, or just tables of data
that have all their relations in place. SOAP is relatively simple and easy to understand. Like various
other Web-based technologies such as PHP or ASP.NET, Web services are also primarily engineered to
work over HTTP. With that said, though, there are moves in enterprise to also send SOAP structures via
other transport protocols such as TCP. Even though those moves are in place, Web services are still being
built to flow primarily over HTTP. If you use HTTP, the datasets you send or consume can flow over
the same Internet wires that are already established, thereby bypassing many firewalls (as they move
through port 80). Implementing Web services over HTTP is rather simple because these networks are
already in place and ready to use.

So what’s actually going across the wire? As I just stated, Web services generally use SOAP over HTTP
using the HTTP Post protocol. An example SOAP request (from the client to the Web service residing on
a Web server) takes the structure shown in Listing 19-1.

LLiissttiinngg 1199--11:: AA ssaammppllee SSOOAAPP rreeqquueesstt

POST /MyWebService/Service.asmx HTTP/1.1
Host: www.wrox.com
Content-Type: text/xml; charset=utf-8
Content-Length: 19
SOAPAction: “http://www.wrox.com/HelloWorld”

566

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 566

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<HelloWorld xmlns=”http://www.wrox.com/” />

</soap:Body>
</soap:Envelope>

Take note that this is a request which is sent to the Web service from the client (or consumer) to invoke
the HelloWorld WebMethod (WebMethods are discussed later in this chapter). An example SOAP
response from this Web service is shown in Listing 19-2.

LLiissttiinngg 1199--22:: AA ssaammppllee SSOOAAPP rreessppoonnssee

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 14

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<HelloWorldResponse xmlns=”http://www.wrox.com/”>
<HelloWorldResult>Hello World</HelloWorldResult>

</HelloWorldResponse>
</soap:Body>

</soap:Envelope>

In the examples from Listings 19-1 and 19-2, you can see that what is contained in this message is an
actual XML file. Beyond the normal XML declaration of the <xml> node, you see a structure of XML that
constitutes the SOAP message. A SOAP message uses a root node of <soap:Envelope> that contains
the <soap:Body> or the body of the SOAP message. Other elements that can be contained in the SOAP
message (but are not shown in the preceding example) include a SOAP header, <soap:Header>, and a
SOAP fault<soap:Fault>.

For more information about the structure of a SOAP message, be sure to check out the SOAP specifica-
tions. You can find them at the W3C Web site, w3.org/tr/soap. SOAP will also be discussed in the
next chapter of this book.

The Composition of Web Services
As you come to understand the Web services model, you are also consistently introduced to a number of
its specifications and capabilities. The vendors have done an excellent job by making it relatively easy to
build and consume Web services in their development environments. In fact, in this chapter, you learn
how to build and consume Web services using both .NET and Java. Whether you are building or con-
suming Web services, however, guarantee your success by making sure you understand the structure of
the Web services model before you begin your first venture.

567

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 567

Understanding a few pillars of Web services development makes your job a lot easier. Not all the specifi-
cations or technologies that are used to build and consume Web services are required for every job, but
you should review and understand everything before you start using Web services within any of your
applications. Building Web services (whether in .NET or Java) gives you the following:

❑ An industry-standard way to represent data

❑ A way to transfer data in a common message format

❑ A way to describe a Web service to potential consumers

❑ A path to discovery of Web services on remote servers

Representing and Communicating Data in Web Services
As you are probably quite aware, Web services are heavily dependent upon XML. XML markup is used
for data representation purposes, and XML Schemas are used to describe data types utilized by the Web
services. XML is simply an excellent way to represent data. XML can be packaged and sent across the
wire making the Web services model work. If you use XML, you immediately notice that a large number
of platforms support XML, and they can manage it through an even larger set of tools available for XML
data reading, writing, and manipulation.

Basing the data on XML and then standardizing the XML to the SOAP specification (discussed earlier in this
chapter), make it easy to communicate your defined data representations from one point to another. Many
Web services use HTTP to transport an XML document between disparate systems. When you transport
your SOAP message in this manner, it flows easily through firewalls without any hindrance. Most firewalls
are already configured to allow information from the Internet to flow freely through their walls.

You will find that the Web services communication model is not that different from other models you see
in the Web world. When you have an application making a request of a Web service, this client triggers
an HTTP Web request to the remote Web service. The request, in turn, most likely triggers a response
from the server where the Web service resides. In the request from the client, the request message carries
information about the function (WebMethod) to be called and any parameters that are required by the
function. After the server that hosts the Web service receives the request message from the client, it initi-
ates the function and returns a response message that contains the data returned by the function. The
response message can be a simple statement that some particular action was taken, or it can contain a
complete table of data from a database. What you want returned is really up to you.

In the past, it was quite possible to work with DCOM to port data from one point to another to solve
almost the same problem that Web services are now addressing. However, with DCOM, requests and
responses were required to ride on top of a proprietary communication protocol. This kind of architec-
ture is not an effective way to provide data in a universal format such as XML. If your goal is to allow
information to be sent and consumed regardless of the platforms used, DCOM does not achieve it.

Describing Web Services
Think of Web services as remote APIs (since they are basically just that). You have a method that you
want to implement. Let’s suppose the method wasn’t built by you and resides somewhere else in the
world on equipment that you have no control over — how can you go about providing that remote method
what it needs in order to get instantiated?

568

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 568

When you find a Web service that you want to include in your application, you must first figure out how
to supply the Web service with the parameters it needs in order for it to work. That need also extends a bit
further. Even if you know the parameters and types that are required for instantiation, you also need to
understand the types that are passed to your application in return. Without these pieces of information,
using Web services would prove rather difficult.

Just as there are standard ways to represent data as well as standard ways to move this data over the
Internet using Web services, there is a standard way to get a description of the Web service you are inter-
ested in consuming. Web Services Description Language (WSDL) is a specification of XML that describes
the Web services you are interested in consuming. Listing 19-3 shows a sample WSDL file from a simple
Calculation Web service that contains a single WebMethod called Addition (a+b).

LLiissttiinngg 1199--33:: AA ssaammppllee WWSSDDLL ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://www.wrox.com/” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://www.wrox.com/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>
<wsdl:types>
<s:schema elementFormDefault=”qualified”
targetNamespace=”http://www.wrox.com/”>
<s:element name=”Addition”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”AdditionResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”AdditionResult”
type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</wsdl:types>
<wsdl:message name=”AdditionSoapIn”>
<wsdl:part name=”parameters” element=”tns:Addition” />

</wsdl:message>
<wsdl:message name=”AdditionSoapOut”>
<wsdl:part name=”parameters” element=”tns:AdditionResponse” />

</wsdl:message>
<wsdl:portType name=”CalculationSoap”>
<wsdl:operation name=”Addition”>

(continued)

569

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 569

LLiissttiinngg 1199--33 (continued)

<wsdl:input message=”tns:AdditionSoapIn” />
<wsdl:output message=”tns:AdditionSoapOut” />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”CalculationSoap” type=”tns:CalculationSoap”>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=”Addition”>
<soap:operation soapAction=”http://www.wrox.com/Addition” style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:binding name=”CalculationSoap12” type=”tns:CalculationSoap”>
<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=”Addition”>
<soap12:operation soapAction=”http://www.wrox.com/Addition”
style=”document” />
<wsdl:input>
<soap12:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap12:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”Calculation”>
<wsdl:port name=”CalculationSoap” binding=”tns:CalculationSoap”>
<soap:address
location=”http://www.wrox.com/Calculation/Calculation.asmx” />

</wsdl:port>
<wsdl:port name=”CalculationSoap12” binding=”tns:CalculationSoap12”>
<soap12:address
location=”http://www.wrox.com/Calculation/Calculation.asmx” />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

From this WSDL document, you can see that the input and output types are defined directly in the docu-
ment. It also defines the location of the Web services and the different types of SOAP calls you can make
to the Web service (using SOAP 1.1 or 1.2). Any client that uses this WSDL document can build the means
to communicate with the defined Web service directly.

Discovering Web Services
To use a Web service, you have to be provided with the WSDL document or you have to know the URL
endpoint of the WSDL file. How do you find the Web services you are interested in consuming if you don’t
have access to the location of the WSDL file or if someone or some process hasn’t provided it to you?

570

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 570

Note that if you don’t want to provide the means for discovering for your Web services, you don’t need
to build the discovery mechanism around it. If you wish to provide your Web services to the public,
however, you must provide a means for users to locate it.

To allow users to discover Web services, various companies, such as Microsoft and IBM, have worked to
create the required mechanics of discovery. It is accomplished through another XML specification known
as UDDI (known in its full form as Universal Description, Discovery, and Integration).

You will find implementations of the UDDI specification on the Microsoft Windows Server 2003 server.

It is interesting to note that UDDI implementations are themselves Web services that employ the UDDI
specifications to define a standard way to publish and discover information about Web services. The
XML schemas associated with UDDI define four types of information that enable a developer to use a
published Web service. The following table lists the types of information that UDDI provides.

Information Provided Description

Business details The business contact information for the person or company that
is providing the particular Web service.

Service detail A name and description of the Web service.

Bindings detail The specific access points for this service instance. It allows for
display of additional instance-specific details.

Bindings details Classifications that specify the field of operation of a business or a
service (for example, a geographic location or an industry sector).
These enable users of the registry to confirm the importance of a
particular Web service.

The UDDI capabilities mentioned here are not the only way to publish and classify your Web services.
Other directories that have sprung up on the Internet, and I am sure more will appear as the number of
Web services grows. Presently, one of the better Web service directories (besides the one mentioned pre-
viously from Microsoft) is XMethods found at xmethods.com/.

Building Web Services with C#
Because Web services are so widely accepted across the industry, you can use a large list of program-
ming languages to build them. This chapter focuses on using both C# and Java to build some Web ser-
vices. Later I will show you how to consume these same services.

Building an XML Web service means that you are interested in exposing some information or logic to
another entity either within your organization, to a partner, or to your customers. In a more granular
sense, building a Web service means that you, as a developer, simply make one or more methods from
a class you create that is enabled for SOAP communication.

When building C# Web services using the .NET Framework, you can use the main IDE for Microsoft devel-
opment, Visual Studio, or you can even go as far to use Notepad for your Web services development.

571

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 571

Note that the examples in this chapter are using Visual Studio 2005 based upon the .NET Framework 2.0.

The first step is to actually create a new Web site by choosing File ➪ New ➪ Web Site from the Visual
Studio menu (depending on your version). This launches the New Web Site dialog. Select ASP.NET Web
Service, as shown in Figure 19-1. Building a Web service means that you are interested in exposing some
information or logic to another entity either within your organization, to a partner, or to your customers.
In a more granular sense, building a Web service means that you, as a developer, simply make one or
more methods from a class you create enabled for SOAP communication.

Figure 19-1

Visual Studio creates a few files you can use to get started. In the Solution Explorer of Visual Studio (see
Figure 19-2) you find a single Web service file named Service.asmx; its code-behind file, Service.cs,
is located in the App_Code folder.

Figure 19-2

For this example, you expose as a Web service the Customers table from the sample Northwind database
found in SQL Server 2000. For this example, delete the Service.asmx and Service.cs files and then

572

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 572

right-click the project and select Add New Item from the provided menu. Add a new Web service and
give it the name of Customers.asmx.

Adding this new Web services to your project actually produces a couple of file. The first is the Web service
file —Customers.asmx. The second file for this Web service is the code-behind file which you find in the
App_Code folder of the solution. The name of this file is Customers.asmx.cs (or Customers.asmx.vb if
you are using Visual Basic).

If you open the Customers.asmx file in Visual Studio, you see that the file contains only the
@WebService page directive, as illustrated in Listing 19-4.

LLiissttiinngg 1199--44:: CCoonntteennttss ooff tthhee CCuussttoommeerrss..aassmmxx ffiillee

<%@ WebService Language=”C#” CodeBehind=”~/App_Code/Customers.cs”
Class=”Customers” %>

You use the @WebService directive instead of the @Page directive.

The simple WebService directive has only four possible attributes. The following list explains these
attributes:

❑ Class— Required. It specifies the class used to define the methods and data types visible to the
Web service clients.

❑ CodeBehind— Required only when you are working with a Web service file using the code-
behind model. It enables you to work with Web services in two separate and more manageable
pieces instead of a single file. The CodeBehind attribute takes a string value that represents the
physical location of the second piece of the Web service — the class file containing all the Web
service logic. In ASP.NET 2.0, it is best to place the code-behind files in the App_Code folder,
starting with the default Web service created by Visual Studio when you initially opened the
Web service project.

❑ Debug— Optional. It takes a setting of either True or False. If the Debug attribute is set to
True, the Web service is compiled with debug symbols in place; setting the value to False
ensures that the Web service is compiled without the debug symbols in place.

❑ Language— Required. It specifies the programming language that is used for the Web service.

Next, for this Web service, you only need to expose a single method —GetCustomers(). This is illus-
trated in Listing 19-5.

LLiissttiinngg 1199--55:: EExxppoossiinngg tthhee CCuussttoommeerrss ttaabbllee ffrroomm tthhee NNoorrtthhwwiinndd ddaattaabbaassee iinn SSQQLL SSeerrvveerr

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Data;
using System.Data.SqlClient;

(continued)

573

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 573

LLiissttiinngg 1199--55 (continued)

[WebService(Namespace = “http://www.wrox.com/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Customers : System.Web.Services.WebService
{

public Customers () {

}

[WebMethod]
public DataSet GetCustomers()
{

SqlConnection conn;
SqlDataAdapter myDataAdapter;
DataSet myDataSet;
string cmdString = “Select * From Customers”;

conn = new
SqlConnection(“Server=localhost;uid=sa;pwd=;database=Northwind”);

myDataAdapter = new SqlDataAdapter(cmdString, conn);

myDataSet = new DataSet();
myDataAdapter.Fill(myDataSet, “Customers”);

return myDataSet;
}

}

For .NET-based Web services, you should pay attention to a couple of things. Note that you are notifying
.NET that this is a Web service in a couple of ways. The first is by using the Web service file extension of
.asmx. The second thing of note is illustrated in Listing 19-5. The Customers class is turned into a Web
service through the use of the [WebService] attribute directly preceding the class.

[WebService(Namespace = “http://www.wrox.com/”)]

In this case, not only is the WebService attribute applied to the class, but the Namespace property is
also assigned a value (always a good idea). Another possible property to assign within the WebService
attribute is Description. Using this property applies a description of the Web service in the WSDL
file and might make it easier for developers to understand what the Web service provides.

Something that is new the .NET Framework 2.0 release is the new [WebServiceBinding] attribute.
It builds the Web service responses so that they conform to the WS-I Basic Profile 1.0 release (found at
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html).

Besides the attributes that are applied to the Customers class, you can also see (from Listing 19-5) that
this class inherits from the System.Web.Services.WebService class. The only method doing anything
in this class is the GetCustomers() method, which basically dishes out everything contained in the
Customers table from the Northwind database in a single response. Your Web service class (Customers)
can contain as many methods as you deem necessary, but only the methods that are marked with
the [WebMethod] attribute are actually exposed out to any consumer. This is only done for the
GetCustomers() method — also known as a WebMethod.

574

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 574

Using the Microsoft Web Services Test Page
One nice feature provided by the Microsoft Web services development environment is a developer testing
page (or a potential consumer testing page as well) for Web services. Pulling up the .asmx file in the
browser produces the visual test page for the Web service that is being exposed. Remember, usually each
Web service is URL-accessible; so to view the visual representation of the Web service, you simply type in
the URL of the Web service. An example of this is http://localhost:1364/Wrox1/Customers.asmx.
The visual test page for the Web services is presented in Figure 19-3.

Figure 19-3

This Web interface to your Web service provides the user with the name of your service as well as a list
of all the available WebMethods that the consumer can utilize from the Web service. From the preceding
figure, you can see that the name of the Web service is provided in the dark blue band at the top of the
page (Customers) and that the GetCustomers() WebMethod is the only method exposed from this
Web service.

The other item of importance on the page is a link to the WSDL document for the Web service. This link
is provided between the Web service title in the blue band and the list of available WebMethods on the
page. Again, the WSDL document is a description of the interface to the Web service. Clicking the link
Service Description pulls up a new page in the browser that shows you the complete WSDL docu-
ment (as shown in Figure 19-4).

With this WSDL document, the consumer (or the consumer’s IDE) can learn how to consume the Web
service. Note that a .NET-based Web service does not have an actual .wsdl file in the project that can be
referenced directly in the browser. Instead, the WSDL file is invoked by referencing the name of the file
which holds the Web service and tacking on a ?WSDL at the end.

http://localhost:1364/Wrox1/Customers.asmx?WSDL

Instead of having an actual file in the system, ASP.NET creates one for you dynamically. This doesn’t
mean that you can’t create your own WSDL files. You can do so, but most users stick with the dynami-
cally created WSDL files to represent the interface of their Web services.

575

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 575

Figure 19-4

Testing the WebMethod
Besides the link to the Web service’s WSDL file and a list of methods from the service, the ASP.NET Web
service test page also provides consumers with the capability to test actual WebMethods directly in the
browser. If a consumer clicks the WebMethod link (GetCustomers) in the browser, he is taken to a page
where he can test the WebMethod to see how it performs. The GetCustomers() WebMethod page is
shown in Figure 19-5.

The WebMethod test page enables the consumer to actually test the exposed method. If the method
requires parameters, he can find text boxes on the test page in addition to the Invoke button which is
shown in Figure 19-5. Because the GetCustomers() WebMethod doesn’t require any input parameters
to invoke the service, you will not find these text boxes in the figure — just the Invoke button.

576

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 576

Figure 19-5

In addition to an HTTP-POST form that allows you to invoke WebMethod, you also find some visual
documentation that shows the developer what kind of SOAP structure is required to invoke the service
as well as the SOAP response the consumer can expect in return. When building Web services in .NET
2.0, you also find documentation for SOAP 1.2 and HTTP-POST requests as well.

Clicking the Invoke button on the page causes the test page to send an HTTP-POST request to the
WebMethod. You then see the following response in a new browser instance (shown in Figure 19-6).

577

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 577

Figure 19-6

Altering the Protocols Used by the Web Service
By default in .NET 2.0, SOAP and HTTP-POST requests are allowed to any Web services on the platform.
.NET 1.0 did allow for HTTP-GET requests, but this feature was removed in the default installation start-
ing with .NET 1.1.

To enable HTTP-GET, make changes to your web.config file as shown in Listing 19-6.

LLiissttiinngg 1199--66:: EEnnaabblliinngg HHTTTTPP--GGEETT iinn yyoouurr WWeebb sseerrvviiccee aapppplliiccaattiioonnss

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<webServices>
<protocols>

<add name=”HttpGet”/>
</protocols>

</webServices>
</system.web>

</configuration>

578

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 578

Creating a <protocols> section in your web.config file enables you to add or remove protocol com-
munications. For example, you can add missing protocols (such as HTTP-GET) by using the syntax
shown previously, or you can remove protocols as the following example shows:

<configuration xmlns=”http://schemas.microsoft.com/.NetConfiguration/v2.0”>
<system.web>

<webServices>
<protocols>

<remove name=”HttpGet”/>
<remove name=”HttpPost”/>
<remove name=”HttpSoap”/>
<remove name=”Documentation”/>

</protocols>
</webServices>

</system.web>
</configuration>

You don’t want to remove everything shown in this code because that would leave your Web service
with basically no capability to communicate; but you can see the construction required for any of the
protocols that you do want to remove. The node removing Documentation is interesting because it can
eliminate the capability to invoke the Web services interface test page if you don’t want to make that
page available for any reason.

Building Web Services with Java
XML is a cross platform neutral-data format and Java is a cross-platform programming language. These
technologies provide a perfect solution for developing network independent and extensible applications;
they enable interoperability, portability, and flexibility. They also provide a standard solution for integrat-
ing heterogeneous applications and systems ranging from cell phones to large-scale enterprise applications.
An application can be written in Java and ported to various supported platforms (known as “Write Once,
Run Anywhere”). In addition, XML also has the capability to talk to Java as well as non-Java applications
running on diverse platforms.

With the overwhelming success of XML and Java in enterprise applications, the use of XML has required
the development of parsers and other supporting technologies to process the XML data. Many XML-
based technologies have been developed over the last few years using vendor-specific APIs that require
specific vendor implementation knowledge. The introduction of the Java XML APIs provides standard
interfaces that are independent of any vendor-specific implementation. For example, in using a JAXP-
compliant parser, this standardization provides better support for maintaining application code and
enables the application provider to exchange the underlying implementation of the parser. This change
does not require any modification in the application code because the method calls are the same due to
compliance of the two parsers.

This chapter presents an introduction to developing Java Web services through the use of Apache Axis
and Jakarta Tomcat. Before looking at the Web service implementation, here is a quick introduction to
Axis and Tomcat.

579

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 579

Introduction to Axis and Tomcat
Axis is essentially a SOAP engine that provides a framework for constructing SOAP processors such as
clients, servers, gateways, etc. In addition to being the third generation of Apache SOAP, the Axis also
includes:

❑ A simple stand-alone server

❑ A server that plugs into servlet engines such as Tomcat

❑ Extensive support for the Web Service Description Language (WSDL)

❑ Emitter tooling that generates Java classes from WSDL

Tomcat is a Java Servlet container and Web server from the Jakarta project of the Apache software founda-
tion. A Web server dishes out Web pages in response to requests from a user sitting at a web browser. But
Web servers are not limited to serving up static HTML pages; they can also run programs in response to
user requests and return the dynamic results to the user’s browser. Tomcat is very good at this because it
provides both Java Servlet and Java Server Pages (JSP) technologies (in addition to traditional static pages
and external CGI programming). The result is that Tomcat is good choice for use as a Web server for many
applications; also if you want a free Servlet and JSP engine. It can be used standalone or used behind tra-
ditional Web servers such as Apache http, with the traditional server serving static pages and Tomcat
serving dynamic servlet and JSP requests.

For the purposes of this chapter, I will use the combination of Tomcat (as a Web server) and Axis (as the
SOAP runtime engine) for the development and deployment of Java Web services.

Setting Up Axis and Tomcat
Before you can begin using Axis, you need to download a copy of Jakarta Tomcat and Apache Axis:

❑ Jakarta TOMCAT (http://tomcat.apache.org/download-60.cgi)

❑ Apache AXIS (apache.org/dyn/closer.cgi/ws/axis/1_4)

For TOMCAT to start properly, set the JAVA_HOME system environment variable to <Drive_Name>
Program Files\Java\jdk1.6.0 through Control Panel ➪ System ➪ Advanced ➪ Environment
Variables. If you don’t have JDK 1.6.0 already installed, download it from the http://java.sun.com
Web site.

To configure AXIS, set the CLASSPATH environment variable to <axis_home>\axis-1_4\lib\
axis.jar; <axis_home>\axis-1_4\lib\commons-discovery-0.2.jar; <axis_home>\
axis-1_4\lib\commons-logging-1.0.4.jar; <axis_home>\axis-1_4\lib\jaxrpc.jar;
<axis_home>\axis-1_4\lib\saaj.jar; <axis_home>\axis-1_4\lib\wsdl4j-1.5.1.jar;
<axis_home>\axis-1_4\;

After installing Tomcat and decompressing Axis, copy the axis folder from <axis-home>/webapps to
<tomcat-home>/webapps. This gives you the following folder:

<tomcat-home>/webapps/axis

580

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 580

Start Tomcat by executing the startup script from the <tomcat-home>/bin folder. For example, on
Windows:

C:\apache-tomcat-5.5.20\bin> startup

Now you can test your installation by directing your Web browser to the following URL:

http://localhost:8080/axis

Click on Validation or go directly to the URL:

http://localhost:8080/axis/happyaxis.jsp

This page tells you if Axis located the libraries that it needs to run properly. If you have any errors, you
are provided with links to the required libraries that you need to install. Follow the links, download the
libraries, and copy the JAR files to the <tomcat-home>/webapps/axis/WEB-INF/lib folder.

Note you may need to restart Tomcat for the changes to take effect; execute the shutdown script followed
by the startup script from the <tomcat-home>/bin folder.

Finally, you might want to test your installation by listing the currently deployed Web services. Bring up
the Axis home page by navigating to http://localhost:8080/axis from the browser. If the installation
is successful, you should see an output similar to Figure 19-7.

Figure 19-7

581

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 581

If you click List on the Axis homepage, you should initially see two services:

❑ AdminService

❑ Version

Click on the wsdl link for the Version service to validate that Axis is properly serving its content.

Publishing Web Services Using Axis
Now that you have set up your Web application to use Axis as the SOAP engine, it’s time to publish the
Web services. Axis provides two ways to deploy the Web services.

❑ Instant deployment through renaming .java to .jws

❑ Advanced deployment through the .wsdd (Web Service Deployment Descriptor)
configuration file

The next two sections examine both of these approaches in detail.

Instant Deployment Through Renaming .java to .jws
The simplest and most straightforward way to deploy Web services is to rename the .java file to .jws
and place it in the root of your Web application. JWS stands for Java Web Service. For example, consider
the following java class named HelloWorld.java.

public class HelloWorld {
public static String HelloWorld(String name){

return “Hello : “ + name;
}

}

To expose this as a Web service, you simply rename it to HelloWorld.jws and place it in the root of your
Web application. That’s all there is to deploying the Web service. With that, you are ready to access the
WSDL contents of the Web service by navigating to http://localhost:8080/axis/HelloWorld.jws
using the browser. Figure 19-8 shows the output generated by the browser.

Figure 19-8

582

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 582

In the Consuming Web Services with Java”section, you will see the steps involved in consuming this ser-
vice from a client application.

As you can see, this approach is very simple. However, one of the major caveats of using this technique
is that you are forced to use mainly primitive data types and some very common Java classes such as
java.util.Date as method arguments and return types. In other words, you cannot use your custom
classes (also sometimes referred to as Value Objects or VOs) as method parameters or return types. This is
where the advanced deployment comes into your rescue, which is the topic of focus for the next section.

Advanced Deployment
The advanced deployment allows you to use your own classes as parameter values and return type of
methods. These parameter values are called Value Objects. Value Objects are typically used to represent
the collection of data that needs to be passed on via methods. To illustrate the advanced deployment
approach, let us consider a slightly complex service, wherein you retrieve the product data from a SQL
Server 2005 database, convert the resultset into a Product object, and return that from the service.

First, to be able to access SQL Server data, you must download the corresponding JDBC driver. You
can download the JDBC driver for SQL Server 2005 from the link (http://www.microsoft.com/
downloads/details.aspx?FamilyId=6D483869-816A-44CB-9787-A866235EFC7C&displaylang=en)
in Microsoft Web site. Once you unzip the installation zip file in a local file, ensure that the path to the
sqljdbc.jar file is also set in the CLASSPATH environment variable.

Creating the Service Implementation
Create a new java class file named ProductService.java and place it under the <Drive_Name>\
Projects\Wrox\WebServices\com\wrox\webservices folder. This is shown in Listing 19-7.

LLiissttiinngg 1199--77:: EExxppoossiinngg tthhee PPrroodduucctt ddaattaa ffrroomm tthhee AAddvveennttuurreeWWoorrkkss ddaattaabbaassee
iinn SSQQLL SSeerrvveerr

package com.wrox.webservices;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class ProductService
{

public static Product getProduct(int productID)
{

Product obj = new Product();
try
{

Class.forName(“com.microsoft.sqlserver.jdbc.SQLServerDriver”);
String connectionUrl =

“jdbc:sqlserver://localhost;database=AdventureWorks;user=sa;password=thiru”;
Connection con = DriverManager.getConnection(connectionUrl);
con.setAutoCommit(false);
PreparedStatement pstmt = con.prepareStatement

(continued)

583

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 583

LLiissttiinngg 1199--77 (continued)

(“SELECT ProductID, Name, ProductNumber, Color FROM “ +
“ Production.Product WHERE ProductID = ?”);

pstmt.setInt(1, productID);
ResultSet rs = pstmt.executeQuery();
while (rs.next())
{

obj.setProductID(rs.getInt(“ProductID”));
obj.setName(rs.getString(“Name”));
obj.setProductNumber(rs.getString(“ProductNumber”));
obj.setColor(rs.getString(“Color”));

}
rs.close();
pstmt.close();
con.close();

}
catch (Exception e)
{

e.printStackTrace();
}
return obj;

}
}

To start with, you load the Microsoft JDBC driver for SQL Server 2005 by calling the Class.forName()
method passing in the name of the class that represents the SQL Server driver.

Class.forName(“com.microsoft.sqlserver.jdbc.SQLServerDriver”);

After that, you specify the connection string to the database using the JDBC connection string syntax.
Once the connection string is set, the next step is to get reference to the Connection object, which can be
accomplished using the DriverManager.getConnection() method.

String connectionUrl =
“jdbc:sqlserver://localhost;database=AdventureWorks;user=sa;password=thiru”;

Connection con = DriverManager.getConnection(connectionUrl);

Next, you obtain reference to the PreparedStatement object through the prepareStatement()
method of the Connection object. To the prepareStatement() method, you pass in the SQL statement
to be executed as an argument.

PreparedStatement pstmt = con.prepareStatement
(“SELECT ProductID, Name, ProductNumber, Color FROM “ +
“ Production.Product WHERE ProductID = ?”);

Here you set the value of the ProductID parameter by invoking the setInt() method of the Prepared
Statement object. Finally you execute the SQL query through the invocation of executeQuery()
method, which returns a ResultSet object with results from the execution of the query.

pstmt.setInt(1, productID);
ResultSet rs = pstmt.executeQuery();

584

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 584

Once you have the ResultSet object, you can then invoke its getXXX() methods to get to the specific
column values.

while (rs.next())
{

obj.setProductID(rs.getInt(“ProductID”));
obj.setName(rs.getString(“Name”));
obj.setProductNumber(rs.getString(“ProductNumber”));
obj.setColor(rs.getString(“Color”));

}

Finally, you return the Product object as a return value to the caller.

return obj;

The Product class used in Listing 19-8 is declared as follows:

LLiissttiinngg 1199--88:: IImmpplleemmeennttaattiioonn ooff PPrroodduucctt ccllaassss

package com.wrox.webservices;

public class Product
{

private int productID;
private String name;
private String productNumber;
private String color;

public int getProductID()
{ return productID; }
public void setProductID(int productIDVal)
{ productID = productIDVal; }

public String getName()
{ return name; }
public void setName(String nameVal)
{ name = nameVal; }

public String getProductNumber()
{ return productNumber; }
public void setProductNumber(String productNumberVal)
{ productNumber = productNumberVal; }

public String getColor()
{ return color; }
public void setColor(String colorVal)
{ color = colorVal; }

}

As you can see from Listing 19-8, the Product class just has a set of getter/setter methods that allow
you to work with the various attributes of a Product.

585

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 585

The Product class file is also stored in the same location <Drive_Name>\Projects\Wrox\
WebServices\com\wrox\webservices. Now compile the ProductService.java file using the
command line compiler javac. For the compiler to identify the Product class, your CLASSPATH variable
must also include the location C:\Projects\Wrox\WebServices\. Instead of setting the CLASSPATH
environment variable, you can also specify the classpath switch at the time of invoking the compiler.

Creating a Web Service Deployment Descriptor (WSDD) File
Now that you have created the service implementation, the next step is to create a WSDD file that contains
the service deployment information. To really use the flexibility available to you in Axis, you should get
familiar with the Web Service Deployment Descriptor (WSDD) format. A deployment descriptor contains
a bunch of things you want to “deploy” into Axis, meaning make available to the Axis engine. For
ProductService, create a WSDD file called Deploy.wsdd and add the following contents to it.

<deployment xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>
<service name=”ProductProcessor” provider=”java:RPC”>

<parameter name=”className” value=”com.wrox.webservices.ProductService”/>
<parameter name=”allowedMethods” value=”getProduct”/>
<beanMapping qname=”myNS:Product” xmlns:myNS=”urn:ProductService”

languageSpecificType=”java:com.wrox.webservices.Product”/>
</service>

</deployment>

The <service> element enables you to specify the details of the service including the name of the class
as well the methods that are allowed to act as Web methods. The <beanMapping> sub-element points to
your custom bean. This element allows Axis to handle (most appropriately serialize and de-serialize) the
Java classes that are not handled by default by Axis (mostly primitive) and they follow the Java bean
style setter and getter methods. You have to define as many bean mappings as the beans used by the
Web method and the beans used within those beans.

Now go ahead and deploy the deploy.wsdd file using the AdminClient utility:

java org.apache.axis.client.AdminClient -llocal:///AdminService deploy.wsdd

You should see an output similar to Figure 19-9:

Figure 19-9

586

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 586

Now that you have created the Web service, you are ready to consume it from a client application, which
will be covered in the “Consuming Web Services with JAVA” section.

Consuming Web Services with C#
Earlier in this chapter, you got a preview of how to build a simple Web service that exposed the
Customers table from the Northwind database of SQL Server. This Web service was written in C# and,
once it is in place, any consumer (regardless of the consumer’s underlying platform) can consume this
Web service.

So where can you consume Web services when using C#? Remember that the Web services you come
across can be consumed in Windows Forms applications, mobile applications, databases, and more. You
can even consume Web services with other Web services so you can have a single Web service made up of
what is basically an aggregate of other Web services. Anything that is connected to HTTP and can under-
stand XML in some fashion can utilize the Customers Web service that was created earlier in this chapter.

Next, you see how to consume the Customers Web service in a C#-based ASP.NET application.

Consuming Web Services Using ASP.NET
The first step in the process of consuming a Web service using ASP.NET is to create an ASP.NET project
using Visual Studio 2005. This process creates a single page called Default.aspx in the project. The
Solution Explorer for this project is shown in Figure 19-10.

Figure 19-10

Adding a Web Reference to Your ASP.NET Project
Now that the project is in place, right-click the project name and select Add Web Reference from the pro-
vided menu. You also see an Add Reference option in the menu, but this is for referencing objects that
reside on the same server. Because you are hoping to make a reference to a remote object, you next use the
Add Web Reference option. This selection from the menu pulls up the Add Web Reference dialog box.

587

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 587

From the Add Web Reference dialog, you can search for Web services that are located within the same
project, the same server, or which are contained within UDDI. For this solution, be sure to select the
option that enables you to find Web services that reside on the same server.

You might not find the earlier Customers Web service on the local machine depending on how that ser-
vice was built. By default, Visual Studio 2005 uses a built-in Web server to launch, run, and test the
Web services. If this default Web server is not running, then your new ASP.NET project will not find
the Web service anywhere on the server. To get around this, either open another instance of Visual
Studio 2005 and run the Customers Web service project or build the Customers Web service within
Internet Information Services (IIS).

To find the Customers Web service, you really have to type only the URL endpoint of the service in the
address bar of the dialog. Visual Studio figures out where the location of the dynamically created WSDL
document on its own when just referencing Customers.asmx. However, if you are consuming a Web ser-
vice from another platform, you must type the location of the WSDL document in the address bar instead.

After the reference has been made, you then should rename the reference. The reference has the default
name of localhost (if the Web service resides on the same server as the consuming application) or it
will have something a bit cryptic such as com.wrox.www if located elsewhere on the Internet. For this
example, I renamed the reference Wrox as shown in Figure 19-11.

Figure 19-11

588

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 588

After you have the Add Web Reference dialog the way you want it, click the Add Reference button in the
dialog to have Visual Studio generate everything you need to consume the Web service.

So, after making this reference, what is created for you? If you look at the Solution Explorer of Visual
Studio shown in Figure 19-12, you see the additions.

Figure 19-12

From Figure 19-12, you can see that the WSDL document was pulled down to the application as well as
some additional DISCO (discovery) documents. In addition to the WSDL document, you also find that a
change was made to the ASP.NET application’s web.config file.

<appSettings>
<add key=”Wrox.Customers”
value=”http://localhost:1364/Wrox1/Customers.asmx”/>

</appSettings>

This <appSettings> value gives you an object reference to the Customers Web service that can now be
utilized in your code.

Building the Consuming Web Page
Now turn your attention to the Default.aspx page that is in the ASP.NET solution. Now that a refer-
ence is in place in the project, the next step is to build the means on the ASP.NET page to utilize this
object in some fashion.

On the design part of the Default.aspx page, place a Button and a GridView control so that your page
looks something like the one shown in Figure 19-13.

589

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 589

Figure 19-13

The idea is that, when the end user clicks the button contained on the form, the application sends a SOAP
request to the Customers Web service and gets back a SOAP response containing the Customers table from
the Northwind database, which is then bound to the GridView control on the page. Listing 19-9 shows the
code for this simple application.

LLiissttiinngg 1199--99:: CCoonnssuummiinngg tthhee CCuussttoommeerrss WWeebb sseerrvviiccee iinn aann AASSPP..NNEETT ppaaggee

using System;
using System.Data;
using System.Configuration;
using System.Collections;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Button1_Click(object sender, EventArgs e)
{

Wrox.Customers ws = new Wrox.Customers();
GridView1.DataSource = ws.GetCustomers();
GridView1.DataBind();

}
}

590

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 590

The code from Listing 19-9 is the code from the code-behind page, Default.aspx.cs. This code-behind
file contains only a single event — the Button1_Click event. This event occurs when the end user
clicks the single button on the ASP.NET page. When this happens, first the Web service reference is
instantiated as ws:

Wrox.Customers ws = new Wrox.Customers();

Then the result from the ws object’s GetCustomers() method is assigned to the DataSource property
of the GridView control before being data bound to the control. These three simple lines of code give you
the results illustrated in Figure 19-14.

Figure 19-14

In the end, a dataset is exposed from a remote server and then, using standards such as SOAP, you are
able to consume this dataset over HTTP and use it inside your application. It was simple to achieve this
remote procedure call because it is based upon standards.

Consuming Web Services Using Windows Forms
To show you the power of consuming Web services, you can look at another example of consumption.
Remember, after the data is exposed as a Web service and becomes consumable by someone, you really

591

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 591

can’t control how that data is utilized. For instance, although you just saw the consumption of the
Customers table into an ASP.NET application (which is a browser-based application), the consumer can
also take this SOAP response and use it in a thick-client application (Windows Forms, for instance), a
console application, a Windows service, and even another Web service.

Next, to show another example of consumption, you can work through an example of consuming the
GetCustomers() WebMethod in a Windows Forms application. To accomplish this, open up Visual
Studio 2005 and create a new Windows Forms project in C#. This gives you a project like the one shown
in Figure 19-15.

Figure 19-15

The creation of the Windows Forms project gives you a single form (Form1.cs) that you can work with.
Like the ASP.NET Web application shown earlier, to have this Windows Forms project work with the
Customers Web service you created earlier, you have to make a Web Reference in the Windows Forms
project. To do this, right-click the project in the Solution Explorer and select Add Web Reference from the
provided menu. To add the Web reference, go through the same steps used in the ASP.NET application,
naming the reference Wrox.

This does a few things to your project as shown in Figure 19-16.

Figure 19-16

592

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 592

Instead of making a reference in this fashion, you can also use the Data Sources tab (shown in the
bottom-right-hand corner of Figure 19-16) to add a reference to the Web service. Doing it through the
Data Sources dialogs also adds a proxy class to the Visual Studio toolbox that you can then easily use
in your project.

For this example, I simply add a DataGridView control to the form and a little bit of style (just for alter-
nating rows). In the code-behind of the form, the only thing to add is an instantiation of the Web service
reference and then a process to bind this instantiation to the DataGridView control on the form. The
code-behind for the Form1_Load event is shown in Listing 19-10.

LLiissttiinngg 1199--1100:: CCaalllliinngg tthhee WWeebb sseerrvviiccee ffrroomm aa WWiinnddoowwss FFoorrmmss aapppplliiccaattiioonn

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace WroxWinCustomer
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

Wrox.Customers ws = new Wrox.Customers();
dataGridView1.DataMember = “Customers”;
dataGridView1.DataSource = ws.GetCustomers();

}
}

}

In this example, you use the DataGridView control’s DataMember property and assign the name of
the class you are consuming as well as assigning the DataSource property to be the dataset which is
returned from the GetCustomers() method call. The result of this operation is shown in Figure 19-17.

I hope that after you see how this simple Web service was consumed in a Web application as well as in
a thick-client application, you recognize how powerful the Web services model is and how usable it is
in almost any environment. That’s the power of Web services and that is why everyone is so excited
about them.

593

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 593

Figure 19-17

I hope that after you see how this simple Web service was consumed in a Web application as well as in a
thick-client application, you recognize how powerful the Web services model is and how usable it is in
almost any environment. That’s the power of Web services and that is why everyone is so excited about
them.

Consuming Web Services with Java
In the “Building Web Services with Java” section, you created two different Web services. One using the
instant deployment (named HelloWorld.jws) and another one using the advanced deployment approach
(named ProductService.java). This section will demonstrate the steps involved in consuming these ser-
vices from Java client applications. First, let us start with the HelloWorld.jws service.

Consuming the HelloWorld Service
For the purposes of this example, create a new Java file named HelloWorldClient.java and modify
its code to look as shown in Listing 19-11.

594

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 594

LLiissttiinngg 1199--1111:: IImmpplleemmeennttaattiioonn ooff cclliieenntt ffoorr tthhee pprroodduucctt sseerrvviiccee

package com.wrox.webservices;

import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import org.apache.axis.utils.Options;
import javax.xml.rpc.ParameterMode;

public class HelloWorldClient
{

public static void main(String [] args) throws Exception {
Options options = new Options(args);
String endpoint = “http://localhost:” + options.getPort() +

“/axis/HelloWorld.jws”;
args = options.getRemainingArgs();
if (args == null || args.length != 2) {

System.err.println(“Usage: HelloWorldClient <HelloWorld> arg1 “);
return;

}
String method = args[0];
if (!(method.equals(“HelloWorld”))){

System.err.println(“Usage: HelloWorld arg1 “);
return;

}
String name = new String(args[1]);
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName(method);
call.addParameter(“name”, XMLType.XSD_STRING, ParameterMode.IN);
call.setReturnType(XMLType.XSD_STRING);
String result = (String)call.invoke(new Object[] { name });
System.out.println(result);

}
}

To start with, create an instance of the org.apache.axis.utils.Options class and pass in the argu-
ments array passed to the main method. Through the getPort() method of the Options object, you
retrieve the port number in which the Web service is hosted. In addition to the port number, the input
arguments passed to the main method also include the name of the method as well as the argument to
be passed to the method. You retrieve these two values and assign them to local variables for later use.

Then you create a new Service instance and then use the Service object to create a service call through
the createCall() method. In this case, you create it directly rather than using a ServiceFactory
because Axis only supports JAX-RPC calls. This approach enables you to keep everything generic
because of which the HelloWorldClient doesn’t need to know anything about the HelloWorld
service and let the Web service framework handle the underlying complexities.

Service service = new Service();
Call call = (Call) service.createCall();

595

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 595

Next, you specify the location of the Web service using the setTargetEndpointAddress() method, to
which you pass in the endpoint of the Web service.

call.setTargetEndpointAddress(new java.net.URL(endpoint));

Here you define the operation name to execute through the call to the setOperationName() method.

call.setOperationName(method);

Here you tell the service call that you have an input parameter and an output parameter. You set the
input parameter name to name and map its String type to the corresponding XSD type. Since the output
parameter is of String type, you set the return type to XSD_STRING.

call.addParameter(“name”, XMLType.XSD_STRING, ParameterMode.IN);
call.setReturnType(XMLType.XSD_STRING);

Then you invoke the Web service through the Call.Invoke() method call passing in the name input
parameter.

String result = (String)call.invoke(new Object[] { name });

Finally, you capture the response returned from the service and typecast that into a String. You then dis-
play the value of the result variable by calling the System.out.println() method.

System.out.println(result);

Running the Client Application
Now that you have created the client application, you are ready to run the application. First, compile the
HelloWorldClient.java using the compiler. After that, enter the following command from the com-
mand prompt to initiate the client application.

java com.wrox.webservices.HelloWorldClient –p8080 HelloWorld “Thiru”

In the previous command:

❑ The switch p specifies the port number

❑ HelloWorld indicates the name of the Web service method to be invoked

❑ “Thiru” is the argument passed to the HelloWorld method

The result of the previous command displays output similar to Figure 19-18:

596

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 596

Figure 19-18

Consuming the ProductService
In this section, you will see the steps involved in consuming the ProductService. Remember that the
ProductService has a method named getProduct that accepts a productID as an argument and
returns the details of that product in the form of a Product object. To start with, create a new Java class
named ProductClient and add the code shown in Listing 19-12 to it.

LLiissttiinngg 1199--1122:: IImmpplleemmeennttaattiioonn ooff CClliieenntt ffoorr tthhee PPrroodduucctt SSeerrvviiccee

package com.wrox.webservices;

import org.apache.axis.AxisFault;
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.utils.Options;
import javax.xml.namespace.QName;
import javax.xml.rpc.ParameterMode;

public class ProductClient
{

public static void main(String [] args) throws Exception
{

Options options = new Options(args);
Service service = new Service();
Call call = (Call) service.createCall();
QName qn = new QName(“urn:ProductService”, “Product”);
call.registerTypeMapping(Product.class, qn,

new org.apache.axis.encoding.ser.BeanSerializerFactory(Product.class, qn),
new org.apache.axis.encoding.ser.BeanDeserializerFactory(Product.class,
qn));

Product result = null;
try {

call.setTargetEndpointAddress(new java.net.URL(options.getURL()));
call.setOperationName(new QName(“ProductProcessor”, “getProduct”));

(continued)

597

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 597

LLiissttiinngg 1199--1122 (continued)

call.addParameter(“productID”, org.apache.axis.encoding.XMLType.XSD_INT,
ParameterMode.IN);

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_ANYTYPE);
result = (Product) call.invoke(new Object[] { 1 });

}
catch (AxisFault fault) {

System.out.println(“Error : “ + fault.toString());
}
System.out.println(“Name : “ + result.getName());
System.out.println(“Product ID : “ + result.getProductID());
System.out.println(“Product Number : “ + result.getProductNumber());
System.out.println(“Colr : “ + result.getColor());

}
}

To start with, create a new Service instance and then as the Service to create a call through the
createCall() method.

Service service = new Service();
Call call = (Call) service.createCall();

To help us manage the command line options, Apache provides the following class: org.apache
.axis.utils.Options. From this class, you can extract the URL of the destination Web Service
through its getURL() method. Then you set the setTargetEndpointAddress() method of the Call
object to the target endpoint to connect:

call.setTargetEndpointAddress(new java.net.URL(options.getURL()));

Next, you define the operation name to execute; this involves the creation of a QName. The QName uses
the ProductService namespace (that was specified in the deploy.wsdd file) and the name of the
method on the ProductService that you want to execute, which is getProduct in this case.

call.setOperationName(new QName(“ProductProcessor”, “getProduct”));

Here you tell the call that you have an input parameter and an output parameter. You set the input
parameter name to productID and map its int type to the corresponding XSD type. Since the output
parameter is an object of type Product, you set the return type to XSD_ANYTYPE.

call.addParameter(“productID”, org.apache.axis.encoding.XMLType.XSD_INT,
ParameterMode.IN);

call.setReturnType(org.apache.axis.encoding.XMLType.XSD_ANYTYPE);

Finally, you invoke the Web service through the Call.Invoke() method call passing in the input
parameters as an object array.

result = (Product) call.invoke(new Object[] { 1 });

598

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 598

Note that in the previous line of code, you set the product id to a hard-coded value, which is 1 in this
case. You capture the response returned from the service and typecast that into a Product object. You
then display the values contained in the Product object through the System.out.println() method.

Running the Client Application
After compiling the ProductClient.java, enter the following command from the command prompt.

java com.wrox.webservices.ProductClient -llocal://

You should see an output similar to Figure 19-19.

Figure 19-19

Caching Web Services
A cache on a system is an in-memory store where data, objects, and various items are stored for reuse.
Many applications and Web sites use caching today in order to increase performance. How is this
done? Take a look at the browser as a prime example of a device that uses caching to greatly increase
performance.

When you pull up a page in your browser for the first time, the browser takes the items from the page
(most notably the images) and stores these objects in memory. The next time you return to the same
page, the browser uses the in-memory images and data to generate the page (if no changes were made
to the original page). Using the in-memory version of the objects to generate the page greatly enhances
performance.

Using an in-memory store is also an easy way to greatly increase the performance of your Web services
with very little work on your end. Looking at .NET-based Web services, you can use a feature that allows
you to use an output caching capability. Output caching is a capability to store responses that are generated
from your Web service to use for subsequent requests.

599

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 599

Output caching can be controlled in dealing with Web services on the WebMethod level by using the
CacheDuration property. This is illustrated in Listing 19-13.

LLiissttiinngg 1199--1133:: CCaacchhiinngg uussiinngg tthhee CCaacchheeDDuurraattiioonn pprrooppeerrtt yy

[WebMethod(CacheDuration=45)]
public DataSet GetCustomers()
{

SqlConnection conn;
SqlDataAdapter myDataAdapter;
DataSet myDataSet;
string cmdString = “Select * From Customers”;

conn = new SqlConnection(“Server=localhost;uid=sa;pwd=;database=Northwind”);
myDataAdapter = new SqlDataAdapter(cmdString, conn);

myDataSet = new DataSet();
myDataAdapter.Fill(myDataSet, “Customers”);

return myDataSet;
}

The value provided through the CacheDuration property is a number that represents the number
of seconds that ASP.NET stores the response from the Web service in memory. In this example, the
WebMethod GetCustomers() returns a large result set of customers that most probably doesn’t change
very often; therefore, it is a prime candidate for caching. This dataset is cached by ASP.NET for 45 sec-
onds. After 45 seconds, the cache is destroyed and the response is generated again (and stored again).

It is important to understand caching behaviors. If your WebMethod requires input parameters, then
the caching occurs for each unique set of data based upon the parameters input into the system. For
instance, if a consumer of a WebMethod that requires a single parameter invokes the WebMethod using
a single parameter value of A to get a response, this response is cached according to the instructions
provided through the CacheDuration property. Then, if a second consumer of the WebMethod uses a
parameter value of B to get his response, this response is also cached along with the result that came
from using a parameter value of A. At this point, two cached results exist in memory: one with the result
set from a parameter value of A and another with the result set from the parameter value of B. If a third
consumer uses either A or B and the cache has not expired for either of these result sets, the cached copy
of the response is used.

Understanding this process is important. If your WebMethod can return a wide variety of result sets to
the consumer from all the possible parameter values that can be provided by the end user, caching might
not be that beneficial. Use caching intelligently.

600

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 600

Asynchronous Consumption
of Web Services

When you are building your applications that consume SOAP messages from Web services out there in
the world, you may notice that working with these Web services synchronously can be slow and ineffi-
cient for applications that depend upon good performance.

In most cases, you are not in control of the actual Web services that you are consuming. Some Web services
might return a SOAP response to you quickly, whereas others might return a response very slowly — to the
detriment of your consuming application.

Typically, when you have worked with Web services, you have done so in a synchronous manner. When
you make synchronous invocations of any Web service, your application simply sends a SOAP request
and waits for a response before any application processing continues. While the consuming application
is waiting for the response from the Web service, the consuming application is locked to the end user.
This process is shown in Figure 19-20.

Figure 19-20

Web service server

Phase One

Client sends SOAP request and waits

Web service server

Phase Two

Client receives SOAP response

601

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 601

To improve efficiency, you can work with slower Web services asynchronously rather than synchronously.
An asynchronous invocation of a Web service is the opposite of a synchronous invocation. When your
consuming application makes an asynchronous invocation of a Web service, it can work on other things
while it waits for the response from the Web service. After working on something else, your application
can then return to receive the response. Figure 19-21 shows you what an asynchronous invocation of a
Web service looks like.

Figure 19-21

Building a Slow Web Service
How can you build your Web services to be consumed asynchronously? Well, nothing really. The asyn-
chronous communication that might be required is provided for on the consuming side of the equation.
However, for an example of this, you first have to have a slow Web service in place. This slow Web ser-
vice (shown in Listing 19-14) uses a for loop to do a small count before returning a result.

LLiissttiinngg 1199--1144:: BBuuiillddiinngg aa ssllooww WWeebb sseerrvviiccee

using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;

Web service server

Phase One

Client sends SOAP
request and works
on something else

Web service server

Here you
go.

Are you
ready to

give a
response?

Phase Three

Client receives
SOAP response

Web service server

Not yet.

Are you
ready to

give a
response?

Phase Two

Client checks
if response is ready

602

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 602

[WebService(Namespace = “http://www.wrox.com/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class SlowBoy : System.Web.Services.WebService {

public SlowBoy () {
}

[WebMethod]
public int TakeLongTime() {

int x = 0;
for (int y = 1; y <= 1000; y++)
{

y += 1;
x = y;

}

return x;
}

}

You can see that this Web service simply runs through a loop 1000 times before sending back the value
of 1000— all done through the wonderful name of TakeLongTime(). Now, the next step is to consume
this Web service asynchronously from a consuming application.

Consuming the TakeLongTime() WebMethod
Asynchronously

If you look at the WSDL document for the SlowBoy Web service, you see a definition is in place for the
TakeLongTime() WebMethod. However, when you build a .NET application that consumes this Web ser-
vice, notice that you have access to two other methods: BeginTakeLongTime() and EndTakeLongTime().
These Begin and End methods are created for you with no action on your part required. You need these
two methods to invoke the Web service in an asynchronous manner.

To see an example of using the BeginTakeLongTime() and the EndTakeLongTime() methods in your
client application, take a look at the code in Listing 19-15. This ASP.NET application sends off a SOAP
request to the Web service. Then, while the request is being processed by the Web service, the client
application continues its own processing by running a counter until the Web service is ready to return a
SOAP response back. When the Web service is ready to provide a response, this response is retrieved
and both numbers are displayed to the browser screen. For this example, create a simple ASP.NET page
that contains two Label controls that display the output —Label1 and Label2.

LLiissttiinngg 1199--1155:: AAssyynncchhrroonnoouuss iinnvvooccaattiioonn ooff aa WWeebb sseerrvviiccee

<%@ Page Language=”C#” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

(continued)

603

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 603

LLiissttiinngg 1199--1155 (continued)

<script runat=”server”>
protected void Page_Load(object sender, EventArgs e)
{

AsyncTest.SlowBoy ws = new AsyncTest.SlowBoy();

IAsyncResult asyncCheck = ws.BeginTakeLongTime(null, null);
int x = 0;

while (asyncCheck.IsCompleted == false)
{

x += 1;
}

Label1.Text = x.ToString();
Label2.Text = ws.EndTakeLongTime(asyncCheck).ToString();

}
</script>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Asynchronous invocation</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<asp:Label ID=”Label1” runat=”server” Text=”Label”></asp:Label>

<asp:Label ID=”Label2” runat=”server” Text=”Label”></asp:Label>

</div>
</form>

</body>
</html>

Because the developer of the consuming application anticipates a long wait if it directly invokes the
TakeLongTime() method, another option is for the application to instead invoke the BeginTake
LongTime() method. By using the BeginTakeLongTime() method, the client application retains con-
trol — instead of being forced to wait around to get a response from the Web service. The client applica-
tion is then free to do whatever it wants before returning to retrieve the result from the Web service.

After the SOAP request is sent to the Web service, the client application can use the IAsyncResult
instance to check whether the method call has been completed. In this case, the client application checks
whether the method call has been completed by using asyncCheck.IsCompleted. If the asynchronous
invocation is not complete, the client application increases the x variable by one before making the check
again. The client application does this until the Web service is ready to return a response. The example of
the result returned to the browser is illustrated in Figure 19-22.

604

Part VI: XML Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 604

Figure 19-22

As you can tell, this powerful capability can add a lot to the performance of your consuming applications.

Summary
This chapter was a whirlwind tour of Web services in both the .NET world as well as the Java world. It is
definitely a topic that merits an entire book of its own. The chapter showed you the power of exposing
your data and logic as SOAP and also how to consume these SOAP messages directly in the thin- or
thick-client applications you build.

In addition to pointing out the power you have for building and consuming basic Web services, the
chapter spent some time helping you understand caching and performance. A lot of power is built into
this model; everyday the Web services model is making stronger inroads into various enterprise organi-
zations. It is becoming more likely that in order to get at some data or logic you need for your applica-
tion, you will employ the tactics presented here.

The next chapter is going to take a look at SOAP and WSDL in greater detail including how to extend
SOAP to give your Web services some advanced features.

