
XML Programming
Bible

Brian Benz
with John R. Durant

a538292 FM.qxd 8/18/03 8:43 AM Page iii

XML Programming Bible

Published by
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
www.wiley.com

Copyright (c) 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Cataloging-in-Publication Data: 2003101925

ISBN: 0-7645-3829-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/QT/QZ/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

a538292 FM.qxd 8/18/03 8:43 AM Page iv

Contents at a Glance

Part I: Introducing XML . 1
Chapter 1: XML Concepts . 3
Chapter 2: XML Documents . 29
Chapter 3: XML Data Format and Validation . 47
Chapter 4: XML Parsing Concepts . 79
Chapter 5: Parsing XML with DOM . 91
Chapter 6: Parsing XML with SAX . 123
Chapter 7: XSLT Concepts . 173
Chapter 8: XSL Transformations . 191
Chapter 9: XSL Formatting Objects . 217

Part II: Microsoft Office and XML . 233
Chapter 10: Microsoft XML Core Services . 235
Chapter 11: Working with the MSXML DOM . 251
Chapter 12: Generating XML from MS Access Data 271
Chapter 13: Creating an Excel Spreadsheet from an XML Data Source 291

Part III: XML Web Applications Using J2EE 309
Chapter 14: XML Tools for J2EE: IBM, Apache, Sun, and Others 311
Chapter 15: Xerces . 323
Chapter 16: Xalan . 341
Chapter 17: XML APIs from Sun . 361

Part IV: Relational Data and XML . 429
Chapter 18: Accessing and Formatting XML from SQL Server Data 431
Chapter 19: Accessing and Formatting XML from Oracle Data 473
Chapter 20: Accessing and Formatting XML from DB2 509
Chapter 21: Building XML-Based Web Applications with JDBC 539
Chapter 22: Transforming Relational XML Output into Other Formats 591

Part V: Introducing Web Services . 623
Chapter 23: Web Service Concepts . 625
Chapter 24: SOAP . 635
Chapter 25: WSDL . 645
Chapter 26: UDDI . 655
Chapter 27: Microsoft Web Services . 665
Chapter 28: J2EE Web Services . 683

Part VI: Microsoft.NET and Web Services 697
Chapter 29: Creating and Deploying .NET Web Services 699
Chapter 30: Accessing .NET Web Services . 711
Chapter 31: Building a .NET Web Services Client 719

Part VII: Web Services and J2EE . 735
Chapter 32: Web Service Tools for J2EE: IBM, Apache, Sun, and Others 737
Chapter 33: Web Services with the Sun Java Web Services Developer Pack . . . 747
Chapter 34: Apache Axis . 773
Chapter 35: Accessing Web Services from Java Applications 801

Part VIII: Advanced Web Services . 833
Chapter 36: Accessing Relational Data via Web Services 835
Chapter 37: Authentication and Security for Web Services 871

Index . 885

Contents

Part I: Introducing XML 1

Chapter 1: XML Concepts . 3
What Is XML? . 3

Extensibility . 5
Structure . 5
Validity . 6

What Is XML Not? . 6
XML Standards and the World Wide Web Consortium 7
XML Elements and Attributes . 7

Elements . 7
Attributes . 8
Text . 8
Empty elements . 8

XML Document Structure . 9
Data Source Encoding . 9
Element and Attribute Structure . 10
XML Document Syntax . 12
XML Namespaces . 13

When to use namespaces . 14
XML Data Validation . 14

Validating XML documents with DTDs 16
Validating XML documents with Schemas 18

Special Characters and Entity References 22
Using entity references as variables . 23
Reserved character references . 24

XML 1.1 . 24
XML 1.1 new features . 25

Summary . 27

Chapter 2: XML Documents . 29
An Example XML Document . 29
XML Document Structure and Syntax . 32

Empty elements . 36
XML housekeeping . 36
Entity references and special characters 37

International XML with xml:lang . 37
Keeping Your Space with xml:space . 39
XML Namespaces . 40

When to use namespaces . 44
Element Name Tips . 45
Summary . 46

Chapter 3: XML Data Format and Validation 47
XML Parsers for Data Validation . 49
Document Type Definitions . 49

Applying DTDs . 51
DTD structure . 53

W3C XML Schemas . 62
W3C Schema data types . 62
W3C Schema elements . 65
W3C Schema element and data type restrictions 67
Namespaces and W3C Schemas . 68
An example W3C Schema document 68
Applying Schemas . 71
Schema structure and syntax . 72

Summary . 76

Chapter 4: XML Parsing Concepts . 79
Document Object Model (DOM) . 80

What is DOM? . 80
About DOM 1, DOM 2, and DOM 3 . 82

Simple API for XML (SAX) . 83
What is SAX? . 83
SAX 1 and SAX 2 . 83

About XML Parsers . 86
Apache’s Xerces . 87
IBM’s XML4J . 87
Sun’s JAXP . 87
Microsoft’s XML parser (MSXML) . 88

DOM or SAX: Which Parser to Use? . 88
Summary . 90

Chapter 5: Parsing XML with DOM . 91
Understanding the DOM . 92

The W3C DOM 1 Recommendation . 92
The W3C DOM 2 Recommendation . 93
The W3C DOM 3 Recommendation . 93
Microsoft MSXML DOM enhancements 95

DOM Interfaces and Nodes . 95
Understanding DOM nodes . 98
W3C DOM nodeTypes, constants, nodeNames, and nodeValues . . . 100

The MSXML DOM nodeTypeString property 100
DOM node properties . 101
W3C DOM node methods . 104
Other DOM node properties and methods 105

Summary . 121

Chapter 6: Parsing XML with SAX . 123
Understanding SAX . 124

Where SAX comes from . 124
SAX 1 and SAX 2 . 125
Microsoft MSXML SAX extensions . 125

Interfaces for SAX and MSXML . 126
SAX core interfaces . 127
SAX extension interfaces . 128
MSXML SAX extension interfaces . 129

SAX Methods and Properties . 130
SAX interfaces . 130
SAX helper classes . 143
SAX extension interfaces . 160
SAX extension helper classes . 163
MSXML Extension Interfaces . 167

Summary . 171

Chapter 7: XSLT Concepts . 173
Introducing the XSL Transformation Recommendation 173
How an XSL Transformation Works . 175

XSL stylesheets . 175
XSL for attributes and elements . 175

XSLT Elements . 179
XSL and XPath . 183
XSLT Extensions with EXSLT.org . 189
Summary . 190

Chapter 8: XSL Transformations . 191
To Begin... 191

XML to XML . 194
XML to text . 209
XML to HTML . 212

Summary . 216

Chapter 9: XSL Formatting Objects . 217
Understanding XSL Formatting Objects . 217
Understanding FOP Servers . 219
Converting XML to PDF . 219
Summary . 232

Part II: Microsoft Office and XML 233

Chapter 10: Microsoft XML Core Services 235
Getting Started . 235

System requirements and installation 236
Core files and versions . 238

Parsing and Features Overview . 241
Parsing . 241
Fundamental classes . 242
Other objects . 246
New objects . 247

Summary . 249

Chapter 11: Working with the MSXML DOM 251
Introduction . 252

DOM members . 252
Building XML-Based Applications . 263
Summary . 269

Chapter 12: Generating XML from MS Access Data 271
Introduction . 272
Exporting and Importing Data . 272

Exporting . 272
Importing . 284

Summary . 289

Chapter 13: Creating an Excel Spreadsheet
from an XML Data Source . 291

Introduction . 292
Importing XML . 292
Exporting XML . 304
Summary . 307

Part III: XML Web Applications Using J2EE 309

Chapter 14: XML Tools for J2EE: IBM, Apache,
Sun, and Others . 311

IBM Tools . 312
WebSphere Studio Application Developer and Workbench 312

IBM AlphaWorks . 313
Eclipse Tools . 315

Sun Tools . 316
Sun ONE . 317
The Java Web Services Developer Pack 317

Apache Tools . 318
XML Parsing Code: XML4J, Xerces, and JAXP: What Is What? 320
Summary . 321

Chapter 15: Xerces . 323
Downloading and Installing Xerces . 324
Parsing XML Documents in J2EE . 325

Parsing XML documents with DOM 325
Parsing XML documents with SAX . 334

Summary . 340

Chapter 16: Xalan . 341
Downloading and Installing Xalan . 342
Transforming XML Documents in J2EE . 343

Using Xalan to transform XML documents 343
Sending transformation output to the screen and using

an XML stylesheet reference . 349
Passing transformation output to DOM and SAX 351

Summary . 359

Chapter 17: XML APIs from Sun . 361
About the Java Community Process . 362
Introduction to the Sun Java

Web Services Developer Pack . 363
JAXP (Java API for XML Processing) 363
JAXB (Java Architecture for XML Binding) 363
JAXM (Java API for XML Messaging) 364
JSTL (Java Server Pages Standard Tag Library) 364
JAX-RPC (Java API for XML-Based RPC) 364
JAXR (Java API for XML Registries) 364
Java WSDP Registry Server . 364
SAAJ (SOAP with Attachments API for Java) 364

Developing with JAXP (Java API for XML Processing) 365
Swapping processors and parsers with JAXP 367
Working with JAXP and Xalan JAXP examples 370
Developing with JAXB (Java Architecture for XML Binding) 371
Developing with JSTL (JavaServer Pages Standard

Tag Library) . 389
Downloading and installing the JSTL 397
Working with the JSTL XML Processing Library 400

Summary . 428

Part IV: Relational Data and XML 429

Chapter 18: Accessing and Formatting
XML from SQL Server Data . 431

The XML Programming Bible Example Tables 432
Installing and Configuring SQLXML . 435
Viewing XML Results in Query Analyzer . 435
Accessing SQL Server Using HTTP . 436
Retrieving XML Data Using FOR XML . 444

Using RAW mode . 444
Using AUTO mode . 445
Using Explicit mode . 446

Updating SQL Server Data with XML . 451
Updating relational data using OPENXML 451
Creating an annotated W3C schema for SQL Server data 460
Using schemas to specify SQL Server table relationships 466
Using XML Bulk Load . 467
Updategrams . 469

Summary . 471

Chapter 19: Accessing and Formatting XML from Oracle Data . . . 473
The XML Programming Bible Example Tables 474
Installing and Configuring the Oracle Database and the Oracle XDK . . . 477

About Oracle XML DB . 477
About the Oracle XDK . 477

Developing Oracle XML Solutions with XML DB 478
Working with XML DB . 478
Working with multiple data rows using XML DB 485
Working with the XMLTYPE data type 487
Creating relational data from XML documents 489
Formatting XML documents with XMLFormat 497
XML resources for PL/SQL developers 499
A DBMS_XMLGEN example . 501

Working with the Oracle XDK . 504
Oracle and Java integration: JDBC and SQLJ 505

Summary . 508

Chapter 20: Accessing and Formatting XML from DB2 509
Installing DB2 and the DB2 XML Extender 509
The XML Programming Bible Example Tables 510
DB2 XML Functions . 513

Adding an XML document declaration 519
Grouping and ordering XML with XMLAGG() 520

Developing XML Solutions with the DB2 XML Extender 521
Binding and enabling databases for XML Extender 521
Working with Document Access Definitions (DAD) 523
Working with XML columns . 523
XML column mapping example . 524
XML collection SQL mapping DAD example 529
XML Collection RDB Node example 531
Checking your RDB Node DAD with the DAD Checker 535
Adding DADS and DTDs to the database 536

Summary . 537

Chapter 21: Building XML-Based Web Applications with JDBC . . . 539
About Java Database Connectivity (JDBC) 539
Introduction to the Sample Java Application – XMLPBXMLApp.java . . . 542

How the application works . 542
About the example SQL Server database 543

Creating the Java Application User Interface 543
Defining public variables and the application window 544
Setting objects in the Window and implementing

ActionListeners . 545
Defining the action for the source list 547
Defining the action for the quote list 547
Retrieving a list of authors from the Authors table via JDBC 548
Retrieving a list of quotes from a selected author 550

Generating Custom XML Output . 551
XML Servlets . 558
Example: A Three-Tier System Combining Java Applications,

Servlets, and SQL Server . 559
Prerequisites for Servlet Development . 560

Introducing the XML example servlets and client application 560
Running the Web Example Application . 561
Under the Hood of the Web Application Servlets 564

The XMLPBWebServletGetAuthorList Servlet 564
The XMLPBWebServletAppGetSingleAuthorList Servlet 566
The XMLPBWebServletBuildElementXML Servlet 569
The XMLPBWebServletBuildAttributeXML Servlet 572

A Multi-Tier Java Application . 575
Installing the XMLPBServletApp Java Application 575

Under the Hood of the Multi-Tier Application Servlets 576
The XMLPBAppServletGetAuthorList Servlet 576
The XMLPBAppServletGetSingleAuthorList Servlet 578
The XMLPBAppServletBuildElementXML Servlet 580
The XMLPBAppServletBuildAttributeXML Servlet 583

Under the Hood of the XML Quote Generator — Servlet
Edition Application . 586

Summary . 590

Chapter 22: Transforming Relational XML
Output into Other Formats . 591

Transformation Functions in Oracle,
DB2, and MS SQL Server . 592

MS SQL Server and XSL . 592
Oracle and XSL . 596
DB2 and XSL . 601

Transforming JDBC Result Sets to HTML 606
Building Data Islands with the Microsoft XML Core

Services (MSXML) . 611
Introduction to XML data islands . 611
The Microsoft XML Core Services (MSXML) 612
The Data Islands Example Page . 612
Creating a data island using JavaScript and MSXML 614
Transforming an XML document to an XML data island 616
Parsing data island data into a table 618
Linking XSL with HTML page design elements 619
Sorting data islands using JavaScript and XSL 619

Summary . 621

Part V: Introducing Web Services 623

Chapter 23: Web Service Concepts . 625
Introduction to Web Services . 625
Web Service Building Blocks . 626

SOAP (Simple Object Access Protocol) 627
WSDL (Web Services Description Language) 628
UDDI (Universal Description, Discovery and Integration) 628

Web Services Architecture . 629
Basic Web service architecture . 629
Extended Web service architectures 629

Web Service Models . 631
The call and response model . 631
The brokered calls model . 632
The chained model . 633

Serving Web Services . 633
Consuming Web Services . 634
Summary . 634

Chapter 24: SOAP . 635
Introduction . 635

SOAP format . 636
A SOAP request . 637

The HTTP header . 637
The SOAP request envelope . 639
A SOAP response . 642

Summary . 643

Chapter 25: WSDL . 645
WSDL Format . 645
Using WSDL . 649

Definitions . 649
Parts, types, and messages . 649
Operations and portTypes . 649
Bindings . 650
Services and ports . 650

Updating WSDL . 651
Editing WSDL . 652
Summary . 653

Chapter 26: UDDI . 655
UDDI Structure . 655

Finding Web services with UDDI . 656
UDDI APIs . 661
The Microsoft UDDI SDK . 663
Summary . 664

Chapter 27: Microsoft Web Services 665
The Microsoft SOAP Toolkit . 666

What’s in the SDK . 666
Overview of the MS SOAP component library 667

Server-Side Programming with MS SOAP 668
Client-Side Programming with MS SOAP . 675

Office XP Web Services Toolkit . 676
Utilities in the MS SOAP Toolkit . 680
Summary . 682

Chapter 28: J2EE Web Services . 683
Web Services: .NET or J2EE? . 683

Yeah, blah, blah, blah, Brian: Which one do I pick? 684
Don’t overlook smart clients! . 684
About portals . 685

J2EE Web Service Architecture . 687
Software Support for J2EE Web Services . 690
Apache Offerings . 691

Apache AXIS . 691
Web Services Invocation Framework (WSIF) 691
Web Services Inspection Language (WSIL) 691

XML security . 692
Jakarta Tomcat . 692

IBM Offerings . 692
WebSphere Application Server . 692
WebSphere Portal Server . 692
IBM AlphaWorks . 693

Eclipse Tools for J2EE Web Service Developers 693
BEA Offerings . 694
Sun Offerings . 694

Sun ONE Application Server . 694
The Sun Java Web Services Developer Pack 694
Summary . 695

Part VI: Microsoft.NET and Web Services 697

Chapter 29: Creating and Deploying .NET Web Services 699
Introduction . 700

Brief overview of .NET . 700
Web Services Class and Attributes . 703
Visual Studio .NET and Language Support 705
XML Support for Web Services . 707
Summary . 709

Chapter 30: Accessing .NET Web Services 711
Web Services Security . 711
Deploying .NET Web Services . 715
Upgrading Existing Applications . 716
Summary . 717

Chapter 31: Building a .NET Web Services Client 719
Introduction . 719
Browser-Based Client . 721
Windows-Based Client (PocketPC) . 730
Summary . 734

Part VII: Web Services and J2EE 735

Chapter 32: Web Service Tools for J2EE: IBM, Apache,
Sun, and Others . 737

Tools for Building J2EE Web Services . 738
Apache Offerings . 738

Web Services Invocation Framework (WSIF) 739
Web Services Inspection Language (WSIL) 739

XML Security . 740
Jakarta Tomcat . 740

IBM Offerings . 740
WebSphere Studio Application Developer and Workbench 740

IBM AlphaWorks . 741
Eclipse Tools . 742

Sun Offerings . 743
Sun ONE Studio . 743

The Sun Java Web Services Developer Pack 743
JAXP (Java API for XML Processing) 744
JAXB (Java Architecture for XML Binding) 744
JAXM (Java API for XML Messaging) 744
JSTL (Java Server Pages Standard Tag Library) 744
JAX-RPC (Java API for XML-Based RPC) 745
Java WSDP Registry Server . 745
SAAJ (SOAP with Attachments API for Java) 745

And Others . 746
Summary . 746

Chapter 33: Web Services with the Sun Java Web Services
Developer Pack . 747

JWSDP Overview . 748
The API Puzzle . 748
Java API for XML Messaging (JAXM) . 749

The JAXM provider model . 750
JAXM clients . 751
SOAP messages and SAAJ . 751
Connections . 752
JAXM package structure . 753
Profiles . 754
JAXM versus JMS . 754
Building a client . 755
Handling a SOAPFault . 759
The Provider Admin Tool . 759

Java API for XML-Based RPC (JAX-RPC) . 759
WSDL at work . 761
Developing clients . 762
Developing services (endpoints) . 765
Mapping data types . 766
Message handlers . 767
Using wscompile and wsdeploy . 767

Java API for XML Registries (JAXR) . 767
Capability profiles . 768
JAXR architecture . 768
A few registry scenarios . 769

Summary . 772

Chapter 34: Apache Axis . 773
The Axis Evolution . 773

Performance enhancements . 774
Flexibility and extensibility . 774
Supporting the SOAP specification 775
Improved interoperability . 775
Transport independence . 775
JAX-RPC and SAAJ compliance . 775
WSDL support . 775