605

Chapter 19: Web Services

28_777779 ch19.qxp 3/1/07 11:50 PM Page 605

28_777779 ch19.qxp 3/1/07 11:50 PM Page 606

SSOOAAPP aanndd WWSSDDLL

When you start working with the Web services space, you quickly realize that so much in this
space resolves completely around SOAP and WSDL. SOAP, or Simple Object Access Protocol, is the
language that Web services speak to transmit messages over the wire. WSDL, or Web Services
Description Language, is the XML structure used to describe the SOAP messages involved in the
request/response process.

This chapter investigates both of these technologies and how to use them to your advantage in the
applications you are building today. It reviews the basics of SOAP and WSDL, as well as how you
can go about extending both these technologies using various tools and technologies that are at
your disposal in the industry today.

SOAP Speak
SOAP is an XML-based technology. It is an agreed-upon standard of XML markup used in the
transmission of messages across a corporate network or the public Internet. SOAP is the most
important pillar in the Web services model.

The proposed Web services model is presented in Figure 20-1 and involves a process of search, dis-
covery, definition, and communication. The first three steps in this process are one-time steps, but
these steps are required to get to where you really want to go — the communication step. This step
is the step that deals with SOAP. Web service communication is done through the use of SOAP.

As you look over this diagram, notice that not every step mentioned is required to participate in
the Web services world. Also, in certain instances, some of these steps can be combined into a sin-
gle step. For example, the ‘Find a Service’ section and the ‘Discovery’ section can be one and same
thing. The idea is that when you want to consume a Web service, you first need to find that ser-
vice. This discovery process can be as simple as having someone e-mail you a link to the Web ser-
vice’s WSDL file, or it can be a more complicated operation that involves searching a directory of
some kind (such as UDDI).

29_777779 ch20.qxp 3/1/07 11:51 PM Page 607

Figure 20-1

After you have found the service you want to consume, the act of discovery should bring you to the loca-
tion of the Web service’s WSDL file. The WSDL file is an XML description of the Web service’s interface.
After you have found the WSDL file of the Web service, you can create a proxy class (or your environment
automatically creates one for you) that enables you to send messages back and forth to the Web service.

Although this chapter focuses on SOAP as the means of communication to be used between disparate
objects, you have, of course, other options. For instance, XML-RPC, ebXML, and REST can be used in a
similar manner to SOAP. They all provide structure to any remote-procedural call you need. You might
not find all the pillars of these other RPC formats defined in Figure 20-1, but the concepts are the same.

The Basics of SOAP
Presently SOAP is in version 1.2. You can find the full specification for SOAP 1.2 on the W3C site located
at w3.org/TR/soap/.

As of the writing of this book, SOAP 1.2 has existed for only a short time, and much of the use of SOAP
in the world still focuses around SOAP 1.1. For instance, in the .NET world, SOAP 1.1 is the basis of Web

http://uddi.microsoft.com

Link to server, WSDL file, or service

Find a service

Inquire on your server

Link to WSDL document

Discovery

http://yourserver.com/service.wsdl

XML with service description

How do we talk? (WSDL)

SOAP request

SOAP response

Let’s start talking (SOAP)

Web service
consumer

Possible
UDDI server

Web service
consumer

Web service

608

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 608

services for .NET 1.0 and 1.1. Only .NET 2.0 allows you to expose and consume Web services using
SOAP 1.2; although SOAP 1.2 is not the default format provided in .NET 2.0.

SOAP 1.1 was developed in March 2000, and it was accepted as a note by the W3C on May 8, 2000. The
companies that worked on the development of SOAP include Microsoft, DevelopMentor, IBM, Lotus,
and UserLand Software.

SOAP 1.2 was accepted on June 24, 2003 after more than 400 issues from SOAP 1.1 were addressed.
SOAP 1.1 required a set of clarifications to clean up ambiguities found in its specification. These ambigu-
ities in SOAP 1.1 had sometimes led to differences in interpretations among the various vendors. When
the specification engenders differences in interpretation, interoperability issues invariably arise. To pre-
vent these varied interpretations, SOAP 1.2 is a lot more specific.

SOAP is not a proprietary technology; that is, it is not run or controlled by IBM or Microsoft. It is,
instead, an open standard. Therefore, you can use SOAP as you wish for free. The software vendors of
the world have come to support SOAP, and you will be hard pressed to find a vendor that isn’t making
some sort of inroads into getting its platform to understand and work with this XML-based technology.

Remember: SOAP Is XML!
The first thing to either make note of (or remember) is that SOAP is just an agreed-upon structure of
XML. SOAP uses XML grammar for a number of reasons as detailed here:

❑ XML is an open standard.

❑ XML is consumable upon most platforms.

❑ A tremendous amount of industry support exists for XML.

❑ XML is also very human-friendly.

❑ A number of developer tools, applications, and parsers are available today for XML.

These points make it pretty easy to see why SOAP is constructed to be based upon this technology.
Because of its use of XML and the general simplicity of SOAP, you should find that working with its
remote procedure call method is a lot easier than working with other methods, such as CORBA or
DCOM, which provide similar functionality.

Transport Protocols for SOAP
SOAP-based services exist to meet the business need to share data among departments, with customers,
or with partners. In many instances, the data that is to be shared must travel from one database to another
between completely incompatible systems. SOAP is the tool that allows companies to share information
from one point to another without the need to concern themselves with the platforms of the consumers.
Now that you have entered into the Web services world, the first question from your data consumers will
not be, “What platform is the data on?” Instead the question will be, “Can you expose that data to me as
SOAP?”

In most cases, the Web services that people build make use of HTTP. Most systems, applications, and
platforms are connected to the outside world in order to gain access to the Internet. The Internet has

609

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 609

become a powerful means of human-to-human communication, even as it becomes an ever stronger
force for machine-to-machine communication. These machines communicate with one another through
this Internet connection — also known as HTTP.

Putting SOAP on top of HTTP is powerful. SOAP allows you to send data that is a lot more complex and
meaningful than the name/value pairs that you can send using HTTP-GET or HTTP-POST. Also, if you
send complex data types from one machine to another using something other than HTTP, you have the
problem of firewalls to contend with. Almost all machines or servers are behind a firewall of some kind.
If you have a server that isn’t behind a firewall, you are just asking for some malicious person to come in
and mess with your machine and its contents. Firewalls, basically, block all entrances to the server. If the
entrances are blocked, however, how can anyone use SOAP to communicate with a machine?

Communication is possible because one of the doors to this server is usually open. Port 80 on almost
every server is used for access to the Internet. SOAP rides along (again, using HTTP) right through this
open door to the server. Because SOAP is just a set of ASCII characters, it cannot harm the receiving
server, so the information is let in without any problems.

More and more Web services are also starting to utilize Transmission Control Protocol (TCP) for message
transmission as an alternative to HTTP. You should consider using TCP when performance and reliabil-
ity are important factors to you.

Looking Closely at the SOAP Specification
SOAP was developed to be simple. It is a lightweight protocol that is used in the communication of
messages from one point to another. It works in a decentralized and distributed environment, typically
using HTTP as its mode of transport (although, as I stated, this is not a requirement). The SOAP specifi-
cation itself is made up of the following parts, which are covered in this chapter:

❑ A description of the SOAP envelope and how to package a SOAP message so that it can be sent
via a transmission protocol such as HTTP

❑ The serialization rules for SOAP messages

❑ A definition of the protocol binding between SOAP and HTTP

❑ The capability to use SOAP for RPC-like binding

One of the more important aspects of the SOAP specification is the makeup of the SOAP message or
SOAP packet. Be sure you understand the structure of this packet in order to extend and mold it within
your own Web services.

To understand it better, take a closer look at the SOAP message and all its parts.

The SOAP Message
The SOAP message is simple, and it was meant to be just that. The SOAP message is what is sent over
the wire generally using HTTP, with or without the HTTP Extension Framework (HTTP-EF). SOAP mes-
sages are meant to be one-way. Nothing is built into these messages that warrants any response. SOAP

610

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 610

does not contain any built-in functions or methods that cause specific events to be initiated. As you are
probably already aware, the SOAP message is an agreed-upon structure of XML. The XML specification
is simply used as the means of marking up the data to send.

The problem is that Web services generally require a request and response action to occur. Web services
tend to get around this problem by sending the SOAP message within the HTTP request and response
messages.

The typical SOAP message consists of a SOAP envelope, header, and body section. The SOAP envelope
is a mandatory element that is the root element of the entire package. Within the SOAP envelope is an
optional header element and a mandatory body element. Figure 20-2 shows an example of the structure
of a SOAP message.

Figure 20-2

Because this entire message is an XML document, it has a single root element (the SOAP envelope ele-
ment), just like any typical XML document.

The SOAP Envelope
The first step to understanding this structure is to actually review the pieces themselves. Listing 20-1
shows a typical SOAP 1.1 envelope (minus the body information).

LLiissttiinngg 2200--11:: TThhee SSOOAAPP eennvveellooppee iinn SSOOAAPP 11..11

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>

<!-- The message contents go here -->
</soap:Body>

</soap:Envelope>

SOAP 1.2 is not that much different as you can see in Listing 20-2.

SOAP Envelope

SOAP Header

SOAP Body

611

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 611

LLiissttiinngg 2200--22:: TThhee SSOOAAPP eennvveellooppee iinn SSOOAAPP 11..22

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>

<!-- The message contents go here -->
</soap:Body>

</soap:Envelope>

The SOAP envelope is specified as the root element and is qualified by using the SOAP namespace
http://schemas.xmlsoap.org/soap/envelope/ in the SOAP 1.1 message, whereas the namespace
is http://www.w3.org/2003/05/soap-envelope in SOAP 1.2. This SOAP element, qualified by one
of these namespaces in your code, is simply expressed as <soap:Envelope>.

The structures defined here, however, are not an absolute requirement; you could also have simply
designed the SOAP message as illustrated in Listing 20-3.

LLiissttiinngg 2200--33:: AAnn eexxaammppllee ooff aannootthheerr SSOOAAPP mmeessssaaggee ssttrruuccttuurree

<?xml version=”1.0” encoding=”utf-8”?>
<env:Envelope xmlns:env=”http://www.w3.org/2003/05/soap-envelope”>

<env:Body>
<!-- The message contents go here -->

</env:Body>
</env:Envelope>

The SOAP Body
Although not every element of a SOAP message is required in the transmission of the message, the SOAP
body element is required within your SOAP message. The SOAP body can be considered the main part of
the message, where the data part of the message is housed. The SOAP body contains data that is specific
to the method call such as the method name and all the input parameters that might be required by the
Web service. Your Web service then uses the SOAP body element to return data to the client. The SOAP
body can also contain any error information to be sent back to the client.

Looking at the SOAP Body of the Request
Remember that because request and response SOAP messages are going across the wire, both the request
and the response SOAP messages must contain a SOAP body section. If you look more specifically at the
request payload that is sent in the SOAP body, notice that its contents map directly to a method that has
been exposed through the Web service server. Also note that the required arguments (or parameters) for
consuming the exposed method are defined in the payload.

For an example of this, examine a simple Add() Method as exposed out from a C# 2.0 Web service. This
is illustrated in Listing 20-4.

612

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 612

LLiissttiinngg 2200--44:: AA ssiimmppllee AAdddd(()) MMeetthhoodd aass eexxppoosseedd ffrroomm aa CC## 22..00 WWeebb sseerrvviiccee

[WebMethod]
public int Add(int a, int b) {

return (a + b);
}

With this Web service in place, you can see that the consumer is required to invoke this remote method
by passing in two required parameters — variable a (of type int) and variable b (also of type int).
Looking at the actual contents of the SOAP body for the request, you can see that the SOAP body maps
directly to the Add() method. This is presented in Listing 20-5.

LLiissttiinngg 2200--55:: TThhee ccoonntteennttss ooff tthhee SSOOAAPP bbooddyy ffoorr tthhee SSOOAAPP rreeqquueesstt

<soap:Body>
<Add xmlns=”http://www.wrox.com/ws”>

<a>20
4

</Add>
</soap:Body>

As you can tell from the preceding code example, the method and its parameters are serialized into XML,
and the method name is now the first child element of the <soap:Body> element. The parameters of the
method are also serialized into XML. The first parameter, variable a, is turned into an <a> element, and
the b parameter is converted to a element.

Looking at the SOAP Body of the Response
After a Web service receives this SOAP request, an associated SOAP response from the Web service is
sent back to the originating client. Just like the SOAP request that came from the client, the payload of
the SOAP body in the response is also serialized into XML.

The response from the request shown in Listing 20-4 is presented in Listing 20-6.

LLiissttiinngg 2200--66:: TThhee ccoonntteennttss ooff tthhee SSOOAAPP bbooddyy ffoorr tthhee SSOOAAPP rreessppoonnssee

<soap:Body>
<AddResponse xmlns=”http://www.wrox.com/ws”>

<AddResult>24</AddResult>
</AddResponse>

</soap:Body>

In the case of the response SOAP body message, the method name is turned into an element bearing the
same name, but with the word Response tacked onto it. The result that is returned is encased within
the <AddResult> element, which is the method name with the word Result appended to it.

613

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 613

The SOAP Header
Unlike the SOAP body element, which is required in each and every SOAP message, the SOAP header
portion of the SOAP message is an optional element. This section of the SOAP message is used to pro-
vide information that is related to what is contained within the SOAP body element — the metadata of the
actual message. The convenient thing about the SOAP header is that the recipient of a message that con-
tains contents in a SOAP header is not required to deal with its contents. The consumer of the message
may not want to work with some of the information contained in the SOAP header. Therefore, the recipi-
ent need not consume all the SOAP header data points.

What should you be transmitting in the SOAP headers of the Web services that you build? This is really
an open question. If you look at the SOAP specification, notice it doesn’t really state what should be
included. This really means that you can include whatever the heck you want. Some common elements
that are added to SOAP headers include the following:

❑ Authentication

❑ Transaction management

❑ Timestamps

❑ Routing information

❑ Encryption information

❑ Digital signing management

Of course, you can use SOAP headers for any number of things, but these points give you a general idea
of what you can do. Listing 20-7 shows a sample SOAP header.

LLiissttiinngg 2200--77:: AA ssaammppllee SSOOAAPP hheeaaddeerr

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Header>

<RequiredServiceHeader xmlns=”http://www.wrox.com/ws”>
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</RequiredServiceHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/ws” />
</soap:Body>

</soap:Envelope>

In this example, the SOAP request includes credentials that are sent in with the SOAP message in order
to authenticate the user before a SOAP response is issued to the requestor. As you can see, this is quite a
powerful tool.

Later in this chapter in the section “Working with SOAP Header,” I will show you how to build and
consume some Web services using SOAP headers in your messages.

614

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 614

The SOAP header element needs to come before the SOAP body declaration in the message. The SOAP
header is a child element to the SOAP envelope element. The SOAP header contains a single SOAP
header block. This SOAP header block is the <RequiredServiceHeader> section. It is possible to have
multiple header blocks contained with in a single SOAP header instance.

This next section reviews some of the attributes that can be placed within a SOAP header block.

The actor Attribute
One possible attribute available for your SOAP header blocks is the actor attribute. Note that this attribute
is available only in SOAP 1.1 messages. This attribute is not available in SOAP 1.2. It is replaced with the
role attribute (discussed shortly).

The actor attribute allows you to easily assign SOAP header blocks for specific SOAP intermediaries.
Remember that not all SOAP messages are going to be sent from point A to point B (point-to-point Web
services), but instead, your SOAP messages may travel through any number of middle-men (SOAP
intermediaries) along the way. A SOAP intermediary is an application that is capable of both receiving
and sending SOAP messages as it comes into contact with them. These intermediaries may also be acting
upon information that is contained in a SOAP header block that they are designated to work with.

This means that you might have SOAP header blocks contained in your message that, in some cases,
could be intended for one of these SOAP intermediaries and not for the final recipient of the SOAP mes-
sage. If this is the case, it is possible to use the actor attribute within the SOAP header block to specify
that the enclosed header element is intended only for a particular SOAP intermediary that the SOAP
message might come in contact with. After the SOAP message is received by the SOAP intermediary, the
SOAP header is not forwarded with the rest of the SOAP message.

To specify that the SOAP header is intended for the first SOAP intermediary that the SOAP message
comes in contact with, the value of the actor attribute needs to be the URI:

http://schemas.xmlsoap.org/soap/actor/next

An example of using the actor attribute in a SOAP header is presented in Listing 20-8.

LLiissttiinngg 2200--88:: UUssiinngg tthhee SSOOAAPP hheeaaddeerr’’ss aaccttoorr aattttrriibbuuttee

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Header>

<RequiredServiceHeader
soap:actor=”http://schemas.xmlsoap.org/soap/actor/next”
xmlns=”http://www.wrox.com/ws”>
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</RequiredServiceHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/ws” />
</soap:Body>

</soap:Envelope>

615

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 615

If you wish to give the SOAP header block to a SOAP intermediary other than the first (one as shown
previously), the value of the actor attribute needs to be the URI of the intended location.

The role Attribute
The role attribute is simply a renamed replacement of the actor attribute. Therefore, if you are using
SOAP 1.1, use the actor attribute. If you are using SOAP 1.2, use the role attribute. There is no change
in the behavior of this attribute. It is shown in Listing 20-9.

LLiissttiinngg 2200--99:: UUssiinngg tthhee SSOOAAPP hheeaaddeerr’’ss rroollee aattttrriibbuuttee

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Header>

<RequiredServiceHeader
soap:role=”http://www.w3.org/2003/05/soap-envelope/role/next”
xmlns=”http://www.wrox.com/ws”>
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</RequiredServiceHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/ws” />
</soap:Body>

</soap:Envelope>

The role attribute value of http://www.w3.org/2003/05/soap-envelope/role/next provides the
same meaning as the actor attribute’s URI (http://schemas.xmlsoap.org/soap/actor/next)when
you want to designate the intermediary for which the SOAP message is intended. Besides this standard
URI, other possibilities include http://www.w3.org/2003/05/soap-envelope/role/none and
http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver. The ...role/none URI
means that the defined SOAP header block is not really meant for any particular intermediary, but instead
is there for processing by other SOAP header blocks. The ...role/ultimateReceiver URI is the
default value (even if no role attribute value is specified) and means that the SOAP header block is
meant for the last receiver in the chain.

The mustUnderstand Attribute
The SOAP header’s mustUnderstand attribute is an optional attribute that enables you to specify
whether the end user can ignore the SOAP header. Again, the intermediary that receives the SOAP
header is the one that is specified through the use of the actor or role attributes.

The value of the mustUnderstand attribute for SOAP 1.1 is either 0 or 1. If the value is set to 1, the
recipient of that SOAP header block must process the SOAP header or fail to receive the entire message.
A value of 0 means that the recipient is not required to process the SOAP header. SOAP 1.2 changes the
possible values of the mustUnderstand attribute from 0 and 1 to false and true respectively.

616

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 616

SOAP 1.1 Faults
With all the applications that are developed, as you know very well, problems are bound to occur with
some of the Web services that people are trying to consume. Simply put, errors happen. When errors
occur, due to problems on the server or because of invalid inputs from the client, you want to output an
appropriate error message to the client.

This is where the SOAP fault element comes into play. The SOAP fault is contained with the SOAP body
and is sent in the payload if an error occurs. Some development platforms output SOAP exceptions
automatically on your behalf. After a client receives a SOAP fault message, it can then act upon this
message in some logical manner.

For instance, if you send a SOAP message with the mustUnderstand attribute set to true, but the SOAP
packet receiving the request doesn’t understand the SOAP header, you get a faultcode specifying that
the SOAP header was not understood. The SOAP 1.1 packet that is returned to you looks like the one
illustrated in Listing 20-10.

LLiissttiinngg 2200--1100:: AA SSOOAAPP 11..11 ffaauulltt mmeessssaaggee

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>

<soap:Fault>
<faultcode>soap:MustUnderstand</faultcode>
<faultstring>System.Web.Services.Protocols.SoapHeaderException:

SOAP header RequiredServiceHeader was not understood.
at System.Web.Services.Protocols.SoapHeaderHandling.
EnsureHeadersUnderstood(SoapHeaderCollection headers)

at System.Web.Services.Protocols.SoapServerProtocol.
WriteReturns(Object[] returnValues, Stream outputStream)

at System.Web.Services.Protocols.WebServiceHandler.
WriteReturns(Object[] returnValues)

at System.Web.Services.Protocols.WebServiceHandler.Invoke()
</faultstring>

</soap:Fault>
</soap:Body>

</soap:Envelope>

Looking over this SOAP fault, notice that the <soap:Fault> element is contained within the <soap:Body>
element. From this simple fault message, you can see what the error is and the details concerning it. To
expand upon this, the next section reviews the possible child elements contained within the <soap:Fault>
block.

<faultcode>
The <faultcode> element is a SOAP 1.1 specific element. As a child of the <soap:Fault> element,
the <faultcode> element is used to give the error code, and thereby inform the consuming application

617

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 617

(or developer) about the type of error encountered. The preceding example shows a fault code of
MustUnderstand, meaning that a portion of the SOAP message was not understood. The following
table defines the possible fault codes at your disposal for a SOAP 1.1 message.

Name Description

Client The receiver didn’t process the request because the request was improperly
constructed or is malformed in some way.

Server The receiving application faulted when processing the request because
of the processing engine and not due to any fault of the sender or the com-
position of the message sent.

MustUnderstand The SOAP header element had a mustUnderstand attribute set to true
and the processing endpoint did not understand it or didn’t obey the
processing instructions.

VersionMismatch The call used an invalid namespace for the SOAP envelope element.

One last note on the <faultcode> element is that it is a required element whenever you provide a
SOAP 1.1 fault.

<faultstring>
The <faultstring> element provides a human-readable version of an error report. This element con-
tains a string value that briefly describes the error encountered. This element is also required in any
SOAP 1.1 fault message.

<faultactor>
The <faultactor> element describes the point in the process where the fault occurred. This is identi-
fied by the URI of the location where the fault was generated. This is meant for situations where the
SOAP message is being passed among a number of SOAP intermediaries and, therefore, the location
where the fault occurred must be identified. This is a required element within the SOAP fault element
only if the fault occurred within one of the SOAP intermediaries. If the fault occurred at the endpoint,
the endpoint is not required to populate the element, although it can do so.

<detail>
The <detail> element carries the application-specific error information related to the SOAP body ele-
ment. The fault elements previously described are, in most cases, enough for disclosing the error infor-
mation. It is always good, however, to have more than enough information when you are trying to
debug something. The <detail> element can be used to provide that extra bit of information that can
facilitate the debug process. For instance, you can carry the line in the code where the error occurred.

618

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 618

SOAP 1.2 Faults
The purpose of a SOAP fault hasn’t changed from SOAP 1.1 to SOAP 1.2, but instead, the structure of the
SOAP 1.2 fault message has changed. Listing 20-11 shows a typical SOAP 1.2 fault message where the
SOAP header was misunderstood because the mustUnderstand attribute was set to true.

LLiissttiinngg 2200--1111:: AA SSOOAAPP 11..22 ffaauulltt mmeessssaaggee

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>

<soap:Fault>
<soap:Code>

<soap:Value>soap:MustUnderstand</soap:Value>
</soap:Code>
<soap:Reason>

<soap:Text xml:lang=”en”>
System.Web.Services.Protocols.SoapHeaderException:
SOAP header RequiredServiceHeader was not understood.
at System.Web.Services.Protocols.SoapHeaderHandling.
EnsureHeadersUnderstood(SoapHeaderCollection headers)

at System.Web.Services.Protocols.SoapServerProtocol.
WriteReturns(Object[] returnValues, Stream outputStream)

at System.Web.Services.Protocols.
WebServiceHandler.WriteReturns(Object[] returnValues)

at System.Web.Services.Protocols.
WebServiceHandler.Invoke()

</soap:Text>
</soap:Reason>

</soap:Fault>
</soap:Body>

</soap:Envelope>

Looking over this SOAP 1.2 fault message, you can see that the <soap:Fault> element is contained
within the <soap:Body> element just as it is in SOAP 1.1. The difference lies in the child elements that
are contained within the <soap:Fault> element itself. These child elements are reviewed next.

<Code>
The <Code> element is a mandatory element in a SOAP 1.2 fault message. This is a section where you
can define the error codes that triggered the error message in the first place. This parent element can
contain one or two possible child elements: <Value> and <Subcode>. Each of these child elements are
discussed in the following sections.

<Value>
A <Value> element is a mandatory element that is nested within the <Code> element. Like the <fault-
code> element from a SOAP 1.1 fault message, the <Value> element is used to specify a high-level
SOAP fault code. Possible values for the <Value> element are shown in the following table.

619

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 619

Name Description

Sender The receiver didn’t process the request because the request was
improperly constructed or is malformed in some way.

Receiver The receiving application faulted when processing the request
because of the processing engine and not due to any fault of the
sender or the composition of the message sent.

DataEncodingUnknown Either the SOAP header block or SOAP body element used an encod-
ing that the Web service doesn’t support.

MustUnderstand The SOAP header element had a mustUnderstand attribute set to
true and the processing endpoint did not understand it or didn’t
obey the processing instructions.

VersionMismatch The call used an invalid namespace for the SOAP envelope element.

<Subcode>
The <Subcode> element is an optional element. This element allows you to specify errors that might
occur with specific elements. If you use this element, you have to provide a child <Value> element to
the <Subcode> element to communicate an error type, as shown in the preceding table.

<Reason>
The <Reason> element has the same purpose as the <faultstring> element from SOAP 1.1. The
<Reason> element can contain one or more child <Text> elements that define a human-readable
error report.

<Text>
The <Text> element contains the textual string that provides a human-readable error report. This is a child
element of the <Reason> element. A <Text> element must contain the lang attribute that defines the lan-
guage used in the contents of the <Text> element. For instance, in the example from Listing 20-11, you can
see that English is used as a value of the <Text> element’s lang attribute.

<soap:Text xml:lang=”en”>
<!-- Contents removed for clarity -->

</soap:Text>

<Node>
If you are routing a message through one or more SOAP intermediaries and one of these intermediaries
is the cause of the fault, you must include a <Node> element. The <Node> element defines the URI of the
SOAP intermediary which caused the fault to occur.

<Role>
The <Role> element defines the role of the node that caused the fault to occur. The possible values are
represented in the following table.

620

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 620

Name Description

http://www.w3.org/2003/05/ A SOAP intermediary acting upon the SOAP
soap-envelope/role/next message.

http://www.w3.org/2003/05/ The end and ultimate receiver of the SOAP
soap-envelope/role/ultimateReceiver message.

<Detail>
The <Detail> element has the same meaning here as the <detail> element does in SOAP 1.1.

SOAP Encoding of Data Types
Along with the programming language you use to build your Web services, you are passing some specific
data types from the methods that the consumers invoke. It doesn’t matter if your Web services are written
in Java, .NET, or something else. That data is being sent across the wire as a SOAP message. Therefore,
the data type that is sitting on the SOAP payload needs to maintain its specified data type so that, on the
receiving end, the data can be interpreted correctly. For instance, if your method returns an integer of 22,
the value that is received on the other end must remain an integer of 22 and not become a string value of
“22”. Changes in the data type value would make dealing with Web services quite difficult.

One of the reasons that Web services are so powerful is that the data types are maintained from point A
to point B in the message transmission cycle. The process of converting the data types from the applica-
tion code to a data type that SOAP recognizes is called SOAP encoding.

The types that are serialized into SOAP are the same types that are specified in the XML Schema specifi-
cation found at www.w3.org/TR/xmlschema-2. These data types are pretty standard, and most of the
data types that you want to pass into SOAP can be serialized in a manner that works for you. So, for
example, you are easily able to serialize primitive types such as String, Char, Byte, Boolean, Int16,
Int32, Int64, UInt16, UInt32, UInt64, Single, Double, Guid, Decimal, DateTime (as XML’s
timeInstant), DataTime (as XML’s date), DateTime (as XML’s time), and XmlQualifiedName (as
XML’s QName).

Tracing SOAP Messages
So far, you have seen several examples of how the SOAP message is constructed. If you are a developer
dealing with SOAP, you invariably need to see the SOAP messages that are being sent back and forth
across the wire for debugging purposes. If you want to see the entire SOAP message, how do you go
about it? Well, actually, it is fairly simple, but you must take a few steps to set it up.

Web services toolsets that are present on certain platforms have some tracing capabilities built into them.
For instance, IBM’s WebSphere has a SOAP tracing capability built into it, as does Microsoft’s Web
Services Enhancements (WSE) toolset. Another possibility includes some open-source tools such as
PocketSOAP (found at pocketsoap.com).

This chapter discusses two tools for monitoring SOAP messages for the purposes of SOAP debugging —
one is the Microsoft Trace Utility, and the other is Altova’s SOAP debugging capabilities found in the
XMLSpy Enterprise Edition.

621

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 621

The Microsoft Trace Utility
To view SOAP messages as they are sent back and forth across the wire, you must download the
Microsoft SOAP Toolkit 3.0 from Microsoft’s MSDN site at msdn.microsoft.com/webservices/
Downloads. The SOAP Toolkit 3.0 includes a number of tools, but you really only need to install the
Trace Utility tool that is encased inside this offering.

You can use the Trace Utility within the SOAP Toolkit to trace SOAP messages as they are being sent and
received by a Web service client application. One nice feature of this tool is that it is free.

Using the Trace Utility
You must take a few preliminary steps in order to use the Trace Utility. First, you need a Web service
that you can consume. Next, you must build an application that consumes this Web service and is able
to send a SOAP request to it that causes the Web service to issue a response in return.

The Trace Utility runs the request and response messages through a port that it has opened and is moni-
toring. After the Trace Utility receives one of these messages, it records the message and then forwards
the message to the appropriate port for handling.

To see this in action, open up the Trace Utility. You are then presented with a blank application. To start a
new SOAP debugging session, select File ➪ New ➪ Formatted Trace from the menu of the application.
What opens next is the Trace Setup window that enables you to specify the local port number that you
want the Trace Utility tool to use, as well as the destination host and port number. This dialog is shown
in Figure 20-3.

Figure 20-3

After you click the OK button, tracing is enabled, and you are ready to run your consuming application
in order to have the SOAP messages that are communicated and recorded by the Trace Utility applica-
tion. To do this, however, you have to set up your application to run through port 8080 as specified in
the Trace Setup dialog from Figure 20-3.

Modifying the Consuming Application
In .NET 1.x, you accomplish this by changing the URL attribute in the Reference.cs or the
Reference.vb file contained in your Web Reference to include the new specified port.

this.Url = “http://localhost:8080/XMLWS/WebService1.asmx”;

622

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 622

In .NET 2.0, you accomplish this by changing the URL in the web.config or app.config file of your
application.

<appSettings>
<add key=”localhost.Service” value=”http://localhost:8080/XMLWS/Service.asmx”/>

</appSettings>

Viewing the SOAP Messages
After you have your consuming application set to run through port 8080, then you can run the applica-
tion as you normally would. The Trace Utility application then traces all the SOAP communications that
occur between your application and the Web services it is working with.

Both the Web service client application and the Trace Utility tool from Microsoft should be open when
you are doing this. After you have run the application to invoke the remote Web service, you find the
results directly in the Trace Utility.

Looking at the Trace Utility, you can see an entry in the left pane of the application. The set of numbers
you see, 127.0.0.1, is your local IP address. Expand the plus sign next to this IP address and you see
Message #1. Highlight Message #1 to see the SOAP messages show up in the other two panes within
the utility. Figure 20-4 shows what the Trace Utility looks like after you have taken these steps.

Figure 20-4

After completing these steps, you can watch the SOAP messages that are sent to and from your Web ser-
vices. This is quite beneficial for debugging and for forming your SOAP messages to the appropriate for-
mat. Remember that you shouldn’t be doing this tracing operation on production clients or Web services
because it greatly hurts the performance of these items. Also, the Trace Utility has some limitations when

623

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 623

working with SOAP 1.2. The image shown in Figure 20-4 is a set of SOAP 1.1 messages. When you use
this tool with a SOAP 1.2 message, notice that all the beautiful formatting of the SOAP messages is
removed and you are left with a single, long, and unformatted string of XML which is the SOAP 1.2
message. It still works, but the result is harder to visualize and decipher.

XMLSpy’s SOAP Debugging
When debugging your SOAP messages, the other option you have is Altova’s XMLSpy’s SOAP debug-
ging capabilities. Note that you have this capability only when using the XMLSpy 2006 Enterprise
Edition.

Using the SOAP Debugging Capabilities
To get the SOAP debugging capabilities of XMLSpy up and running, the first step (after you have
XMLSpy open, of course) is to select SOAP ➪ SOAP Debugger Session. This launches a dialog that
asks for the WSDL file to use for the operation. This dialog is presented in Figure 20-5.

Figure 20-5

After you have pointed to the location of the WSDL file, click the OK button to proceed. After clicking
the OK button, you are presented with a dialog to configure the listening and forwarding ports. Similar
to the Microsoft Trace Utility tool, XMLSpy monitors communication on a specific port that you must
configure your application to work with. This dialog is presented in Figure 20-6.

Figure 20-6

When you have the ports set up as you wish, click the OK button and you are presented with everything
wired up for SOAP debugging as presented in Figure 20-7.

624

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 624

Figure 20-7

From this figure, you can see that (at the bottom of the IDE) two HelloWorld methods are presented in
the Soap Function list. This is because the WSDL file I am using comes from a C# 2.0 Web service that
exposes a Hello World method using SOAP 1.1 and another that uses SOAP 1.2; so it really uses two sep-
arate methods.

To take the final steps to use this SOAP debugging tool, check the check boxes for the methods you are
interested in monitoring. Looking at Figure 20-7, you can see that I am interested in both the request and
the response because I have checked both check boxes. After the appropriate check boxes are checked,
click the green arrow found directly above the SOAP Request dialog to start the proxy server. You are
now ready to run your application.

Running your application captures only the SOAP request at first, and the application pauses while
waiting for a response. The request is presented in the SOAP Request dialog of XMLSpy as shown in
Figure 20-8.

625

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 625

Figure 20-8

In this figure, you can see the SOAP request. Now that the SOAP request is shown in this dialog, you
can press the green arrow again to actually send the SOAP request to the Web service. You are presented
with a SOAP response as shown in Figure 20-9.

Figure 20-9

After the response is retrieved, you click the green arrow again to forward the response onto the actual
consuming application. The nice thing with XMLSpy is that you can look at the SOAP messages in a
couple of different formats. The request and response shown in Figures 21-8 and 21-9 are the text views
of the SOAP message. It is also possible, however, to look at the request or response in a Grid view as

626

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 626

well as a Browser view, which gives the same view as the Trace Utility tool shown earlier. The Grid view
is presented in Figure 20-10.

Figure 20-10

Using XMLSpy to Issue SOAP Requests
Probably one of the more exciting SOAP capabilities found in XMLSpy 2006 Enterprise Edition is its
capability to issue SOAP requests directly from the tool itself to the Web services you are interested in
testing or consuming. If you are a Web services developer, you no longer have to build a consuming
application in order to test your Web services; instead, you can use XMLSpy and to test the Web services
you are interested in.

To accomplish this, select SOAP ➪ Create New SOAP Request from the XMLSpy menu. This launches a
dialog where you specify the location of the WSDL file (this is the same dialog which was presented ear-
lier in Figure 20-5). From this dialog, point to the location of the WSDL file for the Web service you are
interested in consuming. After you have specified the location of the WSDL file, click OK and you are
presented with a dialog asking you which service you are interested in consuming. This is presented in
Figure 20-11.

Figure 20-11

627

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 627

In this case, I have selected Service-ServiceSoap12, which is the SOAP 1.2 version of my Web service (the
other is the SOAP 1.1 version). After I select OK, I select the Method I am interested in consuming. For
this Web service, there is only one —HelloWorld() (shown in Figure 20-12).

Figure 20-12

After you click OK in this dialog, you are presented with a sample SOAP request to be sent to the
HelloWorld() Method. This is illustrated in Figure 20-13.

Figure 20-13

Looking over this SOAP request, you can see that it is perfectly structured for sending to the HelloWorld()
Method. The only problem is that XMLSpy doesn’t know which parameters I want to send to the Web ser-
vice in order to invoke it. (This service doesn’t require any parameters for the HelloWorld() method.) It
also doesn’t know what to place inside the SOAP header block that this message contains. In place of the
values, it puts the name of the data type as illustrated in the following code:

628

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 628

<m:RequiredServiceHeader xmlns:m=”http://www.wrox.com/ws”>
<m:Username>String</m:Username>
<m:Password>String</m:Password>

</m:RequiredServiceHeader>

The nice thing about this tool is that you can go into this message and change the values from String to
whatever you want before sending the message to the Web service. So, change the values and then select
SOAP ➪ Send Request To Server from the XMLSpy menu. This sends the structured SOAP message to
the Web service you have specified, and it receives and displays the response in the same way as the
SOAP request was displayed. This is presented in Figure 20-14.

Figure 20-14

As you can see, although the Trace Utility does allow for basic SOAP tracing for debugging purposes,
XMLSpy ups it a notch by adding other ways of viewing the data and easier ways to invoke the services.

Working with SOAP Headers
Earlier in this chapter, you learned the purpose of SOAP headers and the value of using them in the Web
service you build. SOAP headers provide an excellent means of adding metadata to a SOAP message.
Next, you see that it is relatively simple to add and work with SOAP header blocks in your SOAP mes-
sages. You look at how to do so using C# 2.0.

629

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 629

Creating SOAP Messages Using SOAP Headers
This example uses Visual Studio 2005 to create a C# 2.0 Web service that exposes a simple HelloWorld()
method. To start, delete the default .asmx file (Web service file) that comes with the default Web service
project. Then, create a new Web service file and name the new .asmx file HelloSoapHeader.asmx. The
initial step is to add a class that is an object representing what is to be placed in the SOAP header by the
client, as shown in Listing 20-12.

LLiissttiinngg 2200--1122:: AA ccllaassss rreepprreesseennttiinngg tthhee SSOOAAPP hheeaaddeerr

public class HelloHeader : SoapHeader
{

public string Username;
public string Password;

}

The class, representing a SOAP header object, has to inherit from the .NET Framework SoapHeader
class from the System.Web.Services.Protocols namespace. The SoapHeader class serializes the
payload of the <soap:header> element into XML for you. In the example in Listing 20-12, you can
see that this SOAP header requires two elements — simply a username and a password, both of type
String. The names you create in this class are those used for the subelements of the SOAP header con-
struction, so it is important to name them descriptively. Listing 20-13 shows the Web service class that
instantiates an instance of the HelloHeader class.

LLiissttiinngg 2200--1133:: AA WWeebb sseerrvviiccee ccllaassss tthhaatt uuttiilliizzeess aa SSOOAAPP hheeaaddeerr

[WebService(Namespace = “http://www.wrox.com/helloworld”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class HelloSoapHeader : System.Web.Services.WebService
{

public HelloHeader myHeader;

[WebMethod]
[SoapHeader(“myHeader”)]
public string HelloWorld() {

if (myHeader == null) {
return “Hello World”;

}
else {

return “Hello “ + myHeader.Username + “. “ +
“
Your password is: “ + myHeader.Password;

}
}

}

The Web service, HelloSoapHeader, has a single method —HelloWorld(). Within the Web service
class, but outside of the method itself, you create an instance of the SoapHeader object. This is done
with the following line of code:

public HelloHeader myHeader;

630

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 630

Now that you have an instance of the HelloHeader class that you created earlier called myHeader, you
can use that instantiation in your method. Because Web services can contain any number of methods, it
is not a requirement that all methods use an instantiated SOAP header. You specify whether a method
will use a particular instantiation of a SOAP header object by placing the SoapHeader attribute before
the method declaration.

[WebMethod]
[SoapHeader(“myHeader”)]
public string HelloWorld() {

// Code here

}

In this example, the SoapHeader attribute takes a string value of the name of the instantiated
SoapHeader class — in this case, myHeader.

From here, the method actually makes use of the myHeader object. If the myHeader object is not found
(meaning that the client did not send in a SOAP header with his constructed SOAP message), a simple
Hello World is returned. However, if values are provided in the SOAP header of the SOAP request,
those values are used within the returned string value.

Consuming SOAP Messages Using SOAP Headers
It really isn’t difficult to build a consuming application that makes a SOAP request to a Web service
using SOAP headers. When using .NET, just as with the Web services that don’t include SOAP headers,
you need to make a Web Reference to the remote Web service directly in Visual Studio.

For an example of consuming this application using a standard ASP.NET Web page, create a simple
.aspx page with a single Label control. The output of the Web service is placed in the Label control.
The code for the ASP.NET page is shown in Listing 20-14.

LLiissttiinngg 2200--1144:: AAnn AASSPP..NNEETT ppaaggee wwoorrkkiinngg wwiitthh aann WWeebb sseerrvviiccee uussiinngg SSOOAAPP hheeaaddeerrss

<%@ Page Language=”C#” %>

<script runat=”server”>
protected void Page_Load(object sender, System.EventArgs e) {

localhost.HelloSoapHeader ws = new localhost.HelloSoapHeader();
localhost.HelloHeader wsHeader = new localhost.HelloHeader();

wsHeader.Username = “Bill Evjen”;
wsHeader.Password = “Bubbles”;
ws.HelloHeaderValue = wsHeader;

Label1.Text = ws.HelloWorld();
}

</script>

631

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 631

Two objects are instantiated. The first is the actual method, HelloWorld(). The second, which is instan-
tiated as wsHeader, is the HelloHeader object. After both of these objects are instantiated and before
you make the SOAP request in the application, you construct the SOAP header. This is as easy as assign-
ing values to the Username and Password properties of the wsHeader object. After these properties are
assigned, you associate the wsHeader object to the ws object through the use of the HelloHeaderValue
property. After you have made the association between the constructed SOAP header object and the
actual method object (ws), you can make a SOAP request just as you would normally do:

Label1.Text = ws.HelloWorld();

Running the page produces a result in the browser as shown in Figure 20-15.

Figure 20-15

What is more interesting, however, is that the SOAP request reveals that the SOAP header was indeed
constructed into the overall SOAP message, as shown in Listing 20-15.

LLiissttiinngg 2200--1155:: TThhee SSOOAAPP rreeqquueesstt

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Header>

<HelloHeader xmlns=”http://www.wrox.com/helloworld/”>
<Username>Bill Evjen</Username>
<Password>Bubbles</Password>

</HelloHeader>
</soap:Header>
<soap:Body>

<HelloWorld xmlns=”http://www.wrox.com/helloworld/” />
</soap:Body>

</soap:Envelope>

This returns the SOAP response shown in Listing 20-16.

632

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 632

LLiissttiinngg 2200--1166:: TThhee SSOOAAPP rreessppoonnssee

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>

<HelloWorldResponse xmlns=”http://www.wrox.com/helloworld/”>
<HelloWorldResult>Hello Bill Evjen.
Your password is:
Bubbles</HelloWorldResult>

</HelloWorldResponse>
</soap:Body>

</soap:Envelope>

Defining Web Services Using WSDL
In order for others to be able to interact with the Web services that you build or simply to enable them to
interact with the Web services that any of your client applications might need to consume, you need some
sort of description of the Web service. This description is provided through the use of a Web Services
Description Language (WSDL) document. This file is also known as Wiz-dull, but you can call it what you
want. A WSDL document is an XML document that describes the Web service and can be used by any
consuming application.

As you have already seen in this chapter, you are usually required to interact with WSDL files before
you start working with the Web services you are interested in consuming. The WSDL document is an
important part of any Web service that you want to expose to consumers. This document describes to the
end user, the consumer of your Web service, what parameters need to be passed into the Web service. It
also tells the users what they should expect to get in return.

Version 1 of the Web Service Description Language specification was finished in the fall of 2000 by a group
of companies, including IBM and Microsoft, to help define the Web services that people were building on
their systems. The whole concept of Web services demands interoperability; therefore, it made sense for
system competitors to sit down together to figure out how their respective Web services can describe them-
selves to client applications, regardless of their platforms. Luckily these companies realized the best way to
achieve the goal of interoperability is to have just one standard in place. Consequently, they have worked
together on a standard format to describe the interfaces of Web services that we can all use — WSDL.

In the beginning this wasn’t so. At first, both IBM and Microsoft introduced their own Web service
description languages. IBM called its standard NASSL, Network Accessible Service Specification Language.
Microsoft also had a version called SCL, Service Contract Language. Both these specifications described
the Web services on their respective systems, but these two specifications were not able to understand
one another. Therefore, people on a Microsoft system were unable to understand NASSL, and people on
any IBM or Java system were unable to understand SCL. The difficulties that ensued caused both com-
panies to see the light and to come together to develop WSDL.

WSDL took hold and has now gone on to version 1.1, which was submitted to the World Wide Web
Consortium (www.w3.org/tr/wsdl) in March of 2001.

633

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 633

The diagram shown in Figure 20-16 demonstrates how WSDL fits in with the rest of the Web service
technology pillars discussed so far.

Figure 20-16

You are building client applications that must interact with Web services. You figure out how to perform
these interactions by using the formal service description WSDL. Of course, you are never absolutely
required to use WSDL files as a means of providing a description of the interface — you have other
more informal ways to do this. There are, however, good reasons for you to have a WSDL file in place
and to allow consumers to interact with it. First and foremost, it provides a standard way to understand
the interface. By having a standard in place, it is possible to build tools that can interact with these
WSDL documents on the developer’s behalf. Having a standard means that these tools know what to
expect from a WSDL document and, therefore, perform all the operations that are required to interact
with the defined Web service. For instance, when working with Visual Studio and the .NET Framework,
these technologies will build a proxy class on your behalf to take care of marshalling the SOAP messages
back and forth to the Web service. If the WSDL document doesn’t follow any standard, the tools could
have problems interacting with the document. As a result, you might be required to build a proxy class
by hand. WSDL documents are created in different ways depending on the platform on which you are
building your Web services. If you are using the .NET Framework, the WSDL document is generated for
you dynamically. Other platforms, such as J2EE, also provide you with the necessary tools for automatic
WSDL generation.

An example of a simple Web service’s WSDL file is shown in Listing 20-17. This Web service, called
Calculator, has only two methods: Add() and Subtract(). The interfaces of both methods are
defined in the WSDL document. You review all the parts of this document in the rest of this chapter.

LLiissttiinngg 2200--1177:: TThhee WWSSDDLL ddooccuummeenntt ffoorr tthhee CCaallccuullaattoorr WWeebb sseerrvviiccee

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://www.wrox.com/ws” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://www.wrox.com/ws”

Formal Service Description: WSDL

Service Interactions: SOAP

Universal Data Format: XML

Means of Communications: HTTP (Internet)

634

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 634

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>
<wsdl:types>
<s:schema elementFormDefault=”qualified”
targetNamespace=”http://www.wrox.com/ws”>
<s:element name=”Add”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”AddResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”AddResult” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”Subtract”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”SubtractResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”SubtractResult”
type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</wsdl:types>
<wsdl:message name=”AddSoapIn”>
<wsdl:part name=”parameters” element=”tns:Add” />

</wsdl:message>
<wsdl:message name=”AddSoapOut”>
<wsdl:part name=”parameters” element=”tns:AddResponse” />

</wsdl:message>
<wsdl:message name=”SubtractSoapIn”>
<wsdl:part name=”parameters” element=”tns:Subtract” />

</wsdl:message>
<wsdl:message name=”SubtractSoapOut”>
<wsdl:part name=”parameters” element=”tns:SubtractResponse” />

</wsdl:message>
<wsdl:portType name=”CalculatorSoap”>
<wsdl:operation name=”Add”>

(continued)

635

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 635

LLiissttiinngg 2200--1177 (continued)

<wsdl:input message=”tns:AddSoapIn” />
<wsdl:output message=”tns:AddSoapOut” />

</wsdl:operation>
<wsdl:operation name=”Subtract”>
<wsdl:input message=”tns:SubtractSoapIn” />
<wsdl:output message=”tns:SubtractSoapOut” />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”CalculatorSoap” type=”tns:CalculatorSoap”>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=”Add”>
<soap:operation soapAction=”http://www.wrox.com/ws/Add” style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name=”Subtract”>
<soap:operation soapAction=”http://www.wrox.com/ws/Subtract”
style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:binding name=”CalculatorSoap12” type=”tns:CalculatorSoap”>
<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=”Add”>
<soap12:operation soapAction=”http://www.wrox.com/ws/Add” style=”document” />
<wsdl:input>
<soap12:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap12:body use=”literal” />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name=”Subtract”>
<soap12:operation soapAction=”http://www.wrox.com/ws/Subtract”
style=”document” />
<wsdl:input>
<soap12:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap12:body use=”literal” />

</wsdl:output>
</wsdl:operation>

636

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 636

</wsdl:binding>
<wsdl:service name=”Calculator”>
<wsdl:port name=”CalculatorSoap” binding=”tns:CalculatorSoap”>
<soap:address location=”http://localhost:1780/XMLWS/Calculator.asmx” />

</wsdl:port>
<wsdl:port name=”CalculatorSoap12” binding=”tns:CalculatorSoap12”>
<soap12:address location=”http://localhost:1780/XMLWS/Calculator.asmx” />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Yes, it is a bit lengthy, but it is worth it. You should become familiar with a WSDL document so that you
can read it to determine what the Web service needs to run effectively. You might be wondering why you
need to do this if the development environments out there can so easily review and interpret these docu-
ments for you. Actually, you have a lot of reasons to learn how a WSDL document works.

One reason is that when you are dealing with a Web service, you might not always have access to either
the IDEs or development environments you are working with. In such a case, you benefit by being able
to open up the WSDL document so you can understand what is going on.

One of the biggest reasons to know how the WSDL file works, however, is that (as all programmers
should know by now) developers are not always perfect. Most likely, some WSDL documents out there
have errors in them. If this is the case, you want to be able to open up the WSDL document and find the
error so that you can modify the document and use it in your applications.

The Structure of WSDL Documents
The WSDL document that was reviewed earlier is a complete WSDL document based on a Calculator
Web service with two simple methods. When looking over the code of the WSDL document, you should
note that the WSDL document is just a list of definitions using XML grammar.

This grammar is used to describe the protocols that are needed to communicate with the Web service,
discover the Web service’s interface, and learn the location of the Web service. The grammar of WSDL
describes message network endpoints or ports. The diagram in Figure 20-17 shows the message struc-
ture of a WSDL document.

Starting from the top of the diagram in Figure 20-17, the first level of the WSDL document contains the
services. Each service description refers to the Web service that the end user wants to invoke within his
client applications. The service includes all the available methods that the creator of the Web service has
exposed or the collection of available endpoints.

Beyond this is the port. The port is referenced from the service and points to the network address of an
endpoint and all the bindings that the endpoint adheres to. For example, a Web service might have a
port description of multiple bindings such as SOAP, HTTP-POST, and HTTP-GET.

The binding describes the transport and encoding particulars for a portType. The portTypes refer to the
operations anticipated by a particular endpoint type, without any specifics relating to transport or
encoding.

637

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 637

Figure 20-17

The operation details all the messages that are involved in dealing with the service at the endpoint. For
instance, a Web service that returns a value after a request entails two messages, a request and a response.
Each message makes a reference to XSD Schemas to detail the different parts of the message. Each piece of
data that makes up part of a message is referred to as a part.

Next, take a look at each of the parts of the WSDL document so you can better understand what is
going on.

<definitions>
The WSDL document contains a root element, just like other XML documents. Directly preceding the
start of the <definitions> element is the XML declaration.

Service Service

Binding Binding

Operation Operation

Port Port

PortType

Port

Message

Part Part Part Part

Message

638

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 638

<?xml version=”1.0” encoding=”utf-8”?>

This specifies what the WSDL document truly is — an XML file. The next line in the WSDL document is
the root element, <definitions>. The code in Listing 20-18 shows the <definitions> element for the
earlier WSDL file.

LLiissttiinngg 2200--1188:: BBrreeaakkiinngg ddoowwnn tthhee <<ddeeffiinniittiioonnss>> eelleemmeenntt

<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://www.wrox.com/ws” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://www.wrox.com/ws”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

</wsdl:definitions>

The <definitions> element includes a number of namespaces. The following table describes some of
the namespaces that you might see in various WSDL documents.

Prefix Namespace URI Definition

wsdl http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
framework.

soap http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
soap/ SOAP 1.1 binding.

soap12 http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
soap12/ SOAP 1.2 binding.

http http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
http/ HTTP GET & POST binding.

mime http://schemas.xmlsoap.org/wsdl/ WSDL namespace for WSDL
mime/ MIME binding.

soapenc http://schemas.xmlsoap.org/soap/ Encoding namespace as defined
encoding/ by SOAP.

soapenv http://schemas.xmlsoap.org/soap/ Envelope namespace as defined
envelope/ by SOAP.

xsi http://www.w3.org/2000/10/ Instance namespace as defined
XMLSchema-instance by XSD.

xsd http://www.w3.org/2000/10/ Schema namespace as defined
XMLSchema by XSD.

tns (various) The “this namespace” (tns) prefix is
used as a convention to refer to the
current document.

639

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 639

Along with these namespaces, you also have the option (not shown in this example) of using the
attribute name within the <definitions> element. If you use this example, the name attribute could
take the following form:

<definitions name=”Calculator” ...

This really doesn’t have any purpose except to provide some sort of lightweight description for any
user who might be looking at the WSDL document and trying to figure out the overall purpose of
the Web service that he is trying to consume. Another optional element that is used in the example is
targetNamespace. This attribute defines the namespace for each of the items in the WSDL document.
This means that all the elements contained within this WSDL file belong to this namespace, much the
same as a targetNamespace declaration in an XSD file. Along with the targetNamespace are a num-
ber of other namespaces for HTTP-POST, HTTP-GET, and SOAP binding, as well as for MIME.

<types>
In the WSDL example from the Calculator Web service, a couple of types are defined. These are shown
in Listing 20-19.

LLiissttiinngg 2200--1199:: BBrreeaakkiinngg ddoowwnn tthhee <<ttyyppeess>> eelleemmeenntt

<wsdl:types>
<s:schema elementFormDefault=”qualified”
targetNamespace=”http://www.wrox.com/ws”>
<s:element name=”Add”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”AddResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”AddResult” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”Subtract”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”SubtractResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”SubtractResult”

640

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 640

type=”s:int” />
</s:sequence>

</s:complexType>
</s:element>

</s:schema>
</wsdl:types>

The information within the <types> element includes the type definitions that are needed in the mes-
sage exchange. In order to define these types, you should use the XML Schema Definition Language
(XSD). The XSD language is described in detail in Chapter 6.

XSD is used to provide the most interoperability possible to a Web service by using a language that is
widely accepted as the standard way of describing types within XML documents.

The code example from Listing 20-19 starts with the definition of the types that are required for the
Add() and Subtract() methods. For both methods, you first find a parameter, which is of type int.
The second parameter is the b parameter, which is also of type int. It is possible to fully describe vari-
ous complex types and the sequence of these types using XSD within the <types> element of the WSDL
document.

In the end, what’s being returned from both methods is a single item of the type int. This message is
defined by AddResponse and SubtractResponse. Notice that the inbound message has the same name
as the method that it is exposing (in this case, Add or Subtract), and the outbound message has the
same name as the method, but with the word Response appended to it (in this case, AddResponse or
SubtractResponse).

A large number of types are at your disposal. Be sure to review the available types by looking back on
Chapter 6. If you are going to be passing back an undefined type, be sure to use the type anyType in
the following manner: type=”s:anyType”. This represents a parameter of any type.

<message>
Messages consist of one or more parts. The sample WSDL document uses a number of different
<message> elements which are presented in Listing 20-20.

LLiissttiinngg 2200--2200:: BBrreeaakkiinngg ddoowwnn tthhee <<mmeessssaaggee>> eelleemmeenntt

<wsdl:message name=”AddSoapIn”>
<wsdl:part name=”parameters” element=”tns:Add” />

</wsdl:message>
<wsdl:message name=”AddSoapOut”>
<wsdl:part name=”parameters” element=”tns:AddResponse” />

</wsdl:message>
<wsdl:message name=”SubtractSoapIn”>
<wsdl:part name=”parameters” element=”tns:Subtract” />

</wsdl:message>
<wsdl:message name=”SubtractSoapOut”>
<wsdl:part name=”parameters” element=”tns:SubtractResponse” />

</wsdl:message>

641

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 641

You see all the type definitions that play a role in the data that is being transported back and forth across
the wire, but the <message> element is the piece of the pie that packages this up. The <message> element
is protocol independent and is really only concerned with the message and all the parts of the message
that are going to be sent and received.

The <message> element can have a single attribute, the name attribute. The name attribute is just that —
a name. It doesn’t really have any special meaning except that it provides a unique identifier among all
messages defined within the enclosing WSDL document. In this example, all the messages have the
name of the method, plus the protocol of the part. You can give the <message> elements any name that
you choose, because WSDL makes no distinction about the name that is used, just as long as no naming
conflicts exist among the messages.

You can think of the <part> elements as the payload of the messages. In the <message> example that
is laid out, you can see a message for each request and response for each of the methods available. It is
possible to have multiple <part> elements defining requests that cover both HTTP-GET and HTTP-
POST messages, whereas the response information contains a single <part> element.

The SOAP <part> elements used in Listing 20-20 are interesting. If you use SOAP, the <part> elements
basically correspond to the SOAP request or response. These <part> elements do not contain the param-
eter type definitions like the other <part> elements do, but instead they point to the type definitions
that were defined in the <types> element earlier. Going back to this definition, you see a type definition
for Add and AddResponse as well as for Subtract and SubtractResponse.

<portType>
The job of the <portType> element is to define all the operations that can be used. A port type is a set of
certain abstract operations and the abstract messages involved.

The WSDL document example has a couple of different <portType> definitions, although it is possible
to have a number more. The code shown in Listing 20-21 reviews these definitions.

LLiissttiinngg 2200--2211:: BBrreeaakkiinngg ddoowwnn tthhee <<ppoorrttTTyyppee>> eelleemmeenntt

<wsdl:portType name=”CalculatorSoap”>
<wsdl:operation name=”Add”>
<wsdl:input message=”tns:AddSoapIn” />
<wsdl:output message=”tns:AddSoapOut” />

</wsdl:operation>
<wsdl:operation name=”Subtract”>
<wsdl:input message=”tns:SubtractSoapIn” />
<wsdl:output message=”tns:SubtractSoapOut” />

</wsdl:operation>
</wsdl:portType>

The <portType> element can take a single attribute, the name attribute. This attribute provides you
with a unique identifier for the <portType> element, so that this <portType> is set out from the other
<portType> elements.

642

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 642

A single Web service can support a number of different protocols. The structure of the data depends on
the protocol that you use to invoke the Web service. Because of this, you need a way to map from the
operations to the endpoints from which they can be accessed. The <portType> element takes care of this
mapping.

You can place a portType definition for each of the protocols available to you for this Web service. For
instance, you can have individual portType definitions for using SOAP, HTTP-POST, and HTTP-GET.
The operation name is the method available from the Web service. If other methods are available to you,
additional <operation> elements would be defined as well.

For each <operation> element, you can also provide an optional <documentation> element. This ele-
ment is discussed later in this chapter. The other elements that you can use within the <operation> ele-
ment include <input>, <output>, and <fault>. Each <operation> can contain only one of each of
these available elements. There can only be one input into a Web service, just as there can only be one
output. Each of these three elements has a name and a message attribute.

The <input> element specifies the request to a Web service. The <output> element specifies the response of
the Web service. The <fault> element details any error messages that may be output by the Web service.

<binding>
Now that you have definitions in place for the different logical ports at your disposal, you can define
how the end user binds to a port where the operation is obtainable. You do this by using the <binding>
element. The following code presented in Listing 20-22 is one of the two <binding> elements used in
the sample WSDL document.

LLiissttiinngg 2200--2222:: BBrreeaakkiinngg ddoowwnn tthhee <<bbiinnddiinngg>> eelleemmeenntt

<wsdl:binding name=”CalculatorSoap” type=”tns:CalculatorSoap”>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />
<wsdl:operation name=”Add”>
<soap:operation soapAction=”http://www.wrox.com/ws/Add” style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>
<wsdl:operation name=”Subtract”>
<soap:operation soapAction=”http://www.wrox.com/ws/Subtract”
style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

643

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 643

The <binding> that is shown in this example is using SOAP. The other binding that is in the main
WSDL document includes a <binding> definition for SOAP 1.2.

The <binding> element contains a name attribute. This attribute’s value is the name of the Web service
class with the word SOAP attached to it. The <binding> element also contains a type attribute. This
attribute is a reference to the <portType> name attribute that was used earlier.

<soap:binding>
The example from Listing 20-22 shows that a number of different elements are enclosed within the
<binding> element. The first is the <soap:binding> element. By using this <soap:binding> element,
you are specifying that this protocol is bound to the SOAP specification that uses a SOAP packet for
transport. The SOAP packet is made up of the envelope, header, and body. The <soap:binding>
element can contain two attributes. The first is the transport attribute. The transport attribute, a
URI, specifies the protocol that is going to be used in transporting the SOAP packet. The value of this
attribute in the example is http://schemas.xmlsoap.org/soap/http. This transport value is
specifying that the SOAP packet will be transported over HTTP.

The style attribute enables you to specify one of the two available binding styles at your disposal. The
optional values are rpc and document. The preceding example is using the style attribute with the
value of document. A setting of document means that the SOAP will be transported using a single docu-
ment message. Using rpc means that the SOAP message will be sent using an RPC-oriented operation.
RPC messages are made up of parameters and return values. If a style value isn’t specified, assume
that document is the style setting.

<soap:operation>
Contained within the <operation> element is a <soap:operation> element. The <operation> ele-
ment is associated with each of the available methods from the Web service. The <soap:operation>
element is used to show how the operation should be bound. In this case, it is to the SOAP protocol. The
soapAction attribute specifies the value of the SOAPAction header for this operation.

The style attribute is the same as it is in the <soap:body> element. The possible values of this attribute
include both rpc and document.

The <soap:operation> element can take up to one <input> and one <output> element. Each <input>
and <output> element can contain either a <soap:body>, <soap:header> or a <soap:headerfault>.
The sample WSDL document that is used in this chapter contains only a <soap:body> element for both
the <input> and <output> elements.

<soap:body>
The <input> or <output> element can contain a <soap:body> element. This indicates that the message
parts are part of the SOAP body element. A number of available attributes can be used within the
<soap:body> element.

In the example used in this chapter, the <soap:body> contains a use attribute. The use attribute speci-
fies whether the message parts are being encoded. The possible values of the use attribute include
encoded or literal.

644

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 644

The value encoded means that a URI is used to determine how the message is mapped to the SOAP
body. If encoded is set as the value, an encodingStyle attribute must be present. The value of the
encodingStyle attribute is a list of URIs, each divided by a single space. The URIs signify encoding
used within the message, and they are ordered from the most restrictive to the least restrictive.

If literal is used as the value of the use attribute, the message parts represent a concrete schema
definition. When this value is set to literal, the message parts are sent literally and not altered in the
process.

<service>
The <service> element contains the endpoints for the Web service. The code shown in Listing 20-23
demonstrates this.

LLiissttiinngg 2200--2233:: BBrreeaakkiinngg ddoowwnn tthhee <<sseerrvviiccee>> eelleemmeenntt

<wsdl:service name=”Calculator”>
<wsdl:port name=”CalculatorSoap” binding=”tns:CalculatorSoap”>
<soap:address location=”http://localhost:1780/XMLWS/Calculator.asmx” />

</wsdl:port>
<wsdl:port name=”CalculatorSoap12” binding=”tns:CalculatorSoap12”>
<soap12:address location=”http://localhost:1780/XMLWS/Calculator.asmx” />

</wsdl:port>
</wsdl:service>

In this example, the Web service has two ports or endpoints. One available port is for SOAP 1.1
and another is for SOAP 1.2. The binding attribute in the <port> element points to the associated
<binding> element. Contained within the <port> element is an <soap:address> child element that
specifies the URI of the endpoint.

Like the other elements that are part of the WSDL document, the <port> element can also take a name
attribute that allows it to have a unique identifier in order to differentiate itself from the other <port>
elements.

<import>
Although not shown in any of the examples, you can use the <import> element within a WSDL docu-
ment. Using the <import> element enables you to associate a namespace with a document location. The
following code shows this:

<definitions>
<import namespace=”uri” location=”uri”/>

</definitions>

Basically you can actually import parts of another WSDL document directly into the WSDL document
that you are working with. For instance, if you have a type definition in a separate file, your file should
look like Listing 20-24:

645

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 645

LLiissttiinngg 2200--2244:: TThhee <<ttyyppeess>> sseeccttiioonn iinn iittss oowwnn WWSSDDLL ffiillee

<wsdl:types>
<s:schema elementFormDefault=”qualified”
targetNamespace=”http://www.wrox.com/ws”>
<s:element name=”Add”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”AddResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”AddResult” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”Subtract”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”a” type=”s:int” />
<s:element minOccurs=”1” maxOccurs=”1” name=”b” type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”SubtractResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”SubtractResult”
type=”s:int” />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>

</wsdl:types>

You can now import this .wsdl file directly into the WSDL document that you are working on. The par-
tial code example presented in Listing 20-25 shows how this is done.

LLiissttiinngg 2200--2255:: AA WWSSDDLL ddooccuummeenntt ccoonnttaaiinniinngg aann iimmppoorrtteedd ttyyppee ddeeffiinniittiioonn

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://www.wrox.com/ws” xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”

646

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 646

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://www.wrox.com/ws”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<import namespace=”http://www.wrox.com/ws”
location=”http://localhost/SomeLocation/TypeDefinition.wsdl” />

<wsdl:message name=”AddSoapIn”>
<wsdl:part name=”parameters” element=”tns:Add” />

</wsdl:message>

<!-- The rest removed for clarity -->

</wsdl:definitions>

This causes the types that are defined in a separate WSDL document to be planted in the spot where the
<import> element is located. You may have pieces of a WSDL document that are easy to carve off and
use numerous times in other WSDL documents.

The <import> element takes two attributes. The first is the namespace attribute and the second is the
location attribute. The location attribute specifies the location of the actual file that you want to
import into the WSDL document.

Using the <import> element properly enables you to separate your WSDL documents into reusable
blocks that can be inserted when needed.

<documentation>
It is not always possible for the end user to figure out what is going on in a particular Web service by
looking at the WSDL file or any Web services test page. One option to enable the Web service consumer
to understand a Web service better is for the Web service developer to use the <documentation> ele-
ment to further define the methods available. You can use this element to help others understand what
is meant by the argument CityDays2007 in your method. The end user might be able to tell that the
CityDays2007 takes an int, but he might not know the actually meaning of the argument. Even after
testing it on the test page, he may be no closer to figuring it out.

It is always best to give as much information as possible if you want users to consume your Web services
with a smile. Do this by providing documentation notes within your WSDL files, as well by using the
<documentation> element.

The <documentation> element is allowed anywhere within the WSDL document. I advise you to use
this element to place documentation information in as many places as possible to make it easier for end
user to consume your Web services.

For instance, in the example used throughout this chapter, the <documentation> element is placed
within the <operation> element in order to give the end user more information about what the opera-
tion actually does. The code presented in Listing 20-26 shows an example of this.

647

Chapter 20: SOAP and WSDL

29_777779 ch20.qxp 3/1/07 11:51 PM Page 647

LLiissttiinngg 2200--2266:: UUssiinngg tthhee <<ddooccuummeennttaattiioonn>> eelleemmeenntt iinn aa WWSSDDLL ffiillee

<wsdl:operation name=”Add”>
<documentation>Adds two numbers together for
the mathematically impaired.</documentation>
<wsdl:input message=”tns:AddSoapIn” />
<wsdl:output message=”tns:AddSoapOut” />

</wsdl:operation>

The preceding code is somewhat self-explanatory. Because you know a little more about this particular
operation, you also know how to work more effectively with the Web service you are looking to consume.

Summary
This chapter reviewed some of the core technologies behind Web services. Make sure you understand
the details of both SOAP and WSDL if you are planning on either exposing or consuming application
data or logic via these means. It will make your life that much easier.

SOAP is a standard way of representing the message structure, and this chapter showed you this basic
structure with a review of the SOAP envelope, header, and body. It also demonstrated SOAP faults and
how to send effective SOAP error messages back to the consuming client.

The Web Services Description Language is a new XML-based language that is used to describe Web ser-
vice regardless of the underlying platform on which the Web services reside. Now that you know how a
WSDL document is constructed, you will be better able to discern the structure of a Web service from
these documents.

648

Part VI: XML Services

29_777779 ch20.qxp 3/1/07 11:51 PM Page 648

AAddvvaanncceedd WWeebb SSee rr vv ii cc ee ss

Web services have already changed the way developers model their applications. Web services
allow developers to easily expose application logic and data with relatively little work. Various
vendors have now built into their toolsets the means to easily expose and consume Web services.

Although the Web services model is great, it originally generated a little bit of worry in the enter-
prise. Where is the security? What about sending binary objects such as images? What about the routing of
SOAP messages? These were good questions because they pointed out what the Web services model
was lacking — a common way to provide security, send attachments, establish routing, and more.

Companies such as IBM and Microsoft started working on a number of specifications that
addressed these needs. These were

❑ WS-Security

❑ WS-Timestamp

❑ WS-Attachments

Developers watched these new specifications with great excitement, and wanted to begin using
them immediately. This desire gave birth to the various WS-* (WS-star) technologies. This chapter
takes a look at these advanced specifications and what they do for your Web services. In addition
to examining the specifications, this chapter also describes implementing these specifications in
your applications today.

Expanding on a Foundation
The XML Web services model is here to stay. In fact, it is so popular and solves so many of the
problems developers face that its adoption rate is quite outstanding. After this model was intro-
duced, however, many companies found that it was missing some core pieces that would enable
organizations to use the new technology as it was intended.

30_777779 ch21.qxp 3/1/07 11:51 PM Page 649

Most notably, users complained that Web services lacked some enterprise basics such as a standard way
to provide different types of credentials, to route SOAP messages, and to perform certain transactions
such as encryption, digital signing, and more. Many more issues arose, but these were some of the most
vital ones.

Individual vendors might be able to come up with their own solutions for these problems, but doing so
violated the basic concept of the Web Services model — Interoperability.

If you want Web Services to work with credentials, encryption, or transactions between disparate sys-
tems, you must have common standards agreed upon by the industry at large. This ensures that your
XML Web services will work with requests to and from Unix-based systems. So, in a sense, the XML Web
services model and this book are based upon the concept of interoperability. Everyone wants specifica-
tions that provide a common language and enable us to tie our systems together. This has been a goal of
the enterprise for quite awhile, and it is slowly starting to be realized.

Web Services Framework — The Paper
The vendors developing their own Web Services model, based on the original industry-wide agreements
of XML, SOAP and HTTP, foresaw the need for advanced functionality for enterprise-level Web Services.
Because of this, both Microsoft and IBM submitted a paper to the W3C in April of 2003 at a Web Services
workshop entitled Web Services Framework. The paper contained a laundry list of specifications that the
two companies felt would bring about true enterprise-level Web services. These specifications would
further the goal of achieving decentralized interoperability.

The paper pinpoints specific functionality that must be developed into specifications for the proposed
Web Services Framework. The following section contains the companies’ vision of the functionality
needed for Web Services.

Message Envelope and Controlled Extensibility
This functionality enables users of SOAP routing to tag parts of the XML message. Tagging reveals what
parts of the message can and cannot be ignored by the processors. The SOAP intermediate processors
can then work with only those parts of the message meant for them and can ignore the parts meant for
the final recipient.

Binary Attachments
This functionality allows for sending of non-textual items along with the SOAP message. It is expensive
to serialize and deserialize nontextual items (such as images). If items can be attached to the SOAP mes-
sage in their binary formats, this serialization process is not needed.

Message Exchange aka Routing
Not all SOAP messages are sent point-to-point. Some messages go through any number of intermediaries.
Some of the intermediaries may also send a response back to the original sender. Therefore, the model
must allow this type of communication to occur.

650

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 650

Message Correlation
A single message may not always be able to fully encapsulate everything necessary for an application
process. Therefore, the model must be able to correlate multiple messages.

Guaranteed Message Exchange
Both parties, the sender and the receiver, want certain message guarantees when a message is sent or
received. The sender wants a guarantee or notification that the message was received. The receiver
wants to ensure that a message is received only once and that there aren’t duplicate messages from the
sender.

Digital Signature
Senders must be able to digitally sign the messages that they send so that the recipients have a guaran-
tee that the message is from the anticipated sender and that the message sent has not been altered in
transport.

Encryption
The model requires method to encrypt either part of the message or the entire message independent of
the protocol. The specification cannot be tied to any particular form of encryption.

Transactions and Activities
SOAP messages require some sort of transactioning capabilities. They must support long-running
transactions.

Service Description
A service description specification that fully details the interface of the Web Service can inform the con-
sumer about the consumption including the types of protocols used and the types and parameters
required for interaction.

Process Flow Contract Description
A Process Flow Contract Description enhances the service description to show the consumer the
sequence that occurs as the messages work through the process. The message that can terminate the
entire flow process is also included.

Inspection
Consumers require a way to inspect a known destination for Web service endpoints. They need service
descriptions as well as process flow contracts.

651

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 651

Discovery
Discovery means the capability to find specific Web Services and their contracts based upon characteris-
tics of the services themselves.

Since this paper was released, IBM and Microsoft have been working together, releasing a number of dif-
ferent specifications that address these core functions that they discussed in this document. For instance,
the functionality of Discovery has been worked out with the UDDI specification created by Microsoft,
IBM and others.

In the end, this long list of functionality can be lumped into three distinct categories — those that deal
with the wire, those that deal with description, and those that deal with discovery.

The wire specifications include the following functionalities named in the paper:

❑ Message envelope and controlled extensibility

❑ Message Exchange aka Routing

❑ Guaranteed Message Exchange

❑ Transactions and Activities

❑ Digital Signature

❑ Encryption

The description specifications needed include:

❑ Service Description

❑ Process Flow Contract Description

The discovery specifications include:

❑ Inspection

❑ Discovery

In the end, this paper submitted by these two major vendors was the roadmap they have worked with
since then. You, an IT professional who deals with Web Services, can be assured that the functionality
described here will be included in the specifications from all major vendors and their partners. It can
provide enterprise clients with the advanced functionality they require in their real-world Web Services.

WS-I.org
In order to achieve truly interoperable Web Services from all the IT vendors, a new organization
addresses interoperability-related issues in connection with the WS-* specifications. The Web Services
Interoperability group, WS-I.org (quite conveniently found at ws-i.org), is a group made up of major
vendors including Microsoft, IBM, BEA, and a number of global, corporate customers including
Rational, NEC, Borland, Hewlett-Packard, and others. (See Figure 21-1.)

652

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 652

Figure 21-1

This group’s mission is to test and address interoperability of the advanced Web service specifications
between the different vendors’ platforms. They do this by providing the best means of testing this inter-
operability as well as offering thoughtful leadership and guidance on interoperability.

Extending XML Web Services
If you use these specifications or new ones that may come out in the future, you must apply the struc-
tures that are laid out in them. How do you do this? To understand how you can change your SOAP
messages so that they start working with these specifications, examine how you can extend SOAP.

SOAP Basics
As stated in the previous two chapters, Simple Object Access Protocol is an XML-based technology. It is
used as a common message format in the transmission of messages from a Web service to any end point
that is able to consume and understand these SOAP messages. This functionality is an important pillar
in the Web services model.

653

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 653

SOAP is not the only means of communication available for a Web service in this multiplatform world.
In fact, Web services on non-.NET platforms use other means, including XML-RPC and ebXML, to struc-
ture the messages sent from the Web services that sit on those platforms.

Many vendors’ platforms use SOAP as the common message format in the exchange of information
packets from one point to another. SOAP is a lightweight XML format that is platform-neutral. If your
platform or calling application can consume XML over HTTP, you can work with the SOAP packets that
are sent and received across the wire. That’s the miracle of SOAP.

You can build or consume Web services on the .NET platform without understanding the structure of
SOAP or even knowing that it is used as the communication protocol. Still, it is a good idea to under-
stand exactly what SOAP is. It helps to understanding the structure of the SOAP packets that are sent
across the wire if you wish to extend them in order to enhance the performance of your Web services.

SOAP 1.1, the main SOAP version used today, was developed in March of 2000 and was accepted as a
note by the W3C on May 8, 2000. The companies that worked on the development of SOAP include
Microsoft, DevelopMentor, IBM, Lotus, and UserLand Software. SOAP is not a proprietary technology,
run or controlled by Microsoft or IBM. It is, instead, an open standard. Therefore, you can use SOAP on
almost any platform as long as the platform can work with XML.

The SOAP message was meant to be simple. The SOAP message is what is sent over the wire using
HTTP, with or without the HTTP Extension Framework (HTTP-EF). SOAP messages are meant to be
one-way. Nothing is built into these messages that warrants any response. SOAP does not contain any
built-in functions or methods that cause specific events to be initiated. The SOAP message is XML, and
XML is simply a way of marking up data.

Web services require a request and response action to take place. SOAP gets around this problem by
sending the SOAP message within the HTTP request and response messages.

The typical SOAP message consists of a SOAP Envelope, Header, and Body section. The SOAP Envelope
is a mandatory element that is the root element of the entire package. Within the SOAP Envelope ele-
ment is an optional Header element and a mandatory Body element. Figure 21-2 shows the structure of a
SOAP message.

Figure 21-2

SOAP Envelope

SOAP Header

SOAP Body

654

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 654

Because this entire message is an XML document, it has a single root element (the SOAP Envelope ele-
ment), just like any typical XML document.

SOAP Headers
The SOAP header element is an optional element used to provide information related to what is con-
tained within the SOAP Body element. The convenient thing about the SOAP header is that you are
not required to inform the end user beforehand about the information you place there. Basically, the
SOAP header is used to transmit supporting information about the payload that is contained within
the SOAP Body.

The SOAP specification doesn’t make any rules about what the SOAP header must contain, and this
lack of restriction makes the SOAP header a powerful tool. Basically the SOAP header is a container that
is sent along with the SOAP body and therefore, you can place any type of information within it.

The SOAP header is where you usually place the WS-* specifications within the SOAP document. How
exactly do the various vendors interject these specifications within the SOAP message? The next section
takes a look at how Microsoft builds upon a SOAP message to include these advanced specifications.

SOAP Extensions
If you are using a Microsoft-based Web service, SOAP Extensions can intercept and work with a SOAP
message before it is sent past certain points.

In .NET, there are specific points in the short life of a SOAP message that is being sent and received
when you are able to jump in and interact with it. The following diagram (Figure 21-3) shows you
where, in the process of sending a SOAP message, you can work with it.

Serialization is the process whereby an object is converted into a format that enables it to be readily trans-
ported. In this case, the format is XML. When you serialize an object within ASP.NET in the context of
XML Web services, it is formatted into XML and then sent via a SOAP packet. In the SOAP packet, the
XML payload can be deserialized. The process of deserialization, as you would expect, is the conversion
of an XML payload back into the object that was originally sent.

ASP.NET provides these means of interacting with the SOAP message process before or after serialization
and deserialization so that you can inspect or modify the SOAP message. The capability to inspect the
SOAP message throughout its journey gives you quite a bit of power. On either the client or server, you
can manipulate SOAP messages to perform specific actions based upon items found in the SOAP payload.
These points of interaction include BeforeSerialize, AfterSerialize, BeforeDeserialize, and
AfterDeserialize.

655

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 655

Figure 21-3

WS-* Specifications
A tremendous amount of WS-* specifications exist. Really all it takes to create one is for some individu-
als or organizations to get together and declare one to the world in some fashion. A number of non-profit
organizations work on specifications and release them to the public. Some of these organizations include
the aforementioned WS-I.org, as well as OASIS (oasis-open.org), and the W3C (w3c.org).

The following is a review of some of the more notable specifications.

SerializerInteraction
PointXML

SoapMessage.BeforeDeserialize

SoapMessage.BeforeSerialize

SoapMessage.BeforeDeserialize

SoapMessage.BeforeSerialize

SOAP

Interaction
Point

XML Web
Service class

or
consuming

class

XML Web
Service class

or
consuming

class

Serializer

Serialization

Deserialization

Interaction
Point XMLInteraction

Point

656

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 656

WS-Security
When Web Services were initially introduced, they were not massively adopted. They lacked the security
model most companies required before they could begin building technologies within the enterprise.

The specification WS-Security was developed by Microsoft, IBM, and VeriSign. It works on three main
areas to make Web Services secure — credential exchange, message integrity, and message confidentiality.

Credential Exchange
WS-Security enables two entities to exchange their security credentials within the message itself. WS-
Security doesn’t mention the type of credentials needed for an exchange; therefore, it allows any type of
credentials to be used.

Message Integrity
Messages can be sent through multiple routers and, in effect, bounce from here to there before they reach
their final destination. You must ensure that the messages are not tampered with in transport. As messages
move from one SOAP router to another, malicious people can make can make additions or subtractions in
the SOAP nodes, thereby destroying the integrity of the message. As SOAP routers become more prevalent,
using WS-Security to check for message tampering will increase in popularity.

Message Confidentiality
Encryption is one of the more important functions to apply to your SOAP messages. When your mes-
sages are zipping across the virtual world they can be intercepted and opened for viewing by parties
who shouldn’t be looking at their contents.

For this reason, it is beneficial to somehow scramble the contents of a message. When it reaches the
intended receiver, he can use your encryption key and descramble the message to read the contents.

WS-Addressing
The Web Service Addressing protocol is a SOAP-based protocol that is used to route SOAP packets from
one point to another over HTTP, TCP, or some other transport protocols. It is especially designed to
route the SOAP packet through several points before it reaches its final destination.

To accomplish this, the path for the SOAP message is specified in the SOAP header along with the SOAP
message. Therefore, when a SOAP message is sent, the message path is also connected to this message.

For example, you want to get a message from point A to point D, but in order to do this, you must route
the SOAP message through points B and C along the way.

Figure 21-4 shows how this might look visually.

Figure 21-4

Point A Point B Point C Point D

657

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 657

In Figure 21-4, point A is the initial SOAP sender. This is where you place the WS-Addressing informa-
tion into the SOAP header. Points B and C are the routing points, known as either the SOAP nodes or
SOAP routers. When they receive a SOAP message with a WS-Addressing specification about the final
destination, these two points forward this message onto the next point. Point D is the ultimate receiver
of the SOAP message that is specified in the SOAP header.

Contained within the SOAP header itself is a forward message path, an optional reverse path, and the
points through which the message must be routed. The entire message path can be described directly in
the SOAP header, so there’s no need to include it elsewhere. These paths can be created dynamically at
runtime as well.

WS-Attachments
WS-Attachments is a specification that was developed by Microsoft and IBM to ease the difficulty of
adding attachments to SOAP messages. This specification was published in June of 2002. SOAP is a great
way of representing data as XML, but it can be difficult to include images and documents within this
structure.

You can do so today with Web services, but you use significant overhead to serialize an image into an
acceptable XML form such as base64 using DIME. The receiver also bears a tremendous cost in proces-
sor power when he attempts to deserialize the message on the other end.

In addition to this problem, it is difficult to represent other XML documents in the payload of the SOAP
messages, especially if these XML documents or XML fragments don’t conform to the encoding type
used in the SOAP message itself.

For these problems, WS-Attachments was created and can be used to keep other objects such as images,
documents, and XML fragments from being serialized into the body of the SOAP message. This substan-
tially increases performance for these types of payloads.

WS-Coordination
As companies start developing a multitude of Web services within their enterprise, they realized that
many Web services have relationships with one another. WS-Coordination has been developed to
describe the relationships of Web services with one another.

WS-Coordination is meant to be expanded by other specifications that further define specific coordina-
tion types. For instance, WS-AtomicTransaction works with WS-Coordination to create a coordination
type that deals with the transactioning of Web services.

WS-MetadataExchange
WS-MetadataExchange enables you to define what services can be found at a particular site by making
pointer references to the documents of a Web service that define the Web service’s interface.

658

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 658

Core Specifications
The WS-* list goes on and on. The following table looks at some of the present specifications in light
detail (shown in alphabetical order).

WS-* Specification Description

WS-Acknowledgement Ensures reliable messaging by enabling the receiver to send a
“receipt” for the message. Similar to the WS-ReliableMessaging
specification.

WS-ActiveProfile Provides the means to apply a federated identity to the active
requestor. This works in conjunction with the WS-Federation
specification.

WS-Addressing Provides the means to apply message-based routing. This specifica-
tion is considered a replacement to the WS-Routing and WS-Referral
specifications. A similar specification to WS-Addressing is the
WS-Callback specification.

WS-Attachments Provides the means of applying one or more binary objects to your
message using DIME. Using DIME is now considered obsolete by
most vendors because MTOM is the preferred way to move binary
objects.

WS-AtomicTransaction Provides the means to apply atomic transactions to your messaging.
Atomic transactions are “all or nothing” transaction types. This speci-
fication works with the WS-Coordination specification and is meant to
be a replacement to the WS-Transaction specification.

WS-Authorization Provides the means for a Web service vendor to describe how their
Web services manage authorization data and policies.

WS-BaseFaults Provides a way to define an XML Schema type for base faults.
Allows for commonality in how SOAP faults are represented.

WS-BaseNotification Provides a means to allow for a publish/subscribe mechanism
for messaging. WS-BaseNotification works as part of the WS-
Notification family which many subspecifications depend upon.

WS-BPEL Formally known as BPEL4WS (Business Process Execution Lan-
guage for Web Services), this specification provides the mechanics
to apply workflow to messaging. This specification is considered a
replacement for XLANG and WSFL.

WS-BrokeredNotification Provides a publish/subscribe mechanism for messaging. WS-
BrokeredNotification works as part of the WS-Notification family.

WS-BusinessActivity Provides the means (along with WS-AtomicTransaction) to provide
transactions to your messaging. WS-BusinessActivity types of
transactions are meant to be longer-lived transactions and can per-
form other actions based upon any possible failure points.

Table continued on following page

659

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 659

WS-* Specification Description

WS-CAF Also known as the Web Services Composite Application Framework,
this specification is really a collection of three specifications: Web
Service Context (WS-CTX), Web Service Coordination Framework
(WS-CF), and Web Service Transaction Management (WS-TXM). The
purpose of WS-CAF is to help in the sharing of information and the
transactioning of messages for composite applications.

WS-Callback Provides the means to dynamically specify where to send asyn-
chronous responses after receiving a request. A similar specification
is the WS-Addressing specification.

WS-CF Known as the Web Service Coordination Framework, this specifica-
tion provides the means to specify a software agent to handle
context management. This specification is part of the WS-CAF set
of specifications.

WS-Coordination Provides a means to apply transactions to your services. This specifi-
cation works with WS-AtomicTransaction and WS-BusinessActivity
to specify the transactioning functionality.

WS-Choreography Provides the means to work within a peer-to-peer environment
with any number of participants.

WS-CTX Known as the Web Service Context, this specification provides the
means the means of managing, sharing, and accessing context
information between Web services. This specification is part of the
WS-CAF set of specifications.

DIME Known as Direct Internet Message Encapsulation, DIME provides
the means to encapsulate binary data into a series of records. This
allows for these types of objects to be delivered in a more perfor-
mant manner than otherwise. DIME is now considered obsolete now
by many vendors because MTOM is more capable.

WS-Discovery Provides the means to discover services through a multicast discov-
ery protocol. Any service that wishes to be discovered simply sends
an announcement when the service wishes to either join or leave a
discovery pool.

WSDM Known as Web Services Distributed Management, this specification
allows for the provision of management information via standards.

WS-EndpointResolution Enables you to select endpoints from a group of available end-
points. This specification is meant to work with server farms or
mobile devices.

WS-Enumeration Provides the means of enumerating a sequence of XML elements
meant for traversing logs, message queues, or other linear informa-
tion models.

660

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 660

WS-* Specification Description

WS-Eventing Provides the capability to subscribe or accept subscriptions from
event notification messages. This specification competes with the
WS-Events specification.

WS-Events Provides the means to publish/subscribe to events via services.
This specification competes with the WS-Eventing specification.

WS-Federation Provides a means to manage and broker the trust relationships
between entities via messaging.

WSFL Known as the Web Services Flow Language, this specification pro-
vides the means to apply workflow to services through either a
usage pattern or interaction pattern. WS-BPEL is the replacement
for WSFL.

WS-Inspection Provides the means to inspect a site for a list of available services.
This specification is replaced by the WS-MetadataExchange
specification.

WS-Manageability Provides all the administration tasks available from a service as ser-
vices themselves. This specification is replaced by WS-Management.

WS-Management Provides the means to manage services using messaging and
events. This specification is a replacement of the WS-Manageability
specification.

WS-MessageData Provides the capability to incorporate a specific message meta-data
header.

WS-MessageDelivery Provides the capability to build transport-agnostic services that pro-
vide their endpoints in the messages themselves. This specification
is a competing specification to WS-Addressing.

WS-MetadataExchange Provides the means to retrieve policies and an interface definition
document. This specification is replacement to WS-Inspection.

MTOM Known as Message Transmission Optimization Mechanism, MTOM
provides the means to encapsulate binary data using XML-binary
Optimized Packaging (XOP). MTOM is considered the recommended
way to encapsulate binary objects rather than the MIME or DIME
specifications.

WS-Notification Allows for a publish/subscribe mechanism for messaging. WS-
BaseNotification, WS-BrokeredNotification, and WS-Topics are part
of the WS-Notification family of specifications.

WS-PassiveProfile Provides the means for passive requestors (such as Web browsers)
to supply identity using WS-Federation. When using this specifica-
tion, the end-user is limited to the HTTP protocol.

WS-Policy Provides the means to define a service’s requirements, preferences,
and capabilities.

Table continued on following page

661

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 661

WS-* Specification Description

WS-PolicyAssertions Provides the means to apply a set of common message policy asser-
tions that can be specified within a policy. This specification works
in conjunction with the WS-Policy specification.

WS-PolicyAttachment Provides the means to reference policies from WSDL documents,
associate policies with deployed Web services, as well as UDDI
entities.

WS-Privacy Provides the means for organizations to supply their privacy
statements.

WS-Provisioning Provides the means to facilitate interoperability between provision-
ing systems.

WS-Referral Provides the means to define routing behaviors of messages
received. This specification is generally used in conjunction with
WS-Routing and is replaced by the WS-Addressing specification.

WS-Reliability Provides the means to supply guaranteed message delivery and
order. This specification competes with the WS-ReliableMessaging
specification.

WS-ReliableMessaging Provides the means to supply guaranteed message delivery with
regard to software components, system, or network failures. This
specification completes with the WS-Reliability specification.

WS-ResourceFramework Also known as WSRF, this is really a definition for a family of speci-
fications such as WS-ResourceProperties, WS-ResourceLifetime,
WS-BaseFaults, and WS-ServiceGroup. Each of these specifications
is provided to allow for the access of stateful services.

WS-ResourceLifetime Provides the timeframe in which services can destroy their acquired
state. The possible options include immediate or scheduled.

WS-ResourceProperties Provides the capability to query or change a stateful resource.

WS-Routing Provides the capability to route messages through any number of
intermediaries. This specification is usually used in conjunction
with WS-Referral. This specification is considered obsolete by
many vendors and has been replaced by WS-Addressing or WS-
MessageDelivery.

WS-SecureConversation Provides the means to manage and authenticate message exchanges
between parties using security context exchanges or session keys.

WS-Security Provides the means to apply credentials to messages in order to
make the message transport-agnostic.

WS-SecurityPolicy Provides the capability for Web service vendors to supply their
security policies via the WS-Security specification.

WS-ServiceGroup Provides the capability to group stateful resources that might be
applied to a domain-specific purpose.

662

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 662

WS-* Specification Description

WS-Topics Provides the means to allow for the grouping of topics that are used
in the publish/subscribe mechanism for messaging. This specifica-
tion is used in the WS-Notification family of specifications.

WS-Transaction Provides the means to supply coordination types when used in con-
junction with the WS-Coordination specification. This specification
is considered obsolete and is replaced by the WS-AtomicTransaction
and WS-BusinessActivity specifications.

WS-TransmissionControl Provides the means to ensure message reliability.

WS-Trust Provides the means for entities to exchange tokens.

WS-TXM Known as Web Services Transaction Management, this specification
allows for transaction protocols to be applied to a coordination frame-
work. This specification is part of the WS-CAF set of specifications.

In this long table, you see plenty of specifications. Many companies put out specifications to augment their
messaging frameworks even though the functionality is already provided via other specifications. Many
vendors try to achieve their goals within a specification that is in competition with other specifications.

Vendors spend so much of their time creating specifications because they want interoperability within their
product frameworks. A globally accepted specification allows this to happen. Most of the specifications
defined in the preceding table are not actually implemented in any of the vendors’ technologies. Only a
small handful have been actually implemented and made workable across two vendors’ platforms.

The rest of this chapter covers some specific technologies that implement these specifications. First, you
investigate Microsoft’s Web Services Enhancements 3.0.

Looking at Microsoft’s
Web Services Enhancements 3.0

Microsoft and the other vendors are not in the business of creating specifications; they’re in the business of
making software. When the specifications for advanced features in Web services were developed, Microsoft
had to implement them within its Web services model. It wanted to allow .NET Web service developers to
start building Web services immediately using these features. The capabilities of Web services are defined
and established within the .NET Framework. The .NET Framework can’t keep up with the new specifica-
tions that are being pumped out by Microsoft, IBM, and others. The new versions of the .NET Framework
are planned to be years apart — not months — and users want these specifications now.

Therefore, Microsoft has decided to release the capabilities to work with Web Services Enhancements for
Microsoft .NET (WSE) sooner than the release of the next version of the .NET Framework.

The first version the WSE was released as a beta in the summer of 2002 and, although not a full imple-
mentation of all the available WS-* specifications, it included a number of classes that allow you to build

663

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 663

advanced Web Services using selected specifications from the various specs out at the time. Since then,
two other releases of WSE have come from Microsoft. The following details what is in each of the WSE
releases.

The WSE 1.0 Contents
The first release of the WSE was not a full implementation of all the advanced Web service specifications
available, but instead represented a smaller subset of specifications from the advanced Web service pro-
tocols. This WSE version one includes some of the more important specifications that many customers
will consider number-one priorities. This first version of WSE included the capabilities for working with:

❑ WS-Security

❑ WS-Routing

❑ WS-Referral

❑ WS-Attachments (using DIME)

The WSE 2.0 Contents
WSE 2.0 release in 2003 offered the following WS-* specification implementations as well as the follow-
ing functionality:

❑ WS-Security 1.0 full implementation

❑ WS-Trust

❑ WS-SecureConversation

❑ A new adapter for Microsoft’s BizTalk

The WSE 3.0 Contents
The WSE 3.0 is the most recent WSE release and further extends the previous two releases. The WSE 3.0
release includes the following specification releases as new functionalities:

❑ WS-Security 1.1

❑ Updated WS-Trust and WS-SecureConversation sections

❑ MTOM support

❑ 64-bit support

❑ A new adapter for Microsoft’s BizTalk 2006

Functionality Provided by the WSE
As you can see, some important specifications are provided via WSE. The WS-Security implementation
is by far the largest and most exciting aspect of the WSE. It is also the most asked-for implementation

664

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 664

among all the advanced Web service specifications. WSE allows you to use this implementation to pro-
vide credentials with your Web services. You can send in usernames and passwords in the SOAP header
of the SOAP messages that are sent onto the Web service provider. The passwords that in the SOAP mes-
sages are encrypted, thereby providing a higher level of security. An additional feature, a companion to
the capability to provide credentials for verification with your SOAP messages, is the capability to use
X.509 certificates in addition to usernames and passwords.

In addition to being able to provide credentials with your SOAP messages, you can digitally sign your
SOAP messages. This is done to assure the receiver of a digitally signed SOAP message that the message
was not altered in transport by some known or unknown entity.

The last thing provided with the WS-Security implementation is the capability to encrypt and decrypt
SOAP messages. This is an important feature when you start dealing with SOAP routing Your SOAP
messages go beyond point-to-point services and hop off paths that are protected by SSL.

WS-SecureConversation and WS-Trust provide the means to manage and authenticate message exchanges
between parties using security context exchanges or session keys.

The WSE 3.0 implementation works with MTOM and enables you to send items, such as images, that
are expensive to serialize into XML for SOAP message transport. The initial WSE 1.0 version provided a
WS-Attachments implementation that works with DIME.

These capabilities as a whole have been collected and are available as the final version of WSE. You can
use them to build the advanced Web services scenarios required for working with Web services in the
enterprise.

How the WSE Works
The WSE is a powerful collection of classes that allow you to work with the advanced Web service speci-
fications. It does this by intercepting all SOAP requests and SOAP responses and running these requests
through various WSE filters.

Your XML Web service can receive SOAP messages (incoming requests) through a WSE input filter. Any
SOAP messages that are sent from the XML Web service (outgoing requests) are sent through a WSE out-
put filter.

On the client-side of things, the client application that is working with an XML Web service sends out
all SOAP messages to the XML Web service through a WSE output filter. Then all SOAP responses that
come from the XML Web service are intercepted and run through a WSE input filter. This entire process
is shown in Figure 21-5.

The XML Web service automatically uses these input and output filters from the WSE because of certain
settings in the Web.config file. The client application automatically uses the WSE’s filters when you
make changes to the proxy class. In the end, it is these filters that give you the powerful capability to
build advanced WS-* specifications into your SOAP messages whether you are working on the client-
side, the server-side or both.

665

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 665

Figure 21-5

So what are these filters doing for you? The output filters take the SOAP messages and, in most cases,
apply element constructions to the SOAP header of the SOAP message. In some cases, they also work
with the SOAP body of the SOAP message to apply encryption. The input filters are doing the reverse.
They take incoming SOAP messages and analyze the SOAP headers and any decode any encrypted
SOAP bodies to automatically make sense of their construction.

Building a WSE 3.0 Example — The Server
As an example of using WSE 3.0, you now build a server and a client that utilize some of the features
provided via this framework. In this example, you build a Web service (the server-side application)
which will provide a simple Add() method. This Add() method, however, requires a username and
password combination that must be packaged in the SOAP header in the WS-Security format.

The WSE provides you with an implementation of WS-Security that you can use in the construction of
your Web service for consumers and providers. WS-Security provides you with a number of different
security implementations including credential exchange, encryption, and digital signing. This chapter
focuses on the first aspect of WS-Security mentioned here — credential exchange.

WSE’s WS-Security implementation enables both the consumer and the provider of the Web Service to
get credentials verified from a source that is trusted by both parties. The request for the credential verifi-
cation and the token that is generated from the request are placed directly in the SOAP message itself,
in most cases in the SOAP header. Wherever the message is sent, the sender is assured that the security
credentials and the related authorization token are always with the message, even if it is transported
through any number of intermediaries. You will see this later in the book when working with the rout-
ing and referral of SOAP messages.

Client
Application

Output
Filter

Input
Filter

Input
Filter

Output
Filter

XML Web
Service

666

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 666

One of the great things about the WSE implementation of WS-Security is that not only can you work
with username and password combinations to provide authentication and authorization to your XML
Web services, but you can use with other security credential mechanisms such as using X.509 certificates
along with your SOAP messages.

Just as in the previous chapter you created your own class to apply usernames and passwords to the
SOAP header of the SOAP message, you now work with the classes of the WSE that apply your user-
names and passwords to the SOAP header. The difference is that the WSE classes do this in a manner
that conforms to the specifications for credential exchange laid out in WS-Security. The structure that is
applied to the SOAP header for credential representation is, therefore, consistent and understandable
when passed to other vendor’s platforms, such as IBM’s WebSphere.

The WSE provides us with a class, the UsernameTokenManager class, for working with credential
exchanges that involve usernames and passwords. In order to work with the UsernameTokenManager
class, you use credential verifier source that can inherit from this class. After this class is in place, you
configure the Web.config file that is contained within the Web service’s application root to work with
this particular class. You can then program the Web service to work with this new class.

Creating a Class That Verifies Credentials
For authorizing access to the XML Web service, you need a source that can obtain username and pass-
word combinations from some type of data store. The class that you create must be able to perform nec-
essary validation on the usernames and passwords coming in with the SOAP messages. In this simple
example, our password validation process ensures only that the password is exactly the same as the
username in the message.

Your first step is to create a Web service project within Visual Studio 2005 using C#. Within the project, right-
click the project’s name and choose Add ASP.NET Folder➪ App_Code. After you have the App_Code folder
in place, right-click the project again and select Add New Item. You are adding a class to the Web Service
project. Name the file myPasswordProvider.cs.

In order to start applying WSE techniques to this class and to the Web service that you are going to build
in a bit, you make a reference to the WSE class within your project. To do this, right-click the project
again and this time select Add Reference.

The Add Reference dialog opens on the .NET tab by default. From this section of the dialog, you make
reference to the Microsoft.Web.Services3.dll (shown here in Figure 21-6). If you don’t see this
DLL, you haven’t installed WSE 3.0. This requires a separate download from the .NET Framework 2.0
download.

To make reference to this assembly, highlight this DLL and click the OK button in the Add Reference
dialog. Notice the reference to the assembly in the Web.config file.

<assemblies>
<add assembly=”Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35” />

</assemblies>

667

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 667

Figure 21-6

Now you can start building the myPasswordProvider class. This class inherits from UsernameToken
Manager. The purpose of this class is to validate the username and password combinations. To accom-
plish this, you override the AuthenticateToken() method provided via UsernameTokenManager and
obtain the correct password from the username. In this example, the AuthenticateToken() method
simply returns the Username property in string form as the password, meaning that the username and
the password are required to be the same for the credential set to be considered valid. Listing 21-1 shows
the code required for the myPasswordProvider.cs file.

LLiissttiinngg 2211--11:: TThhee mmyyPPaasssswwoorrddPPrroovviiddeerr..ccss ffiillee

using Microsoft.Web.Services3.Security.Tokens;

namespace WSExample
{

/// <summary>
/// Validates the username and password found in a SOAP message
/// </summary>
public class myPasswordProvider : UsernameTokenManager
{

protected override string AuthenticateToken(UsernameToken token)
{

string password = token.Username;

return password;
}

}
}

668

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 668

Looking this class over, you can see that the myPasswordProvider class inherits from UsernameToken
Manger and overrides the AuthenticateToken() method, which in this case simply returns the
Username property as the password required from the consumer. Next, you review how to configure the
application to use WSE 3.0 and to apply the rest of the required settings.

Configuring the Application To Use the WSE 3.0
Now that you have your myPasswordProvider class in place, you have to make reference to the WSE
from within the Web.config file. To do all the wiring required to get the WSE framework up and run-
ning in your application, you apply a lot of different configuration settings in both the Web.config and
any policy files that you are using. You can easily just go through these XML files yourself and apply all
the configurations, but you can also use the WSE Settings 3.0 Tool.

The WSE Settings 3.0 Tool installs itself within Visual Studio along with the rest of the WSE 3.0 frame-
work, so you have to use Visual Studio if you want to utilize the Settings Tool.

The Settings Tool makes it quite easy to configure your Web service to get you up and running rather
quickly. To configure your Web service to work with the WSE by using the Settings Tool, right-click the
project name within Solution Explorer and select WSE Settings 3.0. Clicking WSE Settings 3.0 pulls up
the Settings Tool dialog. This dialog includes a number of tabs including General, Security, Routing,
Policy, TokenIssuing, Diagnostics, and Messaging, as shown in Figure 21-7.

Figure 21-7

669

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 669

To get started building a Web service to work with the WSE, you click the first check box of the General
tab. This check box enables the project to work with the WSE. It does this by automatically making a
reference to the Microsoft.Web.Services3 DLL in your project. Because you are working with an
ASP.NET Web Service project, also click the second check box.

The Security tab (shown in Figure 21-8) allows you to make changes to the Web.config file through
the GUI that handles the WSE’s security implementation. From this page, you can specify your token
managers as well as details on any certificates.

Figure 21-8

Using the Security tab, you can configure the WSE to use the new class you created, myPasswordProvider,
as the token manager. To accomplish this, click the Add button within the Security Token Managers section
of the dialog. This launches the SecurityToken Manager dialog as shown in Figure 21-9.

Provide the following values to the dialog.

Type: WSExample.myPasswordProvider

Namespace: http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd

LocalName: UsernameToken

670

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 670

Click OK in the SecurityToken Manager dialog and open the Policy tab. This tab can establish a policy
for using a specific username. It is presented in Figure 21-10.

Figure 21-9

Figure 21-10

671

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 671

To set a policy, check the Enable Policy check box and select the Add button to add a new policy. The
first step in the dialog is to establish whether you want to secure a service or a client. In this case, you are
interested in securing a service through the use of a username setting. Your dialog should be similar to
the one presented in Figure 21-11.

Figure 21-11

If you click the Next button, you see the option to have WSE to perform the authorization process. For
this example, you want to select this option. Therefore, check the Perform Authorization check box and
click the Add User button to specify a specific user. In this case, I have selected BEvjen as the user. This
dialog is presented in Figure 21-12.

Figure 21-12
672

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 672

The next page in the dialog allows you to set the message-protection level. In this case, you can simply
leave the default settings which allow for WS-Security 1.1 Extensions. You could also require the creden-
tials to be signed and encrypted and used with an X.509 certificate, but for this example simply select
None (rely on transport protection). This dialog is presented in Figure 21-13.

Figure 21-13

If you are working with an X.509 certificate, the last page in the dialog allows you to determine details
about the X.509 certificate. You can check the check box that signifies the certificate will be signed within
the code.

After these pages in the dialog, you are finally offered a summary page that details everything to be
applied. All these setting are actually applied in the set wse3policyCache.config file.

Configuring Diagnostics
The service is now configured for the WSE, but as the final step in the configuration process, go to the
Diagnostics tab and select the check box to enable this feature. This means that all the SOAP messages
that are sent to and from the client are recorded to an XML file. This is quite handy when analyzing your
Web services. This page in the dialog is presented in Figure 21-14.

Don’t leave the tracing feature on with production Web services. Performance is greatly hindered when
this capability is enabled.

673

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 673

Figure 21-14

The Result of the WSE Settings 3.0 Tool Configuration
After you have set all these values for your service through the settings tool, you may notice that a
wse3policyCache.config file has been added to your project. In the Web.config file, you see that the
WSE is engineered to work with this file. The settings applied to the Web.config file are presented in
Listing 21-2.

LLiissttiinngg 2211--22:: TThhee WWeebb..ccoonnffiigg ffiillee aafftteerr uussiinngg tthhee WWSSEE SSeettttiinnggss 33..00 TTooooll ((ppaarrttiiaall ffiillee))

<microsoft.web.services3>
<security>

<securityTokenManager>
<add type=”WSExample.myPasswordProvider”
namespace=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd”
localName=”UsernameToken” />

</securityTokenManager>
</security>
<policy fileName=”wse3policyCache.config” />
<diagnostics>

<trace enabled=”true” input=”InputTrace.webinfo”

674

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 674

output=”OutputTrace.webinfo” />
</diagnostics>

</microsoft.web.services3>

In this partial bit of configuration code found in the Web.config file, you can see that the security token
manager is the myPasswordProvider class that was built earlier. Also, the policy that is used is assigned
through setting the filename of the policy file within the <policy> element.

<policy fileName=”wse3policyCache.config” />

Looking at the wse3policyCache.config file, you can see all the settings you applied are contained
within the file as shown in Listing 21-3.

LLiissttiinngg 2211--33:: TThhee wwssee33ppoolliiccyyCCaacchhee..ccoonnffiigg ffiillee

<policies xmlns=”http://schemas.microsoft.com/wse/2005/06/policy”>
<extensions>
<extension name=”authorization”
type=”Microsoft.Web.Services3.Design.AuthorizationAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

<extension name=”usernameForCertificateSecurity”
type=”Microsoft.Web.Services3.Design.UsernameForCertificateAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

<extension name=”x509”
type=”Microsoft.Web.Services3.Design.X509TokenProvider,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

<extension name=”requireActionHeader”
type=”Microsoft.Web.Services3.Design.RequireActionHeaderAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

<extension name=”usernameOverTransportSecurity”
type=”Microsoft.Web.Services3.Design.UsernameOverTransportAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

</extensions>
<policy name=”My WSE Policy”>
<authorization>
<allow user=”BEvjen” />
<deny user=”*” />

</authorization>
<usernameOverTransportSecurity />
<requireActionHeader />

</policy>
</policies>

In this case, you can see that the named policy, My WSE Policy, has an authorization section that denies
all users except user BEvjen.

675

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 675

<authorization>
<allow user=”BEvjen” />
<deny user=”*” />

</authorization>

Now with the wiring to the WSE framework in place, you are now ready to build your Web service.

Building the Web Service
With the wiring for the framework of the WSE in place, you don’t have to do much to have your Web
services make use of this established framework. For an example of creating a service that requires the
client to work with the settings applied to the Web.config and policy file, build the sample service
shown in Listing 21-4.

LLiissttiinngg 2211--44:: BBuuiillddiinngg aa sseerrvviiccee tthhaatt uusseess tthhee WWSSEE

using System.Web.Services;
using Microsoft.Web.Services3;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[Policy(“My WSE Policy”)]
public class Service : System.Web.Services.WebService
{

[WebMethod]
public int Add(int a, int b) {

return (a + b);
}

}

In this case, you have a Web service that performs a simple Add() function. This isn’t much different from
how you would normally go about building a C# Web service, but there are some minor differences.

From Listing 21-4, a different namespace is imported into the file — Microsoft.Web.Services3. This
allows you to apply the class attribute Policy, which you use to specify the policy file that you wish to
use for this service.

[Policy(“My WSE Policy”]
public class Service : System.Web.Services.WebService
{

}

That’s it. Now you can review how to create a simple ASP.NET client that works with this new service.

Building a WSE 3.0 Example — The Client Application
A little extra work is involved in creating a Web service that works according to the WS-Security specifi-
cations, but it is well worth this extra price. Now that you have a Web Service that accepts SOAP headers
that conform to this structure, your consumers can construct their SOAP headers accordingly.

676

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 676

First, to create a client application that can make use of this new service, create a new ASP.NET Web pro-
ject and within this project, make a reference to the new service that you built in the example earlier in
this chapter. To make this reference, right-click on the project where you are creating your ASP.NET page
and select Add Web Reference. Then type in the URL path of the WSDL file of the Web Service or of an
.asmx file in the Add Web Reference dialog’s address bar. If the dialog finds the Web service’s endpoint,
you just click the Add Reference button to create a reference to this remote object.

After you make a reference to the WSE_Auth Web Service, Visual Studio 2005 reviews and validates the
WSDL document, and then makes the proper references to the service in your project. Notice that the Web
Reference folder in your project has expanded and is either showing localhost (meaning that the Web
Service is local on your server), or it shows the root URL of the location of the Web Service (but back-
wards!), for example, com.wrox.www.

The name of this reference here is important, and my recommendation is to change it to something
meaningful by right-clicking the name and choosing Rename. This helps you understand your code a lit-
tle better, especially if you are consuming multiple Web Services. This name is how you make reference
to the Web Service in your code.

As when you created the WSE 3.0 Web service, you are going to have to enable the project for Web
Services Enhancements in the WSE Settings 3.0 dialog. This adds the Microsoft.Web.Service3.dll
to your project and makes the necessary changes to the Web.config file.

By creating an instance of this proxy class in the code of your project, you have programmatic access to
the methods provided from the Web Service. To see an example of this, use the Page_Load event han-
dler in the Default.aspx page and input the following code. (See Listing 21-5.)

LLiissttiinngg 2211--55:: TThhee PPaaggee__LLooaadd eevveenntt iinn tthhee DDeeffaauulltt..aassppxx ppaaggee

using System;
using Microsoft.Web.Services3.Security.Tokens;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

localhost.ServiceWse ws = new localhost.ServiceWse();

UsernameToken ut = new UsernameToken(“BEvjen”, “BEvjen”);
ws.SetClientCredential<UsernameToken>(ut);
ws.SetPolicy(“examplePolicy”);

int result = ws.Add(10, 20);

Response.Write(result.ToString());
}

}

Try to understand what is going on with the consuming side of the application. First of all, you are
working with a Web service in much the same manner as you would have before the WSE came along,
although some differences exist.

677

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 677

The first step is to import the Microsoft.Web.Services3.Security.Tokens namespace to get access
to the UsernameToken object. This object is used to provide your username and password to be incorpo-
rated in the SOAP message.

The next step is the same as it was before the WSE. You instantiate the proxy class that you have created.
In this case, however, you find that new service has the Wse extension.

localhost.ServiceWse ws = new localhost.ServiceWse();

Next, you create an instance of the UsernameToken object that populates your username and password
into the SOAP header. This UsernameToken object reference is called ut. In addition to instantiating the
object, this bit of code also gives ut a value. In this case, you assign it the value of BEvjen as the user-
name and the same string, BEvjen, as the password.