Architecture Overview . 776
Message handlers and message chains 777
Subsystem overview . 778
Type mappings . 780

Installing and Running Axis . 781
Axis distribution files . 781
Copying WEBAPPS and LIB files . 782
Starting the server . 782

Building and Consuming a Simple Web Service 784
Setting up your environment . 785
Creating a service . 785
Building the client . 786

Deployment . 788
Dynamic deployment (JWS) . 788
WSDD deployment . 789

WSDL Tools . 794
WSDL2Java . 794
Java2WSDL . 797

Monitor SOAP Message with TCPMON . 798
TCPMON setup . 798
Monitoring messages . 798

Summary . 800

Chapter 35: Accessing Web Services from Java Applications 801
When NOT to Use J2EE Web Services . 802
Example: A Three-Tier System Combining Java Applications,

Web Services, and Relational Data . 802
Separating the user interface from the data access processes 803

Prerequisites for Developing J2EE Web Services 803
Downloading and installing AXIS . 803
Deploying Web service class, WSDL, and WSDD files 804
Running Web services on a J2EE application server 804
Running the Web services without a J2EE server 804
Installing the WSDL files . 806

Developing Web Services . 807
Inside the XMLPBWSServletGetAuthorList Web service 807
The XMLPBWSServletGetSingleAuthorList Web service 813

The XMLPBWSServletBuildElementXML Web service 815
The XMLPBWSServletBuildAttributeXML Web service 818

Inside the XMLPBWSApp J2EE Client Application 820
How the application works . 821

Creating the Java Application User Interface 822
Defining public variables and the application window 822
Setting objects in the window and implementing

ActionListeners . 823
Defining the action for the Author list 825
Defining the action for the Quote list 826
Retrieving a list of authors by calling a Web service 827
Retrieving a list of quotes from a selected author 828

Generating Custom XML Output . 829
Summary . 832

Part VIII: Advanced Web Services 833

Chapter 36: Accessing Relational Data via Web Services 835
MS SQL Server and Web services . 835
Installing and configuring SQLXML 836
Configuring IIS Virtual Directory Management Web Services 836
Handling Microsoft Web service data

in other platforms . 839
Oracle and Web services . 842
DB2 and Web services . 843

Example: A Multi-Tier Web Service Using J2EE and DB2 844
Prerequisites for Developing J2EE and DB2 Web Services 845

Downloading and installing the DB2 JDBC driver 845
Downloading and installing WORF . 846
Deploying Web service class, WSDL, and WSDD files 847
Running Web services on a J2EE application server 848
Running the Web services without a J2EE server 848
Installing the WSDL files . 850

Developing Web Services . 850
Inside the XMLPBWSMTServletGetAuthorList Web service 850
The XMLPBWSMTServletGetSingleAuthorList Web service 856
The XMLPBMTWSServletDB2Format Web service 858

Inside the XMLPBWSMTApp J2EE Client Application 859
How the application works . 860

Creating the Java Application User Interface 860
Defining public variables and the application window 860
Setting objects in the window and implementing

ActionListeners . 862
Defining the action for the author list 864
Defining the action for the quote list 864

Retrieving a list of authors by calling a Web service 865
Retrieving a list of quotes from a selected author 866

Generating DB2 XML Output . 867
Summary . 869

Chapter 37: Authentication and Security for Web Services 871
Secure, Reliable Web Service Requirements 872
Current Web Service Standards for Security and Authentication 873

Transport-Layer Security . 873
Public key infrastructure (PKI) . 874
Kerberos . 874

W3C Recommendations . 874
OASIS Security and Authentication Specifications 875

WS-Security . 875
WS-Policy framework . 876
Web Services Policy Assertions Language

(WS-PolicyAssertions) . 876
Web Services Policy Attachment (WS-PolicyAttachment) 877
Web Services Security Policy Language (WS-SecurityPolicy) 877
WS-Trust . 877
WS-SecureConversation . 877
Secure Assertion Markup Language (SAML) 878
XML Access Control Markup Language (XACML) 878

Web Service Security and Authentication in Java 878
Java community process initiatives for Web service security 879
Apache XML Security . 879
IBM XML Security Suite . 879

Web Service Security and Authentication in Microsoft .NET 880
Web Service Transactions: BPEL4WS and WSCI 880

Web Services Choreography Interface (WSCI) 881
BPEL4WS . 881
BPEL4WS, BPML, and WSCI working together 882
Tools for transactional Web services 882

Summary . 883

Index . 885

Introducing XML

Part I starts with an XML Concepts chapter that gives
an overview and History of XML, its purposes, and

comparisons against previous and alternative data integration
technologies. We then proceed to describe XML basic formats,
XML well-formedness and XML Validation against DTDs and
Schemas. The chapters on XSL Transformations and XSL
Formatting objects illustrate the transformation and format-
ting of XML data using XML via working examples. Part I ends
with examples of parsing XML documents, including examples
of XML parsing using SAX and DOM.

✦ ✦ ✦ ✦

In This Part

Chapter 1
XML Concepts

Chapter 2
XML Documents

Chapter 3
XML Data Format
and Validation

Chapter 4
XSL Parsing Concepts

Chapter 5
Parsing XML with
DOM

Chapter 6
Parsing XML with
SAX

Chapter 7
XSLT Concepts

Chapter 8
XSL Transformations

Chapter 9
XSL Formatting
Objects

✦ ✦ ✦ ✦

P A R T

II

b538292 pp01.qxd 8/18/03 8:43 AM Page 1

XML Concepts

This book is targeted at programmers who need to
develop solutions using XML. Being a programmer

myself, I know that theory without practical examples and
applications can be tedious, and you probably want to get
straight to real-world examples. You’re in luck, because this
book is full of working examples — but not in this chapter.
Some theory is necessary so that you have a fundamental
understanding of XML. I’ll keep the theory of XML and related
technologies to a minimum as I progress through the chap-
ters, but we do need to cover some of the basics up front.

This chapter provides readers who are new to XML with an
overview and history of XML, its purposes, and comparisons
against previous and alternative integration technologies, and
ends with an overview of the next XML version, XML 1.1. The
rest of the chapters in this part of the book will use real-world
examples to describe XML basic formats, the structure of well-
formed XML documents, and XML validation against DTDs and
Schemas. The chapters on XSL Transformations and XSL
Formatting Objects will illustrate the transformation and for-
matting of XML data using XSLT via working examples. This
part of the book will be finished with examples of parsing XML
documents, as well as specific examples of XML parsing using
Simple API for XML (SAX) and Document Object Model (DOM).

What Is XML?
XML stands for Extensible Markup Language, and it is used to
describe documents and data in a standardized, text-based for-
mat that can be easily transported via standard Internet proto-
cols. XML, like HTML, is based on the granddaddy of all markup
languages, Standard Generalized Markup Language (SGML).

SGML is remarkable not just because it’s the inspiration and
basis for all modern markup languages, but also because of
the fact that SGML was created in 1974 as part of an IBM
document-sharing project, and officially became an

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is XML?

What is XML not?

XML standards and
the World Wide Web
Consortium (W3C)

Elements and
attributes

Document structure

Data source
encoding

Document syntax

XML namespaces

XML data validation

Special characters
and entity references

XML 1.1

✦ ✦ ✦ ✦

c538292 ch01.qxd 8/18/03 8:43 AM Page 3

4 Part I ✦ Introducing XML

International Organization for Standardization (ISO) standard in 1986, long before
the Internet or anything like it was operational. The ISO standard documentation
for SGML (ISO 8879:1986) can be purchased online at http://www.iso.org.

The first popular adaptation of SGML was HTML, which was developed as part of a
project to provide a common language for sharing technical documents. The advent
of the Internet facilitated the document exchange method, but not the display of
the document. The markup language that was developed to standardize the display
format of the documents was called Hypertext Markup Language, or HTML, which
provides a standardized way of describing document layout and display, and is an
integral part of every Web browser and Website.

Although SGML was a good format for document sharing, and HTML was a good
language for describing the layout of the documents in a standardized way, there
was no standardized way to describe and share data that was stored in the docu-
ment. For example, an HTML page might have a body that contains a listing of
today’s closing prices of a share of every company in the Fortune 500. This data can
be displayed using HTML in a myriad of ways. Prices can be bold if they have
moved up or down by 10 percent, and prices that are up from yesterday’s closing
price can be displayed in green, with prices that are down displayed in red. The
information can be formatted in a table, and alternating rows of the table can be in
different colors.

However, once the data is taken from its original source and rendered as HTML in a
browser, the values of the data only have value as part of the markup language on
that page. They are no longer individual pieces of data, but are now simply pieces
of “content” wedged between elements and attributes that specify how to display
that content. For example, if a Web developer wanted to extract the top ten price
movers from the daily closing prices displayed on the Web page, there was no stan-
dardized way to locate the top ten values and isolate them from the others, and
relate the prices to the associated Fortune 500 Company.

Note that I say that there was no standardized way to do this; this did not stop
developers from trying. Many a Web developer in the mid- to late-1990s, including
myself, devised very elaborate and clever ways of scraping the data they needed
from between HTML tags, mostly by eyeballing the page and the HTML source
code, then coding routines in various languages to read, parse, and locate the
required values in the page. For example, a developer may read the HTML source
code of the stock price page and discover that the prices were located in the only
table on the HTML page. With this knowledge, code could be developed in the
developer’s choice of language to locate the table in the page, extract the values
nested in the table, calculate the top price movers for the day based on values in
the third column in the table, and relate the company name in the first column of
the table with the top ten values.

c538292 ch01.qxd 8/18/03 8:43 AM Page 4

5Chapter 1 ✦ XML Concepts

However, it’s fair to say that this approach represented a maintenance nightmare
for developers. For example, if the original Web page developers suddenly decided
to add a table before the stock price table on the page, or add an additional column
to the table, or nest one table in another, it was back to the drawing board for the
developer who was scraping the data from the HTML page, starting over to find the
values in the page, extract the values into meaningful data, and so on. Most devel-
opers who struggled with this inefficient method of data exchange on the Web were
looking for better ways to share data while still using the Web as a data delivery
mechanism.

But this is only one example of many to explain the need for a tag-based markup
language that could describe data more effectively than HTML. With the explosion
of the Web, the need for a universal format that could function as a lowest common
denominator for data exchange while still using the very popular and standardized
HTTP delivery methods of the Internet was growing.

In 1998 the World Wide Web Consortium (W3C) met this need by combining the
basic features that separate data from format in SGML with extension of the HTML
tag formats that were adapted for the Web and came up with the first Extensible
Markup Language (XML) Recommendation. The three pillars of XML are
Extensibility, Structure, and Validity.

Extensibility
XML does a great job of describing structured data as text, and the format is open
to extension. This means that any data that can be described as text and that can
be nested in XML tags will be generally accepted as XML. Extensions to the lan-
guage need only follow the basic XML syntax and can otherwise take XML wherever
the developer would like to go. The only limits are imposed on the data by the data
itself, via syntax rules and self-imposed format directives via data validation, which
I will get into in the next chapter.

Structure
The structure of XML is usually complex and hard for human eyes to follow, but it’s
important to remember that it’s not designed for us to read. XML parsers and other
types of tools that are designed to work with XML easily digest XML, even in its
most complex forms. Also, XML was designed to be an open data exchange format,
not a compact one — XML representations of data are usually much larger than
their original formats. In other words, XML was not designed to solve disk space or
bandwidth issues, even though text-based XML formats do compress very well
using regular data compression and transport tools.

c538292 ch01.qxd 8/18/03 8:43 AM Page 5

6 Part I ✦ Introducing XML

It’s also important to remember that XML data syntax, while extensible, is rigidly
enforced compared to HTML formats. I will get into the specifics of formatting rules
a little later in this chapter, and will show examples in the next chapter.

Validity
Aside from the mandatory syntax requirements that make up an XML document,
data represented by XML can optionally be validated for structure and content,
based on two separate data validation standards. The original XML data validation
standard is called Data Type Definition (DTD), and the more recent evolution of
XML data validation is the XML Schema standard. I will be covering data validation
using DTDs and Schemas a little later in this chapter, and showing working exam-
ples of data validation in the next chapter.

What Is XML Not?
With all the hype that continues to surround XML and derivative technologies such
as XSL and Web Services, it’s probably as important to review what XML is not as it
is to review what XML is.

While XML facilitates data integration by providing a transport with which to send
and receive data in a common format, XML is not data integration. It’s simply the
glue that holds data integration solutions together with a multi-platform “lowest
common denominator” for data transportation. XML cannot make queries against a
data source or read data into a repository by itself. Similarly, data cannot be format-
ted as XML without additional tools or programming languages that specifically
generate XML data from other types of data. Also, data cannot be parsed into desti-
nation data formats without a parser or other type of application that converts data
from XML to a compatible destination format.

It’s also important to point out that XML is not HTML. XML may look like HTML,
based on the similarities of the tags and the general format of the data, but that’s
where the similarity ends. While HTML is designed to describe display characteris-
tics of data on a Web page to browsers, XML is designed to represent data struc-
tures. XML data can be transformed into HTML using Extensible Style Sheet
Transformations (XSLT). XML can also be parsed and formatted as HTML in an
application. XML can also be part of an XML page using XML data islands. I’ll dis-
cuss XSLT transformations, XML parsing, and data islands in much more detail later
in the book.

c538292 ch01.qxd 8/18/03 8:43 AM Page 6

7Chapter 1 ✦ XML Concepts

XML Standards and the World Wide Web
Consortium

The World Wide Web Consortium (W3C) is where developers will find most of the
specifications for standards that are used in the XML world. W3C specifications are
referred to as “Recommendations” because the final stage in the W3C development
process may not necessarily produce a specification, depending on the nature of
the W3C Working Group that is producing the final product, but for all intents and
purposes, most of the final products are specifications.

W3C specifications on the Recommendation track progress through five stages:
Working Draft, Last Call Working Draft, Candidate Recommendation, Proposed
Recommendation, and Recommendation, which is the final stop for a specific ver-
sion of a specification such as XML.

W3C Working Groups produce Recommendations, and anyone can join the W3C
and a Working Group. More information on joining the W3C can be found at
http://www.w3.org/Consortium/Prospectus/Joining. Currently, W3C
Working Groups are working hard at producing the latest recommendations for
XML and related technologies such as XHTML, Xlink, XML Base, XML Encryption,
XML Key Management, XML Query, XML Schema, XML Signature, Xpath, Xpointer,
XSL, and XSLT.

XML Elements and Attributes
Because XML is designed to describe data and documents, the W3C XML
Recommendation, which can be found buried in the links at http://www.w3.org/
XML, is very strict about a small core of format requirements that make the differ-
ence between a text document containing a bunch of tags and an actual XML docu-
ment. XML documents that meet W3C XML document formatting recommendations
are described as being well-formed XML documents. Well-formed XML documents
can contain elements, attributes, and text.

Elements
Elements look like this and always have an opening and closing tag:

<element></element>

There are a few basic rules for XML document elements. Element names can con-
tain letters, numbers, hyphens, underscores, periods, and colons when namespaces
are used (more on namespaces later). Element names cannot contain spaces;

c538292 ch01.qxd 8/18/03 8:43 AM Page 7

8 Part I ✦ Introducing XML

underscores are usually used to replace spaces. Element names can start with a let-
ter, underscore, or colon, but cannot start with other non-alphabetic characters or
a number, or the letters xml.

Aside from the basic rules, it’s important to think about using hyphens or periods
in element names. They may be considered part of well-formed XML documents,
but other systems that will use the data in the element name such as relational
database systems often have trouble working with hyphens or periods in data iden-
tifiers, often mistaking them for something other than part of the name.

Attributes
Attributes contain values that are associated with an element and are always part
of an element’s opening tag:

<element attribute=”value”></element>

The basic rules and guidelines for elements apply to attributes as well, with a few
additions. The attribute name must follow an element name, then an equals sign (=),
then the attribute value, in single or double quotes. The attribute value can contain
quotes, and if it does, one type of quote must be used in the value, and another
around the value.

Text
Text is located between the opening and closing tags of an element, and usually rep-
resents the actual data associated with the elements and attributes that surround
the text:

<element attribute=”value”>text</element>

Text is not constrained by the same syntax rules of elements and attributes, so vir-
tually any text can be stored between XML document elements. Note that while the
value is limited to text, the format of the text can be specified as another type of
data by the elements and attributes in the XML document.

Empty elements
Last but not least, elements with no attributes or text can also be represented in an
XML document like this:

<element/>

This format is usually added to XML documents to accommodate a predefined data
structure. I’ll be covering ways to specify an XML data structure a little later in this
chapter.

c538292 ch01.qxd 8/18/03 8:43 AM Page 8

9Chapter 1 ✦ XML Concepts

XML Document Structure
Although elements, attributes, and text are very important for XML documents,
these design objects alone do not make up a well-formed XML document without
being arranged under certain structural and syntax rules. Let’s examine the struc-
ture of the very simple well-formed XML 1.0 document in Listing 1-1.

Listing 1-1: A Very Simple XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

</rootelement>

Most XML documents start with an <?xml?> element at the top of the page. This is
called an XML document declaration. An XML document declaration is an optional
element that is useful to determine the version of XML and the encoding type of the
source data. It is not a required element for an XML document to be well formed in
the W3C XML 1.0 specification. This is the most common XML document declara-
tion:

<?xml version=”1.0” encoding=”UTF-8”?>

There are two attributes contained in this XML declaration that are commonly seen
but not often explained. The XML version is used to determine what version of the
W3C XML recommendation that the document adheres to. XML parsers use this
information to apply version-specific syntax rules to the XML document.

Data Source Encoding
Data source encoding is one of the most important features for XML documents.
Most developers based in the United States or other English-speaking countries are
familiar with ASCII text only, and have not commonly tested the capacity of ASCII’s
128-member character set. However, with the advent of the Internet, HTML and

c538292 ch01.qxd 8/18/03 8:43 AM Page 9

10 Part I ✦ Introducing XML

especially XML developers have been forced to examine the limitations of ASCII,
and have worked with Unicode in HTML documents, even if they didn’t know that
they were (HTML code generators usually add the Unicode directives to HTML
pages).

Because the XML Recommendation was developed by the W3C, an international
organization which has offices at the Massachusetts Institute of Technology (MIT)
in the United States, the European Research Consortium for Informatics and
Mathematics (ERCIM) in France, and Keio University in Japan, Unicode was chosen
as the standard text format to accommodate the world’s languages, instead of just
English. Most developers are used to seeing UTF-8 or sometimes UTF-16 in the
encoding attribute of an XML document, but this is just the tip of the iceberg.