UsernameToken ut = new UsernameToken(“BEvjen”, “BEvjen”);

After you have given your application side UsernameToken object the appropriate values, you then
assign the UsernameToken object to the SOAP request that the consuming application sends off to the
Web Service.

ws.SetClientCredential<UsernameToken>(ut);
ws.SetPolicy(“examplePolicy”);

You assign your UsernameToken object using the SetClientCredential() method. You must have a
policy for security credentials in place. To accomplish this task, you need to create a wse3policyCache
.config file in your project. This configuration file has the following code:

<policies xmlns=”http://schemas.microsoft.com/wse/2005/06/policy”>
<extensions>
<extension name=”usernameOverTransportSecurity”
type=”Microsoft.Web.Services3.Design.UsernameOverTransportAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

<extension name=”requireActionHeader”
type=”Microsoft.Web.Services3.Design.RequireActionHeaderAssertion,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35” />

</extensions>
<policy name=”examplePolicy”>
<usernameOverTransportSecurity />
<requireActionHeader />

</policy>
</policies>

In this case, the policy is called examplePolicy and is the value which is used in the SetPolicy()
method from earlier.

You have finished constructing the SOAP header that is used in the request, and you can then continue
to work with the Web service request in the same manner as you did before the WSE. In this case, you

678

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 678

simply call the particular Web Method you want and pass it any needed parameters. In this case, two
parameters are required and you are assigning the value of the instantiation to a Response.Write()
statement in order to display the result of the call on the ASP.NET page.

int result = ws.Add(10, 20);

Response.Write(result.ToString());

The Result of the Exchange
So, in the end, what happened in the request and response to the Web service? This is actually the more
important part of the entire discussion and the reason that you want to use the WSE for building the
Web service. Take a look at the request from the consumer to the provider first. You do this by reviewing
the .webinfo files that you had the WSE to create for you. This SOAP message is shown in Listing 21-6.

LLiissttiinngg 2211--66:: TThhee SSOOAAPP rreeqquueesstt ffrroomm tthhee ccoonnssuummeerr ttoo tthhee pprroovviiddeerr

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”
xmlns:wsse=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd”
xmlns:wsu=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd”>
<soap:Header>

<wsa:Action>http://tempuri.org/Add</wsa:Action>
<wsa:MessageID>urn:uuid:5405b840-e7cc-4b62-a235-bbd79785bad7</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>
http://schemas.xmlsoap.org/ws/2004/08/

addressing/role/anonymous
</wsa:Address>

</wsa:ReplyTo>
<wsa:To>http://localhost:2263/WSE/Service.asmx</wsa:To>
<wsse:Security soap:mustUnderstand=”1”>

<wsu:Timestamp wsu:Id=”Timestamp-4c73c5af-2f3c-4b19-b172-9054289b400f”>
<wsu:Created>2006-09-23T22:43:21Z</wsu:Created>
<wsu:Expires>2006-09-23T22:48:21Z</wsu:Expires>

</wsu:Timestamp>
<wsse:UsernameToken
xmlns:wsu=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd”
wsu:Id=”SecurityToken-37cd48a5-99de-4fbf-885f-10e5325bb61d”>
<wsse:Username>BEvjen</wsse:Username>
<wsse:Password
Type=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-username-token-profile-1.0#PasswordDigest”>
Ifj+616Z9JM+eMHcyVj7RFzHiVE=
</wsse:Password>

(continued)

679

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 679

LLiissttiinngg 2211--66 (continued)

<wsse:Nonce>7nb2/FzjzpYsrnoeJseL1Q==</wsse:Nonce>
<wsu:Created>2006-09-23T22:43:21Z</wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>
<soap:Body>

<Add xmlns=”http://tempuri.org/”>
<a>10
20

</Add>
</soap:Body>

</soap:Envelope>

There is a lot to this message it seems, but if you look at the actual SOAP body, only the instantiating of
the SOAP WebMethod is taking place.

<soap:Body>
<Add xmlns=”http://tempuri.org/”>

<a>10
20

</Add>
</soap:Body>

All the real action is taking place in the SOAP header. This is where all the WSE action is occurring.
Quite a bit of information is concentrated into three areas. The first section is the WS-Addressing part of
the message and this section deals with the routing of SOAP messages among other actions. The second
section is the <wsu:Timestamp> node. This section deals with the time stamping of SOAP messages.
The last section in this SOAP header example is the <wsse:UsernameToken> node. This is the area of
the SOAP header that you concentrate in this chapter. This is where the SOAP request security creden-
tials are represented.

<wsse:UsernameToken
xmlns:wsu=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd”
wsu:Id=”SecurityToken-37cd48a5-99de-4fbf-885f-10e5325bb61d”>
<wsse:Username>BEvjen</wsse:Username>
<wsse:Password
Type=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-username-token-profile-1.0#PasswordDigest”>
Ifj+616Z9JM+eMHcyVj7RFzHiVE=
</wsse:Password>
<wsse:Nonce>7nb2/FzjzpYsrnoeJseL1Q==</wsse:Nonce>
<wsu:Created>2006-09-23T22:43:21Z</wsu:Created>

</wsse:UsernameToken>

The first thing to note is that this bit of XML in the SOAP header is an XML representation of the
UsernameToken object that is created on the consuming side and which is passed to the Web service
provider. Within the <wsse:UsernameToken> node is a unique ID which is given to the UsernameToken
instance to differentiate it from other requests.

680

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 680

More importantly, a representation of the username and password that the user entered into the applica-
tion appears in the SOAP header. Notice that it has been hashed and that this is specified by a type defi-
nition in the password node of the SOAP header.

The <wsse:Nonce> node, which is generated from cryptographic random number generators, uniquely
identifies the request. A timestamp is also put on the request with the <wsu:Created> node.

After the credentials are verified and accepted by the Web service, the response is sent back to the client
as shown in Listing 21-7.

LLiissttiinngg 2211--77:: TThhee SSOOAAPP rreessppoonnssee ffrroomm tthhee pprroovviiddeerr ttoo tthhee ccoonnssuummeerr

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:wsa=”http://schemas.xmlsoap.org/ws/2004/08/addressing”
xmlns:wsse=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd”
xmlns:wsu=”http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-utility-1.0.xsd”>
<soap:Header>

<wsa:Action>http://tempuri.org/AddResponse</wsa:Action>
<wsa:MessageID>urn:uuid:232efd00-6dab-40a1-aed7-487e1abfeb96</wsa:MessageID>
<wsa:RelatesTo>urn:uuid:673fdd6e-3b2a-474e-ace8-56a8134adc50</wsa:RelatesTo>
<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/

addressing/role/anonymous
</wsa:To>
<wsse:Security>

<wsu:Timestamp wsu:Id=”Timestamp-8a213916-c2e9-4d7b-a1e5-b13c9cdc1ee4”>
<wsu:Created>2006-09-24T14:47:03Z</wsu:Created>

<wsu:Expires>2006-09-24T14:52:03Z</wsu:Expires>
</wsu:Timestamp>

</wsse:Security>
</soap:Header>
<soap:Body>

<AddResponse xmlns=”http://tempuri.org/”>
<AddResult>30</AddResult>

</AddResponse>
</soap:Body>

</soap:Envelope>

For this return, only a small amount of information in the SOAP header deals with the SOAP message’s
timestamp and validity. Beyond this bit of information, there isn’t anything else needed in the SOAP
header. The SOAP body contains a return value.

Summary
The advanced Web service specifications that extend the Web Services model and enable enterprises to
build great Web Services are truly outstanding. Many specifications exist already or are in production.
The IT community is demanding the chance to use these specifications immediately in creating their

681

Chapter 21: Advanced Web Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 681

enterprise-level Web Services. Many corporations have been unable to implement Web Services to a
great extent because the services lacked many essential features such as security and the capability to
properly encrypt messages.

Now the implementation of these specifications is appearing in a number of vendors’ platforms. This chap-
ter introduced the Microsoft implementation with this third release of the WSE. Using it, businesses can
take a new and fresh look at the Web Services model and how it can play in their distributed application
environment.

682

Part VI: XML Services

30_777779 ch21.qxp 3/1/07 11:51 PM Page 682

RREESSTT

In the Web Services family, SOAP is the “cool kid” that gets all the attention, but REST is the child
that gets work done quietly in the background. REpresentational State Transfer (REST) is the Web
Service for the rest of us. Apart from the fact that the acronym needs work (it was coined for a
PhD dissertation), REST is really just a description of how the Web works: by moving (transfer-
ring) from page to page (the state). Each page you visit is the representation of that state. REST is
all about simple links and using simple messages and query strings to get the job done.

Although the process of REST may not be obvious with the general Web pages you visit, think
about a shopping site. You browse through a list of products, changing the state of the application
and the representation of that state in your browser. Finally, you find the item you’ve been dream-
ing of for so long, and you click the link to buy it. State is added to an invisible shopping cart.
Viewing the cart’s contents is another click away. Increasing the quantity of items purchased is a
matter of setting the number, and clicking an Update button. Deleting is just as easy. Everything is
managed through simple GET and POST requests. You get many of the benefits of SOAP without
having to build SOAP requests, understand WS-something-or-other, or process WSDL. Instead,
you define the XML you’d like to pass between client and server.

Introducing the Basics of REST
Some users accept this fairly strict definition of REST, but many others consider any Web service
that can be accessed using simple GETs or POSTs as being REST. To differentiate these two camps,
I’ll refer to these two concepts as pure REST and just-enough REST.

Pure REST
In a pure REST system, resources are the entities exposed by the service: the products you sell, the
customer records you view, the pages you interact with. Each resource should have a unique URL
that defines it, such as http://www.mysystem.com/products/5323. Accessing that URL using

31_777779 ch22.qxp 3/1/07 11:51 PM Page 683

an HTTP GET request should return a representation of that resource, in this case a block of XML (or
XHTML). In a pure REST system, GET requests cannot change the resource. Changes are performed by
other HTTP verbs, as outlined in the following table.

HTTP Verb Action

GET Request for a resource. No change is made to the resource. Returns an XML
representation of that resource.

POST Creates a new resource. Returns an XML representation of that resource.

PUT Updates an existing resource. Returns an XML representation of that resource.

DELETE Deletes a resource from the system.

Those who do a lot of database programming should see some familiar items. These four actions map
closely to the common CRUD (Create, Retrieve, Update, and Delete) that are done in database applica-
tions. Although these are not exact matches by any means, it is good to keep this relationship in mind
when planning your own REST services. Just as your SELECT statements do not actually change your
database, GET posts to a pure REST service should not change any data.

Just-enough REST
In a just-enough REST system, only GET and POST (or even just GET) URLs are used. In this model, all
the operations of the service can be accessed via a query string in a browser. Part of the rationale for this
is that many clients do not support the PUT and DELETE verbs, leaving GET and POST to perform mul-
tiple duties.

684

Part VI: XML Services

The Danger of GET
Many people attempt to define just-enough REST interfaces that use nothing but GET
requests, rationalizing that this makes testing easier, because the user can type all URLs
into a browser to make them work. (You’ll sometimes see this referred to as the query-
line or url-line.) This method is fine if your service is read-only; however, it can lead to
many problems if you provide for other CRUD calls using GET requests. For example,
imagine having a URL like: http://www.example.com/products/delete/42 or
http://www.example.com/products.aspx?delete=42. Although this would be
harmless and possibly useful when used correctly, remember that this URL could be
saved as a bookmark — or worse, recorded by a search engine or Web crawling appli-
cation. After it is saved, this URL could be accessed again in the future, with possibly
disastrous results. For example, Google produced a product called the Google Web
Accelerator. Its noble aim was to make Web browsing faster by pre-downloading the
links from pages you view. It did this by accessing all the links (using GET requests) on
the page in the background. Now imagine what would happen if you view a page that
contains links to delete URLs? To avoid the embarrassment of losing all your data,
remember: GET requests should not change the data and have no side-effects.

31_777779 ch22.qxp 3/1/07 11:51 PM Page 684

Accessing REST Services
Many REST services are available on the Internet. Many of them are read-only services, offering only
GET requests and providing some information. Just a few of the most useful are listed in the following
table. See the list in the Resources section at the end of this chapter for more.

Service Description

Yahoo Geocode Determines the latitude and longitude for a given address (works best
with US addresses).

Amazon Product Search Enables searching Amazon’s product catalogues and purchasing
products.

Amazon Open Search Enables searching a number of search engines simultaneously.

eBay Product Search Enables searching through eBay’s product catalog.

Flickr Photo Search Enables searching through the photographs posted to Flickr by
photographer, topic, or other criteria.

Accessing REST Service Examples
One of the easier services to call, but still a very useful one, is Yahoo’s Geocoding service. This provides
the longitude and latitude for a given address. This data can then be used to map the location with one
of the mapping services. The Geocoding service is a just-enough REST API using command-line parame-
ters to identify the location. In addition, the call requires a unique token identifying the application call-
ing the service. The token helps Yahoo identify heavy users of the system. In addition, each IP address
calling the service is limited to 50,000 calls per day.

The Geocode service is accessed by sending a GET request to http://api.local.yahoo.com/
MapsService/V1/geocode with the following parameters.

Parameter Description

appid (Required) The unique string used to identify each application using
the service. Note that this parameter name is case-sensitive. For testing
purposes, you can use either YahooDemo (used by the Yahoo samples
themselves) or ProXml (registered for the samples in this book). How-
ever, your own applications should have unique application IDs.
You can register them at http://api.search.yahoo.com/webservices/
register_application.

street (Optional) The street address you are searching for. Note: this should
be URL-encoded. That is, spaces should be replaced with + characters,
and high ASCII or characters such as <, /, > etc. should be replaced
with their equivalent using ‘%##’ notation.

Table continued on following page

685

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 685

Parameter Description

city (Optional) The city for the location you are searching for. Should be
URL-encoded, although this is really only necessary if the city name
contains spaces or high ASCII characters.

state (Optional) The US state (if applicable) you are searching for. Either the
two letter abbreviation or full name (URL-encoded) will work.

zip (Optional) The US ZIP code (if applicable) you are searching for. This
can be in either 5-digit or 5-digit — 4-digit format.

location (Optional) A free form field of address information containing the
URL-encoded and comma-delimited request. For example:
location=1600+Pennsylvania+Avenue+NW,+Washington,+DC

The return from the call is a block of XML corresponding to the XML schema:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns=”urn:yahoo:maps” targetNamespace=”urn:yahoo:maps”
elementFormDefault=”qualified”>
<xs:element name=”ResultSet”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Result” type=”ResultType” minOccurs=”0” maxOccurs=”50”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”ResultType”>
<xs:sequence>
<xs:element name=”Latitude” type=”xs:decimal”/>
<xs:element name=”Longitude” type=”xs:decimal”/>
<xs:element name=”Address” type=”xs:string”/>
<xs:element name=”City” type=”xs:string”/>
<xs:element name=”State” type=”xs:string”/>
<xs:element name=”Zip” type=”xs:string”/>
<xs:element name=”Country” type=”xs:string”/>

</xs:sequence>
<xs:attribute name=”precision” type=”xs:string”/>
<xs:attribute name=”warning” type=”xs:string” use=”optional”/>

</xs:complexType>
</xs:schema>

For example, calling the service for the US Whitehouse:

http://api.local.yahoo.com/MapsService/V1/geocode?appid=YahooDemo&street=1600+Penns
ylvania+Avenue+NW&city=Washington&state=DC

The previous call returns the following XML:

<?xml version=”1.0” encoding=”UTF-8”?>
<ResultSet xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

686

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 686

xmlns=”urn:yahoo:maps” xsi:schemaLocation=”urn:yahoo:maps
http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd”>
<Result precision=”address”>
<Latitude>38.8987</Latitude>
<Longitude>-77.037223</Longitude>
<Address>1600 PENNSYLVANIA AVE NW</Address>
<City>WASHINGTON</City>
<State>DC</State>
<Zip>20502-0001</Zip>
<Country>US</Country>

</Result>
</ResultSet>

Notice that the full, corrected address is returned along with the latitude and longitude. Therefore, this
service can also be used for address correction.

Listing 22-1 shows a class designed to wrap the Geocode service. The class provides two methods for
generating the geographic location based on an address. In a real system, this class would likely include
either other overrides as well as other geographic or mapping functions. Note that this class uses the
System.Web.HttpUtility class. Therefore, you will need to add a reference to the System.Web.dll.

LLiissttiinngg 2222--11:: WWrraappppiinngg tthhee GGeeooccooddee sseerrvviiccee

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.Web;
using System.Xml;

namespace ProXml.Samples.Rest {
public class Mapping {

private const string BaseUrl =
“http://api.local.yahoo.com/MapsService/V1/geocode”;

private const string AppId = “ProXML”; //replace with your own code

public GeographicLocation Geocode(string street,
string city,
string state,
string zip) {
GeographicLocation result = null;
UriBuilder uri = new UriBuilder(BaseUrl);
StringBuilder q = new StringBuilder();

q.AppendFormat(“appid={0}&”, AppId);

if(0!=street.Length) {
q.AppendFormat(“street={0}&”, HttpUtility.UrlEncode(street));

}
if (0!=city.Length) {

q.AppendFormat(“city={0}&”, HttpUtility.UrlEncode(city));
}

(continued)

687

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 687

LLiissttiinngg 2222--11 (continued)

if (0!=state.Length) {
q.AppendFormat(“state={0}&”, HttpUtility.UrlEncode(state));

}

if (0!=zip.Length) {
q.AppendFormat(“zip={0}&”, HttpUtility.UrlEncode(zip));

}

uri.Query = q.ToString(0, q.Length - 1);

WebRequest req = WebRequest.Create(uri.ToString());
WebResponse resp = req.GetResponse();

result = ExtractLocation(resp.GetResponseStream());

return result;
}

public GeographicLocation Geocode(string location) {
GeographicLocation result = null;
UriBuilder uri = new UriBuilder(BaseUrl);
StringBuilder q = new StringBuilder();

q.AppendFormat(“location={0}”, HttpUtility.UrlEncode(location));
uri.Query = q.ToString();

WebRequest req = WebRequest.Create(uri.ToString());
WebResponse resp = req.GetResponse();

result = ExtractLocation(resp.GetResponseStream());

return result;

}

private GeographicLocation ExtractLocation(System.IO.Stream stream) {
GeographicLocation result = new GeographicLocation();

using (XmlReader r = XmlReader.Create(stream)) {
while (r.Read()) {

if (r.IsStartElement() && !r.IsEmptyElement) {
switch (r.Name.ToLower()) {

case “latitude”:
r.Read(); //skip to content
result.Latitude = Double.Parse(r.Value);
break;

case “longitude”:
r.Read(); //skip to content
result.Longitude = Double.Parse(r.Value);
break;

default:
break;

688

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 688

}
}

}
}
return result;

}
}

}

The class contains two overloaded methods for retrieving the location of an address. One method takes
a single string, location, whereas the other takes street, city, and so forth. Most of the code involved is
creating the appropriate URL for the query and does not involve XML processing, with the exception of
the ExtractLocation method.

The ExtractLocation method uses the .NET XmlReader class to process the returned XML. Alternatively,
you could use SAX or other lightweight XML handling method. As the XML returned is a small amount,
you could also use the DOM to extract the appropriate elements. However, because doing so requires extra
processing (generating a DOM usually requires the underlying framework to create the document tree), this
solution is not used here. In this routine, the XmlReader is created and the read loop initialized. Note that
the XmlReader.Create method is only available with the .NET Framework 2.0. For earlier versions of
.NET, you use the line:

using(XmlTextReader r = new XmlTextReader(stream)) {

The code retrieves only the latitude and longitude from the response XML; however, it should be
easy enough to add support for the other elements as well. You should also extend the return type
(GeographicLocation), as shown in Listing 22-2.

LLiissttiinngg 2222--22:: GGeeooggrraapphhiiccLLooccaattiioonn ccllaassss

using System;
using System.Collections.Generic;
using System.Text;

namespace ProXml.Samples.Rest {
public class GeographicLocation {

private double _lat = 0.0;
private double _long = 0.0;

public double Latitude {
get { return _lat; }
set { _lat = value; }

}
public double Longitude {

get { return _long; }
set { _long = value; }

}
}

}

After you have the class, you can use it in an application. In this case, I simply create a Windows Forms
application to test its functionality (see Figure 22-1).

689

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 689

Figure 22-1

Listing 22-3 has the code for the Geocode test application.

LLiissttiinngg 2222--33:: TTeessttiinngg tthhee GGeeooccooddee sseerrvviiccee

private void GeoCodeButton_Click(object sender, EventArgs e) {
ProXml.Samples.Rest.GeographicLocation result = new

ProXml.Samples.Rest.GeographicLocation();
ProXml.Samples.Rest.Mapping m =

new ProXml.Samples.Rest.Mapping();

//clear the results first
this.LatitudeField.Text = “”;
this.LongitudeField.Text = “”;

if (0 != this.LocationField.Text.Length) {
// use the location variant

} else {
// use the street/city/state variant
result = m.Geocode(this.StreetField.Text,

this.CityField.Text,
this.StateField.Text,
this.ZipField.Text);

if (null != result) {

690

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 690

this.LatitudeField.Text = result.Latitude.ToString();
this.LongitudeField.Text = result.Longitude.ToString();

}
}

}

Because all the XML processing is in the Mapping class itself, the code to call the function is quite simple.

A second service Yahoo provides requires slightly different handling for both input and output, and so it
is worth showing. The Term Extraction service, part of Yahoo search services, returns the important
words and phrases in a block of text. This can be useful for categorizing articles or blog posts. As the
submitted text can easily be larger than the 2K limit on GET requests, the submission should be made
via POST. In addition, the XML returned contains multiple result values, each containing one of the sig-
nificant terms or phrases.

The Term Extraction service can be accessed via the REST interface at:

http://api.search.yahoo.com/ContentAnalysisService/V1/termExtraction

The following table shows the parameters available for Yahoo Term Extraction.

Parameter Description

appid (Required) The unique string used to identify each application using the ser-
vice. Note that this parameter name is case-sensitive. For testing purposes,
you can use either YahooDemo (used by the Yahoo samples themselves)
or ProXml (registered for the samples in this book). However, your own
applications should have unique application IDs. You can register them at
http://api.search.yahoo.com/webservices/register_application.

context (Required) The block of text that the terms will be extracted from. This should
be URL-encoded. If this text is larger than the 2K GET limit, you use a POST
request to process it.

query (Optional) A query to help identify the topic of the context. For example, a
block of text may discuss a number of different topics, which would all be
included in the extraction. For example, a search for ‘java’ would likely
include topics involving coffee, Indonesia, and programming languages. If
you only want one topic extracted, provide a query to limit the extraction to
the desired topic.

output (Optional) Currently one of XML or JSON, defaulting to XML. JSON
(Javascript Object Notation) is a non-XML notation for data, consisting of the
objects serialized to text that can be converted back to Javascript objects via
the eval method. Because this is a non-XML format, that’s the last time I’ll
mention it here.

callback (Optional) Used only if the output is set to JSON. This is the name of a client-
side Javascript method to call to process the returned JSON data.

691

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 691

For example, you could call the service using a short block of text as a GET request:

http://api.search.yahoo.com/ContentAnalysisService/V1/termExtraction?appid=ProXML&c
ontext=The+Dunlin,+Calidris+alpina,+is+a+small+wader.+It+is+a+circumpolar+breeder+i
n+Arctic+or+subarctic+regions.&query=bird

This returns the following XML containing the key words in the sentence:

<ResultSet xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns=”urn:yahoo:cate”
xsi:schemaLocation=”urn:yahoo:cate

http://api.search.yahoo.com/ContentAnalysisService/V1/TermExtractionResponse.xsd”>
<Result>subarctic regions</Result>
<Result>wader</Result>
<Result>alpina</Result>
<Result>regions</Result>

</ResultSet>

Listing 22-4 shows a class designed to wrap this service.

LLiissttiinngg 2222--44:: WWrraappppiinngg tthhee TTeerrmm EExxttrraaccttiioonn sseerrvviiccee

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.Web;
using System.Xml;

namespace ProXml.Samples.Rest {
public class ContentAnalysis {

private const string BaseUrl =
“http://api.search.yahoo.com/ContentAnalysisService/V1/termExtraction”;

private const string AppId = “ProXML”; //replace with your own AppID

public List<string> ExtractTerms(string context, string query) {
List<string> result = null;
UriBuilder uri = new UriBuilder(BaseUrl);
StringBuilder q = new StringBuilder();

q.AppendFormat(“appid={0}&”, AppId);
q.AppendFormat(“context={0}&”, HttpUtility.UrlEncodeUnicode(context));

if (0 != query.Length) {
q.AppendFormat(“query={0}&”, HttpUtility.UrlEncode(query));

}

WebRequest req = WebRequest.Create(uri.ToString());
//using Post as content may be longer than the 2K limit for GET

692

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 692

req.Method = “POST”;
req.ContentType = “application/x-www-form-urlencoded”;
System.IO.Stream stream = req.GetRequestStream();
Byte[] buffer = Encoding.UTF8.GetBytes(q.ToString(0,q.Length-1));
stream.Write(buffer, 0, buffer.Length);
stream.Close();
WebResponse resp = req.GetResponse();

result = BuildResponse(resp.GetResponseStream());

return result;
}

private List<string> BuildResponse(System.IO.Stream stream) {
List<string> result = new List<string>();

using (XmlReader r = XmlReader.Create(stream)) {
while (r.Read()) {

if (r.IsStartElement(“Result”)) {
result.Add(r.ReadElementContentAsString());

}
}

}
return result;

}
}

}

The code is basically the same as that for the Geocode service with two major exceptions marked in
the listing. First, because the request requires a POST, the Method property of the WebRequest is set to
POST. In addition, the ContentType is set to application/x-www-form-urlencoded. This sets the
Content-Type header on the request to ensure the Web server handles the query correctly. Finally, the
query (containing the URL-encoded block of text) is written to the Request stream.

Because all the returned terms are wrapped in a Result element, parsing the resulting XML is easier.
The IsStartElement has a version where you can include the element name you are searching for.
After this is found, the resulting content can be retrieved with the ReadElementContentAsString
method. Note that this method is only available with the .NET Framework 2.0. For version 1.1 and ear-
lier, you should change the code for the if statement to:

if (r.IsStartElement(“Result”) && !r.IsEmptyElement) {
r.Read(); //skips to the content
result.Add(r.Value);

}

Just as with the Geocode service, you can create a simple test application (see Figure 22-2).

693

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 693

Figure 22-2

Listing 22-5 shows the code required to test the Extraction Wrapper class.

LLiissttiinngg 2222--55:: TTeessttiinngg tthhee TTeerrmm EExxttrraaccttiioonn WWrraappppeerr ccllaassss

private void ExtractButton_Click(object sender, EventArgs e) {
ProXml.Samples.Rest.ContentAnalysis con =
new ProXml.Samples.Rest.ContentAnalysis();

List<string> result = con.ExtractTerms(this.ContextField.Text,
this.QueryField.Text);

this.TermList.DataSource = result;

}

As a final example of calling existing REST services, Flickr provides a search service. This enables users
to search the thousands of photographs that have been uploaded to Flickr. You can search by photogra-
pher, tag (topic), group (a named selection), or other criteria. The following table discusses the available
parameters. A typical search takes the form:

http://www.flickr.com/services/rest/?api_key={unique
key}&method=flickr.photos.search&tags=okapi

694

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 694

Parameter Description

api_key (Required) The api_key parameter is similar to the Yahoo appid parameter in
that it is a unique key used to identify each application accessing the service.
You can apply for your own key at: http://www.flickr.com/services/
api/key.gne.

method (Required) This identifies which of Flickr’s methods you are calling (they all
have the same URL). Flickr provides a number of methods beyond search.
For more details, see the API documentation at: http://www.flickr.com/
services/api/. For an example of what is possible to create using the
APIs, see the Organizr application (http://www.flickr.com/tools/
organizr.gne)

tags (Optional) Tags are small blocks of text that can be attached to a photograph
to identify its content, such as London, summer, or wedding. You can think of it
as a category. When searching by tag, this parameter is a comma-delimited
list of tags you want to search. By default, a photo containing any of these
tags is returned. If you want to perform an AND search, see tag_mode below.
(The sample code does not use this parameter).

tag_mode (Optional) This controls whether the tag search is performed using an OR
query (the default) or an AND query. Use the value any or omit it to do an
OR query, or use all to select photos that have all the desired tags.

Many other parameters are supported, but not used by the sample applica-
tion. See http://www.flickr.com/services/api/flickr.photos
.search.html for the full list.

The XML returned from the service contains the ID information that can be used to create URLs to the
photographs stored:

<rsp stat=”ok”>
<photos page=”1” pages=”2” perpage=”100” total=”168”>
<photo id=”91638599” owner=”28255546@N00” secret=”40a011bce6” server=”16”

title=”Okapi” ispublic=”1” isfriend=”1” isfamily=”1”/>
<photo id=”91239219” owner=”33394998@N00” secret=”56e0d475dc” server=”27”

title=”Golgota” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”91207836” owner=”33394998@N00” secret=”1fc7d87431” server=”30”

title=”wenteltrap bouwen 2” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”90845302” owner=”18081671@N00” secret=”7b7ce51d35” server=”42”

title=”20060119 009” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”90845301” owner=”18081671@N00” secret=”fbad93dd15” server=”15”

title=”20060119 008” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”90845303” owner=”18081671@N00” secret=”dfbe7d90c8” server=”39”

title=”20060119 010” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”90795717” owner=”18081671@N00” secret=”e87de9ad47” server=”33”

title=”20060119 005” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”90795718” owner=”18081671@N00” secret=”dc776cf56c” server=”43”

title=”20060119 006” ispublic=”1” isfriend=”0” isfamily=”0”/>
...

</photos>
</rsp>

695

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 695

To create the URL to the photo, you must first decide on the size of the photo you would like. The basic
URL form is:

http://static.flickr.com/{server-id}/{id}_{secret}.jpg

In addition, you can add a suffix to select a different size, as outlined in the following table:

Suffix Image Size

none Returns the image sized to 500 pixels along the longer axis. For example:

http://static.flickr.com/13/90283787_838c56eb46.jpg

m Returns the image scaled to 240 pixels along the longer axis. For example:

http://static.flickr.com/29/89924158_adebcfd8b6_m.jpg

s Returns the image scaled to a 75 pixel square. Note that this may cause some dis-
tortion in the original image because of scaling. For example:

http://static.flickr.com/34/90039890_d1113850b4_s.jpg

t Returns a thumbnail version of the image, scaled to 100 pixels on the longest axis.

For example: http://static.flickr.com/29/52619028_e9541b248a_t.jpg

b Returns a large version of the image, scaled to 1024 pixels along the longest axis.
Note that this will only return an image if the original is larger than1024 pixels
wide or high. For example:

http://static.flickr.com/27/67687221_107c1f3c06_b.jpg

o Returns the original image. Note that the extension in this case may not actually
be jpg, but will be the extension appropriate to whatever format the photograph
was posted as. For example:

http://static.flickr.com/23/33000424_82bd503826_o.jpg

Listing 22-6 shows the code required to wrap the Flickr Photo Search service.

LLiissttiinngg 2222--66:: WWrraappppiinngg tthhee FFlliicckkrr PPhhoottoo SSeeaarrcchh sseerrvviiccee

using System;
using System.Collections.Generic;
using System.Text;
using System.Net;
using System.Web;
using System.Xml;
using System.IO;

696

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 696

namespace ProXml.Samples.Rest {

public class Photos {
private const string BaseUrl = “http://www.flickr.com/services/rest/”;
private const string AppId = “c0cbd699d50f296fa5b237eb4bdfbd1d”; //replace

with your own AppID
private const string FlickrPhotoSearch = “flickr.photos.search”;

public PhotoInformation[] Search(string tags) {
List<PhotoInformation> result = null;
UriBuilder uri = new UriBuilder(BaseUrl);
StringBuilder q = new StringBuilder();

q.AppendFormat(“api_key={0}&”, AppId);
q.AppendFormat(“method={0}&”, FlickrPhotoSearch);
q.AppendFormat(“tags={0}”, HttpUtility.UrlEncodeUnicode(tags));
uri.Query = q.ToString();

WebRequest req = WebRequest.Create(uri.Uri);
WebResponse resp = req.GetResponse();

result = BuildPhotoList(resp.GetResponseStream());

return result.ToArray();
}

private List<PhotoInformation> BuildPhotoList(System.IO.Stream input) {
const string BasePhotoUrl = “http://static.flickr.com”;
UriBuilder ub = new UriBuilder(BasePhotoUrl);
PhotoInformation pi = null;
List<PhotoInformation> result = new List<PhotoInformation>();

using (StreamReader read = new StreamReader(input)) {
XmlReader r = XmlReader.Create(read);
while (r.Read()) {

if (r.IsStartElement(“photo”)) {
pi = new PhotoInformation();
pi.Title = r.GetAttribute(“title”);

//build thumbnail URL
ub.Path = String.Format(“{0}/{1}_{2}_t.jpg”,

r.GetAttribute(“server”),
r.GetAttribute(“id”),
r.GetAttribute(“secret”));

pi.ThumbnailUrl = ub.ToString();

//and photo URL
ub.Path = String.Format(“{0}/{1}_{2}.jpg”,

r.GetAttribute(“server”),
r.GetAttribute(“id”),
r.GetAttribute(“secret”));

pi.Url = ub.ToString();

result.Add(pi);
}

(continued)

697

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 697

LLiissttiinngg 2222--66 (continued)

}
}
return result;

}
}

}

Just like the other services, the XML processing is isolated, in this case within the BuildPhotoList
method. This method processes the returned XML, finding the photo elements. These contain the infor-
mation needed to create the URLs to the graphics. The URLs are reconstructed in the PhotoInformation
class (see Listing 22-7)

LLiissttiinngg 2222--77:: PPhhoottooIInnffoorrmmaattiioonn ccllaassss

using System;
using System.Collections.Generic;
using System.Text;

namespace ProXml.Samples.Rest {
public class PhotoInformation {

private string _thumb;
private string _url;
private string _title;

public string ThumbnailUrl {
get { return _thumb; }
set { _thumb = value; }

}

public string Url {
get { return _url; }
set { _url = value; }

}

public string Title {
get { return _title; }
set { _title = value; }

}

public override string ToString() {
if (String.Empty != _title) {

return _title;
} else {

return _thumb;
}

}
}

}

After this class is created, searching and retrieving photos is quite easy (see Figure 23.3). Listing 22-8
shows the code that calls this class. Two methods are used: the first performs the initial search based on
the keyword(s) provided. The second updates the image whenever a new item is selected in the list.

698

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 698

Figure 22-3

LLiissttiinngg 2222--88:: UUssiinngg tthhee FFlliicckkrr PPhhoottoo SSeeaarrcchh WWrraappppeerr ccllaassss

private void PhotoSearchButton_Click(object sender, EventArgs e) {

ProXml.Samples.Rest.Photos call =
new ProXml.Samples.Rest.Photos();

ProXml.Samples.Rest.PhotoInformation[] result =
call.Search(this.TagsField.Text);

PhotoList.DataSource = result;
}
private void PhotoList_SelectedIndexChanged(object sender, EventArgs e) {

PreviewImage.ImageLocation = “”;
//get the selected item
ProXml.Samples.Rest.PhotoInformation pi = null;
ListBox lb = (ListBox)sender;

(continued)

699

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 699

LLiissttiinngg 2222--88 (continued)

pi = (ProXml.Samples.Rest.PhotoInformation)lb.SelectedItem;

PreviewImage.ImageLocation = pi.Url;
}

The code is for the Search button and the ListBox on the form. The Search button uses the wrapper class
to retrieve the first block of photos returned (up to 500) and creates an array of PhotoInformation objects.
This array is then bound to the ListBox. The ToString() method of the class is called to display the text
value for each item in the list. This way it is a simple matter to retrieve the selected item from the
ListBox to display the selected image.

Creating REST Services
For those who don’t want to be limited to the existing REST services, you can create your own services.
Another possible reason for creating your own services is to expose legacy data. Just as you expose this
data using Web services, you can expose it via REST services to provide a fairly interoperable means of
making the data available to others.

The first step in creating a REST service is to decide what resources you want to provide with this ser-
vice, that is, the entities maintained by the service. For example, in a Web log application, the resources
are the posts and comments in the system. In a shopping application, the resources are the items to buy.

The next step in defining a REST service is to identify the HTTP verbs and URLs that you will use. Here
is where you decide whether to create a pure REST service, or a just-enough REST service. By limiting
yourself to GET and POST, your service can be called via a browser. Unless your service is read-only,
you probably want to add some parameter to differentiate the various requests. Alternately, calling the
PUT and DELETE methods of a pure REST service is more difficult for users accessing your service than
using a simple browser interface.

Just-enough REST Service Example
To demonstrate how to create a just-enough REST interface, I’ll create a simple contact management sys-
tem. While this is a fairly simple solution, it shows many of the mechanics needed by REST services.

As described previously, the first step in creating a REST service is to identify the resources managed by
the system. In this case, the resources will be contacts (in a simple XML layout). With the exception of
requesting a list of contacts, all exchanges will consist of individual entries. Listing 22-9 shows an exam-
ple entry in the system.

700

Part VI: XML Services

Mashups
With the number of REST services growing, it was only a matter of time before people
started to combine them, creating what are called mashups. For example, they used the
location information from a Flickr user search as input to a Yahoo Geocode, plotting the
result on a Google map. Many of these applications are listed at programmableweb.com.

31_777779 ch22.qxp 3/1/07 11:51 PM Page 700

LLiissttiinngg 2222--99:: SSaammppllee ccoonnttaacctt

<contact id=”12”>
<fName>Charlene</fName>
<lName>Locksley</lName>
<email>cl823@public.com</email>

</contact>

Now that the resources have been defined, the next step is to define the HTTP verbs and URLs that are
used by the system. The service is intended for use from a browser, so both HTTP GET and HTTP POST
are supported by the system. As this service is intended to provide read/write access to the contacts, the
service needs a way of adding, updating, and deleting entries. The list that follows shows some of the
URLs that are supported by the system. For each of the URLs, only the query string is shown. All of the
requests are made to a single URL on the system: (http://localhost/restcontacts/rest.ashx)

❑ ?method=getcontact — Returns a list of all the contacts entered into the system. (See
Figure 22-4)

Figure 22-4

701

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 701

❑ ?method=getcontact&id=3 — Returns an individual contact from the system. based on the id
requested. The contact is formatted like the XML shown in Listing 22-9. (See Figure 22-5.)

Figure 22-5

❑ ?method=getcontact&email=user@server.com — Returns an individual contact from the
system. based on a search of the e-mail addresses. The contact is formatted as the XML shown
above.

❑ ?method=insertcontact&fname=name&lname=name&email=address— Inserts a new
entry in the list of contacts. Returns the newly added contact, with the assigned id value. (See
Figure 22-6)

Figure 22-6

❑ ?method=insertcontact — Inserts a new entry in the list of contacts. This form is intended
for POST calls, and the request body should include the contact information as the XML above,
without the id attribute. Returns the newly added contact, with the assigned id value.

❑ ?method=updatecontact&id=3&fname=new&lname=new&email=new — Updates one of the
existing contacts in the system, returning the updated contact. (See Figure 22-7.)

702

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 702

Figure 22-7

❑ ?method=updatecontact — Updates one of the existing contacts in the system. This form is
intended for use in POST requests. The request body should contain the updated contact infor-
mation as the XML above (without the id value). Returns the updated contact.

❑ ?method=deletecontact&id=3 — Deletes a contact from the system, returning the deleted
contact as XML.

Because all the methods for this service are accessible from GET requests, testing the service can be done
using a browser. Figures 22-4 through 22-7 show how to access the various methods of the service.

The REST service you’ll be creating is based on an ASP.NET HTTP Handler. HTTP Handlers are files in
ASP.NET that respond to requests. Although you could create this using an ASP.NET page, doing so
doesn’t return a complete page, but only a block of XML. Using the handler is a cleaner scenario. The
simplest HTTP handler is a file with the extension ashx as shown in Listing 22-10.

LLiissttiinngg 2222--1100:: AA bbaassiicc HHTTTTPP hhaannddlleerr iinn AASSPP..NNEETT

<%@ WebHandler Language=”VB” Class=”Handler” %>

Imports System
Imports System.Web

Public Class Handler : Implements IHttpHandler

Public Sub ProcessRequest(ByVal context As HttpContext) _
Implements IHttpHandler.ProcessRequest

End Sub

Public ReadOnly Property IsReusable() As Boolean _
Implements IHttpHandler.IsReusable

Get
Return False

End Get
End Property

End Class

703

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 703

The bulk of the work in creating an HTTP handler is in the code in the ProcessRequest method. This
method is responsible for building the appropriate response content and setting the correct content type
for the response. The IsReusable method is a marker method to determine if the Web server can use
this HTTP handler for multiple requests. Unless you are certain your ProcessRequest method is com-
pletely safe for multiple threads, it is generally safer to have IsReusable return false.

Listing 22-11 shows the implementation of the RestHandler.

LLiissttiinngg 2222--1111:: TThhee RReessttHHaannddlleerr

<%@ WebHandler Language=”VB” Class=”RestHandler” %>

Imports System
Imports System.Web
Imports ProXml.Samples.Rest

Public Class RestHandler : Implements IHttpHandler

Public Sub ProcessRequest(ByVal context As HttpContext) _
Implements IHttpHandler.ProcessRequest

Dim req As HttpRequest = context.Request
Dim resp As HttpResponse = context.Response

Dim method As String = “unknown”
resp.ContentType = “application/xml”
If req(“method”) IsNot Nothing Then

method = req(“method”).ToLower()
End If

Select Case method
Case “getcontact”

Dim contact As Contact
If req(“id”) IsNot Nothing Then

‘they are looking for a single user
Dim id As Integer = Int32.Parse(req(“id”))
contact = ContactManager.GetContact(id)
If contact IsNot Nothing Then

resp.Write(contact.ToString())
Else

Throw New HttpException(404, _
“Could not find Contact with that ID”)

End If
ElseIf req(“email”) IsNot Nothing Then

‘search by email
contact = ContactManager.GetContact(req(“email”))
If contact IsNot Nothing Then

resp.Write(contact.ToString())
Else

Throw New HttpException(404, _
“Could not find Contact”)

End If
Else

704

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 704

‘return all users
Dim Contacts() = ContactManager.GetContacts()
resp.Write(“<contacts>”)
For Each c As Contact In Contacts

resp.Write(c.ToString())
Next
resp.Write(“</contacts>”)

End If
Case “insertcontact”

If req(“fname”) Is Nothing Then
‘try reading from the body
resp.Write(ContactManager.InsertContact(req.InputStream))

Else
resp.Write(ContactManager.InsertContact(req(“fname”), _

req(“lname”), req(“email”)))
End If

Case “updatecontact”
If req(“id”) IsNot Nothing Then

Dim id As Integer = Int32.Parse(req(“id”))
If req(“fname”) Is Nothing Then

‘contact is in the body
resp.Write(ContactManager.UpdateContact(id, _

req.InputStream))
Else

resp.Write(ContactManager.UpdateContact(id, _
req(“fName”), req(“lName”), req(“email”)))

End If
End If

Case “deletecontact”
If req(“id”) IsNot Nothing Then

Dim id As Integer = Int32.Parse(req(“id”))
resp.Write(ContactManager.DeleteContact(id))

End If
Case Else

End Select
End Sub

Public ReadOnly Property IsReusable() As Boolean _
Implements IHttpHandler.IsReusable

Get
Return False

End Get
End Property

End Class

Although the code is lengthy, it is primarily the code for dispatching requests. The method parameter on
the query string identifies which action to perform. However, each method includes multiple possible
actions (such as the various getcontact methods). The handler delegates the actual changes to the data
to the various static methods on the ContactManager class (see Listing 22-13). All these methods return
one or more Contact objects (see Listing 22-12).

705

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 705

LLiissttiinngg 2222--1122:: TThhee CCoonnttaacctt ccllaassss

Imports System.Text
Imports System.Xml

Public Class Contact

#Region “Properties”
Private _id As Integer
Private _firstName As String
Private _lastName As String
Private _email As String

Public Property ID() As Integer
Get

Return _id
End Get
Friend Set(ByVal value As Integer)

_id = value
End Set

End Property

Public Property FirstName() As String
Get

Return _firstName
End Get
Set(ByVal value As String)

_firstName = value
End Set

End Property

Public Property Lastname() As String
Get

Return _lastName
End Get
Set(ByVal value As String)

_lastName = value
End Set

End Property

Public Property EMail() As String
Get

Return _email
End Get
Set(ByVal value As String)

_email = value
End Set

End Property
#End Region

#Region “Public Methods”
Public Overrides Function ToString() As String

Dim sb As New StringBuilder()

706

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 706

Dim ws As New XmlWriterSettings

With ws
.CheckCharacters = True
.CloseOutput = True
.ConformanceLevel = ConformanceLevel.Fragment
.Encoding = Encoding.UTF8
.OmitXmlDeclaration = True

End With

Using w As XmlWriter = XmlWriter.Create(sb, ws)
w.WriteStartElement(“contact”)
w.WriteAttributeString(“id”, Me.ID)
w.WriteElementString(“fName”, Me.FirstName)
w.WriteElementString(“lName”, Me.Lastname)
w.WriteElementString(“email”, Me.EMail)
w.WriteEndElement() ‘contact

End Using

Return sb.ToString()
End Function

#End Region

End Class

The Contact class is a simple class, with only a few properties. The only notable part of the class is the
ToString method that returns the XML representation of the class. The handler calls this when the con-
tact is output.

The contacts will be stored in a database. This database includes only a single table. The structure of the
contacts table is as follows.

Column Type Size Description

id int n/a Identity column used as the primary key.

fName nvarchar 50 First name of the contact.

lName nvarchar 50 Last name of the contact.

email nvarchar 50 E-mail address of the contact.

The ContactManager class (Listing 22-13) performs the bulk of the work of the handler in a set of static
methods. Of note are the two methods intended for use by POST requests.

LLiissttiinngg 2222--1133:: TThhee CCoonnttaacctt MMaannaaggeerr ccllaassss

Imports System.Data.SqlClient
Imports System
Imports System.Collections.Generic

Public Class ContactManager

(continued)

707

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 707

LLiissttiinngg 2222--1133 (continued)

Public Shared Function GetContacts() As Contact()
Dim result As New List(Of Contact)
Dim c As Contact
Dim reader As SqlDataReader
Dim sql As String = “SELECT id, fname, lname, email FROM Contacts”

reader = DAL.ExecuteSqlText(sql)
While reader.Read()

c = New Contact
c.ID = reader.GetInt32(0)
c.FirstName = reader.GetString(1)
c.Lastname = reader.GetString(2)
c.EMail = reader.GetString(3)
result.Add(c)

End While
reader.Close()

Return result.ToArray()
End Function

Public Shared Function GetContact(ByVal id As Integer) As Contact
Dim result As Contact = Nothing
Dim reader As SqlDataReader
Dim sql As String = _

“SELECT id, fname, lname, email FROM Contacts WHERE id=” & id

reader = DAL.ExecuteSqlText(sql)
While reader.Read()

result = New Contact
result.ID = reader.GetInt32(0)
result.FirstName = reader.GetString(1)
result.Lastname = reader.GetString(2)
result.EMail = reader.GetString(3)

End While
reader.Close()

Return result
End Function

Public Shared Function GetContact(ByVal email As String) As Contact
Dim result As Contact = Nothing
Dim reader As SqlDataReader
Dim sql As String = _

String.Format(“SELECT id, fname, lname, email “ & _
“FROM Contacts WHERE email=’{0}’”, _
email)

reader = DAL.ExecuteSqlText(sql)
While reader.Read()

result = New Contact
result.ID = reader.GetInt32(0)
result.FirstName = reader.GetString(1)
result.Lastname = reader.GetString(2)
result.EMail = reader.GetString(3)

708

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 708

End While
reader.Close()

Return result
End Function

Public Shared Function InsertContact(ByVal firstName As String, _
ByVal lastName As String, ByVal email As String) As Contact
Dim result As Contact = Nothing

result = GetContact(email)

If result Is Nothing Then
‘user does not exist, we can create
Dim sql As String = _

String.Format(“INSERT INTO Contacts(fname, lname, email) “ & _
“VALUES (‘{0}’, ‘{1}’, ‘{2}’)”, _
firstName, lastName, email)

If DAL.Execute(sql) Then
result = GetContact(email)

End If
End If

Return result
End Function

Public Shared Function InsertContact(ByVal block As IO.Stream) As Contact
Dim result As Contact = Nothing
Dim firstName As String = String.Empty
Dim lastName As String = String.Empty
Dim email As String = String.Empty

Using r As Xml.XmlReader = Xml.XmlReader.Create(block)
While r.Read()

If r.IsStartElement() AndAlso Not r.IsEmptyElement Then
Select Case r.Name.ToLower

Case “fname”
r.Read()
firstName = r.Value

Case “lname”
r.Read()
lastName = r.Value

Case “email”
r.Read()
email = r.Value

End Select
End If

End While
End Using
result = InsertContact(firstName, lastName, email)

Return result
End Function

Public Shared Function UpdateContact(ByVal id As Integer, _

(continued)

709

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 709

LLiissttiinngg 2222--1133 (continued)

ByVal firstName As String, ByVal lastName As String, _
ByVal email As String) As Contact

Dim result As Contact = GetContact(id)

If result IsNot Nothing Then
Dim sql As String = _

String.Format(“UPDATE Contacts SET fname=’{0}’, “ & _
“lname=’{1}’, email=’{2}’ WHERE id={3}”, _
firstName, lastName, email, id)

If DAL.Execute(sql) Then
result = GetContact(id)

End If
End If

Return result
End Function

Public Shared Function UpdateContact(ByVal id As Integer, _
ByVal block As IO.Stream) As Contact

Dim result As Contact = GetContact(id)

Dim firstName As String = String.Empty
Dim lastName As String = String.Empty
Dim email As String = String.Empty

Using r As Xml.XmlReader = Xml.XmlReader.Create(block)
While r.Read()

If r.IsStartElement() AndAlso Not r.IsEmptyElement Then
Select Case r.Name.ToLower

Case “fname”
r.Read()
firstName = r.Value

Case “lname”
r.Read()
lastName = r.Value

Case “email”
r.Read()
email = r.Value

End Select
End If

End While
End Using
result = UpdateContact(id, firstName, lastName, email)

Return result
End Function

Public Shared Function DeleteContact(ByVal id As Integer)
dim result as Contact = nothing
Dim c As Contact = GetContact(id)

If c IsNot Nothing Then

710

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 710

Dim sql = String.Format(“DELETE FROM Contacts WHERE id={0}”, id)
If DAL.Execute(sql) Then

result = c
End If

End If
Return result

End Function
End Class

The code is mostly simple SQL processing and, ideally, is used to call stored procedures. The most notable
methods are the two intended for use with POST requests (InsertContact and UpdateContact). When
posting data using HTTP, the body of the request contains information. This data is encoded via a MIME
type. The most common MIME type for POST data is application/x-www-form-urlencoded if an
HTML form sends the information. This format looks similar to a query string, but is contained in the
body of the request to avoid the 2K limit on the length of a query string. Most server-side tools process
this form of request to create a hash table, just as they create query string variables. Alternately, the POST
body could contain the XML representation submitted (and the MIME type of application/xml). In this
case, the code extracts the values from the XML for handling.

The actual data access is isolated from the ContactManager class in the simple DAL class (see
Listing 22-14).

LLiissttiinngg 2222--1144:: TThhee DDaattaa AAcccceessss LLaayyeerr ccllaassss

Imports System.Data.SqlClient
Imports System.Configuration
Imports System.Data

Public Class DAL
Private Shared _conn As SqlClient.SqlConnection

Shared Sub New()
Dim connectionstring As String
connectionstring = _

ConfigurationManager.ConnectionStrings(“contactsConnection”).ConnectionString
_conn = New SqlClient.SqlConnection(connectionstring)

End Sub

Public Shared Function ExecuteQuery(ByVal query As String, _
ByVal parms As SqlParameter()) As SqlDataReader

Dim result As SqlDataReader = Nothing
Dim cmd As New SqlCommand(query, _conn)
cmd.CommandType = CommandType.StoredProcedure
cmd.Parameters.AddRange(parms)

If _conn.State <> ConnectionState.Open Then
_conn.Open()

End If

result = cmd.ExecuteReader(CommandBehavior.CloseConnection)

Return result

(continued)

711

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 711

LLiissttiinngg 2222--1144 (continued)

End Function
Public Shared Function ExecuteSqlText(ByVal sql As String) _

As System.Data.SqlClient.SqlDataReader

Dim result As SqlDataReader = Nothing
Dim cmd As New SqlCommand(sql, _conn)
cmd.CommandType = CommandType.Text

If _conn.State <> ConnectionState.Open Then
_conn.Open()

End If
result = cmd.ExecuteReader(CommandBehavior.CloseConnection)

Return result
End Function

Public Shared Function Execute(ByVal sql As String) As Boolean
Dim result As Boolean = False
Dim cmd As New SqlCommand(sql, _conn)

Try
If _conn.State <> ConnectionState.Open Then

_conn.Open()
End If

result = CBool(cmd.ExecuteNonQuery())
Finally

If _conn.State = ConnectionState.Open Then
_conn.Close()

End If
End Try

Return result
End Function

End Class

The connection string stored in the web.config file for the RestContacts project is as follows.
Note that the connectionString attribute should be all on a single line in the web.config file. The
connection string points to a database stored in the app_data directory of the project. Therefore, the
AttachDbFilename attribute is used to identify the database file. In addition, the |DataDirectory|
marker is used. This string is used to represent the current Web application’s app_data directory.

<connectionStrings>
<add name=”contactsConnection”
providerName=”System.Data.SqlClient”
connectionString=”Data Source=.\SQLEXPRESS;
AttachDbFilename=|DataDirectory|contacts.mdf;
Integrated Security=True;
User Instance=True”/>

</connectionStrings>

712

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 712

The DAL class provides a number of static methods for executing various SQL statements, including
stored procedures and simple SQL text.

A Pure REST Service Example
To demonstrate creating a pure REST interface, I’ll convert the example used in the just-enough REST
interface and make it function as a pure REST interface as well.

The following table describes the URLs that the service exposes. Notice that we are overloading the
POST request for those clients that do not support the PUT verb.

URL Verb Response

/all GET Returns a list of all available contacts entered into the system.

/# GET Returns a specific contact from the system by searching on id.

/email GET Returns a specific contact from the system by searching on
e-mail.

/ POST Inserts a new contact into the system, returning the contact (with
assigned id).

/# POST Updates a contact with new information. The contact must exist
in the system.

/# PUT Updates a contact with new information. Contact must exist in
the system.

/# DELETE Deletes the contact from the system. The contact must exist in the
system.

Core to many pure REST applications is a URL rewriting module. This URL rewriter converts the URLs
in the system into the actions that perform the tasks. In the case of the contact manager service, it
rewrites a URL such as http://server/restcontacts/23 as http://server/restcontacts/
rest.ashx?method=getcontact&id=23. The actual rewriting may be performed by the Web server
or by the server-side code. Apache (via the mod_rewrite module) has excellent URL rewriting capabili-
ties, and many systems using Apache employ this module to define regular expressions to rewrite URLs.
IIS, on the other hand, has relatively weak URL rewriting capabilities, limited to static mappings. To
supplement this system of URL rewriting, you can write an ISAPI module, an ASP.NET HTTP Module,
or virtual path provider. For the pure REST contact manager, I create a simple HTTP module to rewrite
the URLs.

An ASP.NET HTTP Module is a class that implements the System.Web.IHttpModule interface. This
interface (see Listing 22-15) provides two methods. The Init method is called when IIS loads the HTTP
Module. In it, you connect event handlers to process the request at the appropriate stage in the page life-
time. The Dispose method is called when IIS is unloading the class and is used to perform any cleanup
needed by the module, such as closing files or database handles.

713

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 713

LLiissttiinngg 2222--1155:: SSyysstteemm..WWeebb..IIHHttttppMMoodduullee

Public Interface IHttpModule
‘ Methods
Sub Dispose()
Sub Init(ByVal context As HttpApplication)

End Interface

In addition to these two methods, the HTTP Module also needs to have handlers for the stages in the page
lifetime that it processes. For the REST module, the AuthenticateRequest stage is chosen to process the
URL rewriting. This event is fired early enough in the process of a request so that security can be added
later without changing the behaviour. The BeginRequest event also works in this case, but if authentica-
tion is added to the system, the module processes based on the rewritten URL, not the desired one.

The actual implementation of the HTTP module is shown in Listing 22-16. It adds a single handler to
process the AuthenticateRequest event. This event is used to rewrite the request URL.