UTF stands for Universal Character Set Transformation Format, and the number 8 or
16 refers to the number of bits that the character is stored in. Each 8- or 16-bit con-
tainer represents the value of the character in bits as well as the identity of each
character and its numeric value. UTF-8 is the most common form of XML encoding;
in fact, an XML document that does not specify an encoding type must adhere to
either UTF-8 or UTF-16 to be considered a well-formed XML 1.0 document. Using
UTF-8, UTF-16, and the newer UTF-32, XML editors, generators and parsers can
identify and work with all major world languages and alphabets, including non-Latin
alphabets such as Middle Eastern and Asian alphabets, scripts, and languages. This
includes punctuation, non-Arabic numbers, math symbols, accents, and so on.

Unicode is managed and developed by a non-profit group called the Unicode
Consortium. For more information on encoding and a listing of encoding types for
XML, the Unicode consortium and the W3C has published a joint report, available
at the Unicode Consortium site:
http://www.unicode.org/unicode/reports/tr20.

Aside from UTF declarations for XML document encoding, any ISO registered
charset name that is registered by the Internet Assigned Numbers Authority (IANA)
is an acceptable substitute. For example, an XML 1.0 document encoded in
Macedonian would look like this in the XML declaration:

<?xml version=”1.0” encoding=”JUS_I.B1.003-mac”?>

A list of currently registered names can be found at
http://www.iana.org/assignments/character-sets.

Element and Attribute Structure
Under the optional XML declarations, every XML document contains a single-value
root element, represented in this case by the rootelement element:

<rootelement>

c538292 ch01.qxd 8/18/03 8:43 AM Page 10

11Chapter 1 ✦ XML Concepts

Other elements and text values can be nested under the root element, but the root
element must be first in the list and unique in the document. This can be compared
to a computer hard drive, which contains one root directory, with files and/or sub-
directories under the root directory.

Next in the sample XML document are the nested elements, attributes, and text, as
illustrated by the nested firstelement under the root element in our example:

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>

The firstelement has an attribute called position with a value of 1. The
position attribute provides additional data related to firstelement. In this case
it indicates that the original sorting position of the first element in the XML document
is 1. If the XML document data is altered and the order of the elements is rearranged
as part of that alteration, the position element may be useful for reordering the ele-
ment, or could be changed when the document is altered to reflect a new position of
the element in the XML document, regardless of the element name. In general,
attributes are great for adding more information and descriptions to the values of ele-
ments, and the text associated with elements, as shown in the previous example.

Nested under the firstelement element is the level1 element, which contains
an attribute, called children. The element name is used to describe the nesting
level in the XML document, and the value of the children attribute is used to
describe how many more levels of nesting are contained under the level1 ele-
ment, in this case, no more nested levels (0). The phrase This is level 1 of
the nested elements represents a text data value that is part of the level1 ele-
ment. Text data contains values associated with a tag.

The second element under the root element is called secondelement and is a
variation of the firstelement element. Let’s compare the firstelement and
secondelement elements to get a better sense of the structure of the document:

<secondelement position=”2”>
<level1 children=”1”>

<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

Like the firstelement, the secondelement has an attribute called position,
this time with a value of 2. Nested under the secondelement element is another
level1 element. The existence of this element illustrates the fact that well-formed
XML documents can have more than one instance of the same element name. The
only exception to this is the root element, which must be unique.

c538292 ch01.qxd 8/18/03 8:43 AM Page 11

12 Part I ✦ Introducing XML

Also, like the firstelement element, the level1 element also has an attribute
called children. The level1 element is again used to describe the nesting level in
the XML document, and the attribute is used to describe how many more levels of
nesting are contained under the level1 element. In this case, the children
attribute indicates that there is one more nesting level (1) inside the level1 ele-
ment. The phrase This is level 2 of the nested elements inside the
level2 element represents text data for the level2 element.

Last but not least, to finish the XML document, the rootelement tag is closed:

</rootelement>

XML Document Syntax
Another important aspect of a well-formed XML document is the document syntax.
XML represents data and not content or layout like other markup languages such as
HTML. Data has very strict structure and format rules. XML also has very strict
rules about the syntax used to represent that data. Developers who are used to
coding with the somewhat forgiving syntax of HTML will have some adjustments to
make when dealing with XML syntax.

For starters, XML element names must start and end with the same case. This is not
well-formed XML:

<level2>This is level 2 of the nested elements</Level2>

The tag name started with <level2> must be closed with </level2>, not
</Level2>, to be considered well-formed XML.

Quotes must be used on all attribute names. Something like this will not be consid-
ered well-formed XML:

<secondelement position=2>

Attributes must be formatted with single or double quotes to be considered well-
formed XML:

<secondelement position=”2”>

Comments should always follow the SGML comment tag format:

<!--Comment tags should always follow this format when in XML
documents-->

Element tags must always be closed. HTML and other forms of markup are some-
what forgiving, and can often be left open or improperly nested without affecting the
content or display of a page. XML parsers and other tools that read and manipulate
XML documents are far less forgiving about structure and syntax than browsers.

c538292 ch01.qxd 8/18/03 8:43 AM Page 12

13Chapter 1 ✦ XML Concepts

XML Namespaces
Namespaces are a method for separating and identifying duplicate XML element
names in an XML document. Namespaces can also be used as identifiers to describe
data types and other information. Namespace declarations can be compared to
defining a short variable name for a long variable (such as pi=3.14159....) in pro-
gramming languages. In XML, the variable assignment is defined by an attribute
declaration. The variable name is the attribute name, and the variable value is the
attribute value. In order to identify namespace declarations versus other types of
attribute declarations, a reserved xmlns: prefix is used when declaring a names-
pace name and value. The attribute name after the xmlns: prefix identifies the
name for the defined namespace. The value of the attribute provides the unique
identifier for the namespace. Once the namespace is declared, the namespace name
can be used as a prefix in element names.

Listing 1-2 shows the very simple XML document I reviewed in Listing 1-1, this time
with some namespaces to differentiate between nested elements.

Listing 1-2: A Very Simple XML Document with Namespaces

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement
xmlns:fe=”http://www.benztech.com/schemas/verybasic”
position=”1”>

<fe:level1 children=”0”>This is level 1 of the nested
elements</fe:level1>

</firstelement>
<secondelement
xmlns:se=”http://www.benztech.com/schemas/verybasic”
position=”2”>

<se:level1 children=”1”>
<se:level2>This is level 2 of the nested
elements</se:level2>

</se:level1>
</secondelement>

</rootelement>

In this example, I am using two namespaces as identifiers to differentiate two
level1 elements in the same document. The xmlns: attribute declares the name-
space for an XML document or a portion of an XML document. The attribute can be
placed in the root element of the document, or in any other nested element.

In our example, the namespace name for the firstelement element is fe, and the
namespace name for the secondelement is se. Both use the same URL as the value
for the namespace. Often the URL in the namespace resolves to a Web page that

c538292 ch01.qxd 8/18/03 8:43 AM Page 13

14 Part I ✦ Introducing XML

provides documentation about the namespace, such as information about the data
encoding types identified in the namespace. However, in this case, we are just using
the namespace to defined prefixed for unique identification of duplicate element
names. The URL does resolve to an actual document, but is just used as a place-
holder for the namespace name declarations.

Although the namespace declaration value does not need to be a URL or resolve
to an actual URL destination, it is a good idea to use a URL anyway, and to choose
a URL that could resolve to an actual destination, just in case developers want to
add documentation for the namespace to the URL in the future.

When to use namespaces
Namespaces are optional components of basic XML documents. However, name-
space declarations are recommended if your XML documents have any current or
future potential of being shared with other XML documents that may share the
same element names. Also, newer XML-based technologies such as XML Schemas,
SOAP, and WSDL make heavy use of XML namespaces to identify data encoding
types and important elements of their structure. I’ll be showing many more exam-
ples of namespaces being used in context to identify elements for XML document
data encoding, identification, and description as the examples progress through
the book.

XML Data Validation
As I’ve shown you so far in this chapter, there are very strict rules for the basic
structure and syntax of well-formed XML documents. There are also several formats
within the boundaries of well-formed XML syntax that provide standardized ways of
representing specific types of data.

For example, NewsML offers a standard format for packaging news information in
XML. NewsML defines what the element name should be that contains the title,
publication date, headline, article text, and other parts of a news item. NewsML
also defines how these elements should be arranged, and which elements are
optional. NewsML documents are well-formed XML, and they also conform to
NewsML specifications.

The validity of an XML document is determined by a Document Type Definition
(DTD) or an XML Schema. There are several formats for data validation to choose
from. A good listing for XML validation formats can be found at http://www.
oasis-open.org/cover/schemas.html. However, the most common and offi-
cially W3C sanctioned formats are the Document Type Definition (DTD) and the
W3C Schema, which I will focus on in this chapter.

Tip

c538292 ch01.qxd 8/18/03 8:43 AM Page 14

15Chapter 1 ✦ XML Concepts

XML documents are compared to rules that are specified in a DTD or schema. A
well-formed XML document that meets all of the requirements of one or more speci-
fications is called a valid XML Document.

XML documents do not validate themselves. XML validation takes place when a
document is parsed. Most of today’s parsers have validation built-in to the core
functionality, and usually support W3C Schema and DTD validation, and may sup-
port other types of validation, depending on the parser. In addition, defining a vari-
able or calling a different class in the parser can often disable validation by
ignoring DTD and/or Schema directives in the XML document. Parsers or parser
classes that don’t support validation are called nonvalidating parsers, and parsers
or classes that support validation are called validating parsers.

For example, the NewsML specification is defined and managed by the International
Press Telecommunications Council (IPTC). The IPTC has published a DTD that can
be used by news providers to validate NewsML news items (Reuters and other
news providers have NewsML-compatible news feeds). If a member of the press
wants to produce NewsML formatted news items, they can download the DTD from
the IPTC Website at http://www.iptc.org. Once the DTD is downloaded, XML
developers can validate their NewsML output against the DTD using a validating
parser.

Listing 1-3 shows the same simple XML document in Listing 1-1, but this time there
is a DTD and a Schema reference in the document.

Listing 1-3: A Very Simple XML Document with a Schema and
DTD Reference

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE rootelement SYSTEM “verysimplexml.dtd”>
<rootelement xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xsi:noNamespaceSchemaLocation=”verysimplexml.xsd”>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

</rootelement>

Note

c538292 ch01.qxd 8/18/03 8:43 AM Page 15

16 Part I ✦ Introducing XML

It is not common to see both DTD and Schema references in a single document that
verify the same structural rules, but it’s a good example of the fact that you can
combine Schema and DTD references in a single document. References to a DTD
and a schema can occur when an XML document is made up of two or more source
documents. The DTD and schema references maintain all of the structure rules that
were present in the original document. Dual references can also be used when ille-
gal XML characters are represented in an XML document by entity references. I’ll
describe entity references in more detail later in this chapter.

The following section of this chapter is intended to give you an introductory
overview of DTDs and W3C Schemas. For more detail on XML document validation
with real-world examples, please see Chapter 3.

Validating XML documents with DTDs
Document Type Definition (DTD) is the original way to validate XML document
structure and enforce specific formatting of select text, and probably still the most
prevalent. Although the posting of the XML declaration at the top of the DTD would
lead one to believe that this is an XML document, DTDs are in fact non-well-formed
XML documents. This is because they follow DTD syntax rules rather than XML
document syntax. In Listing 1-3, the reference is to the DTD located in the first ele-
ment under the XML document declaration:

<!DOCTYPE rootelement SYSTEM “verysimplexml.dtd”>

Listing 1-4 shows the verysimplexml.dtd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-4: Contents of the verysimplexml.dtd File

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT rootelement (firstelement, secondelement)>
<!ELEMENT firstelement (level1)>
<!ATTLIST firstelement

position CDATA #REQUIRED
>
<!ELEMENT level1 (#PCDATA | level2)*>
<!ATTLIST level1

children (0 | 1) #REQUIRED
>
<!ATTLIST secondelement

position CDATA #REQUIRED
>
<!ELEMENT level2 (#PCDATA)>
<!ELEMENT secondelement (level1)>

Cross-
Reference

c538292 ch01.qxd 8/18/03 8:43 AM Page 16

17Chapter 1 ✦ XML Concepts

Let’s go through this DTD line by line to get to know DTD structure. The first line is
an XML document declaration, which tells parsers the version of XML and the
encoding type for the document. The next line specifies that valid XML documents
must contain a firstelement and the secondelement, which have to be present
under the rootelement, and have to be in the order listed:

<!ELEMENT rootelement (firstelement, secondelement)>

Next, the DTD describes the firstelement. The firstelement must have a
level1 element nested directly under the firstelement.:

<!ELEMENT firstelement (level1)>

Next, the DTD specifies an attribute for the firstelement. The ATTLIST declara-
tion tells us that valid XML documents need a position attribute for each instance
of the firstelement (#REQUIRED), and that it is regular character data (CDATA):

<!ATTLIST firstelement
position CDATA #REQUIRED

>

The next element declaration tells us that the level1 element can contain one of
two things. The | is equivalent to an or in a DTD. The level1 element can contain
another nested element called level2, or a value of parsed character data
(PCDATA):

<!ELEMENT level1 (#PCDATA | level2)*>

The next ATTLIST declaration tells us that level1 can have one of two values, 0 or
1:

<!ATTLIST level1
children (0 | 1) #REQUIRED

>

The ATTLIST declaration for secondlement tells us that valid XML documents
need a position attribute for each instance of the secondelement (#REQUIRED),
and that it is regular character data (CDATA):

<!ATTLIST secondelement
position CDATA #REQUIRED

>

Following the nesting deeper into the document, a declaration for the level2 ele-
ment is defined. The level2 element declaration simply states that the element
must contain a value of parsed character data (PCDATA):

<!ELEMENT level2 (#PCDATA)>

c538292 ch01.qxd 8/18/03 8:43 AM Page 17

18 Part I ✦ Introducing XML

Last but not least, the secondelement is defined, along with a mandatory level1
element nested underneath it:

<!ELEMENT secondelement (level1)>

As you can see from the last few lines of this DTD, the element and attribute decla-
rations do not have to be in the same order as the element and attributes that they
represent. It is up to the parser to reassemble the DTD into something that defines
the relationship of all the elements and enforces all the rules contained in each line
of the DTD.

Validating XML documents with Schemas
The W3C Schema is the officially sanctioned Schema definition. Unlike DTDs, the for-
mat of W3C Schemas follows the rules of well-formed XML documents. The Schema
also allows for much more granular control over the data that is being described.
Because of the XML format and the detailed format controls, Schemas tend to be
very complex and often much longer than the XML documents that they are describ-
ing. Paradoxically, Schemas are often much more easy for developers to read and fol-
low, due to the less cryptic nature of the references in Schemas versus DTDs.

References to schemas are defined by creating an instance of the XMLSchema-
instance namespace. Here is the Schema declaration in the XML document in
Listing 1-3:

<rootelement xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xsi:noNamespaceSchemaLocation=”verysimplexml.xsd”>

In this case, the namespace declaration reference to http://www.w3.org/2001/
XMLSchema-instance resolves to an actual document at that location, which is a
brief description of the way that the W3C Schema should be referenced. The
noNamespaceSchemaLocation value tells us that there is no predefined names-
pace for the Schema. This means that all of the elements in the XML document
should be validated against the schema specified. The location of the Schema I am
using is verysimplexml.xsd. Because there is no path defined, the file containing the
schema should be located in the same directory as the XML file to be validated by
the Schema.

You can also define the schema location, and map it to a specific namespace by
using the schemaLocation attribute declaration instead of noNamespace
SchemaLocation. If you do so, you have to declare a namespace that matches the
schemaLocation attribute value. The declaration must be made before you refer-
ence the schema in a schemaLocation attribute assignment. Here’s an example of
a schemaLocation assignment in a root element of an XML document:

<rootelement
xmlns:fe=”http://www.benztech.com/schemas/verybasic”
xsi:schemaLocation=”http://www.benztech.com/schemas/verybasic
“>

c538292 ch01.qxd 8/18/03 8:43 AM Page 18

19Chapter 1 ✦ XML Concepts

Listing 1-5 shows the verysimplexml.xsd file that is referred to in the XML docu-
ment in Listing 1-3.

Listing 1-5: Contents of the verysimplexml.xsd File

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:element name=”firstelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:boolean”
use=”required”/>

</xs:complexType>
</xs:element>
<xs:element name=”level1”>

<xs:complexType mixed=”true”>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:element ref=”level2”/>
</xs:choice>
<xs:attribute name=”children” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:NMTOKEN”>

<xs:enumeration value=”0”/>
<xs:enumeration value=”1”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>
<xs:element name=”level2” type=”xs:string”/>
<xs:element name=”rootelement”>

<xs:complexType>
<xs:sequence>

<xs:element ref=”firstelement”/>
<xs:element ref=”secondelement”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=”secondelement”>

<xs:complexType>
<xs:sequence>

<xs:element ref=”level1”/>
</xs:sequence>
<xs:attribute name=”position” type=”xs:byte”
use=”required”/>

</xs:complexType>
</xs:element>

</xs:schema>

c538292 ch01.qxd 8/18/03 8:43 AM Page 19

20 Part I ✦ Introducing XML

I’ll go through this code line by line to introduce readers to the W3C Schema XSD
format. After the declaration, the next line refers to the xs namespace for XML
Schemas. The reference URL, http://www.w3.org/2001/XMLSchema, actually
resolves to the W3C Website and provides documentation for Schemas, as well as
reference materials for data types and Schema namespace formatting.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

The first element definition describes the firstelement as a complex data type,
that the element contains one nested element called level1, and an attribute
called position, and that the attribute is required.

<xs:element name=”firstelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:boolean”
use=”required”/>

</xs:complexType>
</xs:element>

The next element describes the level1 element, that it is an optional element
(minOccurs=”0”), and that the level1 element can occur an unlimited number of
times in the document (maxOccurs=”unbounded”). Nested in the level1 element
is a reference to the level2 element, just as it is in the document. Next, the chil-
dren attribute is specified as required, and defined as a simple Schema data type
called NMTOKEN value for the base attribute, which is, for the purposes of this
schema, a string. The children string must be one of two predefined values, “0”
and “1”, as defined by the enumeration values nested inside of the restriction ele-
ment.

<xs:element name=”level1”>
<xs:complexType mixed=”true”>

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element ref=”level2”/>

</xs:choice>
<xs:attribute name=”children” use=”required”>

<xs:simpleType>
<xs:restriction base=”xs:NMTOKEN”>

<xs:enumeration value=”0”/>
<xs:enumeration value=”1”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:element>

c538292 ch01.qxd 8/18/03 8:43 AM Page 20

21Chapter 1 ✦ XML Concepts

Because the level2 element has no attributes or nested elements, it can be
described in one line and referred to as a nested element in the level1 element via
the ref= reference:

<xs:element name=”level2” type=”xs:string”/>
<xs:element ref=”level2”/>

As with the DTD example, the element and attribute declarations in a W3C Schema
do not have to be in the same order as the element and attributes that they repre-
sent in an XML document. Like the DTD, it is up to the parser to reassemble the
Schema into something that defines the relationship of all the elements and
enforces all the rules contained in each line of the Schema, regardless of the order.
The next element in this Schema example is the rootelement. The rootelement
must have a firstelement and a secondelement nested under it to be consid-
ered a valid XML document when using this Schema. The previous definitions for
the firstelement, secondelement, and all the nested elements underneath
them are defined earlier in the Schema.

<xs:element name=”rootelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”firstelement”/>
<xs:element ref=”secondelement”/>

</xs:sequence>
</xs:complexType>

</xs:element>

The schema defines the secondelement, which must contain a nested level1 ele-
ment, and have an attribute named position, this time a byte value.

<xs:element name=”secondelement”>
<xs:complexType>

<xs:sequence>
<xs:element ref=”level1”/>

</xs:sequence>
<xs:attribute name=”position” type=”xs:byte”
use=”required”/>

</xs:complexType>
</xs:element>

Finally, the closing of the schema tag indicates the end of the schema.

</xs:schema>

c538292 ch01.qxd 8/18/03 8:43 AM Page 21

22 Part I ✦ Introducing XML

Special Characters and Entity References
The W3C XML Recommendation also supports supplements to the default encod-
ing. Special characters in a well-formed XML document can be referenced via a
declared entity, Unicode, or hex character reference. Entity references must start
with an ampersand (&), Unicode character references start with an ampersand and
a pound sign (&#), and hexadecimal character references start with an ampersand,
pound sign, and an x (&#x). All entity, Unicode, and hexadecimal references end
with a semicolon (;).

Listing 1-6 shows a simple XML document that uses Entity, Unicode, and Hex refer-
ences to generate a copyright symbol ((c)) and a registered trademark symbol
((r)) in an XML document.

Listing 1-6: Entity, Unicode, and Hex Character References in
an XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE rootelement SYSTEM “specialcharacters.dtd”>
<rootelement>

<entityreferences>© ®</entityreferences>
<unicodereferences>© ®</unicodereferences>
<hexreferences>© ®</hexreferences>

</rootelement>

The values in the unicodereferences and hexreferences elements are the
Unicode and hex values that represent the symbols. Both follow the character refer-
ence rules outlined earlier. The addition of a DTD is necessary for the entity refer-
ences in the entityreferences element. The values for the entity references
must be defined outside of the XML document. Listing 1-7 shows the specialcharac-
ters.dtd file, including the entity definitions for © and ®. This very basic
DTD defines the structure of the document, and also defines two entity references
and their values. I’ve created a Hex and a Unicode reference to illustrate that entity
references in XML documents can refer to either format. The first ENTITY tag in the
DTD defines the copy reference as the hex character reference %A9. The value fol-
lows XML rules for formatting a hex character reference, which makes the hex value
“©”. The second ENTITY tag refers to the Unicode character 174, formatted
as “®” according to XML document Unicode character reference rules.

c538292 ch01.qxd 8/18/03 8:43 AM Page 22

23Chapter 1 ✦ XML Concepts

Listing 1-7: The specialcharacters.dtd File with Entity
Definitions for © and ®

<?xml version=”1.0” encoding=”UTF-8”?>
<!ENTITY copy “©”>
<!ENTITY reg “®”>
<!ELEMENT rootelement (entityreferences, unicodereferences,
hexreferences)>
<!ELEMENT entityreferences (#PCDATA)>
<!ELEMENT hexreferences (#PCDATA)>
<!ELEMENT unicodereferences (#PCDATA)>

Listing 1-8 shows the output from the XML document, with the resolved character
references. This is what the document looks like when the character and entity ref-
erences are rendered by a Microsoft Internet Explorer 6 browser.

Listing 1-8: MSIE Rendered Character and Entity References
Using the specialcharacters.dtd File

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE rootelement (View Source for full doctype...)>
<rootelement>

<entityreferences>(c) (r)</entityreferences>
<unicodereferences>(c) (r)</unicodereferences>
<hexreferences>(c) (r)</hexreferences>

</rootelement>

Using entity references as variables
Entity references can also be used as variables and combined with other entity ref-
erences in a DTD, which is a handy way of standardizing certain declarations and
other unalterable components of an XML document. For example, an entity refer-
ence called copyline can be created in a DTD like this:

<!ENTITY copy “©”>
<!ENTITY copyline “© Benz Technologies, Inc, all rights
reserved;”>

c538292 ch01.qxd 8/18/03 8:43 AM Page 23

24 Part I ✦ Introducing XML

When a reference to the ©line; entity is made in an XML document, the out-
put would look like this:

(c) Benz Technologies, Inc, all rights reserved

Using this technique ensures that XML document validation imposes a standard for-
mat for certain important pieces of text in an XML document, as well as the struc-
ture of the document.

Reserved character references
All of the character reference formats defined earlier include an ampersand. So how
do you represent an ampersand in XML documents? To accommodate ampersands
and four other special characters that are part of the XML core syntax special
reserved character references are defined. Less than and greater than symbols
(which are used to define XML elements), and quotes (which are used to define
attribute values) are supported via special predefined character substitutions with-
out any Entity, Unicode, or Hex references needed. An ampersand (&) is used at the
beginning and a semicolon (;) is placed at the end of the reference. Table 1-1 shows
the reserved character entity and its reference.

Table 1-1
Reserved Character Entities and References

Entity Reference Special Character

& ampersand (&)

&apos apostrophe or single quote (‘)

> greater-than (>)

< less-than (<)

" double quote (“)

XML 1.1
XML 1.1 represents an incremental development of the W3C XML recommendation.
The new recommendation is actually split into two significant recommendations,
XML 1.1 and XML Namespaces 1.1. Most of the new features are “behind the
scenes” enhancements, which will have little or no effect on most XML applications.
For example, the new way of handling line-endings in XML 1.1 documents will prob-
ably affect developers who are coding XML 1.1 parsers or XML 1.1 development

c538292 ch01.qxd 8/18/03 8:43 AM Page 24

25Chapter 1 ✦ XML Concepts

tools. They will probably not, however, significantly affect developers who are using
XML 1.1 parsers or development tools to develop XML applications.

XML 1.1 new features
New character sets accommodation for evolving Unicode specifications form the
base of new features for XML 1.1. Since the first W3C XML document recommenda-
tion was released in 1998, Unicode has expanded to accommodate much more of
the alphabets and characters of the world. This was addressed to some extent in
the second edition of the XML Recommendation in 2000, but the newer recommen-
dation goes beyond the second edition to redefine what a well-formed document is,
based on new Unicode standards.

Defining XML 1.1 documents
The version number in the optional XML declaration defines XML 1.1 documents,
like this:

<?xml version=”1.1”>

Any document that does not specifically state the XML document version as 1.1 is
treated as an XML 1.0 document. XML 1.1 documents are backward compatible with
XML 1.0 documents. There is an exception: Some new Unicode characters that XML
1.1 processors recognize as part of well-formed element, attribute, and namespace
names are not accepted by XML 1.0 document syntax rules. These characters could
already be used in XML 1.0 text and attribute values. XML 1.1 officially adds these
characters and character sets into structural items of XML documents — element
names, attribute names, and namespaces.

XML 1.1 character sets
A more inclusive philosophy is the basis of XML 1.1. This is a reaction to the evolu-
tion of Unicode specifications, which has outpaced XML recommendation updates.
Instead of the XML 1.0 approach of defining which characters cannot be included
within XML documents and considering markup with undefined characters as not
well formed, XML 1.1 instead defines which characters can specifically not be
included in well-formed XML documents and considers any undefined characters as
part of well-formed XML. This makes it easier to accommodate developing Unicode
specifications. This rule applies to all XML markup, including elements, attributes,
and namespaces. XML 1.0 documents will be limited to the character set defined in
Unicode 2.0, and XML 1.1 documents theoretically should handle any Unicode from
2.0 to the current 3.2 and beyond.

New characters and the new philosophy will be supported by the requirement of
normalization in XML 1.1 document parsed entities. This means that XML 1.1 pro-
cessors that generate data will have to conform to the W3C Character Model for the

c538292 ch01.qxd 8/18/03 8:43 AM Page 25

26 Part I ✦ Introducing XML

World Wide Web 1.0 (CHARMOD), currently at the “Working Draft” stage of the W3C
Recommendation process, and XML 1.1. Next, the character data should be
resolved into one of five formats: Cdata, CharData, content, name, or nmtoken.
Parsers will have to verify normalization based on the same character model.

XML 1.1 line-end characters
Another feature of XML 1.1 is the capability to handle line-end characters generated
in IBM mainframe file formats, which has been a long-standing issue between XML
documents generated and shared across ASCII and EBCDIC-based platforms. XML
1.1 parsers are required to recognize and accept EBCDIC line-end characters (#x85)
and the Unicode line separator (#x2028). These values should be converted to one
of the XML 1.0 ASCII line-end characters- — linefeed (decimal 10, #xA), or carriage
return (decimal 13, #xD).

The place that most XML developers may see and/or use the XML 1.1 line-end and
character set rules will be when including hard-coded values in character or entity
references. For example, if you want to hard-code a carriage return in an XML 1.0
document, the following hex character reference can be used:

<?xml version=”1.0” encoding=”UTF-8”?>
<LineEndExample>An example of a hard codednew
line</LineEndExample>

The results look like this when parsed:

<?xml version=”1.0” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded
new line</LineEndExample>

In XML 1.1, you could also hard-code an EBCDIC value to be used on IBM mainframe
systems. When parsed on non-IBM mainframe systems, the line end should be
replaced with an XML 1.0 ASCII value.

<?xml version=”1.1” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded…IBM new
line</LineEndExample>

These results look like this when parsed:

<?xml version=”1.1” encoding=”UTF-8”?>
<LineEndExample>An example of a hard coded
IBM new line</LineEndExample>

Namespaces for XML 1.1The essential difference between the XML Namespaces 1.0
and 1.1 recommendations is the ability to “undeclare” a previously defined name-
space declaration and its associated prefix. As with XML 1.1 updates, this is a

c538292 ch01.qxd 8/18/03 8:43 AM Page 26

27Chapter 1 ✦ XML Concepts

change that will mostly affect XML parser and development tool developers, rather
than the average XML application developer.

Being able to “undeclare” a namespace provides a more flexible and efficient way of
managing and reusing namespaces and their prefixes. Namespaces are applicable to
any nested elements above the namespace declaration. Being able to remove a pre-
fix and/or re-declare it in another part of a large XML document has benefits in
parser performance. It also provides an out for a document that may have the same
namespace prefix defined to different namespaces.

Namespaces for XML 1.1 is a separate document at the W3C but is closely linked to
the XML 1.1 Recommendation. XML 1.0 documents use XML Namespace 1.0 rules,
and XML 1.1 documents use XML Namespace 1.1 recommendation rules.

XML 1.1 references
More information on XML 1.1 can be found at http://www.w3.org/TR/2002/
CR-xml11-20021015/, the namespaces for XML 1.1 working draft can be found at
http://www.w3.org/TR/2002/WD-xml-names11-20020905/, and the CHAR-
MOD working draft can be found at http://www.w3.org/TR/charmod. Also, all
of the links are located on the W3C XML core Working Group page at http://www.
w3.org/XML/Activity#core-wg.

Summary
In this chapter, I’ve kept the examples to a minimum to illustrate the basics of tech-
nologies that make up the XML world. The concepts introduced here will be
extended with real-world examples throughout the rest of the book.

I’ve also introduced you to the real changes in the XML 1.1 Recommendation. These
changes will affect parsers and generators and those who develop them the most.
XML 1.1 parsers will probably contain normalizing and non-normalizing parser
classes for conversions of line endings and character sets, just as most XML 1.0
parsers contain validating and non-validating parser classes.

✦ An introduction to XML

✦ XML structure

✦ Working with well-formed XML documents

✦ Validating XML documents

✦ Character and entity references

✦ Changes in XML 1.1 and XML Namespaces 1.1

c538292 ch01.qxd 8/18/03 8:43 AM Page 27

28 Part I ✦ Introducing XML

In the next few chapters, I’ll dive much deeper into XML documents, and the com-
ponents that make up well-formed XML documents, by showing some real-world
examples of documents, how they are generated, how they can be combined, and
how namespaces can track element parts of combined documents.

✦ ✦ ✦

c538292 ch01.qxd 8/18/03 8:43 AM Page 28

XML Documents

In the last chapter, I provided those of you who are new to
XML with an overview and history of XML and what it can

be used for. I covered an overview XML document syntax and
structure rules. I also provided some information on the latest
XML version, XML 1.1. Most developers probably found the
last chapter a bit dry, but as I’ve said before, a good grasp of
the basic XML concepts and theory are a necessary part of
XML. Skipping over the basics means missing pieces of the
puzzle throughout the rest of the book.

Now that I’ve shown you the basics, you can start applying
some of this knowledge with real-world, practical examples.
This chapter expands on the theory and concepts introduced
in the previous chapter. I’ll introduce you to two example doc-
uments that contain many of the issues that confront an XML
programmer. The first document is a compilation of XML from
three sources. The second document separates and identifies
the three parts of the document using XML namespaces.

Along the way I’ll introduce you to some predefined XML
attributes. I’ll show you how to specify languages using the
xml:lang attribute, and how to preserve space and linefeed
settings in text data using the xml:space attribute.

An Example XML Document
Let’s get right into an example. Listing 2-1 shows an example
XML document that provides some very good examples of
real-life XM document development issues. The example doc-
ument is an assembly of XML documents from three sources.
The first part of the document is a custom XML format that
describes quotations. The quotations are from Shakespeare’s
Macbeth. After the list of selected quotes from William
Shakespeare, then goes on to list three books that contain the
quotes that are available for purchase from Amazon.com, and
a Spanish translation of Macbeth, Romeo and Juliet, Hamlet,
and other volumes that are available from http://www.
elcorteingles.es. It should be noted that Amazon.com
provides a service that returns XML documents based on a

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An example XML
document

Elements and
attributes

XML document
structure and syntax

International XML
with xml:lang

Keeping your space
with xml:space

XML namespaces

Element name tips

✦ ✦ ✦ ✦

c538292 ch02.qxd 8/18/03 8:43 AM Page 29

30 Part I ✦ Introducing XML

URL query, and the format that Amazon returns is what the elements nested under
the Amazon element is based on. The elcorteingles book listing format and the
quote listing, as well as other parts of the document that I’ve added to illustrate
several features of XML element and attributes, are all developed as part of the
quote application that I will be developing as this book progresses.

Listing 2-1: An Example XML Document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<quotedoc>

<quotelist author=”Shakespeare, William” quotes=”4”>
<quote source=”Macbeth” author=”Shakespeare,
William”>When the hurlyburly’s done, / When the battle’s
lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare,
William”>Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
yet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-
morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life’s
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>
<quote/>

</quotelist>
<catalog items=”4”>

<Amazon items=”3”>
<product>

<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/
P/8432040231.01.TZZZZZZZ.jpg</small_image>
<list_price>$7.95</list_price>

c538292 ch02.qxd 8/18/03 8:43 AM Page 30

31Chapter 2 ✦ XML Documents

<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&
benztechnologies=9441&
camp=1793&link_code=xml&path=ASIN/8432040231
</tagged_url>

</product>
<product>

<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>
<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
&camp=1793&link_code=xml&path=ASIN/
1583488340</tagged_url>

</product>
<product>

<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
&camp=1793&link_code=xml&path=ASIN/
8420617954</tagged_url>

</product>
</Amazon>

<elcorteingles items=”1”>
<product xml:lang=”es”>

<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El sueño de una noche de verano/
El mercader de Venecia</titulo>

Continued

c538292 ch02.qxd 8/18/03 8:43 AM Page 31

32 Part I ✦ Introducing XML

Listing 2-1 (continued)

<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicación>6/04/1999
</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

</product>
</elcorteingles>

</catalog>
</quotedoc>

XML Document Structure and Syntax
Let’s start at the top and review the structure of the document, the element and
attributes, and the syntax, applying what you learned in Chapter 1 into a real-world
XML document context:

<?xml version=”1.0” encoding=”ISO-8859-1”?>

The XML declaration at the top of the document is an example of one of the most
common formats of an XML declaration, with an XML version of 1.0 and an encod-
ing style of ISO-8859-1 (Latin-1). The most common encoding format is UTF-8, but
documents that contain certain characters used in Western European languages,
such as Spanish accented characters, won’t show correctly in browsers that have
Western European encoding as the default if the XML document is formatted as
UTF-8. Some non-English author’s names and book titles can’t be written to HTML
without character transformation because they may include those special charac-
ters, so it’s better to use the more specific ISO-8859-1 encoding to handle display
correctly in browsers.

Keep in mind that the XML declaration is optional and is an optional element in a
well-formed XML document. If the XML declaration is not present, the default XML
version is 1.0, and the default encoding is UTF-8.

<quotedoc>

c538292 ch02.qxd 8/18/03 8:43 AM Page 32

33Chapter 2 ✦ XML Documents

The quotedoc element is the root element for this document. As mentioned in
the previous chapter, there can only be one root element in a well-formed XML
document.

<quotelist author=”Shakespeare, William” quotes=”4”>

The quotelist element defines not only the list of quotes that are nested inside
the quotelist, but the attributes tell us that the author of the quotes in the quotelist
is William Shakespeare, and that there are four quotes in the list. Although
attributes can be used for many purposes, using them to define and extend descrip-
tions of data, as I have here, is the best use.

Some relational databases and other XML data sources have chosen to use
attributes to contain actual data values instead of data descriptions, which can be a
mistake. When choosing between using elements or attributes for data storage, keep
in mind that attributes in their native format are only intended to contain a single
value, while element structures can contain multiple values through nested ele-
ments. Also, elements can represent structures in documents through nesting, and
can be extended, while attributes are limited to the element they are contained in.

<quote source=”Macbeth” author=”Shakespeare,
William”>When the hurlyburly’s done, / When the battle’s
lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare,
William”>Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
yet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-
morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life’s
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>

c538292 ch02.qxd 8/18/03 8:43 AM Page 33

34 Part I ✦ Introducing XML

The rest of the quotelist contains the actual quotes. We’ve chosen to include more
information in attributes for each quote in case the document is parsed or trans-
formed and added to another document. This way, as long as the element structure
stays intact, the quote will always have information on the author and the book
associated with it, no matter where the element ends up.