LLiissttiinngg 2222--1166:: RREESSTT HHTTTTPP mmoodduullee

Imports Microsoft.VisualBasic
Imports System.Text
Imports System.Xml
Imports System.Net
Imports System.IO

Public Class ContactModule
Implements IHttpModule

Public Sub Dispose() Implements System.Web.IHttpModule.Dispose
‘this space left intentionally blank

End Sub

Public Sub Init(ByVal context As System.Web.HttpApplication) _
Implements System.Web.IHttpModule.Init
‘set up connection to Application events
AddHandler context.AuthenticateRequest, _

AddressOf Me.AuthenticateRequest

End Sub

Private Sub AuthenticateRequest (ByVal sender As Object, ByVal e As EventArgs)
Dim app As HttpApplication = CType(sender, HttpApplication)
Rewrite(app.Request.Path, app)

End Sub

Protected Sub Rewrite(ByVal requestedPath As String, _
ByVal app As HttpApplication)

‘You would probably want to make these mappings via
‘ a separate configuration section in web.config
Dim context As HttpContext = app.Context

714

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 714

Dim method As String = app.Request.HttpMethod.ToLower
Dim tail As String = _

requestedPath.Substring(app.Request.ApplicationPath.Length)
If tail.StartsWith(“/”) Then

tail = tail.Substring(1)
End If

If Not File.Exists(app.Server.MapPath(requestedPath)) Then
‘tail should have the id or name to work with
‘and method the HTTP verb
Select Case method

Case “get”
If IsNumeric(tail) Then

context.RewritePath(“~/rest.ashx”, False, _
“method=getcontact&id=” & tail, False)

ElseIf tail = “all” Then
‘special case to retrieve all contacts
context.RewritePath(“~/rest.ashx”, False, _

“method=getcontact”, False)
Else

‘assuming an email search
context.RewritePath(“~/rest.ashx”, False, _

“method=getcontact&email=” & tail, False)
End If

Case “post”
If IsNumeric(tail) Then

‘overriding POST to also work as a PUT,
‘ for those clients without PUT support
context.RewritePath(“~/rest.ashx”, False, _

“method=updatecontact&id=” & tail, False)
Else

context.RewritePath(“~/rest.ashx”, False, _
“method=insertcontact”, False)

End If

Case “put”
context.RewritePath(“~/rest.ashx”, False, _

“method=updatecontact&id=” & tail, False)

Case “delete”
context.RewritePath(“~/rest.ashx”, False, _

“method=deletecontact&id=” & tail, False)
End Select

End If

End Sub
End Class

The Rewrite method, like the main method in the earlier REST service, is primarily a dispatcher. In this
case, if the file cannot be found on disk, the method determines the HTTP verb used and any trailing
query parameters. It then uses the RewritePath method of the HttpContext to rewrite the URL to the
just-enough equivalent.

715

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 715

After the HTTP Module is completed, it must be added to the web.config file for the virtual root it will
work with. Listing 22-17 shows the code to be added for the ContactModule.

LLiissttiinngg 2222--1177:: AAddddiinngg HHTTTTPP mmoodduullee ttoo wweebb..ccoonnffiigg

<configuration>
<system.web>

<httpModules>
<add name=”ContactModule” type=”ContactModule”/>

</httpModules>
</system.web>

</configuration>

Because of the format of the URLs, one last step is required before using the HTTP module. Because the
requests do not have an extension, IIS would normally attempt to process these requests. You must map
these requests to be processed by ASP.NET or you will receive 404 errors. Under IIS 5.1 (Windows XP),
this is done by adding a handler for the.* extension (see Figure 22-8.)

Figure 22-8

The wildcard mapping is used for IIS 6.0 in Windows Server 2003 (see Figure 22-9). Notice that the
Check That File Exists is unchecked. This is necessary because the majority of requests that the REST
sample supports do not actually exist as files on disk.

Figure 22-9

Testing the pure REST service is slightly more difficult than testing the just-enough service, because you
must create the HTTP PUT and DELETE verbs. In addition, the body of the request must be set for some
of the requests. Therefore, it is a good idea to get an HTTP debugging tool, such as Fiddler or curl (see
the Resources list at the end of the chapter). These tools let you create requests against your service, set

716

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 716

the POST/PUT body, and trace the results, including the HTTP headers. Figure 22-10 shows a test of
inserting a new contact into the system using Fiddler.

Figure 22-10

Figure 22-11 shows the resulting response.

Figure 22-11

Summary
Although SOAP provides many means for creating robust services with routing, transactions, and other
powerful features, sometimes all you need is a simple, scalable interface to data. REST services are one
means of providing that simple interface. REST relies on simple, stateless HTTP requests and stable but
composable URLs to provide a highly scalable interface for Web services. REST is easy to comprehend
and work with, using only the GET and POST methods of HTTP; but it provides a clean mechanism for
working with data if all the methods are used.

717

Chapter 22: REST

31_777779 ch22.qxp 3/1/07 11:51 PM Page 717

Resources
❑ Yahoo Developer Network (http://developer.yahoo.net) — Descriptions of the APIs

exposed by the Yahoo services, including Maps, Flickr and Del.icio.us.

❑ Google Web APIs (google.com/apis) — Descriptions of the APIs exposed by Google services,
including search and maps.

❑ Amazon Web Services (amazon.com/gp/browse.html/102-0240740-9496941?%5F
encoding=UTF8&node=3435361) — Descriptions of the APIs exposed by Amazon, including
the product catalog, search and queue service.

❑ eBay Developers Program (http://developer.ebay.com/rest/) — Descriptions of the APIs
exposed by eBay.

❑ Programmable Web (programmableweb.com/) — Great resource site listing many of the avail-
able sites exposing APIs.

❑ Fiddler (fiddlertoolcom) — Excellent HTTP debugging tool.

❑ Curl (http://curl.haxx.se/) — Command-line tool for testing HTTP (and many, many
other protocols).

718

Part VI: XML Services

31_777779 ch22.qxp 3/1/07 11:51 PM Page 718

Part VII

AApppp ll yy ii nngg XXMMLL

Chapter 23: XML Form Development

Chapter 24: The Resource Description Framework (RDF)

Chapter 25: XML in Office Development

Chapter 26: XAML

32_777779 pt07.qxp 3/1/07 11:52 PM Page 719

32_777779 pt07.qxp 3/1/07 11:52 PM Page 720

XXMMLL FFoo rrmm DDeevvee ll ooppmmeenn tt

Everyone is familiar with forms, either paper or electronic: a set of fields to be completed. Different
types of fields exist, such as fill in the blank text boxes, pick one or pick many items, and so on. Some
sort of validation usually ensures that fields are filled out (or filled out correctly). The completed
form may need to be transmitted electronically. So, why do we need yet another form syntax?
Because this new syntax eliminates some limitations of the previous implementations.

This chapter looks at using defining electronic forms using the W3C XForms standard, and the
most commonly used proprietary standard, InfoPath. While neither of these methods is as familiar
or offers the ease of development of XHTML forms, both bring benefits to the developer. Both syn-
taxes enforce best practices in software design, separating the model of the data from the imple-
mentation. This makes code and form reuse a much easier process. In addition, by enforcing XML
standards, you can use other XML standards, such as XSLT or XPath when working with these
XML form implementations. Finally, XForms is intended as the forms model of XHTML 2.0, cur-
rently a work in progress. Therefore, its importance will only increase as time goes by.

Creating Forms
The most common form syntax in use for electronic forms is that used in HTML/XHTML. Most
developers are familiar with this syntax: an outer <form> tag that contains attributes identifying
the target of the form and the means to encode the contents. Individual fields are contained within
the <form> tags. Listing 23-1 shows a typical XHTML form.

LLiissttiinngg 2233--11:: AAnn XXHHTTMMLL ffoorrmm

<form action=”http://example.com/search” method=”post”>
Text to search for: <input type=”text” name=”q” />
<input type=”submit” text=”Search” />

</form>

33_777779 ch23.qxp 3/1/07 11:52 PM Page 721

This seems simple. So, what’s the problem? The most notable problems with the XHTML model are:

❑ In the XHTML model, forms are all single step. The user completes the form and sends it to the
target. If more information is needed, the target creates a new form. Creating multistep forms,
such as wizards or polls, is a difficult process. Coordination of the steps and supporting the user
moving back through the steps is even more difficult.

❑ XHTML forms are essentially a collection of name/value pairs. The data is flat: No way exists
to present or create any structure over the data, such as one that identifies a group of fields as
participating in an address.

❑ Validation and similar form handling requires the addition of script. Although this is not a
problem, it does add another moving part to the system, increasing the chance of an error. In
addition, because the script is not XML (it’s usually JavaScript), you cannot use XML tools or
technologies like XSLT.

Obviously, XForms is intended to solve these problems. XForms is currently a W3C Recommendation,
now in the second edition of the 1.0 specification (as of March 2006). In addition, XForms is expected to
be part of XHTML 2.0, a standard that is currently working its way through the approval process.

When you first begin to look at XForms, it may seem odd compared to other XML syntaxes. XForms
does not define a visual UI as do XHTML or SVG. It does not define a new query syntax like XPath or
XQuery. It does not define a schema for the form design or structure. No form element serves as a con-
tainer for controls. These differences are all by design because XForms is intended to leverage existing
standards. It uses XPath as the query syntax to identify nodes in XML data, and it uses XML schema to
identify the data types of the form. Finally, although XForms does provide a set of UI controls, it uses
them within the UI syntax of the containing XML. For example, you can use XForms syntax within
XHTML pages, SVG documents, or any other XML syntax. When you use XForms with XHTML, you
add the XForms controls within the XHTML page. By not requiring a new syntax for identifying the
physical appearance of the forms, XForms makes it easier to use the same technique across multiple user
interfaces.

XForms splits the actual form into three logical pieces: the model, the presentation, and the submit pro-
tocol (see Figure 23-1). By separating the form into these three components, XForms allows each to be
used independently.

XForms Model
The XForms model is the data used by the form, including both the initial data displayed to the user and
that submitted to the server. It contains information about the structure of the XML, as well as any con-
straints or calculations that will be applied to the data. This model is typically added to the <head> of an
XHTML page, allowing it to be used anywhere on the page.

722

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 722

Figure 23-1

Listing 23-2 shows the XForms model for the query form shown in Listing 23-1.

LLiissttiinngg 2233--22:: TThhee XXFFoorrmmss mmooddeell

<model>
<instance>
<search>
<q>Enter search here</q>

</search>
</instance>
<submission action=”http://example.com/search”

method=”post”
id=”search”/>

</model>

Notice that this model does not include controls to identify the fields the form will search. These
appear later in the page. Instead, you have the identification of the data used and the action to perform
when the model is activated. In this case, some input data is sent via HTTP post to some end point
(http://example.com/search). Although the example shown here is trivial (and it could easily be
argued that the original XHTML version is simpler), it still demonstrates a few benefits of the XForms
model. In the XHTML version, the query item is identified as a text box (<input type=”text”>),
whereas in the XForms version, this binding is not present. Therefore, the XForms model in Listing 23-2
is not limited to being used on an XHTML page. The same model can be associated with an SVG docu-
ment, WML page, or even a proprietary XML syntax. It provides reuse of a given action.

XForms
Model

XForms
Submit

XML

XHTML SVG WML Other

723

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 723

The model element serves as a container for the other elements used to describe the data. These optional
child elements are the instance, submission, and bind elements.

The instance element defines the initial data used when displaying the form. This may be static data
(such as the usual Type here to enter data), default values, or dynamic content. The instance element
represents an instance or sample of the model that is used to populate the fields. It should be a valid doc-
ument based on the schema in use. In the sample in Listing 23-2, the instance holds a single node,
search. This, in turn, has a single child element: q. This element holds the default value for the search
field. If the instance were to be defined dynamically, it would have been written using linking syntax as
shown in the following line.

<instance src=”http://example.com/sourceUrl” />

The submission element defines the target of the model. It is similar to the action attribute of XHTML
or HTML forms. One major difference between XHTML and XForms forms, however, is that multiple
submission elements can appear in each model.

In addition, the submission element has a number of optional attributes that provide further control over
the submission process (see the following table).

Attribute Description

ref An XPath expression that defines the data in the instance to be submit-
ted. This is useful when most of the data in the instance is read-only.
Using this attribute, you can define the changing data and submit only
that data.

action Like the XHTML form tag, this attribute defines the target URL for the
submission.

method Like the XHTML form tag, this attribute defines the HTTP method to use
for the submission. Unlike XHTML, however, no default value exists for
this attribute.

replace Optional attribute that defines how to replace the instance data after sub-
mission. The default is to replace all the instance data. However, you can
also set it to instance to replace the data in a named instance, none to
replace none of the data, or use a qname to identify the data to replace.

version Identifies the version of XML to use when serializing the data for
submission, typically 1.0.

indent Optional attribute that determines if additional whitespace should be
added when serializing the data. Typically, you set this to yes if the target
needs human-readable data, and to no if you want to reduce the data
volume.

mediatype String identifying the mediatype to use when submitting the data. This
should either be application/xml, or a subtype that is compatible,
such as application/atom+xml.

encoding Optional attribute that defines the encoding to use when serializing the
data before submission.

724

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 724

Attribute Description

omit-xml- Optional attribute that determines whether the serialized data includes
declaration the XML declaration.

standalone Optional attribute that determines whether the serialized data includes
the standalone attribute on the XML declaration.

cdata-section- Space-delimited string listing the child elements that are wrapped with
elements CDATA sections before submission.

separator String value that defines the character that are used to separate
name/value pairs during encoding. The default value is ;.

includenamespace Space-delimited list of namespace prefixes that should be included in the
prefixes serialized data. If this is omitted, the default behavior is to include all

namespaces. However, this means that the XForms namespace are
included in the serialized data unnecessarily. Typically, if you use this
attribute, include only the namespace prefixes used to define the data in
your model.

The bind element is one of the methods of connecting user interface controls to the instance. The bind
element serves as a named mapping of data to user interface. Typically, this element is used to create a
global mapping, as opposed to the other methods that associate individual controls to their data. You see
this and the other methods of connecting the two in the user interface section that follows.

The complete XHTML page containing the query model is shown in Listing 23-3.

LLiissttiinngg 2233--33:: XXHHTTMMLL ppaaggee wwiitthh XXFFoorrmmss qquueerryy

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xf=”http://www.w3.org/2002/xforms”
xmlns:ex=”someURI”>
<head>
<title>Search</title>
<xf:model>
<xf:instance>
<ex:search>
<ex:q>default value</ex:q>

</ex:search>
</xf:instance>
<xf:submission action=”http://example.com/search” method=”post” id=”search”/>

</xf:model>
</head>
<body>
<p>
<xf:input ref=”ex:q”>
<xf:label>Text to search for:</xf:label>

</xf:input>

<xf:submit submission=”search”>

(continued)

725

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 725

LLiissttiinngg 2233--33 (continued)

<xf:label>Search</xf:label>
</xf:submit>

</p>
</body>

</html>

The page includes the XForms and XHTML namespaces. In addition, another namespace is defined for
the instance. Although this last step is not completely essential, it is a good practice. Remember that this
instance is not required to physically be part of this document and could, instead, be coming from some
dynamic source such as a JSP, ASP.NET, or PHP file.

The model serves as the container for the instance, or sample data, and the submission. In this simple
case, the instance consists of a root node with a single child. This particular form might have been much
simpler in XHTML. However, this simple example shows you some of the benefits of XForms. The
default value is set when the form is loaded (see Figure 23-2). In addition, notice the isolation between
the model and the user interface. This isolation enables you to more easily use this same model in other
XForms applications. As you move on to more complex XForms forms, more benefits become evident.

Figure 23-2

You are not limited to a single model in each XForms form. Listing 23-4 shows a form containing two
models. The model attribute is used to identify the model providing data and structure for each control.

LLiissttiinngg 2233--44:: HHoossttiinngg mmuullttiippllee mmooddeellss

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:xf=”http://www.w3.org/2002/xforms”
xmlns:ex=”someURI” xmlns:my=”someOtherURI”>
<head>
<title>Hosting multiple models</title>
<xf:model id=”model1”>
<xf:instance>
<ex:contact>
<ex:name>Foo deBar</ex:name>
<ex:title>Consultant</ex:title>

</ex:contact>
</xf:instance>

</xf:model>
<xf:model id=”model2”>
<xf:instance>
<my:company>
<my:name>Foobar Ent.</my:name>

</my:company>
</xf:instance>

726

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 726

</xf:model>
</head>
<body>
<h1>Hosting multiple models</h1>
<xf:input ref=”/ex:contact/ex:name” model=”model1”>
<xf:label>Name: </xf:label>

</xf:input>

<xf:input ref=”/my:company/my:name” model=”model2”>
<xf:label>Company: </xf:label>

</xf:input>
</body>

</html>

Each model in the page is identified using the id attribute. Later, the desired model is selected via the
model attribute on user interface controls. The resulting document (see Figure 23-3) displays one field
from each of the two models. Each block of content could be simultaneously sent to the appropriate sub-
mission target.

Figure 23-3

Just like XHTML (or HTML) and other form creation languages, XForms defines a number of user inter-
face controls for creating items. These include simple text-entry fields, lists, check boxes, and file upload
fields. One of the important distinctions between the XForms UI controls and their XHTML equivalents
is that the XForms controls do not define their eventual appearance on the page. That is, the XHTML
select element is defined as creating a list, and it has attributes that define the appearance of the eventual
list (such as the number of elements to display); but the XForms select has no such definition of appear-
ance. XForms clients are free to render the control in whatever form they desire, as long as the behavior
remains constant. Therefore, a multiselect list can appear as a list box or as a series of check boxes. Either
would provide the intent of a multiselect list. The XForms implementation is responsible for selecting
the actual user interface.

XForms Controls
The controls defined with XForms are similar to their XHTML counterparts, and include:

❑ input — This is the XForms TextBox control (see Figure 23-4), and is similar to the XHTML
input type=”text” control.

<input ref=”contact/name”>
<label>Name</label>

</input>

727

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 727

Figure 23-4

❑ textarea — Used to enter multiple lines of text (see Figure 23-5). This is equivalent to the
XHTML input type=”textarea” control.

<textarea ref=”contact/address”>
<label>Address</label>

</textarea>

Figure 23-5

❑ secret — An input field that does not display the inputted text (see Figure 23-6), typically
used for passwords or other information that should remain hidden. This is equivalent to the
XHTML input type=”password” field.

<secret ref=”contact/password”>
<label>Password:</label>

</secret>

Figure 23-6

❑ output — A field that displays content. This is comparable to a standalone Label control.
Typically, the information comes from the model, but this is not essential.

<output ref=”contact/company” />

❑ select — A field that enables selection from a list, as shown in Figure 23-7. This is equivalent to
the XHTML select field. However, although the XHTML select field defines the output as a list
box, this control does not. Both single and multiple selections are supported by the XForms
select control. The options for the list can either be included in the definition of the select field
or populated through binding. To include options in the definition, use one or more <item> ele-
ments, with label and value children. The label becomes the visible entry in the list, whereas the
value is what is written to the model.

<select ref=”/contact/lang”>
<label>Languages spoken: </label>
<item>
<label>English</label>
<value>en</value>

</item>
<item>
<label>French</label>

728

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 728

<value>fr</value>
</item>
<item>
<label>Spanish</label>
<value>es</value>

</item>
<item>
<label>German</label>
<value>de</value>

</item>
</select>

Figure 23-7

❑ select1 — A version of the select control that ensures only a single item is selected, as shown in
Figure 23-8. The implementation may render this control as a combo box, list box, or as a list of
option buttons.

<select1 ref=”ccard”>
<label>Department</label>
<item>
<label>Development</label>
<value>dev</value>

</item>
<item>
<label>Human Resources</label>
<value>hr</value>

</item>
<item>
<label>Management/label>
<value>mgmt</value>

</item>
</select1>

Figure 23-8

❑ range — A control that allows the user to select a value from a range of values, as shown in
Figure 23-9. No equivalent to this control exists in XHTML, although some environments (such
as Windows Forms) have this type of control. Those environments typically render this control
either as a text box with associated up and down values or as a gauge.

729

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 729

<range ref=”hireDate” start=”1996” end=”2006” step=”1”>
<label>Hire Date:</label>

</range>

Figure 23-9

As you can see from the preceding sample, the range element has three additional attributes.
The start and end attributes define the lower and upper bounds of the range, whereas the step
attribute defines the frequency of the available choices.

❑ upload — A control that enables file upload, as shown in Figure 23-10, equivalent to the XHTML
input type=”file” field. This field requires more information than the others because you must
define the fields that hold the URI and media type of the selected file.

<upload ref=”photo” mediatype=”image/*”>
<label>Select photo: </label>
<filename ref=@filename />
<mediatype ref=@mediatype/>

</upload>

Figure 23-10

Two additional controls initiate an action, such as a calculation or submitting data.

❑ submit — A control that causes the data to be submitted to the server. This is equivalent to the
input type=”submit” of XHTML. Typically, this control renders as a button, but that is not
required. This control does not refer to an element in the model. Instead, it refers to a submis-
sion element in the model by id. It enables the separation of the user interface from the action
performed when the item is clicked.

<submit submission=”contactForm”>
<label>Save</label>

</submit>

❑ trigger — A control that initiates some action, such as a calculation. This is equivalent to the
input type=”button” of XHTML. As you would expect, this is typically rendered using a
button.

<trigger>
<label>Add</label>

</trigger>

730

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 730

Common Control Children
Keen-eyed developers might note that no static text or label control is listed in the preceding section.
XForms defines a common child element (label) that provides this functionality. This and other child
elements that may be applied to any of the controls include:

❑ label — Provides a caption for the control.

❑ help — Provides assistance to the user during the completion of the form.

❑ hint — Provides assistance to the user during the completion of the form. This differs from the
help element as it is generally less intrusive than help.

❑ alert — Provides a message used if the data entered is not valid.

Rather than using a standalone label control as in XHTML, XForms requires a label child element for all
controls. This provides two benefits. First, the implementation can provide additional support for merg-
ing the two items, such as mnemonics or arranging the two controls close to one another. It also ensures
that a label defines what each field represents. The label is also provides a handy way of identifying field
captions when you need to apply CSS to the page.

The message element provides a means of communicating to the user. The message element defines a
string that is displayed, either constantly or in reaction to a particular event. This element has an
optional attribute — level — that defines how the message should be displayed. This attribute can
be modal, modeless or ephemeral. Each implementation is responsible for defining the result of these three
levels, but on desktop implementations, they are usually rendered as modal dialog, modeless dialog and
tooltip, respectively.

The setvalue element assigns a value to the control when an event occurs (see Listing 23-5). This can be
an alternative to using the calculate attribute when you are interested only in when particular events,
such as xforms-invalid or DOMFocusIn, occur.

LLiissttiinngg 2233--55:: AAddddiinngg mmeessssaaggee aanndd sseettvvaalluuee eelleemmeennttss

<input ref=”ex:startDate”>
<label>Start Date: </label>
<message level=”ephemeral” ev:event=”DOMFocusIn”>
Enter the start date for the report
</message>
<setvalue ev:event=”xforms-ready”>2006-04-01</setvalue>

</input>

The hint element is intended to assist the user while he is completing the form. The content of the hint
can either be inline, as shown in the code listing, or from the instance or an external source (via the src
attribute). Implementations typically show the hint using a ToolTip if available. Therefore, the hint ele-
ment is equivalent to the following.

<message level=”ephemeral” ev:event=”xforms-hint”>Message</message>

The help element is also intended to assist the user, but this assistance is more visible. For example, the
FireFox implementation displays the help beside the field (see Figure 23-11). However, X-Smiles does

731

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 731

not seem to display the help element. The help content can either be inline or from the instance or exter-
nal source. The help element is equivalent to the following message.

<message level=”modeless” ev:event=”xforms-help”
ev:propagate=”stop”>Message</message>

Listing 23-6 shows adding the help, hint and alert elements to form items.

LLiissttiinngg 2233--66:: AAddddiinngg hheellpp,, hhiinntt,, aanndd aalleerrtt eelleemmeennttss

<input ref=”my:name”>
<label>Name: </label>
<help>Help for the name field</help>
<hint>Hint for the name field</hint>
<alert>Alert for the name field</alert>

</input>
<input ref=”my:value”>
<label>Integer Value: </label>
<help>Help for the value field</help>
<hint>Hint for the value field</hint>
<alert>Alert for the value field</alert>

</input>

Figure 23-11

The alert element is displayed if the field’s value is invalid. As shown earlier, the implementation is
responsible for the result, but the typical response is to display an error dialog (see Figure 23-12). Some
implementations, such as X-Smiles, also highlight the fields containing errors.

Figure 23-12

732

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 732

Changing Control Appearance
Many of the controls have multiple appearances. For example, the select and select1 controls may be
rendered either as a list, or by using check boxes/option buttons (see Figure 23-13). This is not required,
however, and each implementation is responsible for the final rendering. As an example, the X-Smiles
implementation uses the same rendering for all settings for the select control.

Figure 23-13

In addition, if the XForms content is in an XHTML container, the author can add CSS selectors or other
elements, as needed, to style the controls and their labels.

Grouping Controls
When you are developing forms, note that data frequently fits into logical groups. For example, a form
may have a number of fields that describe an address; those fields are a logical group. Alternately, when
designing your forms, you may want certain fields to appear together, even on an independent page.
XForms provides grouping functions to create these logical or visible groupings.

To create a simple association among multiple fields, use the group element. This is a container element
that provides a hint to the implementation to associate the controls. Listing 23-7 shows a fragment con-
taining two sets of the same controls; with and without a group element wrapping them. The result is
shown in Figure 23-14.

733

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 733

LLiissttiinngg 2233--77:: SSiimmppllee ccoonnttrrooll ggrroouuppiinngg

<xf:input ref=”ex:firstName”>
<xf:label>First Name: </xf:label>

</xf:input>
<xf:input ref=”ex:lastName”>
<xf:label>Last Name: </xf:label>

</xf:input>
<xf:input ref=”ex:title”>
<xf:label>Title: </xf:label>

</xf:input>

<xf:group>
<xf:label>Name: </xf:label>
<xf:input ref=”ex:firstName”>
<xf:label>First: </xf:label>

</xf:input>
<xf:input ref=”ex:lastName”>
<xf:label>Last: </xf:label>

</xf:input>
</xf:group>
<xf:input ref=”ex:title”>
<xf:label>Title: </xf:label>

</xf:input>

Figure 23-14

Like other user interface controls, the group control accepts common child elements and attributes, such
as label, ref, and so on. Using the ref attribute can simplify your forms if you are creating a form for
a nested block of XML. The ref attribute can identify a common parent for the contained controls.
Without the ref attribute, you must provide the full XPath expression for a child element. Listing 23-8
shows the group element with and without using ref.

LLiissttiinngg 2233--88:: UUssiinngg rreeff wwiitthh ggrroouupp

<xf:group>
<xf:input ref=”exp:employee/exp:name”>
<xf:label>Employee:</xf:label>

</xf:input>
<xf:input ref=”exp:employee/exp:employeeID”>
<xf:label>Employee ID:</xf:label>

</xf:input>
</xf:group>
<xf:group ref=”exp:employee”>
<xf:input ref=”exp:name”>
<xf:label>Employee:</xf:label>

</xf:input>

734

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 734

<xf:input ref=”exp:employeeID”>
<xf:label>Employee ID:</xf:label>

</xf:input>
</xf:group>

Without the reference, you must provide the full XPath to retrieve the employee name. With the interme-
diate ref, the context of all fields within the group is set to the employee element.

Although the group element does not really provide any feature that is not available in XHTML, the
switch element does. The switch element enables the creation of multipage forms, such as wizards.
Using switch elements, and the associated case elements, you define pages. The logic behind the form
can then direct users to pages based on their input. Listing 23-9 shows a simple three-page form that
steps the user through a set of questions.

LLiissttiinngg 2233--99:: UUssiinngg sswwiittcchh ttoo ccrreeaattee mmuullttiippllee ppaaggeess

<xf:switch>
<xf:case id=”one” selected=”true”>
<xf:input ref=”ex:name”>
<xf:label>What is your name?</xf:label>

</xf:input>
<xf:trigger>
<xf:label>Next</xf:label>
<xf:toggle ev:event=”DOMActivate” case=”two”/>

</xf:trigger>
</xf:case>
<xf:case id=”two”>
<xf:textarea ref=”ex:quest”>
<xf:label>What is your quest?</xf:label>

</xf:textarea>

<xf:trigger>
<xf:label><</xf:label>
<xf:toggle ev:event=”DOMActivate” case=”one”/>

</xf:trigger>
<xf:trigger>
<xf:label>></xf:label>
<xf:toggle ev:event=”DOMActivate” case=”three”/>

</xf:trigger>
</xf:case>
<xf:case id=”three”>
<xf:input ref=”ex:color”>
<xf:label>What is your favorite color?</xf:label>

</xf:input>

<xf:trigger>
<xf:label><</xf:label>
<xf:toggle ev:event=”DOMActivate” case=”two”/>

</xf:trigger>
<xf:trigger>
<xf:label>Finish</xf:label>
<xf:toggle ev:event=”DOMActivate” case=”summary”/>

</xf:trigger>
</xf:case>

(continued)

735

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 735

LLiissttiinngg 2233--99 (continued)

<xf:case id=”summary”>
<xf:output value=”ex:name”>
<xf:label>Name:</xf:label>

</xf:output>

<xf:output value=”ex:quest”>
<xf:label>Quest:</xf:label>

</xf:output>

<xf:output value=”ex:color”>
<xf:label>Color:</xf:label>

</xf:output>

<xf:trigger>
<xf:label>Start again</xf:label>
<xf:toggle ev:event=”DOMActivate” case=”one”/>

</xf:trigger>
</xf:case>

</xf:switch>

Each page of information is contained within a case element. The element should have an id to identify
the case. This is used when navigating between pages. Figure 23-15 shows the three pages of this form.

Figure 23-15

The cases do not need to be the entire content on each page, as shown here. You could have one section
of the form that changes based on the selection made on another form.

736

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 736

The final form of complex user interfaces uses the repeat element. This creates a repeating section of
other controls and is the typical way of creating a table-like structure in XForms. The contained controls
are repeated for each element in a list of nodes (see Figure 23-16). See the binding section that follows for
the syntax for binding to a repeating section.

Figure 23-16

Binding Instance Data
After you have the model and the user interface, the next step is to connect the two of them. XForms per-
forms this act using binding via XPath expressions. After a user interface control has been bound to a
field in the model, it is automatically updated as the underlying data changes.

Binding is done with the bind element, and the ref and nodeset attributes. The bind element is an
optional child element of the model. The ref and nodeset attributes are typically applied directly to
controls, although nodeset is also used in the bind element. Binding can either be simple or complex.
Simple binding refers to a single node bound to a control, like the input element. The ref attribute is used
to select a single node via an XPath expression. Complex binding associates multiple nodes with a single
control, as is done with select controls. The nodeset attribute identifies the desired nodes via an XPath
expression.

The bind element describes the rules that apply to a later reference to an element. Multiple bind ele-
ments can exist in the model element. Each identifies an XPath expression and can represent either a sin-
gle node or nodeset. The bind rules are applied whenever that node or nodeset is displayed later in the
form. When defining a bind element, you can apply additional attributes to the element to control how
the binding occurs. These additional attributes, referred to as the model item properties, are described
in the following table.

Attribute Description

type This attribute is equivalent to the xsi:type attribute and identifies the data type
of the binding. Adding the attribute here, as opposed to in the schema or
instance, overrides default behavior. It also guarantees the intended type. One
additional benefit of using this attribute is that it can be applied to attributes or
elements. Therefore, you can use the binding to guarantee that an id attribute
uses an xs:integer value.

readonly Prevents the user of the form from changing the value. This also provides a hint
to the user interface that implementations may use to grey out the field or other-
wise identify the field as read-only data.

Table continued on following page

737

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 737

Attribute Description

required Ensures that the data is given a value before the form is submitted. The user
interface implementation may use this to provide additional feedback to the user.

relevant Identifies bindings to be included in the serialization and tab order. This is typi-
cally used in multipart wizards or forms that have optional sections. If a binding
is set to relevant=false, it is ignored. Rather than an explicitly entered value,
however, it is usually a calculated value. For example, the following fragment
identifies three bindings. The discount field is only relevant if the product of the
price and quantity bindings is greater than 100 (see Figure 23-17).
<xf:model>
<xf:instance>
<ex:data>
<ex:item>
<ex:price xsi:type=”xs:decimal”/>
<ex:qty xsi:type=”xs:integer”>1</ex:qty>
<ex:discount xsi:type=”xs:decimal”/>
<ex:total xsi:type=”xs:decimal”/>

</ex:item>
</ex:data>

</xf:instance>
<xf:bind nodeset=”ex:item/ex:price” required=”true()” />
<xf:bind nodeset=”ex:item/ex:qty” required=”true()” />
<xf:bind nodeset=”ex:item/ex:discount”
relevant=”../ex:price*../ex:qty > 100”
calculate=”../ex:price*../ex:qty*0.1” readonly=”true()” />
<xf:bind nodeset=”ex:item/ex:total” readonly=”true()”
calculate=”((../ex:price * ../ex:qty)-../ex:discount)” />

</xf:model>

calculate Provides an expression that is used to calculate the value of a field.

constraint Provides an expression that must be true for the model to be considered valid.
This is useful to provide validation for your forms. The following fragment tests
to ensure that the to field is later than the from field.
<xf:model>
<xf:instance>
<ex:dateRange>
<ex:from xsi:type=”xs:date”/>
<ex:to xsi:type=”xs:date” />
<ex:days xsi:type=”xs:integer” />

</ex:dateRange>
</xf:instance>
<xf:bind nodeset=”ex:from” required=”true()” />
<xf:bind nodeset=”ex:to” required=”true()”
constraint=”days-from-date(.) > days-from-date(../ex:from)” />

<xf:bind nodeset=”ex:days”
calculate=”days-from-date(../ex:to) - days-from-date(../ex:from)”
readonly=”true()” />

</xf:model>

738

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 738

Figure 23-17

The ref attribute associates the single node identified by an XPath expression to a control. If an appro-
priate bind element is present, those rules are applied. The XPath expression is applied based on the
current context and can include additional XPath or XForms functions (see Listing 23-10).

LLiissttiinngg 2233--1100:: SSiimmppllee bbiinnddiinngg

<xf:input ref=”exp:date”>
<xf:label>Date:</xf:label>

</xf:input>
<xf:input ref=”exp:date” />

The nodeset attribute identifies a set of data for controls that require more information, such as select
and select1. Although these controls still have a ref attribute that identifies the value of the controls,
they also need to be bound to a list of items to display. This list is identified using either the <choices>
element, or the <itemset nodeset=””> child element (see Listing 23-11). The choices element is used
to hard-code the list of items to display. The itemset extracts a set of nodes from the target instance.

LLiissttiinngg 2233--1111:: CCoommpplleexx bbiinnddiinngg

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xf=”http://www.w3.org/2002/xforms”
xmlns:ev=”http://www.w3.org/2001/xml-events”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:ex=”someURI”>
<head>
<title>Data binding</title>
<xf:model>
<xf:instance>
<ex:months selected=”apr”>
<ex:month value=”jan”>January</ex:month>
<ex:month value=”feb”>February</ex:month>
<ex:month value=”mar”>March</ex:month>
<ex:month value=”apr”>April</ex:month>
<ex:month value=”may”>May</ex:month>
<ex:month value=”jun”>June</ex:month>
<ex:month value=”jul”>July</ex:month>
<ex:month value=”aug”>August</ex:month>
<ex:month value=”sep”>September</ex:month>
<ex:month value=”oct”>October</ex:month>
<ex:month value=”nov”>November</ex:month>
<ex:month value=”dec”>December</ex:month>

(continued)

739

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 739

LLiissttiinngg 2233--1111 (continued)

</ex:months>
</xf:instance>

</xf:model>
</head>
<body>
<p>
<xf:input ref=”@selected”>
<xf:label>Selected: </xf:label>

</xf:input>

<xf:select ref=”@selected”>
<xf:itemset nodeset=”/ex:months/ex:month”>
<xf:label ref=”.” />
<xf:value ref=”@value” />

</xf:itemset>
</xf:select>

</p>
</body>

</html>

The ref attribute points at the selected attribute of the root element, whereas the nodeset expression in
the itemset extracts the list of months to display. Both the choices and itemset elements require that
you identify the text to display and the value for each item. This is done with the label and value ele-
ments respectively. Figure 23-18 shows this form running. The input control is also bound to show how
changing either field updates the model and the controls. Try changing the text in the input field to nov
to see the select field update.

Figure 23-18

The second use of the nodeset attribute occurs when you are displaying repeating elements (see
Listing 23-12).

LLiissttiinngg 2233--1122:: UUssiinngg tthhee rreeppeeaatt eelleemmeenntt

<xf:repeat nodeset=”ex:employee”>
<xf:input ref=”ex:name”>
<xf:label>Name: </xf:label>

</xf:input>
<xf:input ref=”ex:title”>
<xf:label>Title: </xf:label>

</xf:input>
</xf:repeat>

740

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 740

The entire group of repeating elements is bound to the nodeset identified by the XPath expression,
“ex:employee”. This also sets the context, so that the contained controls are mapped to the children of
that node. Each of the controls within the repeat element repeats for each node in the selected set.

When the type of the data is identified, either by including a schema in the model or by adding the type
attribute to the instance or a bind expression, many implementations change the appearance of the
controls to data-type-aware versions. The most commonly used version occurs when the data type is
“xs:date” or one of the related date types. Many implementations provide a date picker control (see
Figure 23-19).

Figure 23-19

XForms Submit Protocol
After the user is finished interacting with the XForm, it is time to submit the form. The behavior during
submission is defined by the active submission element. During submission, the data is serialized into a
form for transmission. It is then sent to the target URL.

The first step in the submission process is the serialization of the form into the form needed. This is
determined by the relationship of the protocol defined in the action attribute and the method used.
Therefore, a different serialization model is used for sending the data via HTTP GET than for saving the
file locally using a PUT. The following table outlines some of the more common combinations.

Protocol Method Serialization format

HTTP, HTTPS GET application/x-www-form-urlencoded

HTTP, HTTPS, mailto POST application/xml

HTTP, HTTPS, file PUT application/xml

The fragment in Listing 23-13 defines a form that saves the data locally.

741

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 741

LLiissttiinngg 2233--1133:: SSuubbmmiittttiinngg XXFFoorrmmss

<model>
<instance>
<ex:contact>
<ex:firstName>Foo</ex:firstName>
<ex:lastName>deBar</ex:lastName>
<ex:title>Developer</ex:title>

</ex:contact>
</instance>
<submission id=”submit1”
method=”put”
action=”file:///C:/temp/output.xml”
includenamespaceprefixes=”ex”/>

<submission id=”submit2”
method=”GET”
action=”http://server/endPoint”
includenamespaceprefixes=”ex”
separator=”&”/>

</model>

Listing 23-14 shows the output of each of the submission methods.

LLiissttiinngg 2233--1144:: DDaattaa sseerriiaalliizzaattiioonn

PUT/file (application/xml):

<?xml version=”1.0” encoding=”utf-8”?>
<ex:contact xmlns=”http://www.w3.org/1999/xhtml”
xmlns:ex=”someURI”>
<ex:firstName>Foo</ex:firstName>
<ex:lastName>deBar</ex:lastName>
<ex:title>Developer</ex:title>

</ex:contact>

GET/HTTP (application/x-www-form-urlencoded):

http://localhost:32932/work/Dump.aspx?firstName=Foo&lastName=deBar&title=Developer

POST/HTTP (application/xml):

<ex:contact xmlns=”http://www.w3.org/1999/xhtml” xmlns:ex=”someURI”>
<ex:firstName>Foo</ex:firstName>
<ex:lastName>deBar</ex:lastName>
<ex:title>Developer</ex:title>

</ex:contact>

Multipart-POST/HTTP (application/multipart):

-----------------------------57052814523281
Content-Type: application/xml

742

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 742

Content-ID: <41bb.26e9@mozilla.org>

<ex:contact xmlns=”http://www.w3.org/1999/xhtml” xmlns:ex=”someURI”>
<ex:firstname>Foo</ex:firstname>
<ex:lastname>deBar</ex:lastname>
<ex:title>Developer</ex:title>

</ex:contact>
-----------------------------57052814523281—

The includenamespaceprefixes attribute is applied to restrict the namespaces in the XML to the
XHTML and example namepaces.

Note that for the GET request, the separator is set to “&”. This ensures that each parameter is sent
as a name/value pair. If you fail to do this, the default separator (;) is sent.

XForms Logic
A form populated based on some XML and XPath expressions is useful for displaying data, but a form
frequently has to perform some processing as well. Therefore, you must add logic or code to react to
changes made by the user. XForms provides this capability through events and actions. Events are associ-
ated with form elements to react to data updates, navigation, errors or other stages in the creation and
editing of the form. Actions are elements that are invoked based on these events.

Events
Events are at the core of XForms development. They are raised at significant parts of the form’s lifetime
and cause either the implementation or added code to execute when the event occurs. XForms uses the
XML Events module (w3.org/2001/xml-events) for defining these events. The event can be caught
by any element, although they are frequently associated with trigger controls and actions (see the fol-
lowing). XForms events fall into four broad categories:

❑ Initialization — These events are important in the creation and rendering of the form by the
implementation. They include the xforms-model-construct event, that is passed to each con-
trol, causing them to render themselves onto the form, and the xforms-ready that is fired
when the form is complete and ready for editing. These events are not usually used by the
developer, although xforms-ready can be used to notify the user that the form is ready for
his input.

❑ Interaction — These events are thrown as the user navigates through the form and changes val-
ues. Some examples of these events are the xforms-submit (occurs when the form is submit-
ted), xforms-recalculate (occurs when any value is changed), and xforms-focus (occurs as
a control receives focus).

❑ Notification — These events occur when controls are used, such as when a button is clicked or
text is entered in a field. They include the most commonly used event, DOMActivate (the default
event for a control, such as a button click) as well as xforms-value-changed, xforms-insert,
and the xforms-valid/xforms-invalid events.

743

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 743

❑ Error indication — These events are thrown when major errors occur in the processing of a
form. They include xforms-compute-exception, which occurs when a major calculation error
occurs (such as division by zero). You should handle these events to avoid the default process-
ing, which frequently causes the form to be closed.

You process events by associating them with a control or element such as action. When the event
occurs, the action is executed.

Actions
Actions are behaviors that you want invoked at points in the lifespan of a form. For example, actions can
be used to insert data, change values in fields, or recalculate the form. Typically, actions are performed
using trigger elements, but this is not always the case; they can be associated with any form control. The
following table discusses the commonly used actions available to XForms developers.

Action Description

action Enables the developer to combine multiple actions into a set. Each of the child
elements of this action are performed in sequence, so you could add a new row
to a repeat element and set the value of each of the fields.

dispatch Invokes the desired event. This provides the means of forcing a particular event
to occur, such as an error message (using xforms-help). Many of the following
actions can also be carried out through dispatch.

recalculate Recalculates the form. Although this is typically done when the fields change, the
recalculate action can force this behavior.

revalidate Runs all data validation on the form. Although this is typically done as the fields
change, the revalidate action can force this behavior.

Refresh Forces the data back to the original instance data, removing changes.

setfocus Sets the focus to a particular control. The control is identified using an id
attribute.
<xf:trigger>
<xf:label>Setfocus</xf:label>
<xf:action ev:event=”DOMActivate”>
<xf:setfocus control=”B” />

</xf:action>
</xf:trigger>

setvalue Assigns a value to a field in the model. The field is identified using an XPath
expression.
<xf:trigger>
<xf:label>Set A to 20</xf:label>
<xf:action ev:event=”DOMActivate”>
<xf:setvalue ref=”@a”>20</xf:setvalue>

</xf:action>
</xf:trigger>

744

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 744

Action Description

Send Submits the form. This is equivalent to using a submit element, and requires the
id of the submit element.

Insert Adds a new row to a repeat element. This creates the new fields required for the
node. Data from the last member of the existing collection is used to fill these
fields. The developer is responsible for identifying the location of the newly
added row using the two attributes position (either “before” or “after”) and
at (the index).
<xf:trigger>
<xf:label>Add</xf:label>
<xf:action ev:event=”DOMActivate”>
<xf:insert nodeset=”ex:employee”

position=”after”
at=”count(//ex:employee)” />

</xf:action>
</xf:trigger>

Delete Deletes a row from a repeat element. The index must be provided.
<xf:trigger>
<xf:label>Delete</xf:label>
<xf:delete ev:event=”DOMActivate”

nodeset=”ex:employee”
at=”index(‘empitem’)” />

</xf:trigger>

setindex Selects a row in a repeat element. Many implementations highlight the selected
row for clarity.

XForms Sample
Most of the forms in this chapter have been small to highlight one or more XForms features. In order to
show a more realistic example, I’ll create an expense report form (see Figure 23-20). This demonstrates
how many of the features of XForms interact to enable you to create not just simple forms, but full-
blown XML applications.

The first step in creating an XForms form is to define the model. In order to benefit from the automatic data
validation and improved controls, I decided to base the form on a schema. In addition, the instance is loaded
from a separate file. This means you can easily change the default instance by editing this secondary file. So
that I don’t need to create a server-side component to process the generated XML, the submission is set to
use PUT to write a local file. You may need to adjust the paths to these three files for testing.

<xf:model schema=”http://server/expenseReport.xsd”>
<xf:instance src=”http://server/baseReport.xml” />
<xf:submission id=”saveXML” method=”put”

action=”file:///C:/temp/output.xml”
includenamespaceprefixes=”exp” />

</xf:model>

745

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 745

Figure 23-20

The four fields at the bottom of the form that provide the summary data are populated using binding
expressions. This ensures that, as the data changes, these fields are updated automatically. The binding
expression ensures the data is displayed using the correct data type and provides the calculation that
determines the value. Each of the four expressions is identical, with the exception of the target field and
the expense type to sum:

<xf:bind nodeset=”exp:summary/exp:travelSummary”
type=”xs:decimal”
calculate=”sum(//exp:expenseItem/exp:amount[../exp:type=’Travel’])” />

Lookup fields are frequently used when designing forms. These provide a set of selections for the user,
reducing data entry errors and increasing data consistency. The data for the list part of the lookup field
may be part of the primary instance, but it is often necessary to provide the data from elsewhere. This is
done by adding secondary instances to the model. You refer to these later by referencing the id attribute
of the instance. The department and expense type drop-down lists are populated using the following
instances:

<xf:instance id=”departments”>
<departments>
<department id=”dev”>
<name>Development</name>

</department>
<department id=”sal”>
<name>Sales</name>

</department>
</departments>

</xf:instance>
<xf:instance id=”expenseTypes”>

746

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 746

<expenseType xmlns=””>
<option value=”Travel” />
<option value=”Entertainment” />
<option value=”Meal” />
<option value=”Miscellaneous” />
</expenseType>

</xf:instance>
...
<xf:select1 ref=”exp:dept”>
<xf:label>Dept:</xf:label>
<xf:itemset nodeset=”instance(‘departments’)/department”>
<xf:label ref=”name” />
<xf:value ref=”@id” />

</xf:itemset>
</xf:select1>

The central section of the form is composed of a repeating section for each expense item. Adding a new
item to the list is done through a trigger. This uses the insert element to add a new item to the appropri-
ate nodeset.

<xf:repeat id=”lineitems” nodeset=”exp:expenseItem”>
<xf:input ref=”exp:date” />
<xf:input ref=”exp:amount” />
<xf:select1 ref=”exp:type”>
<xf:itemset nodeset=”instance(‘expenseTypes’)/option”>
<xf:label ref=”@value” />
<xf:value ref=”@value” />

</xf:itemset>
</xf:select1>
<xf:input ref=”exp:description” />

</xf:repeat>
<hr />
<xf:trigger>
<xf:label>Insert item</xf:label>
<xf:action ev:event=”DOMActivate”>
<xf:insert position=”after” nodeset=”exp:expenseItem”
at=”index(‘lineitems’)” />

</xf:action>
</xf:trigger>

Listing 23-15 shows the complete source for the expense report form.

LLiissttiinngg 2233--1155:: CCoommpplleettee eexxppeennssee rreeppoorrtt ffoorrmm

<?xml version=”1.0” encoding=”utf-8”?>
<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:xf=”http://www.w3.org/2002/xforms”
xmlns:ev=”http://www.w3.org/2001/xml-events”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:exp=”http://example.com/expenseReport”>
<head>

(continued)

747

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 747

LLiissttiinngg 2233--1155 (continued)

<xf:model schema=”http://server/expenseReport.xsd”>
<xf:instance src=”http://server/baseReport.xml” />
<xf:submission id=”saveXML” method=”put”
action=”file:///C:/temp/output.xml”
includenamespaceprefixes=”exp” />
<xf:bind nodeset=”exp:summary/exp:travelSummary”
type=”xs:decimal”
calculate=”sum(//exp:expenseItem/exp:amount[../exp:type=’Travel’])” />
<xf:bind nodeset=”exp:summary/exp:entSummary”
type=”xs:decimal”
calculate=”sum(//exp:expenseItem/exp:amount[../exp:type=’Entertainment’])” />
<xf:bind nodeset=”exp:summary/exp:mealSummary”
type=”xs:decimal”
calculate=”sum(//exp:expenseItem/exp:amount[../exp:type=’Meal’])” />
<xf:bind nodeset=”exp:summary/exp:miscSummary”
type=”xs:decimal”
calculate=”sum(//exp:expenseItem/exp:amount[../exp:type=’Miscellaneous’])” />
<xf:instance id=”departments”>
<departments xmlns=””
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<department id=”dev”>
<name>Development</name>

</department>
<department id=”sal”>
<name>Sales</name>

</department>
</departments>

</xf:instance>
<xf:instance id=”expenseTypes”>
<expenseType xmlns=””>
<option value=”Travel” />
<option value=”Entertainment” />
<option value=”Meal” />
<option value=”Miscellaneous” />

</expenseType>
</xf:instance>

</xf:model>
<link href=”sample.css” type=”text/css” rel=”stylesheet”>
</link>

</head>
<body>
<div id=”wrapper”>
<div id=”header”>Expense Report</div>
<div id=”content”>
<xf:group ref=”exp:employee”>
<xf:input ref=”exp:name”>
<xf:label>Employee:</xf:label>

</xf:input>
<xf:input ref=”exp:employeeID”>
<xf:label>Employee ID:</xf:label>

</xf:input>
<xf:select1 ref=”exp:dept”>

748

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 748

<xf:label>Dept:</xf:label>
<xf:itemset nodeset=”instance(‘departments’)/department”>
<xf:label ref=”name” />
<xf:value ref=”@id” />

</xf:itemset>
</xf:select1>

</xf:group>
<xf:group>
<xf:input ref=”exp:date”>
<xf:label>Date:</xf:label>

</xf:input>

<xf:input ref=”exp:purpose”>
<xf:label>Purpose:</xf:label>

</xf:input>

<xf:group>
<xf:input ref=”exp:startDate”>
<xf:label>Start Date:</xf:label>

</xf:input>
<xf:input ref=”exp:endDate”>
<xf:label>End Date:</xf:label>

</xf:input>
</xf:group>

</xf:group>
</div>
<hr />
<xf:repeat id=”lineitems” nodeset=”exp:expenseItem”>
<xf:input ref=”exp:date” />
<xf:input ref=”exp:amount” />
<xf:select1 ref=”exp:type”>
<xf:itemset nodeset=”instance(‘expenseTypes’)/option”>
<xf:label ref=”@value” />
<xf:value ref=”@value” />

</xf:itemset>
</xf:select1>
<xf:input ref=”exp:description” />

</xf:repeat>
<hr />
<xf:trigger>
<xf:label>Insert item</xf:label>
<xf:action ev:event=”DOMActivate”>
<xf:insert position=”after” nodeset=”exp:expenseItem”
at=”index(‘lineitems’)” />

</xf:action>
</xf:trigger>
<div id=”summary”>
<xf:group ref=”exp:summary”>
<xf:label>
<h3>Category Summaries</h3>

</xf:label>
<xf:output ref=”exp:travelSummary”>
<xf:label>Travel:</xf:label>

</xf:output>

(continued)

749

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 749

LLiissttiinngg 2233--1155 (continued)

<xf:output ref=”exp:entSummary”>
<xf:label>Entertainment:</xf:label>

</xf:output>

<xf:output ref=”exp:mealSummary”>
<xf:label>Meal:</xf:label>

</xf:output>

<xf:output ref=”exp:miscSummary”>
<xf:label>Miscellaneous:</xf:label>

</xf:output>

</xf:group>
</div>
<div id=”footer”>
<xf:submit submission=”saveXML”>
<xf:label>Save</xf:label>

</xf:submit>
</div>

</div>
</body>

</html>

Alternatives to XForms
Although XForms is a W3C standard, some forms packages have obviously been available for many
years. With the advent of XML, many of these packages began to use XML to define the form layout. In
addition, while XForms worked its way through the standards bodies, other competing XML formats
were defined. The most notable of these is Microsoft InfoPath, but other similar designers include Adobe
LifeCycle Designer.

Microsoft InfoPath
InfoPath is the member of the Office family used to create XML forms. It is positioned primarily as a Web
Service and SharePoint client, but it can also be used standalone to create XML files. InfoPath uses a simi-
lar model to XForms to define its forms (see Figure 23-21). There is a model, a user interface, and a sub-
mission mechanism. In the case of InfoPath, the model is the XML Schema or WSDL definition of a block
of XML or Web Service. Alternatively, a SQL Server or Microsoft Access database can be used, and the
schema is derived from the table structure. The user interface is created using the InfoPath tool (see
Figure 23-22). The submission mechanism is typically a Web Service, although you can also use InfoPath
to save XML files.

As you can see from the architecture diagram, XSLT is used to create the user interface. The InfoPath file
includes this XSLT, as well as any associated XSD or XML files and a manifest file. These are stored in
one file using the ZIP file format, although the extension is XSN.

750

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 750

Figure 23-21

Figure 23-22

SOAP

DOM

W3C Schema

XML

InfoPath form

XSLT

XML

751

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 751

The InfoPath designer enables the creation of form-based solutions using a drag-and-drop model. You
can drag elements or groups of elements from the right sidebar over to the design surface. The designer
chooses a control based on the data type; however, this can be overridden if necessary. The available
controls include a number of layout options, such as table and freeform layouts. You can also add addi-
tional secondary data sources to populate portions of the form.

The programming of an InfoPath form can take one of at least three forms. First, it supports a declarative
model for applying rules and formatting based on the data. These rules typically take the form of XPath
expressions. InfoPath includes designers to assist in the creation of these expressions, so that most users
do not need to know XPath to create them (see Figure 23-23). Although this scenario is fine for most sim-
ple cases, InfoPath also provides a more programmatic approach using JavaScript. Using this model,
you attach JavaScript functions to events or objects in the designer. Finally, through the addition of the
InfoPath Toolkit for Visual Studio, you can integrate InfoPath development with Visual Studio .NET
2003, or Visual Studio 2005 to use C#, Visual Basic, and the .NET Framework to extend your InfoPath
forms.

Figure 23-23

Figure 23-24 shows an InfoPath form that uses the same ExpenseReport schema used in the earlier
example.

Figure 23-24

752

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 752

As with the earlier XForms example, the fields are bound to the data in the model. The central table
enables the user to add multiple expense items. The drop-down lists for the department and type are
populated from the XML as well. The department list comes from the secondary departments.xml file,
whereas the expense type list is populated from the values of the enumeration in the schema. Some vali-
dation is preformed automatically based on the data types in the schema, and required fields are marked
in the editor.

As described previously, fields can also be populated dynamically, either through code or XPath expres-
sions. As with XForms, these expressions update as the data changes. The four summary fields are pop-
ulated based on the expense items entered using an XPath expression like the following.

sum(amount[type = “Travel”])

As the underlying XML changes, this XPath expression is reapplied. This ensures that the summary
totals for each category are updated on any change. You can confirm this by changing the type or
amount of each expense item. The resulting XML is shown in Listing 23-16.