The quotes in this document are also a great example of the syntax rules that apply
to elements but don’t apply to text in XML documents. Note that most of the quotes
have characters in the text that would generate errors if the same characters were
in the element names, but are permissible as part of well-formed XML in text values.
The second quote can also be adapted to show a good example of what attributes
can contain, in this modified element:

<author quote=”Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord, fie! a
soldier, and afeard? What need we fear who knows it, when none
can call our power to account?--Yet who would have thought the
old man to have had so much blood in him?”>Shakespeare,
William</author>

Believe it or not, despite all the characters which may look to the naked eye like
nonstandard characters that a parser would choke on in the quote attribute of the
author element in the preceding example, this attribute is well-formed XML. The
semicolons by themselves, the question marks, the commas, the dashes, and the
exclamation points do not cause a problem for the W3C XML 1.0 recommendation.
The only character that could potentially cause a problem is the apostrophe, or sin-
gle quote, but because they are contained inside two double quotes, they pass the
test for well-formed XML as well. The same rule works in reverse for double quotes
that are contained in single quotes.

However, despite the fact that the quote contained in an attribute is well-formed
XML, this does not mean that it is a good idea. In general, although parsers are get-
ting better at parsing attributes and schemas are good at enforcing attribute rules,
both are better at handling elements than they are attributes, so key pieces of pay-
load data in XML documents should always be contained in text values, and items
that help define and describe the data should be associated to the text data via
attributes.

</quotelist>
<catalog items=”4”>

Next, I complete the quotelist section of the document by closing the quote ele-
ment, and start the catalog section of the document by opening the catalog tag. The
items attribute tells us that there are four listings in the catalog related to the
Macbeth quotes.

<Amazon items=”3”>

c538292 ch02.qxd 8/18/03 8:43 AM Page 34

35Chapter 2 ✦ XML Documents

The items attribute in the nested Amazon element of the catalog tells us that there
are three items in the catalog that are available though links at Amazon.com. Next,
the products are listed in the order that they were returned from a query to the
Amazon XML feed site URL:

<product>
<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8432040231.01.TZZZZZZZ.jpg</small_image>

<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
&camp=1793&link_code=xml&path=ASIN/
8432040231</tagged_url>

</product>

<product>
<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>
<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
&camp=1793&link_code=xml&path=ASIN/
1583488340</tagged_url>

</product>

<product>
<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>

c538292 ch02.qxd 8/18/03 8:43 AM Page 35

36 Part I ✦ Introducing XML

<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnologies=9441
&camp=1793&link_code=xml&path=ASIN/
8420617954</tagged_url>

</product>

Each product listing contains a reference to a single book at the Amazon.com
Website, and is in the standard, unmodified format of all XML documents that are
returned from the site. Amazon also publishes a DTD and Schema for the generated
data, but I will use my own validation formats for the documents that I produce. I
will cover data validation in much more detail in the next chapter.

The XML format closely mirrors the information for the books that are on display in
HTML documents at Amazon.com. The ranking tells us the order in which the items
were returned from the Amazon.com search. The title is the book title. The ASIN is
Amazon’s unique identifier for a product, in the case of books; the ASIN is equiva-
lent to the book’s International Standard Book Number (ISBN), the unique identifier
for all books in print. Next is a listing for the author, a link to small and regular size
book cover images on the Amazon.com Website, the list price, the release date, the
type of binding for the book, an indicator for availability, and a link to the HTML
page for the book on the Amazon.com Website.

There are three important things to note in the Amazon product elements: empty
elements, SML housekeeping, and entity references and special characters.

Empty elements
Note that the availability element takes this format:

<availability/>

This format for empty elements is added to Amazon.com book listings, but a value
is not provided. Logic would dictate that an unused element should not be included
in the output, but in the case of XML documents, unused and empty elements are
often kept in XML output to accommodate a predefined data structure that is speci-
fied for data validation in a DTD or Schema.

XML housekeeping
The layout of the XML for each product is an example of good XML design. The
sequence of the elements and the element names are logical, and all of the items
that are represented on the Amazon HTML page for a book are equally represented

c538292 ch02.qxd 8/18/03 8:43 AM Page 36

37Chapter 2 ✦ XML Documents

in XML. The lack of attributes in the elements is probably due to the very simple
string data types represented in the document.

Entity references and special characters
It’s important to note the ampersand entity references (&) in the tagged_URL
elements:

<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_
code=xml&path=ASIN/8420617954</tagged_url>

The ampersands are an important part of the URL queries on the Amazon site and
are used to separate parameters that are passed to Amazon.com as part of the
query. Code on the Amazon.com site parses the URL that is passed and uses the
parameters to execute the query and retrieve the data. However, the ampersands in
the text value of the target_url elements also cause the XML document not to be
well formed. To remedy this, the predefined XML & entity reference that I dis-
cussed in the special characters section of the previous chapter is used to store the
XML, and when the document is parsed the original ampersands are replaced to
look like this:

http://www.Amazon.com:80/exec/obidos/redirect?tag=associateid&
benztechnologies=9441&camp=1793&link_code=xml&path=ASIN/
8420617954

Next, closing the Amazon tag completes the listing of books at the Amazon site:

</Amazon>

International XML with xml:lang
The next item in the list is the elcorteingles listing of one book, as indicated by
the items attribute:

<elcorteingles items=”1”>

http://www.elcorteingles.es is a Spanish language Website, based in Spain,
that sells a variety of items, including Spanish translations of popular books and
classics. We’ve added the elcorteingles reference to show the multilingual fea-
tures of XML and provide an example of handling special characters in an XML
document.

c538292 ch02.qxd 8/18/03 8:43 AM Page 37

38 Part I ✦ Introducing XML

The XML document format we’ve chosen for the Spanish translation of Shakespeare’s
most popular works is based on the Amazon format, but the element names have
been translated to Spanish. The elcorteingles and the product reference remain
in English, because that information is universal across any language that the book
record could be in, and I’m a native English speaker, so the universal language I’ve
chosen in my documents is English. However, the rest of the document is in Spanish,
so it makes sense that the elements for the Spanish text data are in Spanish too, in
case this document ends up being reused in a Spanish language application or
Website.

The language of the product element for the elcorteingles listing is defined by
using one of the predefined XML attributes, xml:lang:

<product xml:lang=”es”>

Unicode renders the text based on a certain predetermined byte format, and
xml:lang tells parsers to handle the text defined in a specific xml:lang element
as using a special set of instructions for a specific language. Parsers will continue to
follow those specific language rules in nested elements and attributes until either
the element tag is closed or another xml:lang attribute is encountered.

Language codes can be defined in a variety of ways, some completely standardized,
as in the case of the International Organization of Standardization (ISO) 639 lan-
guage codes (make sure you use the two character ISO 639 codes and not the three
character ISO 639-2 codes) and the ISO 3166 country codes, of which any combina-
tion is a legal xml:lang language identifier, a registered IANA name tag (which can
be linguistic or computer languages), or you can make one up, using an x- or an X-
as a prefix, as long as the name hasn’t already been registered as part of the ISO or
IANA languages. A complete listing of ISO language codes and country codes can
be found at http://www.iso.org, and the IANA registered language names can
be found at http://www.iana.org.

<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla
domado/El sueño de una noche de verano/ El mercader de
Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicación>6/04/1999</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

The titulo element is the book title, and the isbn element is the book’s
International Standard Book Number (ISBN), the unique identifier for all books in
print, regardless of language or country. Next is a listing for the author (autor), a link
to a small book cover image (imagen) on the elcorteingles.es Website, the list

c538292 ch02.qxd 8/18/03 8:43 AM Page 38

39Chapter 2 ✦ XML Documents

price (precio), the publication date (fecha_de_publicación), the type of binding
for the book, and a link to the HTML page for the book on the elcorteingles.es
Website (librourl).

One item worthy of note in this book record is that all the accented characters in
the Spanish book record were accepted as part of the default ISO-8859-1 (Latin-1)
character encoding for this document. However, one character provides us with
another review of the entity references in the “Special Characters and Entity
References” section of Chapter 1. The price (precio) of the book has an entity ref-
erence to the euro symbol, which is part of the price listing for Europe, but is a
character that is unsupported by the document’s ISO-8859-1 (Latin-1) character
encoding. The entity reference to the %20AC hex character is combined with the
XML entity reference format for hex characters (&#x):

<precio>7,59 €</precio>

And when the precio element is parsed, it looks like this:

<precio>7,59 ¤</precio>

Next, the product element tag for the elcorteingles listing is closed. Because
the product element defined the xml:lang as Spanish (es), when it is closed, the
default language of the document is restored.

</product>
</elcorteingles>

Last but not least, the catalog and the quotedoc element tags are closed, which
completes the quotedoc document:

</catalog>
</quotedoc>

Keeping Your Space with xml:space
Aside from xml:lang, there is one more important predefined attribute in XML
documents that can help maintain layout of source data that is being transported
by XML: xml:space. For example, the original format for the third quote in the
quotelist in Listing 2-1 is:

Is this a dagger which I see before me,
The handle toward my hand? Come, let me clutch thee:--
I have thee not, and yet I see thee still.
Art thou not, fatal vision, sensible
To feeling as to sight? or art thou but
A dagger of the mind, a false creation,
Proceeding from the heat-oppressed brain?

c538292 ch02.qxd 8/18/03 8:43 AM Page 39

40 Part I ✦ Introducing XML

However, the XML document that I am using has stripped away the line formatting,
and looks like this:

Is this a dagger which I see before me, the handle toward my
hand? Come, let me clutch thee: I have thee not, and yet I see
thee still. Art thou not, fatal vision, sensible to feeling as
to sight? or art thou but a dagger of the mind, a false
creation, proceeding from the heat-oppressed brain?

Because Shakespeare text is often formatted in a very particular way, the loss of the
original formatting, and the inability of XML to restore the formatting to its original
condition, is a problem. To maintain the text spacing through XML document
manipulation and future reformatting, the xml:space=”preserve” attribute can
be used to make sure that the spacing and the line formats stay intact:

<quote source=”Macbeth” author=”Shakespeare, William”
xml:space=”preserve”>
Is this a dagger which I see before me,
The handle toward my hand? Come, let me clutch thee:--
I have thee not, and yet I see thee still.
Art thou not, fatal vision, sensible
To feeling as to sight? or art thou but
A dagger of the mind, a false creation,
Proceeding from the heat-oppressed brain?
</quote>

The xml:space=”default” attribute can also be defined, but just for fun because
it doesn’t tell the parser to do anything it wouldn’t do anyway. Unfortunately, even
when the space attribute is set to “preserve”, the retention of text formatting is
up to the parser, as there is nothing in the W3C XML document recommendation
that specifically requires the xml:space attributes to be respected. This means
that some parsers may ignore the xml:space, but most are good XML citizens and
respect the text formatting if the “preserve” attribute is set.

One more item of note: The space that is defined around text but part of the text
formatting is referred to as “whitespace” in XSL and parsing lingo, which I will be
covering later in this book.

XML Namespaces
As mentioned in Chapter 1, XML namespaces are a method for separating and iden-
tifying XML elements that may have the same element name on the same page.
Namespaces can also be used as specifications to describe specific types of data
and other atrributes that are contained inside elements that use that namespace.
I’ve added namespaces to the example in Listing 2-2 to illustrate how you can iden-
tify different segments of an XML document as different grouped entities using
namespaces.

c538292 ch02.qxd 8/18/03 8:43 AM Page 40

41Chapter 2 ✦ XML Documents

Listing 2-2: An Example XML Document with Namespaces

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<quotedoc xmlns:qtlist=”http://www.benztech.com/xsd/quotelist”
xmlns:azlist=”http://www.benztech.com/xsd/amazonlist”
xmlns:ellist=”http://www.benztech.com/xsd/elcorteingleslist”>

<qtlist:quotelist author=”Shakespeare, William” quotes=”4”>
<qtlist:quote source=”Macbeth” author=”Shakespeare,
William”>When the hurlyburly’s done, / When the battle’s
lost and won.</qtlist:quote>
<qtlist:quote source=”Macbeth” author=”Shakespeare,
William”>Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</qtlist:quote>
<qtlist:quote source=”Macbeth” author=”Shakespeare,
William”>Is this a dagger which I see before me, the
handle toward my hand? Come, let me clutch thee: I have
thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but
a dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</qtlist:quote>
<qtlist:quote source=”Macbeth” author=”Shakespeare,
William”>To-morrow, and to-morrow, and to-morrow, creeps
in this petty pace from day to day, to the last syllable
of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle!
Life’s but a walking shadow; a poor player, that struts
and frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </qtlist:quote>
<qtlist:quote/>

</qtlist:quotelist>
<catalog items=”4”>

<azlist:amazon items=”3”>
<azlist:product>

<azlist:ranking>1</azlist:ranking>
<azlist:title>Hamlet/MacBeth</azlist:title>
<azlist:asin>8432040231</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/
P/8432040231.01.MZZZZZZZ.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images/P
/8432040231.01.TZZZZZZZ.jpg</azlist:small_image>
<azlist:list_price>$7.95</azlist:list_price>
<azlist:release_date>19910600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>

Continued

c538292 ch02.qxd 8/18/03 8:43 AM Page 41

42 Part I ✦ Introducing XML

Listing 2-2 (continued)

<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnologies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231

</azlist:tagged_url>
</azlist:product>
<azlist:product>

<azlist:ranking>2</azlist:ranking>
<azlist:title>MacBeth</azlist:title>
<azlist:asin>1583488340</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
1583488340.01.MZZZZZZZ.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images
/P/1583488340.01.TZZZZZZZ.jpg</azlist:small_image>
<azlist:list_price>$8.95</azlist:list_price>
<azlist:release_date>19991200</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>
<azlist:tagged_url>http://www.amazon.com:80/exec
/obidos/redirect?tag=associateid&
benztechnologies=9441&camp=1793&
link_code=xml&path=ASIN/1583488340
</azlist:tagged_url>

</azlist:product>
<azlist:product>

<azlist:ranking>3</azlist:ranking>
<azlist:title>William Shakespeare:
MacBeth</azlist:title>
<azlist:asin>8420617954</azlist:asin>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
8420617954.01.MZZZZZZZ.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images
/P/8420617954.01.TZZZZZZZ.jpg</azlist:small_image>
<azlist:list_price>$4.75</azlist:list_price>
<azlist:release_date>19810600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability/>
<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnologies=9441&camp=1793&
link_code=xml&path=ASIN/8420617954
</azlist:tagged_url>

</azlist:product>
</azlist:amazon>
<ellist:elcorteingles.es items=”1”>

<ellist:product xml:lang=”es”>
<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/
La fierecilla domado/El sueño de una noche de
verano/ El mercader de Venecia</ellist:titulo>

c538292 ch02.qxd 8/18/03 8:43 AM Page 42

43Chapter 2 ✦ XML Documents

<ellist:isbn>8484036324</ellist:isbn>
<ellist:autor>Shakespeare, William</ellist:autor>
<ellist:imagen>http://libros.elcorteingles.es/
producto/verimagen_blob.asp?ISBN=8449503639
</ellist:imagen>
<ellist:precio>7,59 €</ellist:precio>
<ellist:fecha-de-publicación>6/04/1999</ellist:fecha-
de-publicación>
<ellist:Encuadernación>Piel</ellist:Encuadernación>
<ellist:librourl>http://libros.elcorteingles.es/
producto/libro_descripcion.asp?CODIISBN=8449503639
</ellist:librourl>

</ellist:product>
</ellist:elcorteingles.es>

</catalog>
</quotedoc>

In this example, the XML document uses three namespaces as identifiers to differ-
entiate three separate sections of grouped data in the same document. The xmlns:
attribute declares the namespace for an XML document or a portion of an XML doc-
ument. The attributes that declare namespaces can be placed in the root element of
the document, as in this case, or in any nested element:

xmlns:qtlist=”http://www.benztech.com/xsd/quotelist”
xmlns:azlist=”http://www.benztech.com/xsd/amazonlist”
xmlns:ellist=”http://www.benztech.com/xsd/elcorteingleslist”

The document is divided into three separate sections: one for the quote listing,
which will be identified by the qtlist Namespace, one for the Amazon list of
books, which uses the azlist namespace prefix, and one for the elcorteingles list,
which is identified by the ellist namespace prefix.

In the document itself, the segments of the document that correspond to the
namespaces are identified by XML element prefixes. For example, the prefix for the
quote list looks like this:

<qtlist:quotelist author=”Shakespeare, William” quotes=”4”>

Closing tags must also contain a corresponding Namespace prefix for well-formed
XML:

</qtlist:quotelist>

Often the URL in the namespace also resolves to a Website that provides documen-
tation about the namespace, or information about the encoding types identified in
the namespace, and so on. However, in this case, the URLs do not resolve to an
actual document, but are used as a placeholder when declaring namespace names,
which can be used at a future date for documentation if it is needed.

c538292 ch02.qxd 8/18/03 8:43 AM Page 43

44 Part I ✦ Introducing XML

When to use namespaces
The namespaces in this example perform the basic function of namespaces to act
as identifiers to group together logical segments of the XML document. Other XML-
based technologies such as XML Schemas, SOAP, and WSDL make heavy use of XML
namespaces to identify data encoding types and important elements of their struc-
ture. I’ll be showing many more examples of namespaces being used in context to
identify elements for data validation in the next chapter, and examples of names-
paces used for encoding, and descriptions of SOAP and WSDL documents in the
Web Services section of the book. For now, let’s look at the namespaces and how
namespaces affect XML document structure.

Namespaces are useful in identifying sections of documents that are being parsed,
transformed, or manipulated in some other way. The parser or transformation
engine can identify groups of elements and attributes by their namespace prefix
instead of by their element values alone, and this helps to keep logical portions of
an XML document together during manipulation.

URIs, URLs, and URNs
In order to understand namespaces, developers must first understand one of their
basic components, URIs. HTTP URIs (Uniform Resource Identifiers) are a format
specification for Uniform Resource Locators (URLs), which anyone who uses the
Web is probably already familiar with, and Uniform Resource Names (URNs), which
they may not be. The main difference is that URLs are used to specify a location-
specific resource on the Web, such as http://www.ibm.com, while URNs are used
to describe any value, such as a relative /servlet subdirectory or a variable name.
URNs and URLs can be assigned to a URI. In the case of namespaces, URNs are usu-
ally used to mask a complicated Namespace or value for later reference, similar to
the way DNS replaces an IP address with a URL.

For example, we could have used the following URNs for namespace references:

xmlns:qtlist=”http://www.benztech.com/xsd/quotelist”
xmlns:azlist=”fred”
xmlns:ellist=”This is a urn, part of a uri”

The URIs in the declarations here are qtlist, azlist, and ellist. The first namespace
declaration, assigned to the qtlist, is clearly a URL. The second assignment to the
azlist is a URN. The last namespace declaration assigned to the ellist URI is a valid
URN, but is formatted to make an important point. The URN value of the namespace
can contain anything that the W3C namespace Recommendation allows, but
because the URI will be used in element names, it has to adhere to the W3C XML
document element name rules for characters. ellist is fine as a URI, but a URI for-
matted as ellist is not well-formed XML.