LLiissttiinngg 2233--1166:: XXMMLL pprroodduucceedd bbyy IInnffooPPaatthh

<?xml version=”1.0” encoding=”utf-8”?>
<?mso-infoPathSolution solutionVersion=”1.0.0.6”
productVersion=”11.0.6565” PIVersion=”1.0.0.0”
href=”http://server/ExpenseReport.xsn”
name=”urn:schemas-microsoft-com:office:infopath:Expense-Report:http---example-

com-expenseReport” language=”en-us” ?>
<?mso-application progid=”InfoPath.Document”?>
<exp:expenseReport xmlns:exp=”http://example.com/expenseReport”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:my=”http://schemas.microsoft.com/office/infopath/2003/myXSD/2006-07-19T04:04:
02”
xmlns:ns1=”http://example.com/depts”>
<exp:employee>
<exp:name>Foo deBar</exp:name>
<exp:employeeID>42</exp:employeeID>
<exp:dept>dev</exp:dept>

</exp:employee>
<exp:date>2006-04-01</exp:date>
<exp:purpose>Conference trip</exp:purpose>
<exp:startDate>2006-03-26</exp:startDate>
<exp:endDate>2006-04-01</exp:endDate>
<exp:expenseItem>
<exp:date>2006-03-27</exp:date>
<exp:type>Travel</exp:type>
<exp:amount>365.34</exp:amount>
<exp:description>Airfare</exp:description>

</exp:expenseItem>
<exp:expenseItem>
<exp:date>2006-03-27</exp:date>
<exp:type>Meal</exp:type>
<exp:amount>23.40</exp:amount>
<exp:description>Meal at destination</exp:description>

</exp:expenseItem>

(continued)

753

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 753

LLiissttiinngg 2233--1166 (continued)

<exp:expenseItem>
<exp:date>2006-03-28</exp:date>
<exp:type>Meal</exp:type>
<exp:amount>5.00</exp:amount>
<exp:description>Meal</exp:description>

</exp:expenseItem>
<exp:expenseItem>
<exp:date>2006-03-28</exp:date>
<exp:type>Miscellaneous</exp:type>
<exp:amount>50</exp:amount>
<exp:description>Replacement power cable</exp:description>

</exp:expenseItem>
<exp:expenseItem>
<exp:date>2006-03-28</exp:date>
<exp:type>Entertainment</exp:type>
<exp:amount>250</exp:amount>
<exp:description>Meal with customers from Gizmos R
Them</exp:description>

</exp:expenseItem>
<exp:summary>
<exp:travelSummary>365.34</exp:travelSummary>
<exp:entSummary>250</exp:entSummary>
<exp:mealSummary>28.4</exp:mealSummary>
<exp:miscSummary>50</exp:miscSummary>

</exp:summary>
</exp:expenseReport>

Comparing XForms and InfoPath
Because they are the two leading choices for creating XML-based forms, it’s worth comparing XForms
with InfoPath. Functionally, they are similar, but they differ in support levels and functionality (see the
following table).

Feature Xforms InfoPath

Standardization W3C standard Proprietary

Programmability Declarative (XPath) Declarative (XPath)
JavaScript
.NET Framework (with the InfoPath
Toolkit for Visual Studio .NET 2003)

Browser support Any (with an None (although InfoPath 2007 supports
appropriate plug-in) running in any browser)

Designer support Available Built-in

Event-driven Yes Yes
programming model

754

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 754

Feature Xforms InfoPath

Data Model Inline model W3C Schema
W3C Schema WSDL

SQL Server/Access

Output XML XML
x-www-urlencoded SOAP
other based on
implementation

XPath support 1.0 1.0

Like most other decisions concerning software, the decision may already be made for you. Either com-
pany standards or policy may point you at either a proprietary solution or to a more standards-based
solution.

Summary
Although XForms hasn’t exactly taken the world by storm by ripping the forms out of XHTML and cus-
tom development, it is poised to become more important in the future. The merger of XForms into
XHTML 2.0 and the support now built into many browsers mean that developers will have a native
XML solution for creating, editing, and distributing form-based solutions.

If you are already developing a solution that leverages Microsoft Office or Adobe Acrobat, you may
want to look at their proprietary solutions for your form-based needs. InfoPath and Lifecycle Designer
provide graphical designers to create the forms, simple no-code data binding via XPath statements.

Resources
A number of XForms clients are available from both commercial vendors and open-source development
teams.

❑ XForms specification (.w3.org/tr/xforms) — Second edition of the XForms specification on
the Worldwide Web Consortium’s Website.

❑ X-Smiles (x-smiles.org/) — Java-based XML viewer that supports XForms, as well as SVG,
XHTML, and other standards.

❑ FireFox XForms extension (mozilla.org/projects/xforms/) — Extension supports running
XForms in Firefox 1.5x. This extension is integrated into Firefox 2.0.

❑ formsPlayer (formsplayer.com/) — ActiveX-based XForms implementation enables running
XForms in Internet Explorer or other ActiveX containers.

❑ XForms implementations (w3.org/MarkUp/Forms/#implementations) — Full list of current
XForms implementations.

755

Chapter 23: XML Form Development

33_777779 ch23.qxp 3/1/07 11:52 PM Page 755

❑ InfoPath Developer Center on MSDN (msdn2.microsoft.com/en-us/office/
aa905434.aspx) — Development information for the use of InfoPath to build form-based
solutions.

❑ Adobe Lifecycle Designer (adobe.com/products/server/adobedesigner/) — Adobe
application for designing XML-based forms.

756

Part VII: Applying XML

33_777779 ch23.qxp 3/1/07 11:52 PM Page 756

TThhee RReessoouurrccee DDeesscc rr ii pp tt ii oonn
FFrraammeeww oo rrkk ((RRDDFF))

As you have seen throughout this book, XML is a great technology to deal with data warehousing,
data representation, data presentation, and more. A problem area in XML, however, is how to rep-
resent metadata in a standard way.

Metadata is quite literally data about data. You might find a dataset that makes little sense without
the context surrounding it. Perhaps it would make better sense if it had some relations in place
that map to additional data points or if it were related to existing data points to show a larger set
of relations across boundaries.

An easy-to-understand structure surrounding metadata not only helps you comprehend the data
you are presented with, but also gives you a mechanism to discover this data.

For instance, if you are conducting a search for the word Hemingway, you find all sorts of
information that utilize this keyword. But do you want to know about books on the life of
Ernest Hemingway, movies starring Mariel Hemingway, or information on the books written
by author Ernest Hemingway?

This is where the relationships between the data make sense. Having data relations in place enables
you to more easily pinpoint the data and facilitates research and data discovery that would be diffi-
cult otherwise. This chapter takes a look at how to use the Resource Description Framework (RDF)
to create the metadata around any data that you represent in your XML documents.

The Core Structure of RDF
RDF does a good job of structuring itself like human thought patterns. The relationship between
the data points mirrors the way you would structure these data points yourself. For instance, in
the Hemingway example, you might structure a data relationship something like, “The book The
Sun Also Rises has the author of Ernest Hemingway.”

34_777779 ch24.qxp 3/1/07 11:52 PM Page 757

In this case, you have three entities — also called a triples or a statement. These data points include

❑ A subject — The item of focus. In the case of the Hemingway example, the subject is the book
The Sun Also Rises. Any metadata provided is meant to further define this subject.

❑ A predicate — a term that provides a property or relation to the subject. This is also considered
the verb of the statement.

❑ An object — A term that works with the predicate to apply a specific relation between the object
and subject.

You can break the sentence apart as shown in the diagram in Figure 24-1.

Figure 24-1

Instead of having just a subject value within your data store, such as the book The Sun Also Rises, using
RDF you can also put in place relations such as those presented in Figure 24-1. In fact, you can continue
the triples structure and branch out to all kinds of actual relations.

As stated, the three items taken together (the subject, predicate, and object) are referred to as a statement.
A series of statements taken together are referred to as a model.

A model is basically a hierarchical set of statements that are interrelated in some fashion. For instance, if
you add statements around Hemingway, you come up with the logical model presented in Figure 24-2.

As you can see, the relationships between the items are the predicates. Each item is either a subject or an
object (in most cases, an item can be both depending on the combinations of subjects and objects you are
working with). In this diagram, you see a large list of RDF statements which includes all the triples, as
shown in the following table.

Subject Predicate Object

Ernest Hemingway wrote a book called The Sun Also Rises

Ernest Hemingway wrote a book called For Whom the Bell Tolls

Ernest Hemingway had a granddaughter named Mariel Hemingway

The Sun Also Rises was published in the year 1926

For Whom the Bell Tolls was published in the year 1940

The Sun Also Rises was published by Charles Scribner’s Sons

For Whom the Bell Tolls was published by Charles Scribner’s Sons

Mariel Hemingway was in a movie named Manhattan

The book The Sun Also Rises has the author of Ernest Hemingway

Su
bje

ct

Pr
ed

ica
te

Obje
ct

758

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 758

Figure 24-2

You can see that relationships really can go on forever because everything is related to something some-
where. Try to focus your RDF statements on the most meaningful and relevant relationships.

RDF creates these relations by relying upon unique identifiers: the triples that make up the RDF statement.
Many folks are aware of the URL, or the Uniform Resource Locator, which is used to uniquely identify a Web
page or Web resource on the Internet. When you type a URL in the address bar of the browser, you are
directed to a specific resource.

In addition to URLs, you find URIs, also known as Uniform Resource Identifiers. Not everything can be a
URL-accessible resource, so URIs were created to allow for other items to have unique identifiers. An
example URI is presented here:

http://www.lipperweb.com/myURI

Most URIs appear to be URLs (of actual Web resources). Although a URI need not be a Web site URL
(like the one in the previous example), this is usually a good idea. The URI can be anything you want it

1926

Wrote a book ...

Had a grand
daughter ...

Was published in ...

Was published in ...

Who was in a movie named ...

Was published by ...

Was published by ...

1940

Charles Scribner’s
Sons

The Sun Also
Rises

For Whom the
Bell Tolls

Manhattan

Mariel
Hemingway

Ernest
Hemingway

Wrote a book ...

759

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 759

to be. For example, you could write one using terms like myData or 12345. This kind of URI does not
guarantee any uniqueness, however. Another URI in another file elsewhere may use the same value.
Therefore, it is common practice to use a URL as the value of your URI. In the end, this practice really
serves two purposes. First, it guarantees a unique URI that won’t conflict with any other. The other
advantage of using a URL as the URI is that an URL identifies where the data originated.

When constructing your URIs, you don’t have to point to an actual file. In fact, it is usually better not to
do just that, but instead to use something like the following:

http://www.mydomain.com/myNamespaceName

The RDF Graph Model
RDF is mainly represented through a graph model. However, you may find XML representations of the
RDF document. The RDF tools present in the industry today visually represent this XML document as
an RDF graph.

The simplest form of an RDF graph is a single triplet that is composed of a subject, predicate, and object.
An example is presented in Figure 24-3.

Figure 24-3

When working with a graph, note the two main parts of the graph:

❑ Nodes

❑ Arcs

A node is either the subject or the object. The arc on the other hand is the predicate. An arc is the item
that connects two nodes, thereby forming a relationship between the nodes. An arc also has a direction.
In this case, the subject is acting upon the object using the predicate.

Although the nodes in Figure 24-3 might look similar, you can always tell which node is the subject and
which node is the object by the direction in which the predicate is applied. For instance, if you go back to
the Ernest Hemingway example, you can find the set of nodes presented in Figure 24-4.

Figure 24-4

The Sun
Also Riseswrote a bookErnest

Hemingway

ObjectSubject Predicate

760

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 760

From this figure, you can plainly see that the Ernest Hemingway node is the subject and that the The Sun
Also Rises node is the object. You determine this by the direction of the predicate, wrote a book, which is
pointing to the The Sun Also Rises node — implying that the Ernest Hemingway node is acting upon it.

Graphs, of course, get more complex as more nodes are added. This is because you add the relationships
between the nodes which are present (using predicates). For instance, you can add another node that has
a relationship to the object, The Sun Also Rises, to the diagram presented in Figure 24-4. This extension is
shown in Figure 24-5.

Figure 24-5

In this case, you have three nodes that have some sort of relationship among them, even if it is indirect. In
this case, you have Ernest Hemingway who wrote a book called The Sun Also Rises which was published by a
company by the name of Charles Scribner’s Sons. All the nodes are related in a way, and the two predicates
define that relationship between the nodes. You could provide additional metadata to the RDF graph,
thereby showing a circular relationship. This is shown in Figure 24-6.

From the diagram in Figure 24-6, you can see that all three nodes now have a direct relationship.
Ernest Hemingway has a relationship with the book, The Sun Also Rises, because he wrote the book.
Ernest Hemingway also has a relationship to the company, Charles Scribner’s Sons, because this firm was
his publisher.

A triples, which is broken down as the subject, predicate, and object, is called a statement. A statement is
usually represented in a graph as shown in Figure 24-7.

The Sun
Also Rises

Charles
Scribner’s

Sons

wrote a book

wa
s

pu
bl

is
he

d
by

Ernest
Hemingway

761

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 761

Figure 24-6

Figure 24-7

In this case, the statement definition is presented using a dashed line that forms a box around the entire
triples.

Using Altova’s SemanticWorks
One RDF tool out there is Altova’s SemanticWorks (found at altova.com). This tool allows you to work
with an RDF document as either a graph or as XML. Altova’s SemanticWorks is a good way to visually
design your RDF document. Using it, you can later look at the underlying RDF schema that was created
by the tool around your graph.

Using this tool with the previous Ernest Hemingway example, you can visually create what is presented
in Figure 24-8.

The Sun
Also Riseswrote a bookErnest

Hemingway

The Sun
Also Rises

Charles
Scribner’s

Sons

wrote a book

wa
s

pu
bl

is
he

d
by

Ernest
Hemingway

has a publisher

762

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 762

Figure 24-8

In this figure, you can see that the tool provides a good visual representation of the RDF model. You can
see a number of statements defined. Note there is even a statement contained within a statement. Again,
the statements are defined with the dashed, squared boxes that always surround a triples statement.

This example shows a complete RDF graph. You can use this designer to create a brand new graph from
scratch. The first step is to open up Altova’s SematicWorks and modify the document to work in RDF
mode. You simply set the drop-down box in the menu to RDF as shown in Figure 24-9.

Figure 24-9

763

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 763

Next, you set up a namespace prefix to use in the RDF document. Select Tools ➪ URIref Prefixes. The
URIref Prefixes dialog (presented in Figure 24-10) pops up. This dialog enables you to create the prefixes
that are used in the document.

Figure 24-10

To add a new prefix, click the Add button in the dialog and a new prefix line is added to the list. For this
example, type the prefix ex in the Prefix column and provide a URI in the second column. In this case,
you can use http://www.example.org/ as the URI of the ex prefix. Next, click the OK button to con-
tinue with the construction of the RDF document.

You see a Resources tab on the RDF document with a single toolbar strip at the top. In the toolbar strip,
you find a single button. Clicking this button enables you to add a new resource to the RDF document as
illustrated in Figure 24-11.

Figure 24-11

To add a new resource to your RDF document, click the button in the toolbar and select Add resource
from the provided menu. You then see that a line has been added to the list box where you can type the
name of resource you want. At first, the resource has the name urn:unnamed-1. You must rename this
resource. For the first resource, use the following definition on the resource line:

ex:Ernest_Hemingway

In this case, ex: is the prefix of the resource. This ex value maps back to the URI you defined in the
URIref Prefixes dialog earlier in the example. After you have associated the resource to the prefix you
want (because you can have more than one custom prefix), you then type the name of the resource. In

764

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 764

this case, the name of the resource is Ernest_Hemingway (with the underscore). The following is an
incorrect value:

ex:Ernest Hemingway

This is incorrect because of the space between the words Ernest and Hemingway. The name that is placed
here is actually used in the namespace value within the XML RDF document. For instance, if you use the
correct form: ex:Ernest_Hemingway, you get the following namespace value:

http://www.example.org/Ernest_Hemingway

This works, of course, because it is a properly structured value (being a continuous string). If you put a
space between Ernest and Hemingway, the following URI results:

http://www.example.org/Ernest Hemingway

This, of course, is invalid because it is in two parts.

Now you have a resource in place within your RDF document. The resource list must also include all the
pieces of the triples — all the subjects, predicates, and objects. Complete your list using the following
resource values:

❑ ex:Ernest_Hemingway

❑ ex:The_Sun_Also_Rises

❑ ex:Charles_Scribners_Sons

❑ ex:was_published_by

❑ ex:wrote_a_book

After these five items in place within Altova’s SemanticWorks, you should see something similar to the
screen shown in Figure 24-12.

Figure 24-12

765

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 765

In this example, you can see that all five resources are listed in the document. The list is presented alpha-
betically. Although the resources exist within the document, no relationship exists between the items. In
order to create these relationships, which are the core of the RDF document, you use the SemanticWorks
tool. To access the tool, press the icon to the left of the ex:Ernest_Hemingway resource. This brings up a
visual representation of the resource. The resource is presented as a bubble on the design surface and is
labeled with its URI. This is shown in Figure 24-13.

Figure 24-13

Looking at Figure 24-13, you can see that a little more is going on. You see the ex:Ernest_Hemingway
resource and also the start of the creation of a relationship. The first step in creating a relationship with
this resource is adding a predicate. Because the ex:Ernest_Hemingway resource is, in fact, a subject,
the next step is to add a predicate that can act upon an object (the object is added after the predicate is
created).

To associate a predicate to this subject, right-click on the ex:Ernest_Hemingway bubble and select Add
Predicate from the provided menu. This creates a box next to the ex:Ernest_Hemingway resource. After
the predicate is added, the predicate box has a drop-down list that can be initiated by clicking the arrow
button within the box. This is illustrated in Figure 24-14.

766

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 766

Figure 24-14

You now select the appropriate predicate from the list. In this case, the appropriate choice is the
ex:wrote_a_book option. Now that the ex:Ernest_Hemingway subject has an associated predicate,
you associate this predicate with an object. To accomplish this task, right-click the predicate and select
Add Resource Object from the provided menu. This is illustrated in Figure 24-15.

Figure 24-15

In the example in Figure 24-15, a new object is added to the predicate. The object behaves just as the
predicate behaved when it was added to the diagram. A bubble which represents the object appears on
the screen, and you are provided with a drop- down list to choose the object from the list of resources
that you defined earlier. In this case, you select the ex:The_Sun_Also_Rises option from the list of
options presented in the drop-down list.

With these three items in place, you have created your first triples. You have a subject, predicate, and an
object all related through a relationship you defined. This is as far as you can go here. You must also
define statements in succession and relate the statements through the joint use of subjects and objects. For
instance, you cannot define another predicate by clicking the object ex:The_Sun_Also_Rises in the
design surface. Instead, you go back to your resource list by clicking the small button located at the upper-
left corner of the design surface. After you are back to the resource list (shown earlier in Figure 24-12), you
can click the icon next to the ex:The_Sun_Also_Rises resource to further define it. In the first statement
that you created, the ex:The_Sun_Also_Rises resource was the object, but in the next case, this resource
is the only one found on the design surface and is in the left-most position — signifying that it is now the
subject of the statement. From this point in the design surface, you simply right-click the new resource and
select Add Predicate from the menu provided — just as you did before with the ex:Ernest_Hemingway
resource.

In this case, your predicate is ex:was_published_by, and the object of this statement is ex:Charles_
Sribners_Sons. With this relationship in place, you have built two statements which are related
through their common use of the ex:The_Sun_Also_Rises resource.

767

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 767

If you go back to the ex:Ernest_Hemingway resource in design view, you can expand all the nodes
until you get the result presented in Figure 24-16.

Figure 24-16

In this example, the ex:Ernest_Hemingway statement is connected to the ex:The_Sun_Also_Rises
statement though the relations that you defined earlier. You can see that the ex:The_Sun_Also_Rises
statement is a full statement with a subject, predicate, and object because it is surrounded with a
dashed box.

Now that you have designed this RDF document completely within Altova’s SemanticWorks applica-
tion, you can view the XML behind this RDF graph. To do this, click the Text button within the tool.
This switches the view from the RDF graph view to the XML text view. The XML view is illustrated in
Figure 24-17.

The next section looks more closely at creating RDF documents using XML rather than graph design.

768

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 768

Figure 24-17

The RDF XML Schema
The Ernest Hemingway example that I put together in the visual designer of Altova’s SemanticWorks
tool generated the bit of XML shown in Listing 24-1.

LLiissttiinngg 2244--11:: AAnn eexxaammppllee RRDDFF ddooccuummeenntt —— HHeemmiinnggwwaayy..rrddff

<?xml version=”1.0”?>
<rdf:RDF xmlns:ex=”http://www.example.org/”
xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>
<rdf:Description rdf:about=”http://www.example.org/Ernest_Hemingway”>

<ex:wrote_a_book>
<ex:book rdf:about=”http://www.example.org/The_Sun_Also_Rises”/>

</ex:wrote_a_book>
<ex:wrote_a_book>

<ex:book rdf:about=”http://www.example.org/For_Whom_the_Bell_Tolls”/>
</ex:wrote_a_book>

(continued)

769

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 769

LLiissttiinngg 2244--11 (continued)

<ex:had_a_grand-daughter>
<ex:person rdf:about=”http://www.example.org/Mariel_Hemingway”/>

</ex:had_a_grand-daughter>
</rdf:Description>
<rdf:Description rdf:about=”http://www.example.org/Mariel_Hemingway”>

<ex:starred_in_movie>
<ex:movie rdf:about=”http://www.example.org/Manhattan”/>

</ex:starred_in_movie>
</rdf:Description>

</rdf:RDF>

As you can see, the RDF document is a normal XML document. It follows the XML syntax and begins
with an <?xml> element just as other XML document would. The root element, <rdf> starts by defining
a couple of namespaces. The two namespaces include

❑ http://www.w3.org/1999/02/22-rdf-syntax-ns#

❑ http://www.example.org

The first item in the list is the namespace of the RDF schema, which should be included by default in all
your RDF documents. The second namespace is your own. In this case, it is xmlns:ex=”http://www
.example.org/” so it can be used as a custom prefix throughout the document.

Each subject in the document is then defined using an <rdf:Description> element. For instance, the
description of Mariel_Hemingway in the document includes the following code:

<rdf:Description rdf:about=”http://www.example.org/Mariel_Hemingway”>
<ex:starred_in_movie>

<ex:movie rdf:about=”http://www.example.org/Manhattan”/>
</ex:starred_in_movie>

</rdf:Description>

If you study this bit of code and how it relates to other elements, you can see that the URI is indeed the
identifier of the resource. Using the <rdf:Description> element, you select the rdf:about attribute to
assign the URI to the item. In this case, it is http://www.example.org/Mariel_Hemingway.

Now that the subject is in place, the next step is to assign the predicate. You use the custom prefix and
assign a defining element, which is the predicate itself.

<ex:starred_in_movie>

</ex:starred_in_movie>

The predicate is the <ex:starred_in_movie> element. This means that the action is applied to any-
thing assigned within this element. This is now the object of the statement.

<ex:starred_in_movie>
<ex:movie rdf:about=”http://www.example.org/Manhattan”/>

</ex:starred_in_movie>

770

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 770

This predicate is acting upon the <ex:movie> element. Again, this element uses the rdf:about attribute
to assign the URI of the resource. The URI of the movie Manhattan is utilized for the <ex:movie>
element.

After adding this complete <rdf:Description> element, you have a full statement. Each of the items
of the statement is presented here:

❑ Subject —http://www.example.org/Mariel_Hemingway

❑ Predicate —<ex:starred_in_movie></ex:starred_in_movie>

❑ Object —http://www.example.org/Manhattan

You can have more than one predicate per statement as you see here:

<rdf:Description rdf:about=”http://www.example.org/Ernest_Hemingway”>
<ex:wrote_a_book>

<ex:book rdf:about=”http://www.example.org/The_Sun_Also_Rises”/>
</ex:wrote_a_book>
<ex:wrote_a_book>

<ex:book rdf:about=”http://www.example.org/For_Whom_the_Bell_Tolls”/>
</ex:wrote_a_book>
<ex:had_a_grand-daughter>

<ex:person rdf:about=”http://www.example.org/Mariel_Hemingway”/>
</ex:had_a_grand-daughter>

</rdf:Description>

In this case, three predicates are used:

❑ <ex:wrote_a_book> associated to the object The_Sun_Also_Rises

❑ <ex:wrote_a_book> associated to the object For_Whom_the_Bell_Tolls

❑ <ex:had_a_grand-daughter> associated to the object Mariel_Hemingway

One of the objects (Mariel_Hemingway) is even further defined with its own statement. This is how two
statements are related to each other.

From this XML document, you see that you can extend the metadata definition and incorporate as many
additional subjects, predicates, and objects as you wish. The order in which they appear in the document
is not important because the document is webbed together through the use of the URIs utilized in the
statements.

Summary
This chapter introduced you to RDF. RDF was originally designed to deal with an area of XML that was
not yet incorporated into the larger XML architecture. When you are sharing massive amounts of data, it
is important to show the relationships between data points. This is where RDF comes into play.

771

Chapter 24: The Resource Description Framework (RDF)

34_777779 ch24.qxp 3/1/07 11:52 PM Page 771

RDF bridges that gap between data points and allows you to put in place the data relations that can
make the data more meaningful to the consumer.

This chapter looked at both the XML representation of the RDF document and the RDF graph mode,
which is the more common method of representing RDF. Graph models are shown using nodes, arcs,
and arc directions.

Finally, this chapter looked at using the Altova’s SemanticWorks tool to create RDF graphs and XML.

772

Part VII: Applying XML

34_777779 ch24.qxp 3/1/07 11:52 PM Page 772

XXMMLL ii nn OOff ff ii ccee DDeevvee ll ooppmmeenn tt

Many applications that process XML do it as an intermediate step in creating documents. Many of
those documents are created with Microsoft Office by users who are more familiar with the Office
tools than with angle brackets. Because Microsoft Office products are some of the most commonly
used applications for working with documents, it makes sense that Microsoft added XML process-
ing to these applications. Although it attempts to hide the angle brackets more often than an XML
purist may like, Office makes creating and processing XML documents easy for average users.
This chapter looks at creating and editing XML with the most commonly used Office tools. In
addition, the newer alternatives of Office 2007 and Open Office are shown.

While any editions of Office 2003 (or Office 2007) can be used to save XML, only the
Professional and Enterprise editions provide the advanced XML features.

Using XML with Microsoft Excel
Microsoft Excel is one of the most commonly used applications in business. Although it is a
spreadsheet application, designed for calculations, Excel files may store more data for business
than any other data format.

Saving Excel workbooks as XML
Excel 2003 added the capability to save workbooks as XML, using a format Microsoft calls
SpreadsheetML. Spreadsheet can now be transmitted as text, rather than in the default
binary format. You can now use tools such as XSLT or XQuery on the resulting XML files. The
SpreadsheetML format ensures a high degree of compatibility with the original document. If you
open this XML file on a computer that has Excel 2003 (or later) installed, you see the original docu-
ment. Only a little functionality is lost: Mostly the lost functions are those that are not logically
able to move across platforms like embedded controls and subdocuments.

35_777779 ch25.qxp 3/1/07 11:53 PM Page 773

Figure 25-1 shows a simple annuity calculator spreadsheet, and Listing 25-1 gives you a portion of this
file saved as SpreadsheetML. Much of the file has been excluded for brevity. The full file is approxi-
mately 250KB, compared with 80KB in the binary form.

Figure 25-1

LLiissttiinngg 2255--11:: AAnnnnuuiittyy sspprreeaaddsshheeeett aass XXMMLL

<?xml version=”1.0”?>
<?mso-application progid=”Excel.Sheet”?>
<Workbook xmlns=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:x=”urn:schemas-microsoft-com:office:excel”
xmlns:dt=”uuid:C2F41010-65B3-11d1-A29F-00AA00C14882”
xmlns:ss=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:html=”http://www.w3.org/TR/REC-html40”>
<DocumentProperties xmlns=”urn:schemas-microsoft-com:office:office”>
<LastAuthor>Guy Some</LastAuthor>
<LastPrinted>2001-04-09T17:58:15Z</LastPrinted>
<Created>2000-10-19T23:21:30Z</Created>
<LastSaved>2001-04-20T18:48:39Z</LastSaved>
<Company>Stuff Is Us</Company>
<Version>11.6568</Version>
</DocumentProperties>
<CustomDocumentProperties xmlns=”urn:schemas-microsoft-com:office:office”>

774

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 774

<_TemplateID dt:dt=”string”>TC010175321033</_TemplateID>
</CustomDocumentProperties>
<ExcelWorkbook xmlns=”urn:schemas-microsoft-com:office:excel”>
<WindowHeight>8985</WindowHeight>
<WindowWidth>11175</WindowWidth>
<WindowTopX>1365</WindowTopX>
<WindowTopY>60</WindowTopY>
<ProtectStructure>False</ProtectStructure>
<ProtectWindows>False</ProtectWindows>
</ExcelWorkbook>
<Styles>
<Style ss:ID=”Default” ss:Name=”Normal”>
<Alignment ss:Vertical=”Bottom”/>
<Borders/>

<Interior/>
<NumberFormat/>
<Protection/>
</Style>
<Style ss:ID=”s16” ss:Name=”Comma”>
<NumberFormat ss:Format=”_(* #,##0.00_);_(* \(#,##0.00\);_(* "-

"??_);_(@_)”/>
</Style>
<Style ss:ID=”s18” ss:Name=”Currency”>
<NumberFormat
ss:Format=”_("$"* #,##0.00_);_("$"*

\(#,##0.00\);_("$"* "-"??_);_(@_)”/>
</Style>

...
<Worksheet ss:Name=”Annuity” ss:Protected=”1”>
<Table ss:ExpandedColumnCount=”9” ss:ExpandedRowCount=”665” x:FullColumns=”1”
x:FullRows=”1” ss:StyleID=”s24” ss:DefaultRowHeight=”10.5”>
<Column ss:StyleID=”s24” ss:AutoFitWidth=”0” ss:Width=”117”/>
<Column ss:StyleID=”s24” ss:AutoFitWidth=”0” ss:Width=”66.75”/>
<Column ss:StyleID=”s24” ss:Width=”53.25”/>
<Column ss:StyleID=”s24” ss:AutoFitWidth=”0” ss:Width=”98.25”/>
<Column ss:StyleID=”s24” ss:AutoFitWidth=”0” ss:Width=”91.5”/>
<Column ss:StyleID=”s24” ss:Width=”90.75”/>
<Column ss:Index=”8” ss:StyleID=”s24” ss:Width=”72.75”/>
<Column ss:StyleID=”s24” ss:Width=”46.5”/>
<Row ss:AutoFitHeight=”0” ss:Height=”24”>
<Cell ss:StyleID=”s23”><Data ss:Type=”String”>Annuity investment</Data></Cell>
<Cell ss:Index=”4” ss:StyleID=”s25”/>
</Row>
<Row ss:AutoFitHeight=”0” ss:Height=”24”>
<Cell ss:StyleID=”s26”><Data ss:Type=”String”>Present value</Data></Cell>
<Cell ss:StyleID=”s42”><Data ss:Type=”Number”>10000</Data></Cell>
<Cell ss:Index=”4” ss:StyleID=”s26”><Data ss:Type=”String”>Value after 7

years</Data></Cell>
<Cell ss:StyleID=”s27” ss:Formula=”=R[89]C[-1]”><Data

ss:Type=”Number”>14429.627004010901</Data></Cell>
<Cell ss:StyleID=”s27”/>
</Row>
<Row ss:AutoFitHeight=”0” ss:Height=”24”>

(continued)

775

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 775

LLiissttiinngg 2255--11 (continued)

<Cell ss:StyleID=”s26”><Data ss:Type=”String”>Interest rate</Data></Cell>
<Cell ss:StyleID=”s39”><Data ss:Type=”Number”>5.2499999999999998E-

2</Data></Cell>
<Cell ss:Index=”4” ss:StyleID=”s26”><Data ss:Type=”String”>Monthly payment

after 7 years</Data></Cell>
<Cell ss:StyleID=”s27” ss:Formula=”=R[88]C[-2]”><Data

ss:Type=”Number”>62.854629140059927</Data></Cell>
<Cell ss:StyleID=”s27”/>
</Row>

...

Because SpreadsheetML must maintain this compatibility, it includes sections for the styles, borders,
and other formatting of the document, as well as the actual data. The actual data is included in a
<Worksheet> element that maps to each of the pages in an Excel workbook. Each <Worksheet> con-
tains a <Table> element, made up of a series of <Row> elements that contain multiple <Cell> elements.
These <Cell> elements have attributes that point to the styles stored elsewhere in the document, the for-
mula (if any) in the cell, and the value. Listing 25-2 shows a simple XSLT file that extracts the data and
produces a simpler view of it (see Listing 25-3).

LLiissttiinngg 2255--22:: AAnn XXSSLLTT ttrraannssffoorrmm ooff EExxcceell

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
xmlns:ss=”urn:schemas-microsoft-com:office:spreadsheet”>
<xsl:output method=”xml” version=”1.0” encoding=”UTF-8” indent=”yes”/>
<xsl:template match=”/”>
<data>
<xsl:attribute name=”type”>
<xsl:value-of select=”/ss:Workbook/ss:Worksheet/@ss:Name”/>

</xsl:attribute>
<xsl:apply-templates select=”/ss:Workbook/ss:Worksheet/ss:Table/ss:Row”/>

</data>
</xsl:template>
<xsl:template match=”ss:Row”>
<row>
<xsl:apply-templates select=”ss:Cell”/>

</row>
</xsl:template>
<xsl:template match=”ss:Cell”>
<col>
<xsl:value-of select=”ss:Data”/>
</col>

</xsl:template>
</xsl:stylesheet>

The transform is slightly complicated by the need to include the namespaces used by the document. In
particular, the urn:schemas-microsoft-com:office:spreadsheet URI is used to map the elements
in the spreadsheet file.

776

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 776

LLiissttiinngg 2255--33:: AAfftteerr ttrraannssffoorrmm

<?xml version=”1.0” encoding=”UTF-8”?>
<data xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:ss=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
type=”Annuity”>
<row>

<col>Annuity investment</col>
<col></col>

</row>
<row>

<col>Present value</col>
<col>10000</col>
<col>Value after 7 years</col>
<col>14429.627004010901</col>
<col></col>

</row>
<row>

<col>Interest rate</col>
<col>5.2499999999999998E-2</col>
<col>Monthly payment after 7 years</col>
<col>62.854629140059927</col>
<col></col>

</row>
<row>
<col>Term (in years)</col>
<col>20</col>
<col>Value after 20 years</col>
<col>28511.140205640702</col>
<col></col>

</row>
<row>

<col>Contribution each month (reinvested interest)</col>
<col>1</col>
<col>Monthly payment after 20 years</col>
<col>124.1928944863005</col>
<col></col>
<col></col>

</row>
...
</data>

For more information on the Excel XML format, see the reference schemas page noted in the Resources
section that follows.

Editing XML documents
You can also use Excel to edit XML documents, starting with the 2003 edition. This is especially useful
when the XML documents require some calculations or intermediate functions. In addition, many office
workers are much more comfortable working in Excel than with XML. Providing a familiar interface
increases the likelihood of their actually using the application.

777

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 777

To use Excel to edit XML, you must first set up a mapping. This mapping identifies the cells that map to
the elements in an XML file or XSD schema. Figure 25-2 shows an Excel file for a purchase order before
any mapping has been done.

Figure 25-2

Before using this file to edit or create XML files, you must add a mapping. The mapping can be done to a
sample XML file or to an XML schema. In this case, it is mapped to a simple purchase order XSD file (see
Listing 25-4).

LLiissttiinngg 2255--44:: AA PPuurrcchhaassee oorrddeerr sscchheemmaa

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:annotation>
<xsd:documentation xml:lang=”en”>
Purchase order schema for Example.com.

778

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 778

Copyright 2000 Example.com. All rights reserved.
</xsd:documentation>

</xsd:annotation>

<xsd:element name=”purchaseOrder” type=”PurchaseOrderType”/>

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”PurchaseOrderType”>
<xsd:sequence>
<xsd:element name=”shipTo” type=”USAddress”/>
<xsd:element name=”billTo” type=”USAddress”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”items” type=”Items”/>

</xsd:sequence>
<xsd:attribute name=”orderDate” type=”xsd:date”/>

</xsd:complexType>

<xsd:complexType name=”USAddress”>
<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”street” type=”xsd:string”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”/>
<xsd:element name=”zip” type=”xsd:decimal”/>

</xsd:sequence>
<xsd:attribute name=”country” type=”xsd:NMTOKEN”

fixed=”US”/>
</xsd:complexType>

<xsd:complexType name=”Items”>
<xsd:sequence>
<xsd:element name=”item” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”productName” type=”xsd:string”/>
<xsd:element name=”quantity”>
<xsd:simpleType>
<xsd:restriction base=”xsd:positiveInteger”>
<xsd:maxExclusive value=”100”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”USPrice” type=”xsd:decimal”/>
<xsd:element ref=”comment” minOccurs=”0”/>
<xsd:element name=”shipDate” type=”xsd:date” minOccurs=”0”/>

</xsd:sequence>
<xsd:attribute name=”partNum” type=”SKU” use=”required”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

(continued)

779

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 779

LLiissttiinngg 2255--44 (continued)

<xsd:simpleType name=”SKU”>
<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{3}-[A-Z]{2}”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

You create the mapping by first associating the XSD file with the document. Select Data ➪ XML ➪ XML
Source to open the XML Source side bar. Because no existing maps are associated with this document,
the sidebar is currently empty. Click the XML Maps button, and add the po.xsd file to the mapping.
Because two top-level elements are in the schema, you must select purchaseOrder as the root node (see
Figure 25-3).

Figure 25-3

After the XML Maps dialog has been closed, the new XML map appears in the sidebar, and you’re ready
to begin to map the XML data to the cells in the spreadsheet. Drag the fields over to the spreadsheet,

780

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 780

dropping them into the appropriate cells. For example, drop the orderDate field onto cell E6, the quan-
tity element onto the first cell in the Qty column, and so on. The cell is highlighted, and selecting high-
lighted cells also selects the matching element in the XML Source side panel (see Figure 25-4).

Figure 25-4

With the mapping in place, you can now use the spreadsheet as you normally would, work with formu-
las, add data, and so on. Table areas, such as the line item area in the purchase order, are treated as lists
by Excel. This enables adding multiple rows.

Saving the XML can be done either by selecting Data, XML, Export, or by selecting the XML Data option
when using the Save As dialog. This saves the XML (see Listing 25-5), and leaves no association to Excel.

LLiissttiinngg 2255--55:: AAnn XXMMLL ffiillee ccrreeaatteedd wwiitthh EExxcceell

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<purchaseOrder orderDate=”2006-04-01”>
<shipTo country=”USA”>
<name>Foo deBar</name>
<street>123 Any Drive</street>
<city>New York</city>
<state>NY</state>

(continued)

781

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 781

LLiissttiinngg 2255--55 (continued)

<zip>10012</zip>
</shipTo>
<billTo country=”USA”>
<name>Guy Some</name>
<street>985 Street Avenue</street>
<city>Redmond</city>
<state>WA</state>
<zip>98052</zip>

</billTo>
<items>
<item partNum=”1234”>
<productName>Widgets</productName>
<quantity>3</quantity>
<USPrice>50</USPrice>
<comment>The blue ones, if possible</comment>
<shipDate>2006-04-02</shipDate>

</item>
<item partNum=”1121”>
<productName>Gizmos</productName>
<quantity>23</quantity>
<USPrice>12.41</USPrice>
<comment>No rush on those</comment>
<shipDate>2006-04-06</shipDate>

</item>
</items>

</purchaseOrder>

You won’t frequently use Excel to create or edit XML. However, when the document requires a number
of calculations as an intermediate step, Excel can provide a highly capable tool.

Using XML with Microsoft Word
The feature set of Microsoft Word brings it almost within reach of the quality achieved by some desktop
publishing applications. Therefore, it should come as no surprise that it has extensive XML support.
Word can be used to both create XML documents in WordML format or in a custom schema.

Saving Word documents as XML
The capability to save documents in WordprocessingML (or WordML) was added with Word 2003. This
XML dialect attempts to recreate much of the functionality of Word, but renders it in XML. As you might
expect, WordML can be rather verbose. As an example, the resume shown in Figure 25-5 is 39KB in .doc
format, but 44KB in XML format. This may not seem like much, but keep in mind that this is a one-page
document. For a more realistic example, Chapter 3 is 666 KB as a .doc file and 852 KB as XML —
approximately a 27 percent increase in size. Because you are attempting to create as accurate a represen-
tation of the .doc format as possible, you can expect to find the formatting information within the docu-
ment, as well as any revisions or other metadata. If you are familiar with Rich Text Format (RTF), the
XML structure should look familiar because the XML format is basically an XML version of that format.

782

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 782

Figure 25-5

Listing 25-6 shows a couple of fragments of this XML.

LLiissttiinngg 2255--66:: WWoorrddMMLL

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<?mso-application progid=”Word.Document”?>
<w:wordDocument xmlns:w=”http://schemas.microsoft.com/office/word/2003/wordml”
xmlns:v=”urn:schemas-microsoft-com:vml”
xmlns:w10=”urn:schemas-microsoft-com:office:word”
xmlns:sl=”http://schemas.microsoft.com/schemaLibrary/2003/core”
xmlns:aml=”http://schemas.microsoft.com/aml/2001/core”
xmlns:wx=”http://schemas.microsoft.com/office/word/2003/auxHint”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:dt=”uuid:C2F41010-65B3-11d1-A29F-00AA00C14882”
w:macrosPresent=”no”
w:embeddedObjPresent=”no”
w:ocxPresent=”no”
xml:space=”preserve”>
<o:DocumentProperties>
</o:DocumentProperties>
<o:CustomDocumentProperties>
</o:CustomDocumentProperties>

(continued)

783

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 783

LLiissttiinngg 2255--66 (continued)

<w:fonts>
</w:fonts>
<w:lists>
</w:lists>
<w:styles>
</w:styles>
<w:shapeDefaults>
</w:shapeDefaults>
<w:docPr>
</w:docPr>
<w:body>
<wx:sect>
<w:tbl>
<w:tblPr>
<w:tblW w:w=”8924” w:type=”dxa”/>
<w:tblLayout w:type=”Fixed”/>

</w:tblPr>
<w:tblGrid>
<w:gridCol w:w=”446”/>
<w:gridCol w:w=”22”/>
<w:gridCol w:w=”6120”/>
<w:gridCol w:w=”180”/>
<w:gridCol w:w=”2156”/>

</w:tblGrid>
<w:tr>
<w:tblPrEx>
<w:tblCellMar>
<w:top w:w=”0” w:type=”dxa”/>
<w:bottom w:w=”0” w:type=”dxa”/>

</w:tblCellMar>
</w:tblPrEx>
<w:trPr>
<w:cantSplit/>

</w:trPr>
<w:tc>
<w:tcPr>
<w:tcW w:w=”8924” w:type=”dxa”/>
<w:gridSpan w:val=”5”/>
<w:tcBorders>
<w:top w:val=”nil”/>
<w:left w:val=”nil”/>
<w:bottom w:val=”single” w:sz=”4” wx:bdrwidth=”10”
w:space=”0” w:color=”999999”/>
<w:right w:val=”nil”/>

</w:tcBorders>
</w:tcPr>
<w:p>
<w:r>
<w:t>Foo deBar</w:t>

</w:r>
</w:p>
<w:p>
<w:r>
<w:t>123 Any Drive, Some Place, PA, 12345</w:t>

784

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 784

</w:r>
</w:p>
<w:p>
<w:r>
<w:t>+1 (111) 555-1212</w:t>

</w:r>
</w:p>
<w:p>
<w:pPr>
<w:pStyle w:val=”E-mailaddress”/>

</w:pPr>
<w:r>
<w:t>foo@debar.com</w:t>

</w:r>
</w:p>

</w:tc>
</w:tr>

...
</w:body>

</w:wordDocument>

Notice that this format includes the processing instruction <?mso-application progid=”Word
.Document”?> at the beginning of the document. This identifies the ProgID or program identifier of the
application that executes if this document is opened from the Desktop or via Internet Explorer. The
ProgID is a value stored in the Windows Registry that points at the current executable for Word.

Next comes the rather lengthy collection of namespaces, the most important of which is http://
schemas.microsoft.com/office/word/2003/wordml used by the bulk of the elements. In addition,
the namespace for Vector Markup Language (VML) is included. Any drawing elements included in the
document are rendered using this namespace. Note that the namespaces are a mix of URL-style and
URN-style namespaces. The URL-style namespaces are simply unique identifiers that do not point at
schema documents. For this reason, the Office team tends to use URN-style namespaces because they
do not imply the existence of a schema document.

The bulk of the document is composed of the <w:body> element. This contains the text of the document,
as well as pointers to the styles and explicit formatting stored elsewhere in the document. Each para-
graph is denoted as a <w:p> element, such as the summary heading:

<w:p>
<w:pPr>
<w:pStyle w:val=”Heading1”/>

</w:pPr>
<w:r>
<w:t>Summary</w:t>

</w:r>
</w:p>

The <w:t> element contains the actual text, whereas the <w:pStyle> is a pointer to an element in the
<w:styles> section, where the Heading1 style is defined as:

<w:style w:type=”paragraph” w:styleId=”Heading1”>
<w:name w:val=”heading 1”/>
<wx:uiName wx:val=”Heading 1”/>
<w:basedOn w:val=”Normal”/>

785

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 785

<w:next w:val=”Normal”/>
<w:rsid w:val=”00DE7766”/>
<w:pPr>
<w:pStyle w:val=”Heading1”/>
<w:spacing w:before=”80” w:after=”60”/>
<w:outlineLvl w:val=”0”/>

</w:pPr>
<w:rPr>
<wx:font wx:val=”Tahoma”/>
<w:caps/>

</w:rPr>
</w:style>

In addition to saving in WordML, you can apply an XSLT transformation to the document when it is
saved. This enables you to create a simplified or customized version of the document when needed. For
example, applying the XSLT listed in Listing 25-7 results in the simple HTML document shown in
Listing 25-8.

LLiissttiinngg 2255--77:: SSiimmpplleeWWoorrdd..xxssll

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”2.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/wordml”
xmlns:o=”urn:schemas-microsoft-com:office:office”>
<xsl:output encoding=”UTF-8” standalone=”omit” method=”html” indent=”yes” />
<xsl:template match=”/”>
<html>
<head>
<title>
<xsl:value-of select=”/w:wordDocument/o:DocumentProperties/o:Title”/>

</title>
</head>
<body>
<xsl:apply-templates select=”/w:wordDocument/w:body”/>

</body>
</html>

</xsl:template>
<xsl:template match=”w:p”>
<div>
<xsl:if test=”exists(w:pPr)”>
<xsl:attribute name=”class”>
<xsl:value-of select=”w:pPr/w:pStyle/@w:val”/>

</xsl:attribute>
</xsl:if>
<xsl:value-of select=”w:r/w:t”/>

</div>
</xsl:template>

</xsl:stylesheet>

786

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 786

The template selects from all the included <w:p> elements. These are converted to <div> tags in the
resulting HTML. If there is a child <w:pPr> element, the style is applied to the <div>. Finally, the text of
each paragraph is extracted and added to the <div>. The resulting HTML provides a simpler view of the
document (see Listing 25-8).

LLiissttiinngg 2255--88:: OOuuttppuutt ooff SSiimmpplleeWWoorrdd..xxssll

<?xml version=”1.0” encoding=”UTF-8”?>
<html xmlns:fn=”http://www.w3.org/2005/xpath-functions”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:w=”http://schemas.microsoft.com/office/word/2003/wordml”
xmlns:xdt=”http://www.w3.org/2005/xpath-datatypes”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<head>
<title>Foo deBar</title>

</head>
<body>
<div>Foo deBar</div>
<div>123 Any Drive, Some Place, PA, 12345</div>
<div>+1 (111) 555-1212</div>
<div class=”E-mailaddress”>foo@debar.com</div>
<div class=”Heading1”>Summary</div>
<div class=”Heading1”></div>
<div class=”Text”>More than 7 years programming and application development

experience.</div>
<div class=”Heading1”>Computer skills</div>
<div class=”Heading1”></div>
<div class=”Title”>Languages</div>
<div class=”bulletedlist”>Proficient in: Microsoft Visual C++ (r) and C</div>
<div class=”bulletedlist”>Familiar with: C#, Microsoft Visual Basic (r) ,

Java</div>
<div class=”Title”>Software</div>
<div class=”bulletedlist”>Database: Microsoft SQL Server and Microsoft

Access</div>
<div class=”bulletedlistlastline”>Platforms: Microsoft Windows (r) 2000,

Microsoft Windows XP</div>
<div class=”Heading1”>Experience</div>
<div></div>
<div class=”Title”>Programmer Analyst</div>
<div class=”Dates”>1997-Present</div>
<div></div>
<div>Contoso Pharmaceuticals</div>
<div class=”bulletedlist”>Primary responsibilities include design and

development of server code.</div>
<div class=”bulletedlist”>Developed and tested new financial reporting system

using Visual Basic.</div>
<div class=”bulletedlistlastline”>Performed Y2K modifications on existing

financial software.</div>
<div></div>
<div class=”Title”>Programmer Analyst</div>
<div class=”Dates”>1992-1997</div>
<div></div>

(continued)

787

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 787

LLiissttiinngg 2255--88 (continued)

<div class=”Location”>Wide World Importers</div>
<div class=”bulletedlist”>Developed online and batch test plans using Y2K

critical test dates.</div>
<div class=”bulletedlist”>Developed and tested the new inventory management

system using C++.</div>
<div class=”bulletedlistlastline”>Modified and tested order processing system

using C++.</div>
<div></div>
<div class=”Title”>Information System Specialist</div>
<div class=”Dates”>1990-1992</div>
<div></div>
<div>The Phone Company</div>
<div class=”bulletedlist”>Provided object-oriented design, programming and

implementation support to the customer billing system, written in C++.</div>
<div class=”bulletedlist”>Prepared test plans and data, and user documentation

for customer billing system.</div>
<div class=”bulletedlistlastline”>Problem-solved hardware issues with fault-

tolerant hard drives.</div>
<div class=”Heading1”>Education</div>
<div></div>
<div class=”Title”>Oak Tree University</div>
<div class=”Dates”>1989</div>
<div></div>
<div class=”Location”>Salt Lake City, Utah</div>
<div class=”bulletedlist”>B.S., Computer Science</div>
<div></div>

</body>
</html>

In addition to generating this simple document, you could also extract any tables or graphics used by
the document or use the style definitions to create a CSS stylesheet.

Editing XML documents
Just as with Excel, you can use Word to edit XML documents. Also as with Excel, you must first create a
mapping between the XML data and the document. With Word, you add one or more XML schemas to
the document. Word uses this schema to validate the contents of the document. This can be an invalu-
able resource when using Word to create highly structured documents.

Listing 25-9 shows an XML schema for a simple resume format (for a more full-featured resume schema,
see the HR-XML version listed in the resources). The schema contains sections for contact information,
experience, and education.

LLiissttiinngg 2255--99:: AA ssiimmppllee rreessuummee sscchheemmaa

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns=”http://www.example.com/resume-simple”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.example.com/resume-simple”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified” version=”1.0”>

788

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 788

<xs:element name=”resume”>
<xs:annotation>
<xs:documentation>Simple resume schema</xs:documentation>

</xs:annotation>
<xs:complexType mixed=”true”>
<xs:sequence>
<xs:element name=”name” type=”nameType”/>
<xs:element name=”address” type=”addressType”/>
<xs:element name=”objectives” type=”xs:string”/>
<xs:element name=”experience” type=”experienceType” maxOccurs=”unbounded”/>
<xs:element name=”education” type=”educationType” maxOccurs=”unbounded”/>
<xs:element name=”interests” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”nameType”>
<xs:sequence>
<xs:element name=”firstName” type=”xs:string”/>
<xs:element name=”lastName” type=”xs:string”/>
<xs:element name=”middleInitials” type=”xs:string” minOccurs=”0”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”addressType”>
<xs:sequence>
<xs:element name=”street” type=”xs:string”/>
<xs:element name=”city” type=”xs:string”/>
<xs:element name=”region” type=”regionType”/>
<xs:element name=”postalCode” type=”pcodeType”/>

</xs:sequence>
</xs:complexType>
<xs:simpleType name=”regionType”>
<xs:restriction base=”xs:string”>
<xs:length value=”2”/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name=”pcodeType”>
<xs:restriction base=”xs:string”>
<xs:minLength value=”5”/>

</xs:restriction>
</xs:simpleType>
<xs:complexType name=”experienceType”>
<xs:sequence>
<xs:element name=”yearFrom” type=”xs:int”/>
<xs:element name=”yearTo” type=”xs:int”/>
<xs:element name=”company” type=”xs:string”/>
<xs:element name=”position” type=”xs:string”/>
<xs:element name=”description” type=”xs:string”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=”educationType”>
<xs:sequence>
<xs:element name=”yearFrom” type=”xs:int”/>
<xs:element name=”yearTo” type=”xs:int”/>
<xs:element name=”institution” type=”xs:string”/>

(continued)

789

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 789

LLiissttiinngg 2255--99 (continued)

<xs:element name=”degree” type=”xs:string”/>
<xs:element name=”description” type=”xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

You add this schema to a Word document or template using the XML Schema tab of the Tools, Templates
and Add-ins dialog (see Figure 25-6). If you have a number of related schemas, you can create a Schema
Library to work with them together.

Figure 25-6

As when you use Excel, the next step is to mark up the document to identify the regions that will be
populated with the XML data. Figure 25-7 shows a document with the mapping visible. The element
markers can be hidden if they are disruptive. However, showing the markers can increase the likelihood
that the fields will be filled in correctly. Alternatively, if you were creating a document template for pro-
ducing XML data, you would probably add fields within the elements, protect the document, and hide
the element markers.

When editing the document, Word provides validation. In Figure 25-7, you can see that a validation
error is currently active. This is shown by the purple squiggly at the side of the elements that have
errors. In addition, these elements are highlighted in the XML Structure sidebar. Hovering over either
the item in the side bar or the main document reviews the error.

After the document is completed and it passes validation, you can save it as a complete document in
WordProcessingML or save only the data. Listing 25-10 shows the output of the data from the preceding
document. Notice no reference back to Word is included. Only the data identified by the schema is
present.

790

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 790

Figure 25-7

LLiissttiinngg 2255--1100:: RReessuummee ddaattaa aass XXMMLL

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<resume xmlns=”http://www.example.com/resume-simple”>
<name>
<firstName>Deborah</firstName>
<lastName>Greer</lastName>

</name>
<address>
<street>1337 42nd Avenue</street>
<city>Blahford</city>
<region>MA</region>
<postalCode>12345</postalCode>

</address>
<objectives>Develop with XML, change the world
one angle bracket at a time.</objectives>

<experience>
<yearFrom>1990</yearFrom>
<yearTo>1994</yearTo>
<company>Arbor Shoes</company>
<position>National Sales Manager</position>

(continued)

791

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 791

LLiissttiinngg 2255--1100 (continued)

<description>Increased sales from $50 million to $100 million.
Doubled sales per representative
from $5 million to $10 million.
Suggested new products that increased earnings by 23%.</description>

</experience>
<education>
<yearFrom>1971</yearFrom>
<yearTo>1975</yearTo>
<institution>South Ridge State University</institution>
<degree>B.A., Business Administration and Computer Science.</degree>
<description>Graduated summa cum laude.</description>

</education>
<interests>South Ridge Board of Directors, running,
gardening, carpentry, computers.</interests>

</resume>

Users in most workplaces have at least a passing knowledge of Microsoft Word. Therefore, it makes sense
to use it for manipulating XML documents. The capability to save as XML, optionally with a transforma-
tion, means that you can use Word to generate simple XML formats. In addition, the XML editing feature
extends the powerful forms capabilities of Word to generate valid XML documents. You might use this as
the front end to a Web service, for example, using Word to generate the payload for the request.

Using XML in Other Office Applications
In addition to the big two applications of Excel and Word, the various editions of Microsoft Office
include other applications that either save or edit XML. Two of the more commonly used are Access and
InfoPath.

Microsoft Access
Microsoft Access is the data access component in the Microsoft Office suite. Whereas SQL Server is the
tool targeted at DBAs and Microsoft FoxPro the dedicated developer, Access has always been the ease-
of-use database. You can use Access either to create applications that store data externally or against its
own data format.

Importing XML
Because XML is frequently used as an intermediate data format, it should come as no surprise that
Access is capable of importing XML. This import by default attempts to identify each of the tables in the
XML and creates new Access tables with a similar structure. However, this is often not the behavior you
want. You may want to create the table structure or map one XML format to a target table. Both of these
options are available with Access.