After defining URLs and URNs to the namespaces, the next task for developers it to
assign the URIs to elements in the XML document. We’ve added the qtlist, azlist, and
ellist URIs as prefixes to specific elements in the sample document in Listing 2-2.

c538292 ch02.qxd 8/18/03 8:43 AM Page 44

45Chapter 2 ✦ XML Documents

It’s worth noting that we specifically excluded the root quotedoc and the catalog
elements in the document from Namespaces, because they are not part of any logi-
cal segment of the document, but just contain the logical segments. Therefore, any-
thing that happens to them during XML document manipulation does not affect the
other logical groupings that they contain.

More information on namespaces, including features in the new namespaces for
XML 1.1, currently at the “Working Draft” stage of the XML Recommendation
process, can be found at http://www.w3.org/TR/2002/WD-xml-names11-
20020905.

Element Name Tips
A discussion of element and attribute names in the real world would not be complete
without a mention of a couple of important element and attribute formatting issues.
We’ve added a couple of XML booby traps into the ellist Namespace grouping:

<ellist:elcorteingles.es items=”1”>
<ellist:product xml:lang=”es”>

<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El sueño de una noche de verano/ El mercader
de Venecia</ellist:titulo>

<ellist:isbn>8484036324</ellist:isbn>
<ellist:autor>Shakespeare, William</ellist:autor>

<ellist:imagen>http://libros.elcorteingles.es/producto/verimage
n_blob.asp?ISBN=8449503639</ellist:imagen>

<ellist:precio>7,59 €</ellist:precio>
<ellist:fecha-de-publicación>6/04/1999</ellist:fecha-

de-publicación>
<ellist:Encuadernación>Piel</ellist:Encuadernación>

<ellist:librourl>http://libros.elcorteingles.es/producto/libro_
descripcion.asp?CODIISBN=8449503639</ellist:librourl>

</ellist:product>
</ellist:elcorteingles.es>

The dangers lurking in this segment of the XML document look perfectly normal
and are technically part of well-formed XML documents, but are accidents waiting
to happen. The first one is hidden in this line:

<ellist:elcorteingles.es items=”1”>

Note that the element name contains a period, which resolves the element name to
the elcorteingles.es Website. While this is acceptable as well-formed XML, it is
a problem for some destination data formats, which may recognize this element
name as the es method of the elcorteingles class, and try to resolve it as such.

c538292 ch02.qxd 8/18/03 8:43 AM Page 45

46 Part I ✦ Introducing XML

Also, most relational databases will have formatting issues with this element name
if it is intended to be added to a RDBMS system as a field or item name.

The second problem is here:

<ellist:fecha-de-publicación>6/04/1999</ellist:fecha-de-
publicación>

The dash that is substituting spaces in the fecha de publicación (publication
date) element name has similar issues to the period in the previous example. In this
case, the destination system accepting the value may try to subtract the values
from each other, or if the element name is intended to become a field name in an
RDBMS system, the dashes would probably cause errors.

In each case, it’s best and safest to go with underscores to define the elements:

<ellist:elcorteingles_es items=”1”>

<ellist:fecha_de_publicación>6/04/1999</ellist:fecha-de-
publicación>

The preceding examples are also well-formed XML and will probably not have any
issues when arriving at their intended destination.

Summary
In this chapter, I expanded on the theory in the previous chapter to show some
real-world applications of XML via practical examples, but this is only half of the
XML document story.

✦ An introduction to real-world XML document structure and syntax

✦ Specifying the language of XML data using xml:lang

✦ Formatting text data using xml:space

✦ Real-world XML namespace examples

✦ Entity references in test data — URLs

✦ Tips for naming elements and attributes

In the next chapter I’ll show you how to validate XML documents using DTDs, and
Schemas. I’ll show you how to make sure that XML documents not only conform to
XML document syntax and structure specifications, but also make sense from a
data point of view.

✦ ✦ ✦

c538292 ch02.qxd 8/18/03 8:43 AM Page 46

XML Data
Format and
Validation

In the last chapter, you were introduced to XML syntax and
the requirements of well-formed XML using real-world

example XML documents. This chapter will build on the exam-
ple XML documents introduced in Chapter 2 to describe ways
to make sure that XML documents are not just well formed,
but also contain data in a predefined format, and how to
enforce the rules that make up the predefined format.

XML is an excellent transport medium for sharing data across
systems and platforms. However, well-formed XML documents
that adhere only to the basic XML syntax rules are very easy
to generate at the source, but usually very hard to read at
their destination without some kind of a description of the
structure represented in the XML document. This is where
XML validation comes in.

XML document formatting rules that are in addition to the
basic XML syntax rules are described and enforced through a
process called XML validation. XML validation uses a separate
document that is passed with the XML document, or pub-
lished and stored separately at a URL. The validation docu-
ment describes the data structure and format that is
contained in the XML document.

XML validation documents are usually produced at the same
time and from the same source as an XML document. XML
documents can reference the validation document as part of
the elements and/or attributes in that document, and are used
by parsers to make sure that the XML document meets the
criteria described in the validating document. If the XML doc-
ument is well formed and the parser is able to determine that
the XML document meets the structure and format require-
ments described in the validating document, the document is
said to be valid XML.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An introduction to
validating XML data

How to apply DTDs
to XML documents

Understanding DTD
structure and syntax

How to apply W3C
Schemas to XML
documents

Understanding W3C
Schema structure and
syntax

Development tips and
tricks for DTDs and
Schemas

Techniques for
flexible DTD and
Schema structures

✦ ✦ ✦ ✦

c538292 ch03.qxd 8/18/03 8:43 AM Page 47

48 Part I ✦ Introducing XML

The two most common types of data validation are Document Type Definitions
(DTDs) and W3C XML Schemas. DTDs and Schemas are documents that describe
the contents of XML documents and are used for XML validation. DTDs are text
documents that describe data formats in other XML documents but are not format-
ted in XML. Schemas are the next generation of data validation formats, and like
DTDs they describe data formats in other XML documents, but unlike DTDs,
Schemas themselves are formatted in XML. Schemas can also go into much more
detail in describing the structure and format of XML.

The concept of valid XML can extend from a single document format shared
between two organizations with a common validation document, to a published
validation format for specific types of data represented as XML.

For example, even though the W3C reviews and declares industry Schema stan-
dards as recommendations, there is no official central registry of XML validation
documents. XML.org has published a DTD/Schema registry that comes close, at
http://www.xml.org/xml/registry.jsp. A search of “News” at the XML.org
DTD/Schema registry returns a link to XMLnews.org at http://www.xmlnews.
org, the publishers of the NewsML format. NewsML is a standardized XML format
for news content developed by the International Press Telecommunications Council
(IPTC), a consortium of news providers, including Associated Press, Reuters, Dow
Jones, the Newspaper Association of America, the New York Times, and many other
household-name news providers. Part of NewsML is two DTDs. The XMLNews-Meta
DTD describes requirements for valid metadata related to a news item, and the
XMLNews-Story DTD describes the structure of a NewsML story. Third-party news
content developers can use these DTDs to create and share NewsML formatted
news stories between Websites and content syndicators, vastly improving compati-
bility for News content delivery on the Web.

The XML.org DTD/Schema registry also provides a great example of that old saying
that “The great thing about standards is that there are so many of them.” It doesn’t
take a lot of imagination to see that anyone who controls the most popular valid
XML format for an industry can wield a lot of power over that industry as XML
develops. Competing standards bodies as well as competing companies are pushing
to make their own brand of valid XML the “standard” for an industry, and as a result
there are several competing formats vying for first place in the valid XML popular-
ity contest. This has resulted in several valid XML formats for many key industries
to be listed side by side in the XML.org DTD/Schema registry. It’s up to the devel-
oper to decide which one suits their needs, if any, based on industry support, ease
of reference, and quality of documentation.

The proliferation of standards is complicated by the fact that version control of XML
validation document references is difficult; once thousands of documents have been
produced that conform to a certain DTD or Schema, it’s very difficult to re-factor the
old documents to conform to a new Schema. For this reason alone it’s likely that
DTDs will be around for many years to come, despite more data control, better read-
ability, and more advanced features in Schemas.

c538292 ch03.qxd 8/18/03 8:43 AM Page 48

49Chapter 3 ✦ XML Data Format and Validation

XML Parsers for Data Validation
There is no valid XML without a parser, just a reference to a validation document in
an XML document. XML parsers read an XML document and split apart the ele-
ments, attributes, and text data to create a representation of the document that can
be used for integration into other data types. A parser’s first task is to check an
XML document’s syntax and make sure the document is well formed. The second
task for some parsers is to look for a validation document reference in the XML
document and validate the XML document based on the document description
in the validation document. Parsers that perform the validation step are called
validating parsers, while parser that don’t are called non-validating parsers.

For a full description of parsers, including a listing of validating and non-validating
parsers, please see to Chapter 7, “XML Parsing Concepts.”

Document Type Definitions
DTDs (Document Type Definitions) were originally developed as part of SGML, and
then extended to the W3C HTML recommendation to declare which specification an
HTML document uses. Web browsers, HTML editors, and other programs that vali-
date the syntax of HTML documents use an optional reference at the top of an
HTML page to identify the HTML version for page rendering and validation pur-
poses. DTDs were extended to function as XML validation documents as part of the
W3C XML 1.0 recommendation in 1998.

Original DTD development was done by hand, and many DTDs are still edited this
way. Hand-crafting DTDs using a text editor that doesn’t check syntax and testing
DTD development by running a validating parser against the XML document and
watching for errors is, thankfully, becoming an anachronism. There are now many
tools on the market that can help developers generate DTDs based on sample docu-
ments, and DTD editors that can check syntax while a document is being created.
A good listing of DTD editors can be found on the XML.com Website at http://
www.xml.com/pub/pt/2. Most of the DTD tools listed are free or have free trial
downloads available. Most of the DTDs in this chapter were edited using Altova’s
xmlspy 5 Enterprise edition. A trial version xmlspy can be downloaded from
http://www.altova.com.

Listing 3-1 shows the DTD that I will be using as an example for this chapter. The
AmazonMacbethSpanish.dtd is referenced and validates the contents of the
AmazonMacbethSpanishwithDTDref.xml document.

All of the DTDs and XML documents in this chapter can be downloaded from the
xmlprogrammingbible.com Website.

Cross-
Reference

c538292 ch03.qxd 8/18/03 8:43 AM Page 49

50 Part I ✦ Introducing XML

Listing 3-1: Contents of AmazonMacbethSpanish.dtd

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by
Brian Benz (Wiley) -->
<!ELEMENT quotedoc (quotelist, catalog)>
<!ELEMENT quotelist (quote+)>
<!ATTLIST quotelist

author CDATA #REQUIRED
quotes CDATA #REQUIRED

>
<!ELEMENT quote (#PCDATA)>
<!ATTLIST quote

source CDATA #IMPLIED
author CDATA #IMPLIED

>
<!ELEMENT catalog (amazon, elcorteingles)>
<!ATTLIST catalog

items CDATA #REQUIRED
>
<!ELEMENT amazon (product+)>
<!ATTLIST amazon

items CDATA #REQUIRED
>
<!ELEMENT elcorteingles (product)>
<!ATTLIST elcorteingles

items CDATA #REQUIRED
>
<!ELEMENT product (ranking?, (title | titulo)+, (asin | isbn)+,
(author | autor)+, (image | imagen)+, small_image?, (list_price
| precio)+, (release_date | fecha_de_publicación)+, (binding |
Encuadernación)+, availability?, (tagged_url | librourl)+)>
<!ATTLIST product

xml:lang CDATA #IMPLIED
>
<!ELEMENT Encuadernación (#PCDATA)>
<!ELEMENT asin (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT availability (#PCDATA)>
<!ELEMENT binding (#PCDATA)>
<!ELEMENT fecha_de_publicación (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT imagen (#PCDATA)>
<!ELEMENT librourl (#PCDATA)>
<!ELEMENT list_price (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT ranking (#PCDATA)>
<!ELEMENT release_date (#PCDATA)>

c538292 ch03.qxd 8/18/03 8:43 AM Page 50

51Chapter 3 ✦ XML Data Format and Validation

<!ELEMENT small_image (#PCDATA)>
<!ELEMENT tagged_url (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT titulo (#PCDATA)>

Applying DTDs
The AmazonMacbethSpanish.dtd is referenced by adding a DOCTYPE declaration
to the AmazonMacbethSpanishwithDTDref.xml document:

<!DOCTYPE quotedoc SYSTEM “AmazonMacbethSpanish.dtd”>

The !DOCTYPE element is called a Document Type Declaration. This is not to be
confused with the Document Type Definition that is contained in a DTD document,
despite the same DTD acronym. There can be only one Document Type Declaration
in an XML document, and the declaration must be placed below the XML declara-
tion if there is one, and above all the other elements in the document. Validating
parsers look for the declaration in that spot only, and validate the data based on
the DTD reference.

The next item after !DOCTYPE is the element name for the Document Type
Declaration. The element name is mandatory, and should always match the root
element in the document. The element name specified in the Document Type
Declaration becomes the starting point for a parser to validate the XML document
using the DTD.

PUBLIC and SYSTEM source references
There are two possible sources for Document Type Declarations, SYSTEM and
PUBLIC.

The most widely used Declaration source is SYSTEM. Then SYSTEM is used, the ref-
erence to the DTD can be a URL or a file system reference. For example, if the DTD
is located in the c:\temp directory of the developer’s workstation, the reference
would look like this:

“C:/temp/AmazonMacbethSpanish.dtd”

Or if the workstation has access to the Web, the original DTD could be referenced at

“http://xmlprogrammersbible.com/DTDs/AmazonMacbethSpanish.dtd”

Either format is a valid DTD reference, as long as the file path resolves to well-formed
DTD document.

c538292 ch03.qxd 8/18/03 8:43 AM Page 51

52 Part I ✦ Introducing XML

The second type of Document Type Declaration source is PUBLIC and is rarely
used. You probably just need to know about PUBLIC sources in case you see one in
an older XML document or documentation. PUBLIC sources refer to relative or
mapped directories where the DTD can be located, and are usually for use within an
organization or as part of a VPN. PUBLIC sources must also have a backup SYSTEM
source, and are therefore generally redundant. For example, a Document Type
Declaration with a PUBLIC source would combine our two previous examples:

<!DOCTYPE quotedoc PUBLIC “C:/Program Files/Altova/XMLSPY/Examples/
XMLBible/AmazonMacbethSpanish.dtd” “http://xmlprogrammersbible.com/DTDs/
AmazonMacbethSpanish.dtd”>

Note that the SYSTEM source is not specifically declared, but implied, based on the
relative positioning in the declaration, just after the PUBLIC declaration.

Including DTDS in XML documents
The standalone attribute of the XML declaration has not been covered in the
book so far, and for good reason. Like the PUBLIC source DTD declaration, it’s
another legacy DTD feature that can be used, but is not recommended. It is only
mentioned here so you can recognize it if you see it in older XML documents or as
part of an older validation system. To most novice XML developers, simple XML
documents with a simple DTD embedded in them looks like a good idea, because
the validation criteria can be transported with the XML data as a unit to the desti-
nation. But including DTDs in standalone XML documents makes the documents
bloated and hard to read, and represent a maintenance nightmare if a centralized
DTD is ever implemented or edited, and actually defeats the purpose of validating
data in the first place. XML validation should be done against a standardized DTD
that validates all documents. If each XML document has its own DTD based on the
data in that document, it is always valid, even if it no longer suits the purpose of the
destination application.

To include a DTD in an XML document, use the standalone attribute:

<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>

The standalone attribute in the XML declaration tells parsers that everything
needed for this document is contained in the document. The standalone attribute
is optional, and rarely used. Not including the standalone attribute is the same as
declaring standalone=”no” in the XML declaration, meaning that if there is a ref-
erence to a validation document, it is outside of the current XML document.

XML documents with the standalone attribute do not specify a SYSTEM or PUB-
LIC source. Instead, the DTD is nested between square brackets in the Document
Type Declaration:

c538292 ch03.qxd 8/18/03 8:43 AM Page 52

53Chapter 3 ✦ XML Data Format and Validation

<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>
<!DOCTYPE quotedoc
[<!ELEMENT quotedoc (quotelist, catalog)>.......]

Note that the root element name for the XML document must still be declared,
even in a standalone XML document. After the DTD, the root element starts the
XML document:

<quotedoc>
<quotelist author=”Shakespeare, William” quotes=”4”>.....

The above example has been truncated for brevity. The full example document is a
combination of the XML document from Chapter 2 and the DTD from Listing 3-1.
The file name is AmazonMacbethSpanishwithinternalDTD.xml, and can be down-
loaded from the xmlprogrammersbible.com Website.

DTD structure
Now that you have an understanding of how to reference a DTD, the next step is to
understand how DTDs describe XML documents. The first element in a DTD is usu-
ally an XML declaration, even though most of the other elements in a DTD do not
look like well-formed XML. This is due to the special syntax rules for DTD docu-
ments. Each element in a DTD must have an exclamation mark as the first character
in the element name. All other XML syntax rules apply to the element name.

DTD declarations
There are four declarations that can be used in DTDs: ELEMENT, ATTLIST, ENTITY,
and NOTATION. Although the elements conform to the rules of well-formed XML, in
a DTD elements that start with a ! are referred to as DTD declarations. This is to
separate the description of XML documents from the documents themselves, and
also because one of the four declaration types is called ELEMENT, and references to
the ELEMENT element would make DTD documentation start to sound like Monty
Python’s “Department of redundancy department” sketch.

The ELEMENT declaration describes XML document elements and optional nested
elements. The ATTLIST declaration describes XML document attributes and
optional values. The ENTITY declaration describes special characters and refer-
ences to variables, and is the same as the entity references in XML documents that I
discussed in Chapter 2. The Notation declaration is used to contain references to
external data such as URLs to an image in a DTD. In addition, comments can be con-
tained in a DTD using the same format as XML document comments.

It’s worth noting that the DTD I am using in this example is edited, but not gener-
ated by, xmlspy. While xmlspy has a very good facility for generating DTDs, proba-
bly the best on the market, in this case a DTD already existed that was much

c538292 ch03.qxd 8/18/03 8:43 AM Page 53

54 Part I ✦ Introducing XML

simpler than the one generated by xmlspy. Naturally, the simpler and more read-
able DTD was chosen and cleaned up using xmlspy’s editor. The moral of the story
is that even though many tools can generate DTDs, developers still need to know
something about DTD structure if they want to make sure that the DTD that was
generated is doing the best job possible in validating XML document data, or to
repurpose a generated DTD if there is a problem with it. In other words, you can’t
skip this chapter just because you know about tools that generate DTDs!