In addition to importing both structure and data, you can limit the import to structure only. Access
attempts to infer the type of each element in the XML and generates the appropriate column type.
If you want better control over this process, you can import an XML schema file instead of an XML file

792

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 792

(see Figure 25-8). This uses the type information in the schema file to better define the resulting table
(see Figure 25-9). Each global type in the schema becomes a table. Relationships are maintained through
the creation of primary/foreign keys. You can then import valid XML into the resulting table without
errors.

Figure 25-8

Figure 25-9

793

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 793

If the XML does not completely align with the target table format, you can also apply a transformation
during import. This identifies an XSLT stylesheet file that is applied to the XML before import.

Although this import is one-way, it can be a useful means of creating a tool for managing an XML file.
As you learn in a moment, it is equally easy to get XML back out of an Access database.

Saving as XML
Tables, queries, views, forms, and reports in Microsoft Access can all be exported as XML. This means
that you can dump the data in one or more tables as XML or use the definition of the object to generate
an appropriate XML schema or transformation.

The simplest use of this feature is to select an object, then File ➪ Export ➪ Select XML as the output for-
mat. You see the dialog shown in Figure 25-10. This gives you the option of exporting the data, the
schema, and/or the presentation of the data (for example an XSLT file).

Figure 25-10

When saving tables, you have the option of including any related tables (see Figure 25-11) by selecting
the More Options button. This can be useful to recreate the hierarchy of the data in the XML file. Listing
25-11 is part of an export of the Categories and Products tables from the Northwind database that ships
with Microsoft Access.

Figure 25-11

794

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 794

LLiissttiinngg 2255--1111:: EExxppoorrttiinngg rreellaatteedd ttaabblleess

<dataroot xmlns:od=”urn:schemas-microsoft-com:officedata”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”Categories.xsd”
generated=”2006-06-11T16:53:13”>

<Categories>
<CategoryID>1</CategoryID>
<CategoryName>Beverages</CategoryName>
<Description>Soft drinks, coffees, teas, beers, and ales</Description>
<Picture>base64 encoded image</Picture>
<Products>
<ProductID>1</ProductID>
<ProductName>Chai</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<UnitsInStock>39</UnitsInStock>
<UnitsOnOrder>0</UnitsOnOrder>
<ReorderLevel>10</ReorderLevel>
<Discontinued>0</Discontinued>
</Products>
<Products>
<ProductID>2</ProductID>
<ProductName>Chang</ProductName>
<SupplierID>1</SupplierID>
<CategoryID>1</CategoryID>
<QuantityPerUnit>24 - 12 oz bottles</QuantityPerUnit>
<UnitPrice>19</UnitPrice>
<UnitsInStock>17</UnitsInStock>
<UnitsOnOrder>40</UnitsOnOrder>
<ReorderLevel>25</ReorderLevel>
<Discontinued>0</Discontinued>
</Products>
...
</dataroot>

You can see a reference to a schema file (in the exported XML in Listing 25-11) generated during the
export. This schema file (see Listing 25-12 for part of this document) contains the usual XSD definition of
the XML, as well as additional information used by Access

LLiissttiinngg 2255--1122:: AAnn eexxppoorrtteedd XXMMLL sscchheemmaa

<?xml version=”1.0” encoding=”utf-8”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:od=”urn:schemas-microsoft-com:officedata”>
<xsd:element name=”dataroot”>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref=”Categories” minOccurs=”0”
maxOccurs=”unbounded” />

(continued)

795

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 795

LLiissttiinngg 2255--1122 (continued)

</xsd:sequence>
<xsd:attribute name=”generated” type=”xsd:dateTime” />

</xsd:complexType>
</xsd:element>
<xsd:element name=”Categories”>
<xsd:annotation>
<xsd:appinfo>
<od:index index-name=”CategoryName”
index-key=”CategoryName” primary=”no” unique=”yes”
clustered=”no” />
<od:index index-name=”PrimaryKey” index-key=”CategoryID”
primary=”yes” unique=”yes” clustered=”no” />

</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”CategoryID” minOccurs=”1”
od:jetType=”autonumber” od:sqlSType=”int”
od:autoUnique=”yes” od:nonNullable=”yes” type=”xsd:int” />
<xsd:element name=”CategoryName” minOccurs=”1”
od:jetType=”text” od:sqlSType=”nvarchar”
od:nonNullable=”yes”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”15” />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”Description” minOccurs=”0”
od:jetType=”memo” od:sqlSType=”ntext”>
<xsd:simpleType>
<xsd:restriction base=”xsd:string”>
<xsd:maxLength value=”536870910” />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name=”Picture” minOccurs=”0”
od:jetType=”oleobject” od:sqlSType=”image”>
<xsd:simpleType>
<xsd:restriction base=”xsd:base64Binary”>
<xsd:maxLength value=”1476395008” />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
...
</xsd:schema>

796

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 796

The preceding XML schema contains a root element of dataroot. This includes the XML schema names-
pace and an additional URN (urn:schemas-microsoft-com:officedata) that is used to identify
hints for Microsoft Access should the data be imported back into Access. These hints include any
indexes to apply to the resulting table, any keys on the table, and the data type to map to the XSD type.

In addition to using Access to generate XML schemas, you can also use the export function to generate a
view of the data using XSLT. This generates two files: an XSLT stylesheet that renders HTML output and
either an HTML page or an Active Server Page (ASP) file that uses the XSLT to render the data. The end
result is a fairly accurate rendition of the original object. Figure 25-12 shows the output from one of the
reports in the Northwind database.

Figure 25-12

Figure 25-13 shows the resulting HTML file that leverages the transformation.

797

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 797

Figure 25-13

Although not as full featured as dedicated XML tools from Altova, Stylus, or Oxygen, Microsoft Access
can help the average user create XML, XSD, and XSLT files based on his data. These files can be used
as-is or as the starting point for further refinements.

Microsoft InfoPath
Microsoft InfoPath is the first tool from Microsoft designed to support XML from the ground up. It is a
form-based tool and, as such, it has properties similar to the Word editing capabilities. However, it does
much more than simply enable the creation of XML files. It is a capable Web Service client and schema
editor. InfoPath is covered in more detail in Chapter 24.

798

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 798

Office 2007 — Open XML Format
As I write this, Office 2007 has just gone to Beta 2 and should be commercially available by the time the
book is on the shelves. Apart from the ribbon and other highly visible changes to the Office user inter-
face, the biggest change relates to XML developers. The native file format for most of the documents is
now XML — or rather, a number of XML files bound together in a ZIP format. Figure 25-14 shows the
contents of a simple DOCX file.

Figure 25-14

The files stored within the document contain the actual text, as well as the formatting and other ele-
ments. The most commonly used files are:

❑ [Content_Types].xml — A manifest file containing the list of the XML files that make up the
document. This also includes the MIME types of each of the documents. The document.xml
MIME type is defined as: application/vnd.openxmlformats-officedocument
.wordprocessingml.document.main+xml.

❑ document.xml — The actual text of the document, in XML format (WordProcessingML for
Word documents, SpreadsheetML for Excel documents). Note that this only includes the content
that made up the <w:body> element of the Word 2003 WordML document (see Figure 25-15),
albeit in a different schema.

❑ .rels, document.xml.rels — Any files that have relationships with other files include
an entry like this. Relationships are pointers to other required files. For example, the
document.xml.rels file contains pointers to the settings.xml, theme1.xml. styles.xml,
fontTable.xml, and numbering.xml files (see Listing 25-13) because these are all needed
to correctly render the Word document. Similarly, the root .rels file has pointers to the
document.xml file and the files in the docProps folder. If the document contained images
or hyperlinks, these items would also be listed in the relationships file, and stored separately.
This helps to reduce the overall size of the document.xml file.

799

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 799

Figure 25-15

The previous documents are the only required elements for a Word 2007 document. In addition, there
are a number of optional files that may occur:

❑ theme1.xml — Contains information about the selected font, color, and format schemes applied
to the document, if appropriate.

❑ settings.xml — Configuration settings defined for the document. For example, the document
template applied to the file, whether revision marks are turned on, and so on.

❑ webSettings.xml — Configuration settings specific to opening the document in Internet
Explorer.

❑ styles.xml — The styles available in the document.

❑ custom.xml — Contains any custom user-defined metadata applied to the document.

❑ app.xml — Contains application-specific metadata. For Word, this includes the number of
pages, characters, whether document protection is enabled, and so on.

❑ core.xml — Basic metadata about the document, such as the author, last save date, and so on.

800

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 800

❑ fontTable.xml — Listing of the used fonts in the document, as well as their attributes. These
attributes can be used to identify a replacement font if the original is not present.

❑ numbering.xml — The numbering definitions part of the document. This defines how num-
bered and bulleted lists are displayed. The document references these schemes when displaying
lists.

❑ media — Subdirectory where all attached media files, such as images, are stored. A reference
pointing to this document in located in the document.xml.rels file.

LLiissttiinngg 2255--1133:: DDooccuummeenntt..xxmmll..rreellss

<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>
<Relationships
xmlns=”http://schemas.openxmlformats.org/package/2006/relationships”>

<Relationship Id=”rId3”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/settings”
Target=”settings.xml” />
<Relationship Id=”rId2”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/styles”
Target=”styles.xml” />

<Relationship Id=”rId1”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/numbering
”
Target=”numbering.xml” />
<Relationship Id=”rId6”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/theme”
Target=”theme/theme1.xml” />

<Relationship Id=”rId5”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/fontTable
”
Target=”fontTable.xml” />

<Relationship Id=”rId4”
Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/webSettin
gs”
Target=”webSettings.xml” />

</Relationships>

The basic flow for processing a document using OpenXML format should be the following:

1. Read the _rels\.rels file to determine the file containing the document. Typically, this is the
item identified as rId1, but this is not essential. Look for the relationship that contains a pointer
to the http://schemas.openxmlformats.org/officeDocument/2006/relationships/
officeDocument schema:

<Relationship Id=”rId1”

Type=”http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDoc
ument”
Target=”word/document.xml” />

801

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 801

2. Open the document file and process.

3. If you need additional information, refer to the document.xml.rels file to locate the files
needed. All currently have types defined as a subset of the URN http://schemas
.openxmlformats.org/officeDocument/2006/relationships.

The OpenXML specification does not only define Word documents; it also defines Excel and PowerPoint
documents. It is also an extensible and flexible document format. See the References section that follows
for the current specification.

OpenOffice — The Open Document Format
Although Microsoft Office is by far the most popular set of applications for editing common documents,
it is not the only set. Recently, a new competitor has increased in popularity: OpenOffice, also known as
the Sun Java Desktop. This increasing popularity is partly because it is not Office, but also because of the
file format used by these applications. OpenOffice uses a fully documented open XML format for its
data. In addition, like Open XML, it uses multiple XML documents, separating the content from the for-
matting. These multiple documents are stored in a ZIP file, which represents the document created by
the tools of OpenOffice.

As the Open Document Format is actually stored in ZIP format, you can open it with WinZip or similar
tool and view the created documents. Figure 25-16 shows the files created for a simple OpenOffice
Writer file.

Figure 25-16

The files stored within the ODF file contain not only the content of the document, but also the formatting
and application configuration used. The typical files you see are the following:

802

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 802

❑ mimetype — A text file containing the MIME type for the document. For Writer documents,
this is application/vnd.oasis.opendocument.text.

❑ content.xml — An XML file containing the actual text of the document, as well as the associa-
tion of the styles used. Listing 25-14 shows a part of this document.

❑ styles.xml — An XML file containing the description of the styles used by the document.

❑ meta.xml — An XML file containing the metadata for the document using Dublin Core syntax.
This includes the author, creation date and similar information.

❑ thumbnail.png — A graphics file showing the first page of the document. This is used by the
operating system or other preview views of the file.

❑ settings.xml — An XML file that contains application settings for this document. This includes
information such as the size and position of the window, printer settings and so on.

❑ manifest.xml — An XML file that lists the files stored in the document (see Figure 25-17). Each
file is identified with a file-entry entry, which gives the MIME type of the file as well as the logi-
cal path within the XML file used to store the file.

Figure 25-17

803

Chapter 25: XML in Office Development

35_777779 ch25.qxp 3/1/07 11:53 PM Page 803

LLiissttiinngg 2255--1144:: CCoonntteenntt..xxmmll ffiillee

<?xml version=”1.0” encoding=”utf-8”?>
<office:document-content
xmlns:office=”urn:oasis:names:tc:opendocument:xmlns:office:1.0”
xmlns:style=”urn:oasis:names:tc:opendocument:xmlns:style:1.0”
xmlns:text=”urn:oasis:names:tc:opendocument:xmlns:text:1.0”
xmlns:table=”urn:oasis:names:tc:opendocument:xmlns:table:1.0”
xmlns:draw=”urn:oasis:names:tc:opendocument:xmlns:drawing:1.0”
xmlns:fo=”urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0”
xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:dc=”http://purl.org/dc/elements/1.1/”
xmlns:meta=”urn:oasis:names:tc:opendocument:xmlns:meta:1.0”
xmlns:number=”urn:oasis:names:tc:opendocument:xmlns:datastyle:1.0”
xmlns:svg=”urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0”
xmlns:chart=”urn:oasis:names:tc:opendocument:xmlns:chart:1.0”
xmlns:dr3d=”urn:oasis:names:tc:opendocument:xmlns:dr3d:1.0”
xmlns:math=”http://www.w3.org/1998/Math/MathML”
xmlns:form=”urn:oasis:names:tc:opendocument:xmlns:form:1.0”
xmlns:script=”urn:oasis:names:tc:opendocument:xmlns:script:1.0”
xmlns:ooo=”http://openoffice.org/2004/office”
xmlns:ooow=”http://openoffice.org/2004/writer”
xmlns:oooc=”http://openoffice.org/2004/calc”
xmlns:dom=”http://www.w3.org/2001/xml-events”
xmlns:xforms=”http://www.w3.org/2002/xforms”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
office:version=”1.0”>
<office:scripts />
<office:font-face-decls>
</office:font-face-decls>
<office:automatic-styles>
</office:automatic-styles>
<office:body>
<office:text>
<text:sequence-decls>
</text:sequence-decls>
<table:table table:name=”Table1” table:style-name=”Table1”>
<table:table-column table:style-name=”Table1.A” />
<table:table-column table:style-name=”Table1.B” />
<table:table-column table:style-name=”Table1.C” />
<table:table-row table:style-name=”Table1.1”>
<table:table-cell table:style-name=”Table1.A1”
table:number-columns-spanned=”3”
office:value-type=”string”>
<text:p text:style-name=”P1”>Foo deBar</text:p>
<text:p text:style-name=”Standard”>123 Any Drive, Some
Place, PA, 12345</text:p>
<text:p text:style-name=”Standard”>+1 (111)
555-1212</text:p>
<text:p text:style-name=”E-mail_20_address”>
foo@debar.com</text:p>

...

804

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 804

Just as with the OpenXML format, much of processing ODF involves following references. For example,
the style reference E-mail_20_address is defined within the styles.xml file.

The basic flow for processing an ODF file is to open the \meta-inf\manifest.xml file to locate needed
files. The bulk of the information is located in the content.xml file.

Summary
While the applications of Office are not normally considered XML tools, they continue to add support
for creating and editing XML. Most of the Office tools provide the capability of creating both simple
XML documents based on a defined schema, as well as saving the full document in XML format. These
documents maintain almost complete fidelity with the original.

Going forward, both Office 2007 and Open Office using XML as a native format opens up a number of
opportunities for developers. As both use well-defined and open XML specifications, it is possible to cre-
ate and edit these documents using standard XML tools, such as DOM, XPath, XSLT and XQuery. While
the two have separate file formats, it should be possible to create tools that migrate between the two
formats.

The next chapter looks at another Microsoft standard — XAML — and how you can use this new XML
syntax to create rich, powerful user interfaces for your applications.

805

Chapter 25: XML in Office Development

OpenDocument versus Open XML
The battle over the format of your documents has begun once again because the
OpenDocument and Open XML formats are now both offering to help your word pro-
cessing documents, spreadsheets, presentations, and other documents become cross-
platform XML documents. OpenDocument is supported by Sun, IBM, the OASIS
consortium, and others, and it is an ISO standard (26300). OpenXML is supported by
Microsoft, ECMA, and is targeted (as of this writing) towards also becoming an ISO
standard.

Choosing between these two formats on technical merit is difficult: Both use one or
more XML files, stored in a ZIP format. Both leverage existing work and standards,
such as namespaces, VML, XSD, XLink, SVG, and so on. Both use references heavily to
connect parts of the document. OpenXML requires slightly more work to do this
because it often requires you to follow two references: the first to the appropriate
.rels file, and the second to the file containing the data.

Invariably, the choice between these two document formats is likely to be more of a
business decision. Do you need to work with Word, Excel, and the rest of Microsoft
Office 2007? Then use Microsoft Office. Would you rather align yourself with an Open
Source file format or products such as Lotus Notes (that will support ODF in the
future)? Use OpenOffice. Alternatively, as both file formats are XML, it is likely that
you will be able to use XSLT to transform one document format into the other,
allowing you to support both standards.

35_777779 ch25.qxp 3/1/07 11:53 PM Page 805

Resources
This section contains links to Web sites and documents to help you when working with XML and Office.

❑ Office Developer Center on MSDN (http://msdn.microsoft.com/office) — Information
on developing for Office, including many XML resources.

❑ Office Reference Schemas (microsoft.com/office/xml/default.mspx) — Information
on WordProcessingML, SpreadsheetML, and other formats used by the 2003 family of Office
documents.

❑ OpenXML Specification (ecma-international.org/news/TC45_current_work/
Ecma%20TC45%20OOXML%20Standard%20-%20Draft%201.3.pdf) — Specification for the
OpenXML formats used by Office 2007 in PDF format. Note: the specification is over 4000
pages.

❑ OpenOffice (openoffice.org) — Home to the Open Office suite of products, and the Open
Document Format.

❑ HR-XML (hr-xml.org) — Group working on creating standardized formats and schemas for
common Human Resources documents and processes, such as resumes, employee performance
tracking, and more.

806

Part VII: Applying XML

35_777779 ch25.qxp 3/1/07 11:53 PM Page 806

XX AA MM LL

One of the newest technologies in the programming world is XAML — an XML language used to
write applications on the Windows Presentation Foundation (WPF). XAML stands for Extensible
Application Markup Language. This new way of creating applications within a Microsoft environ-
ment was introduced in 2006 and is part of the .NET Framework 3.0. So when you run any WPF
application, you must have the .NET Framework 3.0 installed on the client machine. WPF applica-
tions are available for Windows Vista, Windows XP, and Windows Server 2003 (the only operating
systems that allow for the install of the .NET Framework 3.0).

XAML is the XML declaration used to create a form t represents all the visual aspects and behav-
iors of the WPF application. Although it’s possible to work with a WPF application program-
matically, WPF is a step in the same direction the industry is heading — towards declarative
programming. Declarative programming means that instead of creating objects through programming
in a compiled language like C#, VB, or Java, you declare everything through XML-type program-
ming. For instance, you can declare a basic WPF form (with only a single button on the form) as
shown in Listing 26-1.

LLiissttiinngg 2266--11:: WWiinnddooww11..xxaammll

<Window x:Class=”XAML_Example.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”300” Width=”300”>

<Grid>
<Button Margin=”107,112,110,132” Name=”button1”>Button</Button>

</Grid>
</Window>

In this case, the form is declared with XAML using the <Window> element as the root element of
the XML document. The <Grid> element defines the entire design surface of the form, and the
form contains a single button using the <Button> element. Running the application produces the
results presented in Figure 26-1.

36_777779 ch26.qxp 3/1/07 11:53 PM Page 807

Figure 26-1

With Web technologies and Microsoft’s Windows Forms already available, why was another presenta-
tion technology needed? The next section answers this question.

Thin or Thick?
When a developer sits down to build an application, one of the first decisions that he makes is whether
the application should be a thin- or thick-client. Thin-client applications are browser-based applications,
usually .html, .jsp, .aspx, .asp, or .php pages, whereas thick-client or smart-client applications are
usually completely local executables on the client machine.

Over the past few years, thin-client applications have become the preferred application type. Companies
such as Google, Microsoft, and others have proven that browser-based applications can add a lot of
value to the enterprise. Thin-client applications have made tremendous headway mainly because of just
how easily end users can access them, as well as how easy they are to deploy.

To access a thin-client application, you just type a specific URL in a browser of your choice. It really
requires only two things — a browser and Internet or intranet access. The deployment and maintenance
of thin-client applications also offer powerful advantages. Instead of having an instance of the applica-
tion reside on each and every end user machine, only a single instance of the thin-client application
resides on a server. It is available to anyone who can access the server. This makes for easy upgrade and
management of the application. You only have to change the code of this single instance to give every
end user automatic access to the latest and greatest version of the application. Another important reason
for building a browser-based application is that it can run on any type of vendor operating system. A
thick-client application does not guarantee this.

Despite the fact that an instance of the thick-client application must reside on each end user’s machine,
this technology offers a superior richness that can’t be found in a thin-client version of the application.
Also, thick-client applications do not require Internet or intranet connections in order to function. A
thick-client application can run completely offline or in a disconnected mode. Probably one of the biggest
reasons for choosing a thick-client application comes down to performance. Thin-client applications are

808

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 808

quite synchronous in nature. Most actions you take require a request-response action to occur with the
application instance that resides on the remote server. Thick-client applications, on the other hand, don’t
require this request-response action. In fact, you can create a thick-client application that is asyn-
chronous — allowing it to perform multiple tasks at the same time. Another big advantage to this appli-
cation style is that it enables you to be fully integrated within the end-user’s platform. A thick-client
application has access to thread priorities on the client machine, File IO operations, and more. There is
definitely a lot of power in this application style.

One More Application Style —
Windows Presentation Foundation

Microsoft, considering the issues of both of the application styles, created a new application style that
works to combine the best of both these models. WPF applications can run as a thick-client application
(directly from an executable) or even within the browser. Microsoft has spent a considerable amount of
time building an application model that focuses on the user interface of the application. The graphic
capabilities of the WPF application style are completely new and are expected to revolutionize how
applications behave. The graphic capabilities are more Flash-like and fluid than the traditional thick-
client application. It includes a vector-based composition engine that makes full use of the end user’s
high-powered graphic card. WPF offers many more capabilities in its framework. These capabilities are
presented in Figure 26-2.

Figure 26-2

XPS Documents

Document Services

Packaging Services

XAML

Base Services

Accessibility

Input and Eventing

Property System

Application Services

User Interface Services

Deployment Services

Controls

Databinding

Layout

Imaging

Media Integration Layer

Effects

Animation

Composition Engine

2D

3D

Audio

Video

Text

809

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 809

As you can see, XAML is one of the base services. As stated earlier, you can use XAML as a means to
build an application through the process of declarative programming. For instance, you can create an
instance of a button using C# programming as shown in the following code:

Button myButton = new Button();
myButton.Content = “This is my button text”;
myButton.Background = new SolidColorBrush(Colors.Yellow);

Or you can use XAML to accomplish the same thing:

<Button Name=”button1” >This is my button text
<Button.Background>

Yellow
</Button.Background>

</Button>

In the end, either of these methods produces the same results. The C# code found in a class file actually
gets compiled and run to produce a large button on the page, whereas the XAML code is interpreted into
a class file that is compiled and produces the same large button. Building WPF applications using XAML
allows you to separate business logic from presentation. This feature has demonstrated value within the
ASP.NET world that uses the same model. Using XAML is easy, and you can work with any type of tool
to build your WPF application — including Notepad!

XAML enables you to point to events that happen within a code-behind page just as ASP.NET does in its
declarative model. For instance, working with the button example presented in the first part of the chap-
ter, you can add a click event by using the Click attribute (as shown in Listing 26-2):

LLiissttiinngg 2266--22:: WWiinnddooww11..xxaammll

<Window x:Class=”XAML_Example.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”300” Width=”300”
>

<Grid>
<Button Margin=”10,10,0,0” Name=”button1” Click=”button1_Click” Height=”23”
HorizontalAlignment=”Left” VerticalAlignment=”Top” Width=”75”>
Button</Button>
<Label Margin=”16.37,44.7233333333334,22,24” Name=”label1” FontWeight=”Bold”
FontSize=”150” FontFamily=”Verdana”>1</Label>

</Grid>
</Window>

In this case, you add a reference through the use of the Click attribute for a button1_Click method.
This means that whenever the button is actually clicked on the form, the button1_Click event is
triggered.

In addition to the new Button control, a Label control has been added. The Label control, label1, has a
defined margin (which you can get pretty exact about if you look closely at the numbers). If you attempt
to design this same thing using Visual Studio 2005, your form in the design surface would resemble the
screen shown in Figure 26-3.

810

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 810

Figure 26-3

The Click attribute points to an event that is contained within the code-behind file for this form —
Window1.xaml.cs. This file is presented in Listing 26-3.

LLiissttiinngg 2266--33:: WWiinnddooww11..xxaammll..ccss

using System.Windows;
using System.Windows.Controls;

namespace XAML_Example
{

/// <summary>
/// Interaction logic for Window1.xaml
/// </summary>

public partial class Window1 : System.Windows.Window
{

int buttonValue = 1;

public Window1()
{

InitializeComponent();
}

void button1_Click(object sender, RoutedEventArgs e)
{

buttonValue += 1;
this.label1.Content = buttonValue.ToString();

}
}

}

In this case, when the button on the form is clicked, the button1_Click event is triggered. This
increases the buttonValue variable by one and assigns its value to the Content attribute of the label1

811

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 811

control (its text value). This means that every time the button on the form is clicked, the number shown
on the form is increased by one.

WPF Within Visual Studio 2005
WPF applications can be built directly within Visual Studio 2005. It requires a toolkit called the Visual
Studio 2005 Extensions for .NET Framework 3.0. After the toolkit is installed, you should find that you
have project types that are relevant to the .NET Framework 3.0. This is illustrated in Figure 26-4, which
shows the project dialog box in Visual Studio 2005 after the installation of the toolkit.

Figure 26-4

A new view of the WPF application has been incorporated into Visual Studio 2005, as shown in
Figure 26-5.

This example presents a Design view of the project showing the WPF form as it would appear when
compiled and run. You can also see another view of the same form in XAML. Like most .NET applica-
tions built from Visual Studio, it enables you to drag and drop controls directly onto the design
surface of the WPF form or to type the controls directly into the XAML document using declarative
programming.

Nesting Controls
Through XAML, you can add hierarchy to your controls. XML is a hierarchal language, and you can add
that same level of hierarchy to deal with controls in your applications. For instance, in the ListBox con-
trol, you can normally insert textual items directly in the selectable options for the end user. This is pre-
sented in Listing 26-4.

812

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 812

Figure 26-5

LLiissttiinngg 2266--44:: SShhoowwiinngg tthhrreeee eelleemmeennttss wwiitthhiinn tthhee LLiissttBBooxx ccoonnttrrooll

<Window x:Class=”XAML_Example.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”300” Width=”300”
>
<Grid>
<ListBox Margin=”15,15,15,110” Name=”listBox1”>
<Label Name=”label1” Content=”Hello, I’m a Label Control” />
<Label Name=”label2” Content=”Hello, I’m a Label Control” />
<Image Name=”image1” Source=”whiteLipper.gif” />

</ListBox>
</Grid>

</Window>

In this case, you have a ListBox control with three child elements. Interestingly, two of the selectable ele-
ments are Label controls, whereas the third element is an image. You can nest pretty much anything that
you want within something else. WPF takes on the Parent-Child relationship. Please note that images
have to be included in the solution for this to work. The preceding bit of XAML code produces the
results shown in Figure 26-6.

813

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 813

Figure 26-6

From this example, you can see that this ListBox takes traditional text such as the first two items shown
in the figure. The third item is the most interesting because it is an image. It is just as selectable as the
textual items. They are all simply child elements of the parent ListBox control.

This type of nesting capability can be used in many places. For instance, to use the same logo image
within a button, you simply nest the image within the <Button> control as shown in Listing 26-5.

LLiissttiinngg 2266--55:: NNeessttiinngg aann iimmaaggee wwiitthhiinn aa BBuuttttoonn ccoonnttrrooll

<Window x:Class=”XAML_Example.Window1”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”300” Width=”300”
>
<Grid>

<Button Height=”45” HorizontalAlignment=”Left” Margin=”25,0,0,55”
Name=”button1” VerticalAlignment=”Bottom” Width=”87”>
<Image Name=”image1” Source=”whiteLipper.gif” />

</Button>
</Grid>

</Window>

This bit of code includes a typical <Button> control, but nested within the opening and closing
<Button> elements is an Image control declaration. This produces the results presented in Figure 26-7.

Figure 26-7

814

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 814

Case Study: Building a Document Viewer Using XAML
Windows Presentation Foundation is very effective in the area of presentation. A tremendous amount of
attention has been put onto layout, fonts, and vector graphics. A common practice is to view documents
directly within an application — either documents that are created or contained within the application or
documents that reside elsewhere. WPF is excellent at document presentation. This section, however,
focuses on simply constructing and presenting a document directly from the XAML file.

Create the WPF Application
To accomplish this task, create a new WPF Application (WPF) project. First, you can expand the default
form. From the Visual Studio toolbox, drag and drop a FlowDocumentReader control onto the design
surface of the form. Initially, this gives you only a small navigation-like control that you can position on
the page. You end up with something like the control shown in Figure 26-8.

Figure 26-8

In this figure, you see the navigation system for document viewing, which also includes the area in
which you will present the document. In order to make room for the document that you create inside
this control, expand the FlowDocumentReader control so that it takes up all the space on the form. Now
that the control is in place on the form, the next step is to create the document to be presented.

Building the Document
For this part of the application, you build the entire document directly in the XAML file itself. At this
stage, you XAML file should appear as illustrated in Listing 26-6.

815

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 815

LLiissttiinngg 2266--66:: TThhee XXAAMMLL ddooccuummeenntt aatt tthhiiss ppooiinntt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>
<Grid>
<FlowDocumentReader Margin=”5,5,5,5” Name=”flowDocumentReader1” />

</Grid>
</Window>

Looking this code over, you can see a single <FlowDocumentReader> element on the form, positioned
with a 5-pixel margin on each of its sides. At this point, the document reader is now in place on the form,
but it doesn’t contain a document of any kind. The next step is to build the document.

To accomplish this task, you nest some additional XML elements within the <FlowDocumentReader>
element, such as a <FlowDocument>. You use these to define your document. Some of the child ele-
ments of the <FlowDocument> element include <BlockUIContainer>, <Paragraph>, <List>,
<Section>, and <Table>.

The <BlockUIContainer> element allows you to position other WPF controls within the document.
For instance, if you want to keep the title and text as presented in Listing 26-6, but you also want to
include a RichTextBox control on the document; you simply use the <BlockUIContainer> illustrated
in Listing 26-7.

LLiissttiinngg 2266--77:: UUssiinngg tthhee <<BBlloocckkUUIICCoonnttaaiinneerr>> eelleemmeenntt iinn yyoouurr ddooccuummeenntt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>
<Grid>
<FlowDocumentReader Margin=”5,5,5,5” Name=”flowDocumentReader1”>
<FlowDocument>
<Paragraph>
<Italic><Bold>This is the title of the document</Bold></Italic>

</Paragraph>
<Paragraph>
This is the start of the document ...

</Paragraph>
<BlockUIContainer>
<RichTextBox Name=”richTextBox11” />

</BlockUIContainer>
</FlowDocument>

</FlowDocumentReader>
</Grid>

</Window>

Now the document that you are creating has three parts to it — two paragraph parts and a part that con-
tains a single control (the RichTextBox control). Running this application produces the results presented
in Figure 26-9.

816

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 816

Figure 26-9

You already saw the <Paragraph> section in action with the title and the plain text that was placed at
the top of the document. Remember that items can nest inside each other quite easily in XAML, and this
means that the <Section>, <List>, and <Table> elements allow for easy nesting of other elements, as
does the base <Paragraph> element. For a good example of this, look at Listing 26-8 where you create
some list items in the document using the <List> element.

LLiissttiinngg 2266--88:: UUssiinngg tthhee <<LLiisstt>> eelleemmeenntt iinn yyoouurr ddooccuummeenntt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>
<Grid>
<FlowDocumentReader Margin=”5,5,5,5” Name=”flowDocumentReader1”>
<FlowDocument>
<Paragraph>
<Italic><Bold>This is the title of the document</Bold></Italic>

</Paragraph>
<Paragraph>
This is the start of the document ...

</Paragraph>
<List>
<ListItem>
<Paragraph>
Item One

</Paragraph>
</ListItem>
<ListItem>
<Paragraph>
Item Two

</Paragraph>

817

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 817

</ListItem>
</List>

</FlowDocument>
</FlowDocumentReader>

</Grid>
</Window>

You can see that a list is created using the <List> element within the <FlowDocument> element. The
<List> element can take any number of <ListItem> elements that, in turn, can contain what you deem
necessary. In this case, each list item is a <Paragraph> element. These two list items produce the results
presented in Figure 26-10.

Figure 26-10

The nice thing about this control is that is allows you to easily display a large set of content in columns
within the document viewer. To see this in action, go to the Lorem Ipsum Web site found at www.lipsum
.com. This site enables you to generate a large amount of gibberish text to use in this example. To build
your XAML document with this text, wrap each of the provided paragraphs in a <Paragraph> element.
In the end, your XAML document should be similar to the one presented in Listing 26-9.

LLiissttiinngg 2266--99:: BBuuiillddiinngg tthhee mmaaiinn ddooccuummeenntt uussiinngg lloorreemm iippssuumm tteexxtt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>

<Grid>
<FlowDocumentReader Margin=”5,5,5,5” Name=”flowDocumentReader1”>
<FlowDocument>
<Paragraph>
<Italic>
<Bold>This is the title of the document</Bold>

818

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 818

</Italic>
</Paragraph>
<Paragraph>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent mattis
euismod eros. Aliquam lobortis rhoncus purus ...

</Paragraph>
<Paragraph>
Ut elit lectus, volutpat in, dictum vitae, faucibus vel, nisl. Integer
dictum pede vel lacus. Vestibulum turpis erat, gravida ...

</Paragraph>
<Paragraph>
Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Vivamus iaculis ...

</Paragraph>
</FlowDocument>

</FlowDocumentReader>
</Grid>

</Window>

In this case, you have a document that should include 20 <Paragraph> sections from the Lorem Ipsum
site. The <Paragraph> section at the top represents the title of the document. When you run this appli-
cation, you get the results presented in Figure 26-11.

Figure 26-11

The code shown in this example is slimmed down for presentation purposes. The
paragraphs are cut short, and the example you see in the figures for this example
actually include 20 paragraphs instead of the three that are shown here.

819

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 819

Using this little bit of XAML code, you can easily place a document within the application. The
FlowDocumentReader control does an excellent job of making your documents easy to read. Notice
that the text is divided into two separate columns for easy readability. You can see at the bottom of the
application that it contains eight pages. This is controlled by the amount of text contained in the applica-
tion and the font size of the text. There are a number of features on the control toolbar at the bottom of
the application.

Viewing the Document
On the left part of the control panel is a magnifying glass. When you click this icon, a text box appears
next to it. This text box enables you to search through the document quite quickly and easily. To the right
of the magnifying glass and the search text box, you see a navigation control that allows you to click the
arrows that take you to the next page or the previous page. To the right of the navigation controls, are
three page view controls. The three available page views include:

❑ Page Mode — This is the mode presented in Figure 27-11. It enables you to see a single page that
usually includes multiple columns.

❑ Two Page Mode — This is similar to the Page Mode, but has two distinct pages within the
application.

❑ Scroll Mode — Like a Web page, this mode allows you to see the document as a single and con-
tinuous page with the appropriate scroll bars for pages that are too long or wide.

You can see a good example of the Scroll Mode and the Two Page Mode in Figure 26-12.

The FlowDocumentReader control allows you to control how you read the document. You can not only
change the page format, but you can also click the plus or minus sign in the control panel to manipulate
the font size. Clicking the plus sign causes the text to get larger as you can see in Figure 26-13.

Another feature of the FlowDocumentReader control is that it adapts quite nicely to any resolution. For
instance, Figure 26-14 shows what the document looks like when it is expanded to a larger resolution.

820

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 820

Figure 26-12

821

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 821

Figure 26-13

Figure 26-14

822

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 822

As you can see in Figure 26-14, the document has automatically expanded to take advantage of all the
available real estate of the screen. You could also shrink the application so that it is quite small. The text
adapts quite well to any situation.

Adding an Image to the Document
In some of the earlier XAML examples, you learned you can add anything you want to the document
using the XAML declaration. To see this in more detail, you can add an image to the document. It is pos-
sible to add an image to the document directly in the XAML code. This is illustrated in Listing 26-10.

LLiissttiinngg 2266--1100:: AAddddiinngg aann iimmaaggee ttoo tthhee ddooccuummeenntt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>

<Grid>
<FlowDocumentReader Margin=”5,5,5,5” Name=”flowDocumentReader1”>
<FlowDocument>
<Paragraph>
<Italic>
<Bold>This is the title of the document</Bold>

</Italic>
</Paragraph>
<Paragraph>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent mattis
euismod eros. Aliquam lobortis rhoncus purus ...

</Paragraph>
<Paragraph>
Ut elit lectus, volutpat in, dictum vitae, faucibus vel, nisl. Integer
dictum pede vel lacus. Vestibulum turpis erat, gravida ...

</Paragraph>
<Paragraph>
Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Vivamus iaculis ...

</Paragraph>
<Paragraph>
<Image Source=”Sunset.jpg” />
<Italic>This is an image.</Italic>

</Paragraph>
</FlowDocument>

</FlowDocumentReader>
</Grid>

</Window>

In this case, after the third <Paragraph> element, another <Paragraph> element is added. This
<Paragraph> element is put in place simply to define a place where you can put the image. In this case,
the <Image> element is used; it requires only a Source attribute to point to the location of the image. To
place the image within the document and to give the text below it a style that is different from the text of
the main document, use the <Italic> element to apply style.

823

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 823

If you run the example, you see that the image is embedded in the overall document. This is illustrated
in Figure 26-15.

Figure 26-15

Again, the FlowDocumentReader control makes some smart decisions about the image on your behalf.
First off, the image shown in Figure 26-15 is much smaller than the actual image. The FlowDocumentReader
control is sizing the image to fit in the column and treats the image much like it treats the rest of the text
contained within the document. This is shown in Figure 26-16. When you enlarge the viewing area of
the document, you can see that the image also is enlarged to take advantage of the new viewable area
of the screen.

If you switch the document viewing mode to scroll mode, you also see that the image now fills the entire
width of the screen.

824

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 824

Figure 26-16

Final Step: Saving the Document as an XPS File
The last step in working with the FlowDocumentReader control is to change the WPF application so that
the document you created can be saved as an XPS document. XPS, or XML Paper Specification, is a pagi-
nated representation of electronic paper that is described in XML. This specification was developed by
Microsoft.

XPS documents must be viewed in an XPS viewer. Microsoft provides a viewer that allows you to see
the document directly in Internet Explorer. Other viewers for other platforms are also being developed.
To export the new document that you created in the FlowDocumentReader, you add something that ini-
tiates the export process. For this example, add a Button control to the WPF document. The code to do
this is presented in Listing 26-11.

825

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 825

LLiissttiinngg 2266--1111:: AAddddiinngg aa BBuuttttoonn ccoonnttrrooll ttoo eexxppoorrtt tthhee ddooccuummeenntt ttoo aann XXPPSS ddooccuummeenntt

<Window x:Class=”XAML_Example.MyDocument”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”XAML_Example” Height=”450” Width=”800”
>

<Grid>
<FlowDocumentReader Margin=”5,50,5,5” Name=”flowDocumentReader1”>
<FlowDocument>
<Paragraph>
<Italic>
<Bold>This is the title of the document</Bold>

</Italic>
</Paragraph>
<Paragraph>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Praesent mattis
euismod eros. Aliquam lobortis rhoncus purus ...

</Paragraph>
<Paragraph>
Ut elit lectus, volutpat in, dictum vitae, faucibus vel, nisl. Integer
dictum pede vel lacus. Vestibulum turpis erat, gravida ...

</Paragraph>
<Paragraph>
Pellentesque habitant morbi tristique senectus et netus et malesuada
fames ac turpis egestas. Vivamus iaculis ...

</Paragraph>
<Paragraph>
<Image Source=”Sunset.jpg” />
<Italic>This is an image.</Italic>

</Paragraph>
</FlowDocument>

</FlowDocumentReader>
<Button Height=”23” HorizontalAlignment=”Right” Margin=”0,5,5,0” Name=”button1”
VerticalAlignment=”Top” Width=”100” Click=”SaveToXPS”>Save to XPS</Button>

</Grid>
</Window>

As you can see, the Button control is added using the <Button> element, and its location is defined
using the Margin attribute. Also notice that the FlowDocumentReader control has changed a bit — its
location is altered to make way for the Button control by redefining the Margin attribute. The interesting
this about XAML is that the order in which the elements appear in the code is not the order in which
they appear in the application. Visually, the button control is at the top of the application now, but it is
defined below the <FlowDocumentReader> element within the XAML. This is because everything is
positioned using the Margin attributes. This means that these elements can actually appear anywhere
you want within the application. The <Button> control on the page should appear as shown in
Figure 26-17.

826

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 826

Figure 26-17

Looking at the code of the <Button> element, you can see a Click attribute as well. This defines the
method that should be called in the MyDocument.xaml.cs file when the button is clicked. This is the bit
of code which converts the document you created and to an XPS document. This code is presented in
Listing 26-12.

LLiissttiinngg 2266--1122:: SSaavviinngg tthhee ddooccuummeenntt ttoo aann XXPPSS ffiillee

using System.IO;
using System.IO.Packaging;
using System.Windows;
using System.Windows.Documents;
using System.Windows.Xps;
using System.Windows.Xps.Packaging;

namespace XAML_Example
{

public partial class MyDocument : System.Windows.Window
{

public MyDocument()
{

InitializeComponent();
}

void SaveToXPS(object sender, RoutedEventArgs e)
{

DocumentPaginator dp =

(continued)

827

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 827

LLiissttiinngg 2266--1122 (continued)

((IDocumentPaginatorSource)flowDocumentReader1.Document).DocumentPaginator;
Package pkg = Package.Open(“myDocument.xps”, FileMode.Create);
XpsDocument xpsdoc = new XpsDocument(pkg);

XpsDocumentWriter xpsWriter =
XpsDocument.CreateXpsDocumentWriter(xpsdoc);

xpsWriter.Write(dp);

xpsdoc.Close();
pkg.Close();

}
}

}

You must import some extra namespaces into the file using statements. These enable you to work with
some of the classes that output the contents to an XPS file — such as System.IO.Packaging,
System.Windows.Documents, System.Windows.Xps, and System.Windows.Xps,Packaging. The
SaveToXPS() method creates a new instance of an XPS document in memory using the XpsDocument
object:

XpsDocument xpsdoc = new XpsDocument(pkg)

This instance of the XPS document points to an actual XPS document that is to be created from the
Package object. This object is passed in as a parameter to the class instantiation. Using the
XpsDocumentWriter object, you can write the contents of the flowDocumentReader1 control on your
page to the XPS document, which is saved to disk as myDocument.xps.

If you have the Microsoft XPS viewer installed on your machine, you can now open the
myDocument.xps file (by double-clicking the file). It automatically opens in this viewer. An example of
the document being open in the XPS viewer is presented in Figure 26-18.

As you can see, the new XPS specification provides an easy way to create electronic versions of your
documents that appear just as they would on paper. This is quite similar to the PDF model.

828

Part VII: Applying XML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 828

Figure 26-18

Summary
This brief introduction to XAML shows you the direction in which the programming community is
heading, not just for Microsoft-based technologies but other technologies as well. Instead of working in
traditional code — such as C#, Visual Basic, or Java — new emphasis is being placed on declarative lan-
guages that are interpreted to code in the compilation process. XAML is one of these declarative lan-
guages. All declarative languages, whether ASP.NET, XAML, or any other, are using XML to represent
the language.

As you have seen throughout this book, XML is powerful. It is one thing to learn the basic rules of syn-
tax for XML — it is another to apply it to the technologies which make use of the XML specification. It’s
these XML-based technologies that are changing the world of IT.

829

Chapter 26: XAML

36_777779 ch26.qxp 3/1/07 11:53 PM Page 829

36_777779 ch26.qxp 3/1/07 11:53 PM Page 830

In
de

x

Index

SYMBOLS AND
NUMERICS
& (ampersand), avoiding error with, 15
‘ (apostrophe), avoiding error with, 15
* (asterisk) quantifier, DTDs, 157
> (greater than sign), avoiding error with, 15, 252
< (less than sign), avoiding error with, 15, 252
+ (plus sign) quantifier, 153–155
? (question mark) quantifier, DTDs, 155–156
quotation marks

double (“), avoiding error with, 15
single (‘), avoiding error with, 15

, (sequence concatenation operator), 289
| (union concatenation operator), 289
1.1 faults, SOAP
<detail>, 618
<faultcode>, 617–618
<faultfactor>, 618
<faultstring>, 618
message, 617

1.2 faults, SOAP
<Code>, 619
<Detail>, 621
message, 619
<Node>, 620
<Reason>, 620
<Role>, 620–621
<Subcode>, 620
<Text>, 620
<Value>, 619–620

10g relational database, Oracle
described, 340
retrieving XML, 341–343
storing XML, 343–345

A
Access (Microsoft)

importing XML, 792–794
saving as XML, 794–798

actions logic, XForms, 744–745
Adaptive Server Enterprise 15 (Sybase), 349
addressing WS-* specifications, 657–658
aggregate functions (count, avg, max, min, and

sum), 312
Ajax

client-side code, 423–425
contact information file, 418–419
cross-browser code, 426–427
described, 405
DOM

described, 415
events, 417–418
objects, 416–417

JavaScript, adding to Web page
functions, 406–407
problem, 406
tag, 406

JavaScript data types
described, 407–408
language features, 409–410

JSON data format, 425

37_777779 bindex.qxp 3/1/07 11:53 PM Page 831

Ajax (continued)
libraries

described, 427–428
Microsoft, 428–431
Prototype, 432–434

resources, 434
selected contacts, 420
server-side query, 420–423
XMLHttpRequest, 410–415

Altova SemanticWorks
described, 762
graph example, 763
predicate, associating, 766–767
prefix, adding, 764
resource, adding, 764–766
triples, 767–769

Altova XMLSpy 2006
benefits and disadvantages, 47
described, 39–44
schema development, 44–45
script editor, 46–47
Spy debugging, 624–629
XML Schemas, 209–210
XSLT development, 46

ampersand (&), avoiding error with, 15
annotating schemas, RELAX NG, 231
<annotation>, XML Schemas
<appInfo>, 206
<documentation>, 206

ANY value, specifying content with, 148–149
anyURI primitive data type, 185
Apache Xerces, 7
apostrophe (‘), avoiding error with, 15
appearance, XForms, 733
<appInfo>, XML Schemas, 206
application

Microsoft WSE server, configuring, 669–673
WPF, creating, 815

architecture, SAX
basic application flow, 380–381
illustrated, 380

article schema collection
applying to table, 334
creating, 333

ASP.NET (Microsoft)
consuming Web page, building, 589–591
HTTPModule, 713–714
Web reference, adding, 587–589

asterisk (*) quantifier, DTDs, 157

asynchronous consumption, Web services
described, 601–602
slow service, building, 602–603
TakeLongTime() WebMethod, 603–605

ate primitive data type, 185
Atom

dates, 546
described, 531
elements, 547–548
reading RSS

described, 548–550
with Java, 556–558
XmlDocument, 550–552
XmlReader, 552–556

resources, 563
sample 1.0 feed, 543–546
writing RSS

class libraries, 562
with Java, 560–562
with .NET, 559–560

atomic simple type, 176–177
attachments, WS-* specifications, 658
Attr interface, DOM, 366–367
attribute declarations, DTDs

data types, 160
described, 158–159
enumerations, using as values, 162–163
#FIXED keyword, 161–162
#IMPLIED keyword, 161
#REQUIRED keyword, 160–161

attribute element, 248
attributeFormDefault attribute, 172–173
attributes

described, 26
DOM, 367–368
empty, 26–27
extracting, 334–335
groups, XML Schemas root document, 202–203
naming, 26
RELAX NG, 219–220
uniqueness, 27
XML Schemas root document

attribute groups, 202–203
default values, 199–200
described, 198–199
use attribute, 200
values, restricting, 200–202

xml:lang, 28
xml:space, 28–29

832

Ajax (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 832

AUTO query, Microsoft SQL Server 2005, 326, 327–328
axes, XPath, 281–282
Axis Web service

advanced deployment
service implementation, 583–586
WSDD file, creating, 586–587

described, 580
.java, renaming to .jws, 582–583
setting up, 580–582

B
background-color property, CSS, 82
base64Binary primitive data type, 185
Beginning Python (Wiley Publishing), 510
Berkeley DB XML, 349
binary attachments, Web services, 650
<binding> WSDL, 643–644
blank space

tags, 13–14
XSLT, controlling with strip-space, preserve-

space, and decimal-format, 243–244
body, SOAP

of request, 612–613
of response, 613

Boolean expressions in predicates, 280
boolean primitive data type, 185
border property, CSS, 82
box layout, CSS, 88–91
box model hack, 90
browser

Ajax code, 426–427
CSS compatibility, 88–91
XPath, 297–298
XSLT, executing, 262–263

bulk insert, OPENXML, 336
byte derived data type, 186

C
C#

building Web services
described, 571–574
Microsoft Web services test page, 575–576
protocols, altering, 578–579
WebMethod, testing, 576–578

consuming Web services, 587–591
caching Web services, 599–600
calling XSLT templates, 249–250
cardinality, XML Schemas root document, 192

Cascading Style Sheets (CSS)
box layout and cross-browser compatibility, 88–91
external reference with link element, 87–88
external reference with processing instructions, 87
levels, active, 81
multicolumn layout, 92–94
properties, 82–83
selectors, 84–85
style information, adding to page, 85–87
validating, 94

case-sensitivity, XML, 11–12
CDATA sections, 16–17
CDATASection interface, DOM, 369–370
Central European (windows-1250) character set, 23
CharacterData interface, DOM, 368–369
characters

DTDs, 163
enclosing special, 15

child elements, DTDs
asterisk (*) quantifier, 157
choice option, 157–158
described, 150–151
number of instances, specifying, 151–152
plus sign (+) quantifier, 153–155
question mark (?) quantifier, 155–156
XML elements, reusing, 152–153

child node, DOM, 364
children, XForms control, 731–732
choice option, DTDs, 157–158
choose element, 252
class libraries, RSS, 562
client

Ajax code, 423–425
Microsoft WSE, 676–679
XForms, 755–756
XML processing, 354

client application
consuming Web services with Java, 599
Java Web service, running, 596–597
running Web services with Java, 599

<Code>, 619
code, executing via XSLT, 259–261
color property, CSS, 82
command line, XSLT, 258–259
comment

described, 23–25
DOM interface, 369
XML Schemas, 205–206
XPath, 286–287

compact schema, RELAX NG, 236–237

833

compact schema, RELAX NG

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 833

complex types, 180–181
composition

Web services
data, representing and communicating, 568
described, 567–570
discovering, 570–571

XSL-FO, 102–103
Compressed UCS (UTF-16) character set, 23
Compressed Unicode (UTF-8) character set, 23
conditional processing (if element), 251–252
consuming application, Microsoft Trace Utility,

622–623
Contact class, 706–707
contact information file, Ajax, 418–419
Contact Manager class, 707–711
content tags, 12
controlling XSLT, XQuery, and XPath processing

with Java, 491–493
XQJ, 499–500

controls, XForms, 727–730
converting schema types, Oxygen XML Editor 6.2,

58–60
Cooktop editor, 62
coordination, WS-* specifications, 658
copy element, 248
copy-of element, 248
core specifications, WS-*, 659–663
credential exchange, WS-* security, 657
credential verification class, Microsoft WSE server,

667–669
cross-browser

Ajax code, 426–427
CSS compatibility, 88–91

CSS (Cascading Style Sheets)
box layout and cross-browser compatibility, 88–91
external reference with link element, 87–88
external reference with processing instructions, 87
levels, active, 81
multicolumn layout, 92–94
properties, 82–83
selectors, 84–85
style information, adding to page, 85–87
validating, 94

current function, 257
cursor property, CSS, 83
Cyrillic (windows-1251) character set, 23

D
data

DTDs, 160
representing in XML document, 5
Web services, representing and communicating, 568

Data Access Layer class, 711–712
databases

Berkeley DB XML, 349
Mark Logic Server, 349
resources, 350
retrieving data as XML, 323–324
storing XML, 324–325
Sybase Adaptive Server Enterprise 15, 349

dates, Atom, 546
dateTime primitive data type, 186
debugging

Stylus Studio 2006, 54
with trace(), 292–293
with XMLSpy, 46
XSLT, 274–275

decimal primitive data type, 186
decimal-format, 243–244
declaration

DTD attribute
data types, 160
described, 158–159
enumerations, using as values, 162–163
#FIXED keyword, 161–162
#IMPLIED keyword, 161
#REQUIRED keyword, 160–161

encoding attribute, 22–23
standalone attribute, 23
version attribute, 22

declaring elements
atomic simple type, 176–177
complex types, 180–181
list simple type, 177–178
named complex types, reusability and, 181–183
<sequence> and <all> elements, 183–184
type element, 184–188
union simple type, 179

default values, XML Schemas root document, 195–196
DefaultHandler class, SAX, 385–387
<definitions>, WSDL, 638–640
derived data types, XML schema, 186–187
deserializing XML, 444–447
<Detail>, 621
diagnostics, Microsoft WSE server, configuring,

673–674

834

complex types

37_777779 bindex.qxp 3/1/07 11:53 PM Page 834

digital signature, Web services, 651
discovery, 652
display property, CSS, 82
doc() functions, XQuery, 312
document

DOM interface, 357–358
editing Excel, 777–782
editing XML in Word, 788–792
saving Word as XML, 782–788
well-formed, 6
WPF

building, 815–820
viewing, 820–823

WSDL structure, defining, 637–638
.xml file, 17–22
XPath, many faces of a, 283
XPS file, as, 825–829

document function, 256
Document Object Model. See DOM
document type declaration element

described, 144–145
inline and URI, 146–147
SYSTEM and PUBLIC keywords, 145–146

Document Type Definitions. See DTDs
<documentation>

WSDL, 647–648
XML Schemas, 206

DOM (Document Object Model)
Ajax

described, 415
events, 417–418
objects, 416–417

Attr interface, 366–367
attributes, creating, 367–368
CDATASection interface, 369–370
CharacterData interface, 368–369
client-side XML processing, 354
Comment interface, 369
described, 353–354
document interface, 357–358
element interface, 360
errors, handling, 370–371
loading document

described, 358–359
readyState property, 359–360

NamedNodeMap interface, 366
new element, creating, 361
Node interface

described, 361–363
inserting node before existing node, 364

new child node, appending, 364
new node, creating, 363–364
removing child node, 364
replacing node, 365
text values of elements, accessing, 365

NodeList interface, 365–366
sample file, 354–356
Text interface, 369
transformation using XSL, 371–373
validation, 373–375

double primitive data type, 186
double quotation marks (“), avoiding error with, 15
DTDs (Document Type Definitions)

attribute declarations
data types, 160
described, 158–159
enumerations, using as values, 162–163
#FIXED keyword, 161–162
#IMPLIED keyword, 161
#REQUIRED keyword, 160–161

building your own, 142–144
child elements

asterisk (*) quantifier, 157
choice option, 157–158
described, 150–151
number of instances, specifying, 151–152
plus sign (+) quantifier, 153–155
question mark (?) quantifier, 155–156
XML elements, reusing, 152–153

described, 135–138
document type declaration element

described, 144–145
inline and URI, 146–147
SYSTEM and PUBLIC keywords, 145–146

element declarations
ANY value, specifying content with, 148–149
described, 147–148
empty values, 150
#PCDATA value, limiting elements with, 149–150

entity declarations
characters, 163
external entities, 165
internal entities, 163–164

external, 140–142
internal, 138–140
notation declarations, 165
validation, 166–167
XML Schemas, problem with, 169–171
XML tools, creating with, 166

835

DTDs (Document Type Definitions)

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 835

duration primitive data type, 186
dynamic languages, 501. See also Perl; Python; Ruby

E
Eclipse editor, 62, 300
editing

Excel documents, 777–782
XML documents in Word, 788–792

editors
Altova XMLSpy 2006

benefits and disadvantages, 47
described, 39–44
schema development, 44–45
script editor, 46–47
XSLT development, 46

Cooktop, 62
Eclipse, 62
Emacs, 62
Oxygen XML Editor 6.2

basic editing, 55–57
benefits and disadvantages, 62
converting between schema types, 58–60
schema development, 57–58
SVG viewer, 61
XSLT development, 60–61

Stylus Studio 2006
basic editing, 47–50
benefits and disadvantages, 54–55
debugging, 54
schema development, 50–51
XSLT development, 51–53

Vi, 62
Visual Studio .NET 2003

benefits and disadvantages, 35
described, 33–35
schema development, 35

Visual Studio 2005
basic editing, 35–37
schema development, 38
XSLT development, 38–39

XMetaL, 62
element element, 248
elementFormDefault attribute, 174
elements

Atom, 547–548
data callback, SAX, 390
described, 7–8
empty, 11

interface, DOM, 360
naming conventions for elements, 8–9
nesting, 10
new DOM, 361
start and end tag, 8
XML Schemas root document restrictions

cardinality, 192
default values, 195–196
fixed values, 196–197
maxOccurs attribute, 193–195
minOccurs attribute, 192–193
null values, 197–198

Emacs editor, 62
empty attributes, 26–27
empty elements, 11
empty space

tags, 13–14
XSLT, controlling with strip-space, preserve-

space, and decimal-format, 243–244
empty values, DTDs, 150
enclosed expressions, XQuery, 306
encoding attribute, 22–23
encoding data types, SOAP, 621
encryption, Web services, 651
endDocument() method, SAX, 387
endElement() method, SAX, 389–390
English character set (US-ASCII), 23
ENTITIES derived data type, 186
entity declarations, DTDs

characters, 163
external entities, 165
internal entities, 163–164

ENTITY derived data type, 186
entity references, 14–15
enumeration primitive data type, 201
enumerations, DTDs, 162–163
envelope, SOAP, 611–612
errors

debugging
Stylus Studio 2006, 54
with trace(), 292–293
with XMLSpy, 46
XSLT, 274–275

DOM, handling, 370–371
parser, avoiding, 14–15
SAX, 392–393

events
Ajax, 417–418
XForms, 743–744

836

duration primitive data type

37_777779 bindex.qxp 3/1/07 11:53 PM Page 836

Excel (Microsoft)
editing documents, 777–782
workbooks, saving as XML, 773–777

execQuery(), invoking
XmlCursor, 317–318
XmlObject, 315–317

exist() function, 319
exist() method, 321
existsnode(), 344
EXPLICIT query, 326, 328–329
expression

XPath, tuning, 284
XQuery, structure of, 304–305

Extensible Application Markup Language (XAML)
described, 807–808
thin- of thick-client, 808–809
WPF

application, creating, 815
described, 809–812
document, building, 815–820
document, viewing, 820–823
image, adding to document, 823–825
nesting controls, 812–814
within Visual Studio 2005, 809–812
XPS file, saving document as, 825–829

eXtensible HyperText Markup Language. See XHTML
eXtensible Markup Language. See XML
eXtensible Stylesheet Language-Formatting Objects.

See XSL-FO
extension, SOAP, 655–656
external entities, DTDs, 165
external reference

with link element, CSS, 87–88
with processing instructions, CSS, 87

extract(), 344
extractvalue(), 344

F
factory mechanism, JAXP, 493–495
<faultcode>, 617–618
<faultfactor>, 618
faults

SOAP 1.1
<detail>, 618
<faultcode>, 617–618
<faultfactor>, 618
<faultstring>, 618
message, 617

SOAP 1.2
<Code>, 619
<Detail>, 621
message, 619
<Node>, 620
<Reason>, 620
<Role>, 620–621
<Subcode>, 620
<Text>, 620
<Value>, 619–620

<faultstring>, 618
feeds, RSS

described, 531
reading with Atom

described, 548–550
with Java, 556–558
XmlDocument, 550–552
XmlReader, 552–556

resources, 563
RSS 1.0, 540–542
RSS 2.0, 535–540
sample feeds by version, 532–534
versions listed, 532
writing with Atom

class libraries, 562
with Java, 560–562
with .NET, 559–560

Firefox XML parser, 7
#FIXED keyword, 161–162
fixed values, XML Schemas root document, 196–197
Flickr Photo Search service, 696–698
float primitive data type, 186
float property, CSS, 83
FLWOR expressions

described, 306–307
for clause, 308–309
let clause, 309
order by clause, 310
return clause, 310
sample, 307–308
where clause, 309–310
XPath expressions versus, 310–311

 element, XHTML, 81
font property, CSS, 83
font-style property, CSS, 83
for clause, FLWOR expressions, 307, 308–309
FOR XML AUTO query, 331–332
for-each element, XSLT, 252–255
format-number function, 257

837

format-number function

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 837

forms
Microsoft InfoPath

described, 750–754
XForms versus, 754–755

XForms
actions logic, 744–745
appearance, changing control, 733
children, common control, 731–732
clients, 755–756
controls, 727–730
described, 722–727
events logic, 743–744
grouping controls, 733–737
instance data, binding, 737–741
Microsoft InfoPath versus, 754–755
sample, 745–750
submit protocol, 741–743

XHTML, 721–722
fractionDigits primitive data type, 201
function calls in XPath expressions, 285–286
functions

exposing as Web services, 336–340
JavaScript, adding to, 406–407
XQuery

aggregate (count, avg, max, min, and sum), 312
built-in, described, 311–312
doc(), 312
string, 312–313
user-defined, 313–314

XSLT built-in, 256–257

G
gDay/gMonth/gMonthDay/gYear/gYearMonth

primitive data types, 186
generate-id function, 257
Geocode service

Flickr Photo Search Wrapper class, 699–700
GeographicLocation class, 689–690
parameters, 685–687
PhotoInformation class, 698–699
testing, 690–692
testing Term Extraction Wrapper class, 694–696
wrapping

Flickr Photo Search service, 696–698
generally, 687–689
Term Extraction service, 692–694

GeographicLocation class, 689–690
getting data as XML, 323–324

getting XML
Microsoft SQL Server 2005
AUTO query, 326, 327–328
EXPLICIT query, 326, 328–329
FOR XML AUTO query, 331–332
PATH query, 329–331
RAW query, 326–327

Oracle 10g relational database, 341–343
Xindice database, 345–348

getting XSLT values
calling templates, 249–250
described, 248–249
multiple templates for single element, 250–251

grammar, RELAX NG, 223–224
graph

Altova SemanticWorks, 763
RDF, 760–762

greater than sign (>), avoiding error with, 15, 252
Greek (windows-1253) character set, 23
<group> element, XML Schemas root document,

189–192
grouping controls, XForms, 733–737
guaranteed message exchange, Web services, 651

H
hCalendar, 97–98
hCard, 96–97
header

SOAP
actor attribute, 615–616
consuming messages, 631–633
creating messages, 630–631
described, 614–615, 629, 655
mustUnderstand attribute, 616
role attribute, 616

XSL-FO, 120–122
height property, CSS, 83
HelloWorld example

Web service, 594–596
XSL-FO, 109–110

hexBinary primitive data type, 186
hReview, 98–99
HTML (HyperText Markup Language), generating XSLT

output, 268–272
HTTP (HyperText Transfer Protocol)

handler, 703–704
verbs and URLs, 701–703

838

forms

37_777779 bindex.qxp 3/1/07 11:53 PM Page 838

I
IBM XMLParser for Java, 7
ID derived data type, 186
IDREF/IDREFS derived data types, 186
if element, 251–252
ignorableWhitespace() method, SAX, 390–391
image, adding to document, 823–825
#IMPLIED keyword, 161
import, 243
<import>

WSDL, 645–647
XML Schemas root document, 203–204

include, 243
<include>, XML Schemas root document, 204
indent, XML, 10
InfoPath form (Microsoft)

described, 750–754
XForms versus, 754–755
XML, saving, 798

input forms
Microsoft InfoPath

described, 750–754
XForms versus, 754–755

XForms
actions logic, 744–745
appearance, changing control, 733
children, common control, 731–732
clients, 755–756
controls, 727–730
described, 722–727
events logic, 743–744
grouping controls, 733–737
instance data, binding, 737–741
Microsoft InfoPath versus, 754–755
sample, 745–750
submit protocol, 741–743

XHTML, 721–722
inspection, Web services, 651
installing

Perl modules, 504
SAX, 378–379

instances
data, binding XForms, 737–741
number, specifying in DTDs, 151–152

int derived data type, 187
integer derived data type, 187
IntelliJ, 300
IntelliSense editor, 34–35

interface, Node
described, 361–363
inserting node before existing node, 364
new child node, appending, 364
new node, creating, 363–364
removing child node, 364
replacing node, 365
text values of elements, accessing, 365

internal entities, DTDs, 163–164
Internet Explorer XMLParser (Microsoft), 7, 13
invoice, XSL-FO working example, 119–120
ISO 639 language standard, 28
ISO 3166 language standard, 28
ISO-2022-JP (Japanese) character set, 23
ISO-8859-1 through 4 (Latin) character sets, 23

J
Japanese character set (ISO-2022-JP), 23
Java

building Web services with, 579
controlling XSLT, XQuery, and XPath processing

described, 491–493
JAXP, 493–499
XQJ, 499–500

Java/XML data binding, 486–491
parsing

with SAX, 472–473
with StAX, 474–477

RSS
reading, 556–558
writing, 560–562

Web services, consuming with
client application, running, 596–597, 599
HelloWorld service, 594–596
ProductService, consuming, 597–599

writing XML (serialization)
described, 477–478
JAXP serializer, 478–479
serializing using StAX, 479–480

with XML, described, 471–472
XML tree models

described, 480–481
DOM alternatives, 481
DOM4J, 483–484
JDOM, 482–483
XOM, 484–486

XPath, 293–295
XQuery, 314

839

Java

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 839

Java API for XML Processing. See JAXP
.java, renaming to .jws, 582–583
Java Virtual Machine (Microsoft), 108
JavaScript

data types
described, 407–408
language features, 409–410

Web page, adding to
functions, 406–407
problem, 406
tag, 406

Java/XML data binding, 486–491
JAXP (Java API for XML Processing)

described, 493
factory mechanism, 493–495
parser API, 495–496
transformation API, 496–498
validation API, 498–499

JSON data format, 425
.jws, renaming .java to, 582–583

K
Kay, Michael (XPath 2.0 Programmer’s Reference), 300
key function, 256

L
language derived data type, 187
language features, Ajax, 409–410
Latin character sets (ISO-8859-1 through 4), 23
length primitive data type, 201
less than sign (<), avoiding error with, 15, 252
let clause, 307, 309
libraries

described, 427–428
Microsoft, 428–431
Prototype, 432–434
RSS, writing, 562

list
RELAX NG types, 215–218
XSL-FO, 112–114

list simple type, 177–178
list-style property, CSS, 83
loading DOM

described, 358–359
readyState property, 359–360

long derived data type, 187
looping (for-each element), XSLT, 252–255

M
mapping service

Flickr Photo Search Wrapper class, 699–700
GeographicLocation class, 689–690
parameters, 685–687
PhotoInformation class, 698–699
testing, 690–692
testing Term Extraction Wrapper class, 694–696
wrapping

Flickr Photo Search service, 696–698
generally, 687–689
Term Extraction service, 692–694

margin property, CSS, 82
Mark Logic Server, 349
markup

document, 5
XHTML, 67–68

mashups, 700
maxExclusive primitive data type, 201
max-height property, CSS, 83
maxInclusive primitive data type, 202
maxLength primitive data type, 202
maxOccurs attribute, 193–195
max-width property, CSS, 83
message confidentiality, WS-* security, 657
message correlation, Web services, 651
message envelope, Web services, 650
message exchange (routing), Web services, 650
message integrity, WS-* security, 657
message, SOAP, 610–611
<message>, WSDL, 641–642
metadata, 5
microformats, XHTML

described, 94–95
hCalendar, 97–98
hCard, 96–97
hReview, 98–99
RelNoFollow, 95
Rel-Tag, 95

Microsoft Access
importing XML, 792–794
saving as XML, 794–798

Microsoft ASP.NET
consuming Web page, building, 589–591
HTTPModule, 713–714
Web reference, adding, 587–589

Microsoft Excel
editing documents, 777–782
workbooks, saving as XML, 773–777

840

Java API for XML Processing

37_777779 bindex.qxp 3/1/07 11:53 PM Page 840

Microsoft InfoPath form
described, 750–754
XForms versus, 754–755
XML, saving, 798

Microsoft Internet Explorer XMLParser, 7, 13
Microsoft Java Virtual Machine, 108
Microsoft libraries, 428–431
Microsoft .NET

casting XML types for compliance to, 459–460
deserializing XML, 444–447
RSS, writing, 559–560
serialization of XML

described, 435
output of serialized object, changing, 438–444
using XmlSerializer class, 436–438

XML in ASP.NET 2.0
described, 461
XmlDataSource server control, 462–466

Xml server control, 467–469
XmlDataSource server control

described, 462–466
namespace problem, 466–467

XmlReader class
casting XML types to .NET-compliant types, 459–460
sample, 454–457
schema validation, reading with, 457–459

XmlWriter
creating XML programmatically, 452–454
writing XML with, 450–452
XmlTxtWriter, writing XML using, 447–449

XPath, 295
XPathDocument class, 460–461

Microsoft Office. See also Microsoft Access; Microsoft
Excel; Microsoft Word

Open XML format, 799–802
OpenOffice, 802–805
resources, 806

Microsoft SQL Server 2005
retrieving XML
AUTO query, 326, 327–328
EXPLICIT query, 326, 328–329
FOR XML AUTO query, 331–332
PATH query, 329–331
RAW query, 326–327
SELECT queries, 325

stored procedures or functions, exposing as Web
services, 336–340

storing XML
article schema collection, applying to table, 334
article schema collection, creating, 333

bulk insert with OPENXML, 336
extracting attributes, 334–335
table, creating, 332–333
validating column, inserting into, 334

XQuery, 318–319
Microsoft Trace Utility

consuming application, modifying, 622–623
SOAP messages, viewing, 623–624
using, 622

Microsoft Visual Studio .NET 2003
benefits and disadvantages, 35
described, 33–35
schema development, 35

Microsoft Visual Studio 2005
basic editing, 35–37
described, 207–208
schema development, 38
WPF, 809–812
XSLT development, 38–39

Microsoft Web services test page, 575–576
Microsoft Windows character sets, 23
Microsoft Word

editing XML documents, 788–792
saving documents as XML, 782–788

Microsoft WSE (Web Services Enhancements)
client, 676–679
described, 665–666
exchange, result of, 679–681
functionality, 664–665
server

application, configuring, 669–673
building service, 676
credential verification class, 667–669
described, 666–667
diagnostics, configuring, 673–674
results, 674–676

version 1.0, 664
version 2.0, 664
version 3.0, 663–664

minExclusive primitive data type, 202
min-height property, CSS, 83
minLength primitive data type, 202
minOccurs attribute, XML Schemas root document,

192–193
min-width property, CSS, 83
mode attribute, 250–251
models, Java tree

described, 480–481
DOM alternatives, 481
DOM4J, 483–484

841

models, Java tree

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 841

models, Java tree (continued)
JDOM, 482–483
XOM, 484–486

modified simple box model hack, 91
modify() function, 319
modify method, 321–322
Mozilla XMLParser, 7
multicolumn layout, CSS, 92–94
multiple templates for single element, XSLT, 250–251
mustUnderstand attribute, 616

N
name classes, RELAX NG, 229–231
Name derived data type, 187
named complex types, reusability and, 181–183
NamedNodeMap interface, DOM, 366
namespaces

RELAX NG, 229–231
SAX callbacks, 388–389
syntax, 29–31
XmlDataSource problem, 466–467

naming attributes, 26
NCName derived data type, 187
negativeInteger derived data type, 187
nesting

elements, 10
WPF controls, 812–814
XPath comments, 286–287

.NET (Microsoft)
casting XML types for compliance to, 459–460
deserializing XML, 444–447
RSS, writing, 559–560
serialization of XML

described, 435
output of serialized object, changing, 438–444
using XmlSerializer class, 436–438

XML in ASP.NET 2.0
described, 461
XmlDataSource server control, 462–466

Xml server control, 467–469
XmlDataSource server control

described, 462–466
namespace problem, 466–467

XmlReader class
casting XML types to .NET-compliant types, 459–460
sample, 454–457
schema validation, reading with, 457–459

XmlWriter
creating XML programmatically, 452–454
writing XML with, 450–452
XmlTxtWriter, writing XML using, 447–449

XPath, 295
XPathDocument class, 460–461

NMTOKEN/NMTOKENS derived data type, 187
<Node>, 620
Node interface, DOM

described, 361–363
inserting node before existing node, 364
new child node, appending, 364
new node, creating, 363–364
removing child node, 364
replacing node, 365
text values of elements, accessing, 365

NodeList interface, DOM, 365–366
nodes

new DOM, 363–364
XPath, 278

nodes() function, 319
nodes method, 321
nonNegativeInteger derived data type, 187
nonPositiveInteger derived data type, 187
normalizedString derived data type, 187
NOTATION primitive data type, 186

O
objects, Ajax, 416–417
Office (Microsoft). See also Microsoft Access;

Microsoft Excel; Microsoft Word
Open XML format, 799–802
OpenOffice, 802–805
resources, 806

1.1 faults, SOAP
<detail>, 618
<faultcode>, 617–618
<faultfactor>, 618
<faultstring>, 618
message, 617

1.2 faults, SOAP
<Code>, 619
<Detail>, 621
message, 619
<Node>, 620
<Reason>, 620
<Role>, 620–621
<Subcode>, 620

842

models, Java tree (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 842

<Text>, 620
<Value>, 619–620

online XPath Sandbox, 296–297
Open XML format, 799–802
OpenOffice, 802–805
OPENXML, bulk insert with, 336
Oracle 10g relational database

described, 340
retrieving XML, 341–343
storing XML, 343–345

Oracle XMLParser, 7
order by clause, FLWOR, 307, 310
order of elements, RELAX NG, 220–223
otherwise element, 252
output of serialized object, changing, 438–444
output, XSLT, 245–247
overflow property, CSS, 83
Oxygen XML Editor 6.2

basic editing, 55–57
benefits and disadvantages, 62
converting between schema types, 58–60
RELAX NG, 232–233
schema development, 57–58
SVG viewer, 61
XSLT development, 60–61

P
packages, SAX, 381
padding property, CSS, 82
pages

adding JavaScript to Web
functions, 406–407
problem, 406
tag, 406

CSS style information, adding, 85–87
templates, fo:simple-page-master, 105–108

parameters, XSLT, 255–256
parsing

API, 495–496
Java

with SAX, 472–473
with StAX, 474–477

parsers, 6–7
whitespace, 13
XML data, 377–378

path expressions, XPath, 279
PATH query, Microsoft SQL Server 2005, 329–331
pattern primitive data type, 202

#PCDATA value, limiting elements with, 149–150
PDF, XSL-FO, 126–127
Perl

installing modules, 504
reading XML, 502–508
resources, 527
support for other XML formats, 509
writing XML, 508–509

Photo Search service, Flickr, 696–698
PhotoInformation class, 698–699
PHP, XPath, 296
pipe-delimited data representation, 5
plus sign (+) quantifier, 153–155
<portType>, WSDL, 642–643
position property, CSS, 83
positiveInteger derived data type, 187
predicate

Altova SemanticWorks, 766–767
Boolean expressions in, 281
XPath, 279–280

prefix, Altova SemanticWorks, 764
preserve-space, 243–244
primitive data types

XML schema, 185–186
XSD schema, 201–202

problems
debugging

Stylus Studio 2006, 54
with trace(), 292–293
with XMLSpy, 46
XSLT, 274–275

DOM, handling, 370–371
parser, avoiding, 14–15
SAX, 392–393

Process Flow Contract Description, 651
processing instructions, 25–26
processingInstruction() method, SAX, 388
ProductService Web services, consuming with Java,

597–599
Professional CSS: Cascading Sheets for Web Design

(Wiley Publishing), 81, 82
programmer’s directions

described, 23–25
DOM interface, 369
XML Schemas, 205–206
XPath, 286–287

Programming Perl (Wiley Publishing), 502
properties, CSS, 82–83

843

properties, CSS

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 843

protocol, SOAP
body

of request, 612–613
of response, 613

described, 607–609
encoding data types, 621
envelope, 611–612
header
actor attribute, 615–616
consuming messages, 631–633
creating messages, 630–631
described, 614–615, 629
mustUnderstand attribute, 616
role attribute, 616

message, 610–611
1.1 faults
<detail>, 618
<faultcode>, 617–618
<faultfactor>, 618
<faultstring>, 618
message, 617

1.2 faults
<Code>, 619
<Detail>, 621
message, 619
<Node>, 620
<Reason>, 620
<Role>, 620–621
<Subcode>, 620
<Text>, 620
<Value>, 619–620

tracing messages
described, 621
Microsoft Trace Utility, 622–624
XMLSpy, 624–629

transport protocols, 609–610
Web services, extending with

described, 653–655
extensions, 655–656
headers, 655

as XML, 609
protocols, C#, 578–579
PUBLIC and SYSTEM keywords, 145–146
purpose, XML’s, 3–6
Python

described, 509–510
reading XML, 510–514
resources, 527
support for other formats, 516
writing XML, 514–516

Q
QName primitive data type, 186
query() function, 319
query method, 320
question mark (?) quantifier, DTDs, 155–156
quotation marks

double (“), avoiding error with, 15
single (‘), avoiding error with, 15

R
RAW query, Microsoft SQL Server 2005, 326–327
RDF (Resource Description Framework)

Altova SemanticWorks
described, 762
graph example, 763
predicate, associating, 766–767
prefix, adding, 764
resource, adding, 764–766
triples, 767–769

core structure, 757–760
graph model, 760–762
XML schema, 769–771

reading XML
Perl
ForceArray parameter, 506
hash table, 507–508
hasref, converted to, 505–506
sample, 503–504
stream-based parsing, 506–507
XML:Simple library, 502–503, 505

Python
DOM support, 510–511
with SAX, 513–514
topretty XML support, 512
toxml output, 511–512

Ruby
output, 519–520
REXML prefix, 518–519
stream-based method, 517–518, 522–523
structure information, getting, 520–521
tree-based method, 517–518

readyState property, DOM, 359–360
Really Simple Syndication (RSS)

described, 531
reading with Atom

described, 548–550
with Java, 556–558
XmlDocument, 550–552
XmlReader, 552–556

844

protocol, SOAP

37_777779 bindex.qxp 3/1/07 11:53 PM Page 844

resources, 563
RSS 1.0, 540–542
RSS 2.0, 535–540
sample feeds by version, 532–534
versions listed, 532
writing with Atom

class libraries, 562
with Java, 560–562
with .NET, 559–560

<Reason>, 620
receiving events, SAX
DefaultHandler class, 383
described, 382–383

regular expressions, XPath, 287–288
relational databases. See also Microsoft SQL Server

2005
Oracle 10g

described, 340
retrieving XML, 341–343
storing XML, 343–345

XML Data Type Query and data modification
described, 319–320
exist() method, 321
modify method, 321–322
nodes method, 321
query method, 320
value method, 320–321

XQuery
described, 318
SQL Server 2005, 318–319

RELAX NG
annotating schemas, 231
attributes, defining schema with, 219–220
benefits of using, 211–212
compact schema, 236–237
grammar, defining, 223–224
merging schemas, 226–229
namespaces and name classes, 229–231
order of elements, 220–223
Oxygen editor, 232–233
resources, 238
schema, defining, 212–214
simple elements

declaring, 214–215
list types, 215–218
union types, 218–219

Trang multiformat schema converter, 233–236
types, reusing, 224–226

RelNoFollow, 95
Rel-Tag, 95

rendering table, 123–124
replace() function, 288
replacing node, DOM, 365
REpresentational State Transfer. See REST
request, SOAP body, 612–613
#REQUIRED keyword, 160–161
Resource Description Framework (RDF)

Altova SemanticWorks
described, 762
graph example, 763
predicate, associating, 766–767
prefix, adding, 764
resource, adding, 764–766
triples, 767–769

core structure, 757–760
graph model, 760–762
XML schema, 769–771

resources
Ajax, 434
Altova SemanticWorks, 764–766
Atom, 563
database, 350
Office, 806
Perl, 527
Python, 527
RELAX NG, 238
REST, 718
Ruby, 527
XHTML, 100

response, SOAP body of, 613
REST HTTP module, 714–715
REST (REpresentational State Transfer). See also

Geocode service
just-enough system (GET and POST URLs)

Contact class, 706–707
Contact Manager class, 707–711
Data Access Layer class, 711–712
described, 684, 700
HTTP handler, 703–704
HTTP verbs and URLs, 701–703
resources, defining, 700–701
RestHandler, 704–705

mashups, 700
pure example

adding to web.config, 716–717
ASP.NET HTTPModule, 713–714
REST HTTP module, 714–715
URL table, 713

pure system, 683–684
resources, 718

845

REST (REpresentational State Transfer)

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 845

RestHandler, 704–705
retrieving data as XML, 323–324
retrieving XML

Microsoft SQL Server 2005
AUTO query, 326, 327–328
EXPLICIT query, 326, 328–329
FOR XML AUTO query, 331–332
PATH query, 329–331
RAW query, 326–327

Oracle 10g relational database, 341–343
Xindice database, 345–348

retrieving XSLT values
calling templates, 249–250
described, 248–249
multiple templates for single element, 250–251

return clause, FLWOR expressions, 307, 310
reverse axis, XPath, 291–292
Rich Text Format (RTF), 67
<Role>, 620–621
role attribute, 616
root element
attributeFormDefault attribute, 172–173
elementFormDefault attribute, 174
targetNamespace attribute, 174–175
version attribute, 175
xml:lang attribute, 175–176

routing, Web services, 650
RSS 1.0, 540–542
RSS 2.0, 535–540
RSS (Really Simple Syndication)

described, 531
reading with Atom

described, 548–550
with Java, 556–558
XmlDocument, 550–552
XmlReader, 552–556

resources, 563
RSS 1.0, 540–542
RSS 2.0, 535–540
sample feeds by version, 532–534
versions listed, 532
writing with Atom

class libraries, 562
with Java, 560–562
with .NET, 559–560

RTF (Rich Text Format), 67
Ruby

described, 516–517
reading XML, 517–523
resources, 527

support for other XML formats, 526
writing XML, 523–526

S
sale item table, XSL-FO working example, 127–130
saving

Word documents as XML, 782–788
workbooks as XML, 773–777

SAX (Simple API for XML)
advantages and disadvantages, 403
architecture

basic application flow, 380–381
illustrated, 380

DefaultHandler class, 385–387
described, 377, 378
element data callback, 390
errors and warnings, handling, 392–393
ignorableWhitespace() method, 390–391
installing, 378–379
namespace callbacks, 388–389
packages, listed, 381
parsing XML data, 377–378
processingInstruction() method, 388
receiving events
DefaultHandler class, 383
described, 382–383

SAXParser class, 381–382
searching in XML file, 393–396
setDocumentLocator() method, 391
skippedEntity() method, 391
startDocument() and endDocument() methods,

387
startElement() and endElement() methods,

389–390
tree-based APIs, 378
validating XML, 399–402
writing XML contents, 396–399
XMLReader interface, 382, 384–385

SAXParser class, 381–382
schema

development
Altova XMLSpy 2006, 44–45
Oxygen XML Editor 6.2, 57–58
Stylus Studio 2006, 50–51
Visual Studio 2005, 38

RELAX NG
defining, 212–214
merging, 226–229

XmlReader class, reading with validation, 457–459

846

RestHandler

37_777779 bindex.qxp 3/1/07 11:53 PM Page 846

script editor, Altova XMLSpy 2006, 46–47
scripts, extending XSLT with, 257–258
searching in XML file, SAX, 393–396
security, WS-* specifications

credential exchange, 657
message confidentiality, 657
message integrity, 657

SELECT queries, Microsoft SQL Server 2005, 325
selected contacts, Ajax, 420
selecting XML, XQuery

XmlCursor, 317–318
XmlObject, 315–317

selectors, CSS, 84–85
SemanticWorks (Altova)

described, 762
graph example, 763
predicate, associating, 766–767
prefix, adding, 764
resource, adding, 764–766
triples, 767–769

<sequence> and <all> elements, 183–184
sequence concatenation (,) operator, 289
sequences, XPath, 282
serialization

described, 435
Java

described, 477–478
JAXP serializer, 478–479
serializing using StAX, 479–480

output of serialized object, changing, 438–444
Perl, 508–509
Python, 514–516
Ruby, 523–526
SAX contents, 396–399
using XmlSerializer class, 436–438
XmlTxtWriter, 447–449
XmlWriter, 450–452

server
Ajax query, 420–423
Microsoft WSE

application, configuring, 669–673
building service, 676
credential verification class, 667–669
described, 666–667
diagnostics, configuring, 673–674
results, 674–676

<service>, 645
service description, 651
service implementation, Axis, 583–586

service, mapping
Flickr Photo Search Wrapper class, 699–700
GeographicLocation class, 689–690
parameters, 685–687
PhotoInformation class, 698–699
testing, 690–692
testing Term Extraction Wrapper class, 694–696
wrapping

Flickr Photo Search service, 696–698
generally, 687–689
Term Extraction service, 692–694

services, Web
described, 565–570
discovering, 570–571
framework

binary attachments, 650
digital signature, 651
encyrption, 651
guaranteed message exchange, 651
inspection, 651
message correlation, 651
message envelope and controlled extensibility, 650
message exchange (routing), 650
Process Flow Contract Description, 651

Java
building with, 579
client application, running, 596–597, 599
HelloWorld service, 594–596
ProductService, consuming, 597–599

Microsoft WSE
client, 676–679
described, 665–666
exchange, result of, 679–681
functionality, 664–665
version 1.0, 664
version 2.0, 664
version 3.0, 663–664

Microsoft WSE server
application, configuring, 669–673
building service, 676
credential verification class, 667–669
described, 666–667
diagnostics, configuring, 673–674
results, 674–676

model, 649–650
SOAP, extending with

described, 653–655
extensions, 655–656
headers, 655

847

services, Web

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 847

services, Web (continued)
Tomcat

described, 580
setting up, 580–582

Windows forms, consuming with, 591–594
WSDL, defining
<binding>, 643–644
<definitions>, 638–640
described, 633–637
document structure, 637–638
<documentation>, 647–648
<import>, 645–647
<message>, 641–642
<portType>, 642–643
<service>, 645
<soap:binding>, 644
<soap:body>, 644–645
<soap:operation>, 644
<types>, 640–641

setDocumentLocator() method, 391
SGML (Standard Generalized Markup Language), 6, 68
short derived data type, 187
Simple API for XML. See SAX
simple elements, RELAX NG

declaring, 214–215
list types, 215–218

Simple Object Access Protocol. See SOAP
simplified box model hack, 91
single quotation marks (‘), avoiding error with, 15
skippedEntity() method, SAX, 391
slow service, building, 602–603
SOAP (Simple Object Access Protocol)

body
of request, 612–613
of response, 613

described, 607–609
encoding data types, 621
envelope, 611–612
header
actor attribute, 615–616
consuming messages, 631–633
creating messages, 630–631
described, 614–615, 629
mustUnderstand attribute, 616
role attribute, 616

message, 610–611
1.1 faults
<detail>, 618
<faultcode>, 617–618

<faultfactor>, 618
<faultstring>, 618
message, 617

1.2 faults
<Code>, 619
<Detail>, 621
message, 619
<Node>, 620
<Reason>, 620
<Role>, 620–621
<Subcode>, 620
<Text>, 620
<Value>, 619–620

tracing messages
described, 621
Microsoft Trace Utility, 622–624
XMLSpy, 624–629

transport protocols, 609–610
Web services, extending with

described, 653–655
extensions, 655–656
headers, 655

as XML, 609
<soap:binding>, 644
<soap:body>, 644–645
<soap:operation>, 644
spoken languages, tags, 12–13
SQL Server 2005 (Microsoft)

retrieving XML
AUTO query, 326, 327–328
EXPLICIT query, 326, 328–329
FOR XML AUTO query, 331–332
PATH query, 329–331
RAW query, 326–327
SELECT queries, 325

stored procedures or functions, exposing as Web
services, 336–340

storing XML
article schema collection, applying to table, 334
article schema collection, creating, 333
bulk insert with OPENXML, 336
extracting attributes, 334–335
table, creating, 332–333
validating column, inserting into, 334

XQuery, 318–319
standalone attribute, 23
Standard Generalized Markup Language (SGML), 6, 68
start and end tag, 8
startDocument() method, SAX, 387

848

services, Web (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 848

startElement() method, SAX, 389–390
stored procedures, exposing as Web services, 336–340
storing XML

databases, 324–325
Microsoft SQL Server 2005

article schema collection, applying to table, 334
article schema collection, creating, 333
bulk insert with OPENXML, 336
described, 332
extracting attributes, 334–335
table, creating, 332–333
validating column, inserting into, 334

Oracle 10g relational database, 343–345
Xindice database, 348–349

streaming feeds, RSS
described, 531
reading with Atom

described, 548–550
with Java, 556–558
XmlDocument, 550–552
XmlReader, 552–556

resources, 563
RSS 1.0, 540–542
RSS 2.0, 535–540
sample feeds by version, 532–534
versions listed, 532
writing with Atom

class libraries, 562
with Java, 560–562
with .NET, 559–560

string functions, XQuery, 312–313
string primitive data type, 186
strip-space, 243–244
style, CSS

box layout and cross-browser compatibility, 88–91
external reference with link element, 87–88
external reference with processing instructions, 87
levels, active, 81
multicolumn layout, 92–94
properties, 82–83
selectors, 84–85
style information, adding to page, 85–87
validating, 94

style information, CSS, 85–87
stylesheets, XSLT, including with include and

import, 243
Stylus Studio 2006

basic editing, 47–50
benefits and disadvantages, 54–55
debugging, 54

schema development, 50–51
XSLT development, 51–53

<Subcode>, 620
submit protocol, XForms, 741–743
substring() function, 288
summary table, XSL-FO, 130–131
SVG viewer, Oxygen XML Editor 6.2, 61
Sybase Adaptive Server Enterprise 15, 349
syntax

attributes
described, 26
empty, 26–27
naming, 26
uniqueness, 27
xml:lang, 28
xml:space, 28–29

comments, 23–25
declaration
encoding attribute, 22–23
standalone attribute, 23
version attribute, 22

document .xml file, 17–22
elements

described, 7–8
empty, 11
naming conventions for elements, 8–9
nesting, 10
start and end tag, 8

namespaces, 29–31
parsers, 6–7
processing instructions, 25–26
tags

CDATA sections, 16–17
content, 12
described, 7–8, 11–12
entity references, 14–15
spoken languages, 12–13
text length, 12
whitespace, 13–14

well-formed documents, 6
SYSTEM and PUBLIC keywords, 145–146
system-property function, 257

T
table

cells, XSL-FO, 122–123
Microsoft SQL Server 2005, creating, 332–333
rendering XSL-FO, 123–124
XSL-FO, 114–116

849

table

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 849

tags
CDATA sections, 16–17
content, 12
described, 7–8, 11–12
entity references, 14–15
JavaScript, adding to, 406
spoken languages, 12–13
text length, 12
whitespace, 13–14

TakeLongTime() WebMethod, 603–605
targetNamespace attribute, 174–175
templates, XSLT, 247
10g relational database, Oracle

described, 340
retrieving XML, 341–343
storing XML, 343–345

Term Extraction service, Geocode service, 692–694
Term Extraction Wrapper class, testing, 694–696
testing

Geocode service, 690–692
Term Extraction Wrapper class, 694–696
WebMethod, 576–578

<Text>, 620
text element, 248
Text interface, DOM, 369
text length tag, 12
text values, DOM, 365
text-align property, CSS, 82
text-decoration property, CSS, 82
thin- or thick-client, XAML, 808–809
Tidy

resource, 100
XHTML application, 73–77
XHTML UI application, 78–80

time primitive data type, 186
token derived data type, 187
Tomcat Web service

described, 580
setting up, 580–582

totalDigits primitive data type, 202
trace() function, 288
Trace Utility (Microsoft)

consuming application, modifying, 622–623
SOAP messages, viewing, 623–624
using, 622

tracing SOAP messages
described, 621
XMLSpy, 624–629

Trang multiformat schema converter, 233–236
transactions, Web services, 651

transformation
DOM, 371–373
JAXP, 496–498

transport protocols, SOAP, 609–610
tree models, Java

described, 480–481
DOM alternatives, 481
DOM4J, 483–484
JDOM, 482–483
XOM, 484–486

tree structure, XPath, 278–279
tree-based APIs, SAX, 378
triples, Altova SemanticWorks, 767–769
type element, 184–188
<types>, 640–641
types, reusing RELAX NG, 224–226

U
union (|) concatenation operator, 289
union simple type, 179
union types, RELAX NG, 218–219
uniqueness, attribute, 27
unordered() function, XPath, 288–289
unsignedByte/unsignedInt/unsignedLong/

unsignedShort derived data types, 187
updatexml(), 344
URL table, 713
US-ASCII (English) character set, 23
use attribute, XML Schemas root document, 200
use cases, XQuery, 304
user input forms

Microsoft InfoPath
described, 750–754
XForms versus, 754–755

XForms
actions logic, 744–745
appearance, changing control, 733
children, common control, 731–732
clients, 755–756
controls, 727–730
described, 722–727
events logic, 743–744
grouping controls, 733–737
instance data, binding, 737–741
Microsoft InfoPath versus, 754–755
sample, 745–750
submit protocol, 741–743

XHTML, 721–722
user-defined functions, XQuery, 313–314

850

tags

37_777779 bindex.qxp 3/1/07 11:53 PM Page 850

UTF-8 (Compressed Unicode) character set, 23
UTF-16 (Compressed UCS) character set, 23

V
validation

CSS, 94
DOM, 373–375
DTDs, 166–167
JAXP, 498–499
SAX, 399–402
XHTML, 69–72

<Value>, 619–620
value() function, 319
value method, 320–321
value-of element, 248
values, restricting in XML Schemas root document,

200–202
variables, XSLT, 255–256
version attribute, 22, 175
Vi editor, 62
Visual Studio .NET 2003 (Microsoft)

benefits and disadvantages, 35
described, 33–35
schema development, 35

Visual Studio 2005 (Microsoft)
basic editing, 35–37
described, 207–208
schema development, 38
WPF, 809–812
XSLT development, 38–39

W
Web browser

Ajax code, 426–427
CSS compatibility, 88–91
XPath, 297–298
XSLT, executing, 262–263

Web language
handler, 703–704
verbs and URLs, 701–703

Web page, adding JavaScript to
functions, 406–407
problem, 406
tag, 406

Web reference, ASP.NET, 587–589
Web Service Deployment Descriptor (WSDD) file,

creating, 586–587

Web services. See also WS-* specifications
asynchronous consumption

described, 601–602
slow service, building, 602–603
TakeLongTime() WebMethod, 603–605

Axis
described, 580
publishing, 582–587
setting up, 580–582

C#
building described, 571–574
consuming with ASP.NET, 587–591
Microsoft Web services test page, 575–576
protocols, altering, 578–579
WebMethod, testing, 576–578

caching, 599–600
composition

data, representing and communicating, 568
described, 567–570
discovering, 570–571

described, 565–570
discovering, 570–571
framework

binary attachments, 650
digital signature, 651
encyrption, 651
guaranteed message exchange, 651
inspection, 651
message correlation, 651
message envelope and controlled extensibility, 650
message exchange (routing), 650
Process Flow Contract Description, 651

Java
building with, 579
client application, running, 596–597, 599
HelloWorld service, 594–596
ProductService, consuming, 597–599

Microsoft test page, 575–576
Microsoft WSE

client, 676–679
described, 665–666
exchange, result of, 679–681
functionality, 664–665
version 1.0, 664
version 2.0, 664
version 3.0, 663–664

Microsoft WSE server
application, configuring, 669–673
building service, 676
credential verification class, 667–669

851

Web services

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 851

Web services, Microsoft WSE server (continued)
described, 666–667
diagnostics, configuring, 673–674
results, 674–676

model, 649–650
SOAP, extending with

described, 653–655
extensions, 655–656
headers, 655

Tomcat
described, 580
setting up, 580–582

Windows forms, consuming with, 591–594
WSDL, defining
<binding>, 643–644
<definitions>, 638–640
described, 633–637
document structure, 637–638
<documentation>, 647–648
<import>, 645–647
<message>, 641–642
<portType>, 642–643
<service>, 645
<soap:binding>, 644
<soap:body>, 644–645
<soap:operation>, 644
<types>, 640–641

Web Services Enhancements. See WSE
web.config, adding REST to, 716–717
WebMethod, testing, 576–578
Western European (windows-1252) character set, 23
when element, 252
where clause, FLWOR, 307, 309–310
whitespace

tags, 13–14
XSLT, controlling with strip-space, preserve-

space, and decimal-format, 243–244
whitespace primitive data type, 202
width property, CSS, 83
Wiley Publishing

Beginning Python, 510
Professional CSS: Cascading Sheets for Web Design,

81, 82
Programming Perl, 502

Windows forms, 591–594
Windows Presentation Foundation. See WPF
windows-1250 (Central European) character set, 23
windows-1251 (Cyrillic) character set, 23
windows-1252 (Western European) character set, 23

windows-1253 (Greek) character set, 23
Word (Microsoft)

editing XML documents, 788–792
saving documents as XML, 782–788

word order
attributes

described, 26
empty, 26–27
naming, 26
uniqueness, 27
xml:lang, 28
xml:space, 28–29

comments, 23–25
declaration
encoding attribute, 22–23
standalone attribute, 23
version attribute, 22

document .xml file, 17–22
elements

described, 7–8
empty, 11
naming conventions for elements, 8–9
nesting, 10
start and end tag, 8

namespaces, 29–31
parsers, 6–7
processing instructions, 25–26
tags

CDATA sections, 16–17
content, 12
described, 7–8, 11–12
entity references, 14–15
spoken languages, 12–13
text length, 12
whitespace, 13–14

well-formed documents, 6
workbooks, Excel, saving as XML, 773–777
WPF (Windows Presentation Foundation)

application, creating, 815
described, 809–812
document

building, 815–820
viewing, 820–823

image, adding to document, 823–825
nesting controls, 812–814
within Visual Studio 2005, 809–812
XPS file, saving document as, 825–829

wrapping Geocode service, 687–689

852

Web services, Microsoft WSE server (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 852

writing XML
Java

described, 477–478
JAXP serializer, 478–479
serializing using StAX, 479–480

Perl, 508–509
Python, 514–516
Ruby, 523–526
SAX contents, 396–399
XmlTxtWriter, 447–449
XmlWriter, 450–452

WS-* specifications
addressing, 657–658
attachments, 658
coordination, 658
core specifications, 659–663
described, 656
security

credential exchange, 657
message confidentiality, 657
message integrity, 657

WS-MetadataExchange, 658
WSDD (Web Service Deployment Descriptor) file,

creating, 586–587
WSDL Web services, defining
<binding>, 643–644
<definitions>, 638–640
described, 633–637
document structure, 637–638
<documentation>, 647–648
<import>, 645–647
<message>, 641–642
<portType>, 642–643
<service>, 645
<soap:binding>, 644
<soap:body>, 644–645
<soap:operation>, 644
<types>, 640–641

WSE (Web Services Enhancements)
client, 676–679
described, 665–666
exchange, result of, 679–681
functionality, 664–665
server

application, configuring, 669–673
building service, 676
credential verification class, 667–669
described, 666–667
diagnostics, configuring, 673–674
results, 674–676

version 1.0, 664
version 2.0, 664
version 3.0, 663–664

WS-I.org, 652–653
WS-MetadataExchange, 658
W3C validation service, 72

X
XAML (eXtensible Application Markup Language)

described, 807–808
thin- of thick-client, 808–809
WPF

application, creating, 815
described, 809–812
document, building, 815–820
document, viewing, 820–823
image, adding to document, 823–825
nesting controls, 812–814
within Visual Studio 2005, 809–812
XPS file, saving document as, 825–829

Xerces (Apache), 7
XForms

actions logic, 744–745
appearance, changing control, 733
children, common control, 731–732
clients, 755–756
controls, 727–730
described, 722–727
events logic, 743–744
grouping controls, 733–737
instance data, binding, 737–741
Microsoft InfoPath versus, 754–755
sample, 745–750
submit protocol, 741–743

XHTML (eXtensible HyperText Markup Language)
 element, 81
forms, 721–722
markup, evolution of, 67–68
microformats

described, 94–95
RelNoFollow, 95
Rel-Tag, 95

microformats, compound
hCalendar, 97–98
hCard, 96–97
hReview, 98–99

resources, 100
Tidy application, 73–77
Tidy UI application, 78–80

853

XHTML (eXtensible HyperText Markup Language)

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 853

XHTML (eXtensible HyperText Markup Language)
(continued)

validating, 69–72
versions, 68
W3C validation service, 72

Xindice database
retrieving XML, 345–348
storing XML, 348–349

XMetaL editor, 62
XML (eXtensible Markup Language)

in ASP.NET 2.0
described, 461
XmlDataSource server control, 462–466

Data Type Query and data modification
described, 319–320
exist() method, 321
modify method, 321–322
nodes method, 321
query method, 320
value method, 320–321

declaration, XML Schemas root document, 172
elements, reusing in DTDs, 152–153
schemas

Altova XMLSpy, 209–210
<annotation>, 206
commenting
DTDs, problem with, 169–171
Microsoft Visual Studio 2005, 207–208
RDF, 769–771
standard, 205–206

server control, 467–469
SOAP, 609
syntaxes, converting between, 272–274
tools, creating DTDs with, 166
Xindice database

retrieving XML, 345–348
storing XML, 348–349

XPath editor, 299
.xml file, 17–22
XML Schemas root document

declaring elements
atomic simple type, 176–177
complex types, 180–181
list simple type, 177–178
named complex types, reusability and, 181–183
<sequence> and <all> elements, 183–184
type element, 184–188
union simple type, 179

defining attributes
attribute groups, 202–203
default values, 199–200
described, 198–199
use attribute, 200
values, restricting, 200–202

described, 171–172
element restrictions

cardinality, 192
default values, 195–196
fixed values, 196–197
maxOccurs attribute, 193–195
minOccurs attribute, 192–193
null values, 197–198

<group> element, 189–192
<import>, 203–204
<include>, 204
root element
attributeFormDefault attribute, 172–173
described, 172
elementFormDefault attribute, 174
targetNamespace attribute, 174–175
version attribute, 175
xml:lang attribute, 175–176

XML declaration, 172
XML tree models

described, 480–481
DOM alternatives, 481
DOM4J, 483–484
JDOM, 482–483
XOM, 484–486

XmlCursor, invoking execQuery() from, 317–318
XmlDataSource server control

described, 462–466
namespace problem, 466–467

XmlDocument, 550–552
XMLHttpRequest, 410–415
xml:lang attribute, 28, 175–176
XmlObject, invoking execQuery() from, 315–317
XMLParser (Expat), 7
XMLParser for Java (IBM), 7
XMLParser (Mozilla), 7
XMLParser (Oracle), 7
XmlReader

described, 552–556
class

casting XML types to .NET-compliant types, 459–460
sample, 454–457
schema validation, reading with, 457–459

interface, 382, 384–385

854

XHTML (eXtensible HyperText Markup Language) (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 854

XMLReader interface, 382, 384–385
xmlsequence(), 344
XmlSerializer class, 436–438
xml:space attribute, 28–29
XMLSpy 2006 (Altova)

benefits and disadvantages, 47
described, 39–44
schema development, 44–45
script editor, 46–47
Spy debugging, 624–629
XML Schemas, 209–210
XSLT development, 46

XmlTxtWriter, writing XML using, 447–449
XmlWriter

creating XML programmatically, 452–454
writing XML with, 450–452
XmlTxtWriter, writing XML using, 447–449

XPath
axes, 281–282
in browser, 297–298
comments and nested comments, 286–287
debugging with trace(), 292–293
described, 277
Eclipse, 300
expressions

FLWOR expressions versus, 310–311
tuning, 284

function calls in path expressions, 285–286
//h1[1] different than (//h1)[1], 289–291
IntelliJ, 300
in Java, 293–295
many faces of a document, 283
on .NET, 295
nodes, 278
online XPath Sandbox, 296–297
path expressions, 279
in PHP, 296
predicates, 279–280
regular expressions, 287–288
reverse axis, 291–292
sequences, 282
tree structure, 278–279
union (|) and sequence concatenation (,) operators,

289
unordered() function, 288–289
when A != B Is different from not(A = B),

282–283
XML editors, 299

XPath 2.0 Programmer’s Reference (Kay), 300

XPathDocument class, 460–461
XPS file, saving WPF document as, 825–829
XQJ (XQuery API for Java), 499–500
XQuery

advantages, 304
described, 303–304
enclosed expressions, 306
expression, structure of, 304–305
FLWOR expressions

described, 306–307
for clause, 308–309
let clause, 309
order by clause, 310
return clause, 310
sample, 307–308
where clause, 309–310
XPath expressions versus, 310–311

functions
aggregate (count, avg, max, min, and sum), 312
built-in, described, 311–312
doc(), 312
string, 312–313
user-defined, 313–314

in Java, 314
relational databases

described, 318
SQL Server 2005, 318–319
XML Data Type Query and data modification,

319–322
sample, 305–306
selecting XML

XmlCursor, invoking execQuery() from, 317–318
XmlObject, invoking execQuery() from, 315–317

use cases, 304
XQuery API for Java (XQJ), 499–500
XSL-FO (eXtensible Stylesheet Language-Formatting

Objects)
basic formatting

described, 111–112
lists, 112–114
tables, 114–116

composition, 102–103
described, 101
Hello World example, 109–110
Microsoft Java Virtual Machine, 108
overview, 103–105
page templates, fo:simple-page-master,

105–108

855

XSL-FO (eXtensible Stylesheet Language-Formatting Objects)

In
de

x

37_777779 bindex.qxp 3/1/07 11:53 PM Page 855

XSL-FO (eXtensible Stylesheet Language-Formatting
Objects) (continued)

working example
described, 117–119
formatting table cells, 122–123
header, 120–122
high-level layout for invoice, 119–120
PDF, 126–127
rendering table, 123–124
sale item table, 127–130
summary table with total values for invoice, 130–131
XSLT code, 125–126

XSLT (XSL Transformations)
changes ahead in version 2.0, 263–268
code, XSL-FO, 125–126
conditional processing (if element), 251–252
debugging, 274–275
development

Altova XMLSpy 2006, 46
Oxygen XML Editor 6.2, 60–61
Stylus Studio 2006, 51–53
Visual Studio 2005, 38–39

executing
in browser, 262–263
at command line, 258–259
via code, 259–261

extending with script, 257–258
functions, built-in, 256–257
looping (for-each element), 252–255
output, generating

HTML, 268–272
XML syntaxes, converting between, 272–274

required syntax items
output, controlling, 245–247
stylesheets, including with include and import,

243
top-level elements, 242–243
whitespace and formatting, controlling with

strip-space, preserve-space, and
decimal-format, 243–244

resources, 276
retrieving values

calling templates, 249–250
described, 248–249
multiple templates for single element, 250–251

sample, 241–242
templates, 247
variables and parameters, 255–256

856

XSL-FO (eXtensible Stylesheet Language-Formatting Objects) (continued)

37_777779 bindex.qxp 3/1/07 11:53 PM Page 856

	Professional XML
	About the Authors
	Acknowledgments
	Contents
	Introduction
	What You Need for This Book
	Who Should Read This Book?
	What This Book Covers
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: XML Basics
	Chapter 1: XML Syntax
	The Purpose of XML
	XML Syntax and Rules
	XML Namespaces
	Summary

	Chapter 2: XML Editors
	Visual Studio .NET 2003
	Visual Studio 2005
	Altova XMLSpy 2006
	Stylus Studio 2006
	Oxygen XML Editor 6.2
	Other XML Tools
	Summary

	Part II: Presentation
	Chapter 3: XHTML and CSS
	Understanding XHTML
	Understanding CSS
	Using Microformats
	Summary
	Resources

	Chapter 4: XSL -FO
	The Composition of XSL
	XSL-FO Overview
	XSL-FO Basics
	Summary

	Part III: Def ining Structure
	Chapter 5: Document Type Definitions (DTDs)
	Why Document Type Definitions?
	Internal DTDs
	External DTDs
	Building Your Own DTD
	Using XML Tools to Create the DTD
	DTD Validation
	Summary

	Chapter 6: XML Schemas
	The Issues with DTDs
	Building the Root XML Schema Document
	Declaring Elements
	Putting XML Schema Document Together
	Commenting XML Schemas
	XML Schema Tools
	Summary

	Chapter 7: RELAX NG
	Why Another Schema Language?
	Defining a RELAX NG Schema
	Declaring Elements
	RELAX NG Tools
	RELAX NG Compact
	Summary
	Resources

	Part IV: XML as Data
	Chapter 8: XSLT
	What Is XSLT?
	XSLT Syntax
	Executing XSLT
	Changes with XSLT 2.0
	Generating Output with XSLT
	Debugging XSLT
	Summary
	Resources

	Chapter 9: XPath
	Major Features of XPath
	Lessons from the Trenches
	XPath in Java, .NET, and PHP
	Tools for XPath
	Summary
	References

	Chapter 10: XQuery
	What Is XQuery?
	A Simple XQuery Example
	Enclosed Expressions
	FLWOR Expressions
	XQuery Functions
	XQuery in Java
	XQuery in Relational Databases
	Summary

	Chapter 11: XML in the Data Tier
	XML and Databases
	Relational Databases
	XML Databases
	Other Databases
	Summary
	Resources

	Part V: Programming XML
	Chapter 12: XML Document Object Model (DOM)
	What Is DOM?
	XML Validation Using XML DOM
	Summary

	Chapter 13: Simple API for XML (SAX)
	Introducing XML Parsing
	SAX Architecture
	SAX Packages and Classes
	Searching in an XML File
	Writing XML Contents Using SAX
	XML Validation Using SAX
	Advantages and Disadvantages of SAX
	Summary

	Chapter 14:Ajax
	XMLHttpRequest
	The DOM
	Putting It All Together
	Ajax Libraries
	Ajax Resources
	Summary

	Chapter 15: XML and .NET
	The Serialization of XML
	Deserializing XML
	XmlWriter
	XmlReader
	Reading XML Using XPathDocument
	XML in ASP.NET 2.0
	Summary

	Chapter 16: XML and Java
	Reading and Writing XML
	XML Tree Models
	Summary

	Chapter 17: Dynamic Languages and XML
	Perl
	Python
	Ruby
	Summary
	Resources

	Chapter VI: XML Services
	Chapter 18: RSS and Atom
	What Is RSS?
	Specifications
	What Is Atom?
	Reading RSS and Atom
	Writing RSS and Atom
	Summary
	Resources

	Chapter 19: Web Services
	Why Web Services?
	The Composition of Web Services
	Building Web Services with C#
	Building Web Services with Java
	Consuming Web Services with C#
	Consuming Web Services with Java
	Caching Web Services
	Asynchronous Consumption of Web Services
	Summary

	Chapter 20: SOAP and WSDL
	SOAP Speak
	The Basics of SOAP
	Looking Closely at the SOAP Specification
	Tracing SOAP Messages
	Working with SOAP Headers
	Defining Web Services Using WSDL
	Summary

	Chapter 21: Advanced Web Services
	Expanding on a Foundation
	Web Services Framework — The Paper
	WS-I.org
	Extending XML Web Services
	WS-* Specifications
	Looking at Microsoft’s Web Services Enhancements 3.0
	Summary

	Chapter 22: REST
	Introducing the Basics of REST
	Accessing REST Services
	Creating REST Services
	Summary
	Resources

	Part VII: Applying XML
	Chapter 23: XML Form Development
	XForms Logic
	XForms Sample
	Alternatives to XForms
	Summary
	Resources

	Chapter 24: The Resource Description Framewo rk (RDF)
	The Core Structure of RDF
	The RDF Graph Model
	Using Altova’s SemanticWorks
	The RDF XML Schema
	Summary

	Chapter 25: XML in Office Development
	Using XML with Microsoft Excel
	Using XML with Microsoft Word
	Using XML in Other Office Applications
	Office 2007 — Open XML Format
	OpenOffice — The Open Document Format
	Summary
	Resources

	Chapter 26: XAML
	Thin or Thick?
	One More Application Style — Windows Presentation Foundation
	Summary

	Index