The example DTD in Listing 3-1 starts with an XML declaration then contains a com-
ment that tells us that this DTD was edited using xmlspy. Note that the DTD com-
ment format is the same as an XML document comment format:

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by
Brian Benz (Wiley) -->

Next is a declaration for the root quotedoc element. The quotedoc element speci-
fies two nested elements in an element list. The quotelist and catalog elements
have to be present, and have to be in the order specified in the list under the
quotedoc element, as specified by the comma separator:

<!ELEMENT quotedoc (quotelist, catalog)>

There are five ways to represent element structures in DTD documents, as shown in
Table 3-1.

Table 3-1
DTD Element Structures

Representation Description

<!ELEMENT quotedoc ANY > The quotedoc element is mandatory, but
any type of well-formed XML can be nested
under quotedoc element, in any order.

<!ELEMENT quotedoc EMPTY> The quotedoc element is mandatory, but
cannot have any other elements nested under
it. Attributes can be defined for the
quotedoc element.

<!ELEMENT quotedoc (#PCDATA)> The quotedoc element is mandatory, and
can contain only text data, not nested
elements. PCDATA stands for Parsed Character
Data. Attributes can be defined for the
quotedoc element. This format is known as
the text-only content model.

c538292 ch03.qxd 8/18/03 8:43 AM Page 54

55Chapter 3 ✦ XML Data Format and Validation

Representation Description

<!ELEMENT quotedoc (quotelist, catalog)> The quotedoc element is mandatory and can
<!ELEMENT quotedoc (quotelist | catalog)> contain only the elements specified, not text

values. Attributes can be defined for all
elements and text can be contained in nested
elements, if the declaration for that element
permits it. This format is known as the
element-only content model.

Comma-separated element lists are called
sequence lists, and the XML document
element order must match the order of the
elements listed.

Lists separated by the vertical bar (|) are called
choice lists and the vertical bar is equivalent to
a logical “or” operator, meaning one of the
elements in the list must be present under the
quotedoc element.

<!ELEMENT quotedoc The quotedoc element is mandatory and
can
(#PCDATA | quotelist, catalog)> contain the elements specified and/or text

values. Attributes can be defined for all
elements and text can be contained in nested
elements as well, if the declaration for that
element permits it. This format is known as
the mixed content model.

The next line in the DTD provides an example of the element cardinality, as speci-
fied by the “+” cardinality operator:

<!ELEMENT quotelist (quote+)>

There are four ways to specify how many times an element can appear under the
current element, represented by three cardinality operators and a default rule, as
shown in Table 3-2.

c538292 ch03.qxd 8/18/03 8:43 AM Page 55

56 Part I ✦ Introducing XML

Table 3-2
DTD Cardinality Operators

Cardinality Rule Description

<!ELEMENT quotelist (quote+)> The quote element is a required child element of
the quotelist element. There can be one or
more quote child elements under the
quotelist element.

<!ELEMENT quotelist (quote?> The quote element is an optional child element of
the quotelist element. If it is present, there can
be only one quote child element under the
quotelist element.

<!ELEMENT quotelist (quote*)> The quote element is an optional child element of
the quotelist element. If it is present, there can
any number of quote child elements under the
quotelist element.

<!ELEMENT quotelist (quote)> (default) The quote element is a required child
element of the quotelist element. There can be
only one quote child element under the
quotelist element.

Next in the example DTD is the attribute list for the quotelist element, which
indicates that there are two required attributes containing character data:

<!ATTLIST quotelist
author CDATA #REQUIRED
quotes CDATA #REQUIRED

>

Table 3-3 shows the list of keywords that control attributes in DTDs, which are
called attribute declaration keywords.

Table 3-3
DTD Attribute Declaration Keywords

Declaration Keyword Description

No declaration Keyword (default) The author attribute is optional. If no
author CDATA quotes attribute value is specified when
quotes CDATA “0” the document is parsed, a 0 value can be

added to the XML document.

#IMPLIED The author attribute is optional.
author CDATA #IMPLIED

c538292 ch03.qxd 8/18/03 8:43 AM Page 56

57Chapter 3 ✦ XML Data Format and Validation

Declaration Keyword Description

#FIXED The author attribute is optional in the
author CDATA #FIXED “Shakespeare, William” XML document but is specified in the DTD.

When the XML document is parsed, the
author attribute value is checked to
make sure it matched the value specified
in the DTD. If there is no attribute value in
the XML document, the value is
automatically supplied from the DTD
instead of generating a parser error.

#REQUIRED The author attribute is required and must
author CDATA #REQUIRED be supplied in the XML document.

In addition to the attribute declaration keywords, there are several additional ways
to control the type of data that are contained in the attribute value. CDATA is the
most common data type for DTDs. IDs are used occasionally, and the rest of the
data types are used and seen infrequently, but it’s good to know about them, just in
case you have a need for them or have to understand a DTD that uses them. Table
3-4 shows the available list of attribute data types in DTDs, and compatible
attribute declaration keywords.

Table 3-4
DTD Attribute Data Types

Data Type Description

CDATA Character data. The most common
author CDATA attribute description. All types of attribute
author CDATA “Shakespeare, William” declaration keywords can be used with
author CDATA #IMPLIED cdata.
author CDATA #FIXED “Shakespeare, William”
author CDATA #REQUIRED

NMTOKEN/NMTOKENS NMTOKEN is more restrictive than CDATA,
author NMTOKEN which can contain any character data.
author NMTOKEN “William Shakespeare” NMTOKEN attribute values must conform
author NMTOKEN #IMPLIED to the rules of well-formed XML names.
author NMTOKENS #IMPLIED
author NMTOKEN #FIXED “William Shakespeare” NMTOKENS can refer to a multiple value
author NMTOKEN #REQUIRED list of choices that are specified in the
author NMTOKENS #REQUIRED XML document attribute by a single

space. All values must conform to the
rules of well-formed XML names.

Continued

c538292 ch03.qxd 8/18/03 8:43 AM Page 57

58 Part I ✦ Introducing XML

Table 3-4 (continued)

Data Type Description

ENTITY/ENTITIES DTD entity attribute data types are similar
to XML document entity references in the

Entity References: sense that they let you link to data that is
outside the scope of the current

<!ENTITY bookimage SYSTEM “http:// document. Attribute entity references are
images.amazon.com/images/P/ most commonly used to link to images
8432040231.01.MZZZZZZZ.jpg”> that must be included in an XML

document, but that you want to specify
<!ENTITY small_bookimage SYSTEM the location of in a centralized document.
“http://images.amazon.com/images/P/ Entities are not parsed, but referenced.
8432040231.01.TZZZZZZZ.jpg”>

In the XML document, the attribute value
Attribute references: of bookimage can be used to refer to

the entity references show on the left,
<!ATTLIST quotelist bookimage ENTITY> instead of the full URL. If the URL

changes, the reference in the DTD can be
<!ATTLIST quotelist bookimages ENTITIES> updated centrally with the new URL.

References to multiple images are
formatted in an XML document attribute
by using the bookimages attribute
name and specifying entity names
separated by a space.

NOTATION DTD NOTATION attribute data types
<!ENTITY w3cwebsite SYSTEM specify methods for handling non-parsed
“http://www.w3c.org”> data, which is represented as Entitles in

attributes. The example on the left shows
<!NOTATION text_html SYSTEM an entity declaration that represents the
“http://www.iana.org/assignments/ URL for the W3C home page. Notation for
media-types/text/html”> the Internet Assigned Numbers Authority

(IANA) mime type definition for HTML is
<!ATTLIST quotelist w3cwebsite shown in the notation element. The
ENTITY text_html NOTATION > ATTLIST shows a reference to the

w3cwebsite entity and a reference to
notation for the handling of the entity
reference. Parsers will not parse the
entity, but will pass on the reference and
the notation to the XML document
destination.

c538292 ch03.qxd 8/18/03 8:43 AM Page 58

59Chapter 3 ✦ XML Data Format and Validation

Data Type Description

ID A unique value of Character data. For
quoteid ID #REQUIRED example, to uniquely identity quotes in

the document. In this example, a quoteid
attribute is attached to each quote
element that uniquely identifies that
quote in the XML document. ID attributes
should never use the #FIXED attribute
declaration, and should not be #IMPLIED,
or optional in any other way, to ensure
each element contains an attribute with a
unique identifier.

IDREF/IDREFS IDREFS can refer to an ID data type in an
XML document on a one-to-one or one-

quotelist ID attribute: to-many basis, and are used to define
relationships between elements that are

<!ATTLIST quotelist not explicitly linked together in the
author ID #REQUIRED document through attributes. For
> example, you may want to enforce that a

quotelist contains quotes by a certain
quote IDREF: author or list of authors. The quotelist

could have an ID attribute, as shown on
<!ATTLIST quote author IDREF #REQUIRED the left. Next, the quote could refer to the
> quotelist ID for the author name, or in the
-or- second example, to one or more authors
<!ATTLIST quote author IDREFS #REQUIRED in the quotelist author ID attribute.
>

In addition to the data types here, a predefined choice list of attribute values can be
manually specified. For example, an attribute that is restricted to be either William
Shakespeare or Geoffrey Chaucer in lastname, firstname format could be explicitly
defined like this:

<!ATTLIST quotelist
author (Shakespeare, William | Chaucer, Geoffrey)
>

Choices are separated by a vertical bar character (|). Note that unlike the ELEMENT
declaration, the commas are not part of the order specification for the choices,
they are treated as a part of a choice in a list.

c538292 ch03.qxd 8/18/03 8:43 AM Page 59

60 Part I ✦ Introducing XML

While the first few elements provided opportunities to introduce you to the basic
declarations and syntax of DTD documents, the rest of the DTD provides additional
examples of DTD descriptions of XML documents. The next element that is defined
in the DTD is the quote element, which is a child of the quotelist element. The
quote element has two optional attributes, source and author.

<!ELEMENT quote (#PCDATA)>
<!ATTLIST quote

source CDATA #IMPLIED
author CDATA #IMPLIED

>

The catalog element must contain two elements in sequence, starting with
amazon and ending with elcorteingles. The catalog element has one required
attribute, called items, which contains a count of the items in the catalog:

<!ELEMENT catalog (amazon, elcorteingles)>
<!ATTLIST catalog

items CDATA #REQUIRED
>

The amazon element contains one child element called product. The + cardinality
operator indicates that there can be one or more product child elements under
amazon:

<!ELEMENT amazon (product+)>
<!ATTLIST amazon

items CDATA #REQUIRED
>

The elcorteingles element contains one child element called product. Because
no cardinality operator is specified, there can be only one product child element
under elcorteingles:

<!ELEMENT elcorteingles (product)>
<!ATTLIST elcorteingles

items CDATA #REQUIRED
>

The next element declaration is a great example of the combination of the DTD ele-
ment declaration, sequence and choice list operators, and cardinality operators
working in concert to solve a tricky data validation problem. The XML document
supports both English and Spanish translations in nested elements of the product
element. Unfortunately, parsers have no way of automatically recognizing and
translating the element names, so it’s up to the DTD developer to make sure that all
possibilities in both formats are covered as part of the validation process.

c538292 ch03.qxd 8/18/03 8:43 AM Page 60

61Chapter 3 ✦ XML Data Format and Validation

In this example, all elements that have English and Spanish translations are offered
as choice lists components in a sequence list of nested elements under the
product element. Each translation choice list is completed with the + cardinality
operator outside of the braces that contain the list choices, which means that at
least one instance of the element has to be present in one of the languages, and
more instances are permissible. The Amazon.com product element also contains
some nested elements that the elcorteingles product element does not. Those ele-
ments have been listed in sequence and end with a ? cardinality operator, indicat-
ing that the nested elements are optional, but if they are present they must be in
the sequence specified in the listing. In summary, the product DTD element declara-
tion enforces either an English product listing from Amazon.com, or a smaller
Spanish listing from the elcorteingles.com Website.

<!ELEMENT product (ranking?, (title | titulo)+, (asin | isbn)+,
(author | autor)+, (image | imagen)+, small_image?, (list_price
| precio)+, (release_date | fecha_de_publicación)+, (binding |
Encuadernación)+, availability?, (tagged_url | librourl)+)>

There is one optional attribute for the product element, called xml:lang. The lan-
guage of the product element for the elcorteingles listing is defined by using the
predefined xml:lang attribute. In the DTD this is represented by an optional
attribute for the product:

<!ATTLIST product
xml:lang CDATA #IMPLIED

>

The rest of the elements have no children or attributes and are represented by
PCDATA (Parsed Character Data) element declarations. Parent element declarations
need these element declarations to be in the DTD. The PCDATA declaration indi-
cates a text-only content model, which means that these elements can contain text
and attributes but not nested elements.

<!ELEMENT Encuadernación (#PCDATA)>
<!ELEMENT asin (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT autor (#PCDATA)>
<!ELEMENT availability (#PCDATA)>
<!ELEMENT binding (#PCDATA)>
<!ELEMENT fecha_de_publicación (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT imagen (#PCDATA)>
<!ELEMENT librourl (#PCDATA)>
<!ELEMENT list_price (#PCDATA)>
<!ELEMENT precio (#PCDATA)>
<!ELEMENT ranking (#PCDATA)>
<!ELEMENT release_date (#PCDATA)>

c538292 ch03.qxd 8/18/03 8:43 AM Page 61

62 Part I ✦ Introducing XML

<!ELEMENT small_image (#PCDATA)>
<!ELEMENT tagged_url (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT titulo (#PCDATA)>

While DTDs are still in use and still often the data validation tool of choice for many
XML developers, the W3C Schema promises, and in most cases, delivers, much
more control over data validation than DTDs. In the next section of this chapter, I’ll
introduce you to Schemas and show how Schemas are structured and validate XML
data.

W3C XML Schemas
Schemas are an updated document format for XML data validation. Schemas can be
less cryptic than DTDs, but consequently are much more verbose, and are much
easier to grasp for XML developers than DTD syntax because Schemas are more
closely based on XML syntax. Nested elements are represented by nested elements,
and attributes are assigned explicitly as part of the element. Cardinality operators,
attribute data types, and choice lists are replaced by element representations and
attribute keywords, and there is much more control over data types. The XML
Schema 1.0 is an official W3C Recommendation as of May 2001, and XML 1.1 is in
the works at the W3C. More information can be found at http://www.w3.org/
TR/2001/REC-xmlschema-1-20010502.

A good listing of Schema editors can be found on the XML.com Website at
http://www.xml.com/pub/pt/2. Most of the Schema tools listed are free or
have free trial downloads available. As with the DTD example earlier in this chapter,
this Schema example is edited using Altova’s xmlspy (http://www.altova.com).
I was also able to use xmlspy to translate the DTD used in the previous example to
a Schema that almost worked. As with DTDs, xmlspy’s W3C Schema generator is
probably the best on the market, but there was one crucial item that xmlspy missed
in the DTD to Schema translation that had to be added manually, which I will get
into later in this chapter. The point is that as with DTDs, developers still need to
know something about Schemas structure if they want to make sure that the
Schema generated is the best format possible for validating XML document data,
or to fix a generated Schema if there is a problem with it.

W3C Schema data types
DTDs were developed as part of the original SGML specifications, and extended to
describe HTML markup as well. They are great as a legacy data validation tool, but
have several drawbacks when applied to modern XML documents. DTDs require
that elements be text, nested elements, or a combination of nested elements and
text. DTDs also have limited support for predefined data types.

c538292 ch03.qxd 8/18/03 8:43 AM Page 62

63Chapter 3 ✦ XML Data Format and Validation

Schemas can support all of the DTD attribute data types (ID, IDREF, IDREFS,
ENTITY, ENTITIES, NMTOKEN, NMTOKENS and NOTATION). CDATA, is replaced by
the primitive string data type. Other data types can be used in a multitude of for-
mats, as shown in Table 3-5

Table 3-5
Schema Data Types

Name Base Type Description

String

String Primitive Any well-formed XML string

normalizedString string Any well-formed XML string that also does
not contain line feeds, carriage returns,
or tabs.

Token normalizedString Any well-formed XML string that does not
contain line feeds, carriage returns, tabs,
leading or trailing spaces, or more than
one space.

language token A valid language id, matching xml:lang
format, which is usually International
Organization of Standardization (ISO)
639 format.

QName Primitive XML namespace qualified name (Qname).

Name token A string based on well-formed element and
tribute name rules.

NCName name The part of a namespace name to the right
of the namespace prefix and colon.

Date

date Primitive Date value in the format YYYY-MM-DD.

time Primitive Time value in the format HH:MM:SS.

dateTime Primitive Combined date and time value in the
format YYYY-MM-DDT HH:MM:SS.

gDay Primitive The day part of a date in the format DD.
Also the national greeting of Australia.

gMonth Primitive The month part of a date in the format MM.

gMonthDay Primitive The month and day part of a date in the
format MM-DD.

Continued

c538292 ch03.qxd 8/18/03 8:43 AM Page 63

64 Part I ✦ Introducing XML

Table 3-5 (continued)

Name Base Type Description

gYear Primitive The month part of a date in the format
YYYY.

gYearMonth Primitive The year and month part of a date in the
format YYYY-MM.

duration Primitive Represents a time interval the ISO 8601
extended format P1Y1M1DT1H1M1S. This
example represents one year, one month,
one day, one hour, one minute, and one
second.

Numeric

number Primitive Any numeric value up to 18 decimal places.

decimal Primitive Any decimal value number.

float Primitive Any 32-bit floating-point type real number.

double Primitive Any 64-bit floating-point type real number.

integer number Any integer.

byte short Any signed 8-bit integer.

short int Any signed 16-bit integer.

int integer Any signed 32-bit integer.

long integer Any signed 64-bit integer.

unsignedByte integer Any unsigned 8-bit integer.

unsignedShort unsignedInt Any unsigned 16-bit integer.

unsignedInt unsignedLong Any unsigned 32-bit integer.

unsignedLong nonNegativeInteger Any unsigned 64-bit integer.

positiveInteger nonNegativeInteger Any integer with a value greater than 0.

nonPositiveInteger integer Any integer with a value less than or equal
to 0.

negativeInteger nonPositiveInteger Any integer with a value less than 0.

nonNegativeInteger integer Any integer with a value greater than or
equal to 0.

c538292 ch03.qxd 8/18/03 8:43 AM Page 64

65Chapter 3 ✦ XML Data Format and Validation

Name Base Type Description

Other

anyURI Primitive Represents a URI, and can contain any URL
or URN.

Boolean Primitive Standard binary logic, in the format of 1, 0,
true, or false.

hexBinary Primitive Hex-encoded binary data

base64Binary Primitive Base64-encoded binary data.

Primitive and derived data types can be extended to create new data types. Data
types that extend existing data types are called user-derived data types.

W3C Schema elements
Data types are formatted as attributes in element declarations of Schema docu-
ments, just as data types are usually defined by attributes in XML documents. Data
types are contained in four types of elements:

✦ Element declarations: Describe an element in an XML document.

✦ Simple type definitions: Contain values in a single element, usually with
attributes that define one of the primitive or derived W3C data types, but can
contain user-derived data types as well.

✦ Complex type definitions: A series of nested elements with attributes that
describe a complex XML document structure and primitive, derived, or user-
derived data types.

✦ Attribute declarations: Elements that describe attributes and attributes that
define a data type for the attribute.

Element declarations, simple type definitions, complex type definitions, and
attribute declarations are all defined by declaring one or more of the Schema ele-
ments listed in Table 3-6 in a Schema document:

c538292 ch03.qxd 8/18/03 8:43 AM Page 65

66 Part I ✦ Introducing XML

Table 3-6
Schema Elements

Element Description

all Nested elements can appear in any order. Each child element is
optional, and can occur no more than one time.

annotation Schema comments. Contains appInfo and documentation.
appInfo: Information for parsing and destination applications - must
be a child of annotation.
documentation: Schema text comments; must be a child of
annotation.

any Any type of well-formed XML can be nested under the any element,
in any order. Same as the DTD <!ELEMENT element_name ANY >
declaration.

anyAttribute Any attributes composed of well-formed XML can be nested under
the anyAttribute element, in any order.

attribute An attribute.

attributeGroup Reusable attribute group for complex type definitions.

choice A list of choices, one of which must be chosen. Same as using the
vertical bar character (|) in a DTD choice list.

complexContent Definition of mixed content or elements in a complex type.

complexType Complex type element.

element Element element.

extension Extends a simpleType or complexType.

field An element or attribute that is referenced for a constraint. Similar to
the DTD IDREF attribute data type, but uses an XPATH expression for
the reference.

group A group of elements for complex type definitions.

import Imports external Schemas with different Namespaces.

include Includes external Schemas with the same Namespace.

key Defines a nested attribute or element as a unique key. Same as the
DTD ID attribute data type.

keyref Refers to a key element. Same as the DTD IDREF attribute data type.

list A list of values in a simple type element.

notation Defines the format of non-parsed data within an XML document.
Same as the DTD NOTATION attribute data type.

c538292 ch03.qxd 8/18/03 8:43 AM Page 66

67Chapter 3 ✦ XML Data Format and Validation

Element Description

restriction Imposes restrictions on a simpleType, simpleContent, or a
complexContent element.

schema The root element of every W3C Schema document.

selector Groups a set of elements for identity constraints using an XPath
expression.

sequence Specifies a strict order on child elements. Same as using the comma
to separate nested elements in a DTD sequence.

simpleContent Definition of text-only content in a simple type.

simpleType Declares a simple type definition.

union Groups simple types into a single union of values.

unique Defines an element or an attribute as unique at a specified nesting
level in the document.

W3C Schema element and data type restrictions
Aside from the elements listed in Table 3-6, there are several other types of ele-
ments that define constraints on other elements in the Schema.

Data type properties, including constraints, on simple data types, are called facets.
Simple data types can be constrained by fundamental facets, which specify funda-
mental constraints on the data type such as the order of display or the cardinality,
much like using the DTD cardinality operators (+, ?, *), commas and vertical bar
characters were used to predefine DTD element constraints. Constraining facets
extend beyond predefined rules to control behavior based on Schema definitions.
Table 3-7 shows a listing of W3C Schema fundamental facets that constrain simple
data types.

Table 3-7
Schema Element Restrictions

Restriction Description

choice A list of choices predefined in the Schema document. Same as the
DTD enumeration for attribute list data types.

fractionDigits Maximum decimal placed for a value. Integers are 0.

length Number of characters, or for lists, number of list choices.

Continued

c538292 ch03.qxd 8/18/03 8:43 AM Page 67

68 Part I ✦ Introducing XML

Table 3-7 (continued)

Restriction Description

maxExclusive Maximum up to, but not including the number specified.

maxInclusive Maximum including the number specified.

maxLength Maximum number of characters, or for lists, number of list choices.

minExclusive Minimum down to, but not including the number specified.

minInclusive Minimum including the number specified.

minLength Minimum number of characters, or for lists, number of list choices.

pattern Defines a pattern and sequence of acceptable characters.

totalDigits Number of non-decimal, positive, non-zero digits.

whiteSpace How line feeds, tabs, spaces, and carriage returns are treated when
the document is parsed.

A listing of which constraints apply to which simple data types can be found as part
of the W3C Schema Recommendation at http://www.w3.org/TR/xmlschema-2.

Namespaces and W3C Schemas
One of the additional features of Schemas is the ability to handle XML namespaces
as part of the Schema. One of the best examples of this is the XML Schema Schema.
Schema namespaces and data types are defined by a Schema that is referenced by
the root element of every W3C Schema. The namespace declaration looks like this:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

The URL, http://www.w3.org/2001/XMLSchema, actually resolves to document
that links to the Schema Schema. The Schema specifies the elements and data types
used in the Schema. It also is a very long Schema document that includes embed-
ded DTDS, imported and included external Schemas, and just about every type of
Schema situation imaginable. This makes it a great start for finding working exam-
ples of Schema structure and syntax.

An example W3C Schema document
Listing 3-2 shows the Schema that I will be using as an example for this chapter. The
AmazonMacbethSpanish.xsd is referenced and validates the contents of the
AmazonMacbethSpanishwithXSDref.xml document.

c538292 ch03.qxd 8/18/03 8:43 AM Page 68

69Chapter 3 ✦ XML Data Format and Validation

Listing 3-2: Contents of AmazonMacbethSpanish.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<!--W3C Schema generated by XMLSPY v5 rel. 2 U
(http://www.xmlspy.com)-->
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:import namespace=”http://www.w3.org/XML/1998/namespace”
schemaLocation=”http://www.w3.org/2000/10/xml.xsd”/>
<xs:element name=”Encuadernación” type=”xs:string”/>
<xs:complexType name=”amazonType”>

<xs:sequence>
<xs:element name=”product” type=”productType”
maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>
<xs:element name=”asin” type=”xs:string”/>
<xs:element name=”author” type=”xs:string”/>
<xs:element name=”autor” type=”xs:string”/>
<xs:element name=”availability” type=”xs:string”/>
<xs:element name=”binding” type=”xs:string”/>
<xs:complexType name=”catalogType”>

<xs:sequence>
<xs:element name=”amazon” type=”amazonType”/>
<xs:element name=”elcorteingles”
type=”elcorteinglesType”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>
<xs:complexType name=”elcorteinglesType”>

<xs:sequence>
<xs:element name=”product” type=”productType”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>
<xs:element name=”fecha_de_publicación” type=”xs:string”/>
<xs:element name=”image” type=”xs:string”/>
<xs:element name=”imagen” type=”xs:string”/>
<xs:element name=”isbn” type=”xs:string”/>
<xs:element name=”librourl” type=”xs:string”/>
<xs:element name=”list_price” type=”xs:string”/>
<xs:element name=”precio” type=”xs:string”/>
<xs:complexType name=”productType”>

<xs:sequence>
<xs:element ref=”ranking” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

Continued

c538292 ch03.qxd 8/18/03 8:43 AM Page 69

70 Part I ✦ Introducing XML

Listing 3-2 (continued)

<xs:element ref=”title”/>
<xs:element ref=”titulo”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”asin”/>
<xs:element ref=”isbn”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”author”/>
<xs:element ref=”autor”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”image”/>
<xs:element ref=”imagen”/>

</xs:choice>
<xs:element ref=”small_image” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”list_price”/>
<xs:element ref=”precio”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”release_date”/>
<xs:element ref=”fecha_de_publicación”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”binding”/>
<xs:element ref=”Encuadernación”/>

</xs:choice>
<xs:element ref=”availability” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”tagged_url”/>
<xs:element ref=”librourl”/>

</xs:choice>
</xs:sequence>
<xs:attribute ref=”xml:lang” type=”xs:string”/>

</xs:complexType>
<xs:complexType name=”quoteType”>

<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”source” type=”xs:string”/>
<xs:attribute name=”author” type=”xs:string”/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:element name=”quotedoc”>

<xs:complexType>
<xs:sequence>

c538292 ch03.qxd 8/18/03 8:43 AM Page 70

71Chapter 3 ✦ XML Data Format and Validation

<xs:element name=”quotelist” type=”quotelistType”/>
<xs:element name=”catalog” type=”catalogType”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”quotelistType”>

<xs:sequence>
<xs:element name=”quote” type=”quoteType”
maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”author” type=”xs:string”
use=”required”/>
<xs:attribute name=”quotes” type=”xs:string”
use=”required”/>

</xs:complexType>
<xs:element name=”ranking” type=”xs:string”/>
<xs:element name=”release_date” type=”xs:string”/>
<xs:element name=”small_image” type=”xs:string”/>
<xs:element name=”tagged_url” type=”xs:string”/>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”titulo” type=”xs:string”/>

</xs:schema>

Applying Schemas
Referencing Schemas in XML documents is done via namespace declarations in the
root element of the document:

<quotedoc xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance”
xsi:noNamespaceSchemaLocation=”AmazonMacbethSpanishwithXSDRef2.
xsd”>

In this case, the namespace declaration reference to http://www.w3.org/2001/
XMLSchema-instance resolves to an actual document at that location, which
is a brief description of the way that the W3C Schema should be referenced, and
a link to the actual Schema that describes Schema data types, elements, and
other Schema descriptions based on the current W3C Recommendation. The
noNamespaceSchemaLocation value tells us that there is no predefined
Namespace for the Schema, but that the location of the Schema is
AmazonMacbethSpanishwithXSDRef2.xsd, which should be in the same directory
as the XML file to be validated by the Schema.

c538292 ch03.qxd 8/18/03 8:43 AM Page 71

72 Part I ✦ Introducing XML

Schema structure and syntax
The example Schema in Listing 3-2 starts with an XML declaration that contains a
comment that tells you that this Schema was generated using xmlspy. Note that
the Schema comment format is the same as the XML and DTD document comment
formats:

<?xml version=”1.0” encoding=”UTF-8”?>
<!--W3C Schema generated by XMLSPY v5 rel. 2 U
(http://www.xmlspy.com)-->

Next, the W3C Schema namespace declaration is shown as part of the root element.
Note that the root element already uses the xs: namespace prefix, which is the
standard prefix for Schema declarations. The elementformdefault attribute tells
the parser that every element in this document must be prefixed (qualified) with
the xs namespace in order for the document to be valid:

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

You may recall from the introduction to Schemas section in this chapter that a
change to the Schema that was generated by xmlspy was required before the gener-
ated Schema was valid. The generated Schema was based on the DTD example from
earlier in this chapter, and included the predefined xml:lang attribute. The gener-
ated XML Schema didn’t recognize the xml:lang attribute until this line was added
to the Schema:

<xs:import namespace=”http://www.w3.org/XML/1998/namespace”
schemaLocation=”http://www.w3.org/2000/10/xml.xsd”/>

This imported the Schema from http://www.w3.org/2000/10/xml.xsd as part
of the current Schema document. This Schema defines the xml:lang, xml:space,
and xml:base elements and prefix names. For xml:lang, the declaration defines
the lang attribute as the derived Schema data type language:

<attribute name=”lang” type=”language”>
<annotation>....truncated</annotation>
</attribute>

Once the connection was made between the xml:lang data attribute and the lan-
guage derived data type, the xml:lang attribute was accepted as part of the
Schema elements. Note that the xml: prefix did not have to be defined, xml: is the
only predefined namespace in xml, according to the W3C Recommendation.

Next, the Encuadernación (Spanish for binding) element is defined, and assigned
a primitive string data type, in a simple Schema data type:

<xs:element name=”Encuadernación” type=”xs:string”/>

c538292 ch03.qxd 8/18/03 8:43 AM Page 72

73Chapter 3 ✦ XML Data Format and Validation

Next, a complex data type is declared and named amazonType. It requires that at
least one child product element be present (with another complex data type,
productType), and that there is no limit on how many product child elements are
present. Also, the amazonType has to have one attribute called items, and a value
is required.

<xs:complexType name=”amazonType”>
<xs:sequence>

<xs:element name=”product” type=”productType”
maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>

After that, several other simple data types are defined, bound to Schema data
types. Note that the simple and complex data type declarations do not need to
appear in the order that they are structured in an actual XML document, it’s up to
the parser to make all the necessary links and build a representation of the docu-
ment, regardless of the order of declarations. This goes for DTDs as well.

<xs:element name=”asin” type=”xs:string”/>
<xs:element name=”author” type=”xs:string”/>
<xs:element name=”autor” type=”xs:string”/>
<xs:element name=”availability” type=”xs:string”/>
<xs:element name=”binding” type=”xs:string”/>

Next, another complex data type is defined for the catalog element, called
catalogType. It specifies that each element that is assigned to the catalogType
must meet the requirements of the amazonType and an elcorteinglesType
complex data types, in that order, and must have an attribute called items, which
must have a value. This is a great example of the advantages of using reusable com-
plex data types in a Schema, rather than defining simple data types. Though the
entire document could be defined in a single complex data type or a series of sim-
ple data types, it’s best to use complex types and restrict each complex type to an
element and its children only, and define another complex data type for further
nesting. For example, if the amazon catalog format changes, only the amazonType
complex data type in this Schema needs to be changed, and does not affect the defi-
nition of the other elements in the Schema:

<xs:complexType name=”catalogType”>
<xs:sequence>

<xs:element name=”amazon” type=”amazonType”/>
<xs:element name=”elcorteingles”
type=”elcorteinglesType”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>

c538292 ch03.qxd 8/18/03 8:43 AM Page 73

74 Part I ✦ Introducing XML

Next, the elcorteinglesType is defined that from the catalogType in the last
code segment. Like the amazonType, it uses the productType to specify the struc-
ture of products.

<xs:complexType name=”elcorteinglesType”>
<xs:sequence>

<xs:element name=”product” type=”productType”/>
</xs:sequence>
<xs:attribute name=”items” type=”xs:string”
use=”required”/>

</xs:complexType>

Then a few more elements are declared as simple data types:

<xs:element name=”fecha_de_publicación” type=”xs:string”/>
<xs:element name=”image” type=”xs:string”/>
<xs:element name=”imagen” type=”xs:string”/>
<xs:element name=”isbn” type=”xs:string”/>
<xs:element name=”librourl” type=”xs:string”/>
<xs:element name=”list_price” type=”xs:string”/>
<xs:element name=”precio” type=”xs:string”/>

The next complex data type declaration is a good interpretation of the DTD require-
ments and was converted to the W3C Schema format by xmlspy. As with the DTD,
this data type was a challenge that xmlspy handled very well. The XML document
supports both English and Spanish translations in nested elements of the product
element. Unfortunately, parsers have no way of automatically recognizing and
translating the element names, so it’s up to the Schema developer to make sure that
all possibilities in both formats are covered as part of the validation process.

In this data type, all elements that have English and Spanish translations are offered
as choice lists components in a sequence list of nested elements under the product
element, as represented in the productType complex data type. Each translation
choice list is completed with a choice element, which means that at least one
instance of the element has to be present in one of the languages. The Amazon.com
product element also contains some nested elements that the elcorteingles prod-
uct element does not. Those elements have been listed in sequence and include a
minOccurs=”0” constraint attribute, indicating that the nested elements are
optional, but if they are present they must be in the sequence specified in the listing.

<xs:complexType name=”productType”>
<xs:sequence>

<xs:element ref=”ranking” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”title”/>
<xs:element ref=”titulo”/>

</xs:choice>

c538292 ch03.qxd 8/18/03 8:43 AM Page 74

75Chapter 3 ✦ XML Data Format and Validation

<xs:choice maxOccurs=”unbounded”>
<xs:element ref=”asin”/>
<xs:element ref=”isbn”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”author”/>
<xs:element ref=”autor”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”image”/>
<xs:element ref=”imagen”/>

</xs:choice>
<xs:element ref=”small_image” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”list_price”/>
<xs:element ref=”precio”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”release_date”/>
<xs:element ref=”fecha_de_publicación”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”binding”/>
<xs:element ref=”Encuadernación”/>

</xs:choice>
<xs:element ref=”availability” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”tagged_url”/>
<xs:element ref=”librourl”/>

</xs:choice>
</xs:sequence>
<xs:attribute ref=”xml:lang” type=”xs:string”/>

</xs:complexType>

Next is a definition for the quote segment of the XML document, which is repre-
sented by a complex data type of quoteType. Each quote must contain two
attributes, a source and an author, for each quote. Note that this complex data
type uses an extension element to define two simple data types inside of the
complex data type:

<xs:complexType name=”quoteType”>
<xs:simpleContent>

<xs:extension base=”xs:string”>
<xs:attribute name=”source” type=”xs:string”/>
<xs:attribute name=”author” type=”xs:string”/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

c538292 ch03.qxd 8/18/03 8:43 AM Page 75

76 Part I ✦ Introducing XML

The next element in the element nesting structure is the root quotedoc element
description. This complex data type simply states that the quotedoc element must
have two children, quotelist and catalog, each represented by their assigned com-
plex data types:

<xs:element name=”quotedoc”>
<xs:complexType>

<xs:sequence>
<xs:element name=”quotelist” type=”quotelistType”/>
<xs:element name=”catalog” type=”catalogType”/>

</xs:sequence>
</xs:complexType>

</xs:element>

Next is a complex data type defined for the quotelist, which contains the quotes.
Once again, each element is assigned a corresponding complex data type:

<xs:complexType name=”quotelistType”>
<xs:sequence>

<xs:element name=”quote” type=”quoteType”
maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”author” type=”xs:string”
use=”required”/>
<xs:attribute name=”quotes” type=”xs:string”
use=”required”/>

</xs:complexType>

The Schema element declarations are finished with a final list of simple data types
that are needed in the complex data types, and close the root Schema tag:

<xs:element name=”ranking” type=”xs:string”/>
<xs:element name=”release_date” type=”xs:string”/>
<xs:element name=”small_image” type=”xs:string”/>
<xs:element name=”tagged_url” type=”xs:string”/>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”titulo” type=”xs:string”/>

</xs:schema>

Summary
In this chapter, I introduced you to the concept of data validation and showed you
detailed techniques with examples on developing DTDs and W3C Schemas for vali-
dating your XML documents.

✦ Validating XML data

✦ Applying DTDs to XML documents

c538292 ch03.qxd 8/18/03 8:43 AM Page 76

77Chapter 3 ✦ XML Data Format and Validation

✦ DTD structure and syntax

✦ Applying W3C Schemas to XML documents

✦ W3C Schema structure and syntax

✦ Real-world examples of DTD and Schemas

I discussed parsers a little in this chapter, and in the next two chapters you will
become much more acquainted with them, what they do, and how they do it,
including parsing XML documents using the Document Object Model (DOM) and
the Simple API for XML (SAX).

✦ ✦ ✦

c538292 ch03.qxd 8/18/03 8:43 AM Page 77

XML Parsing
Concepts

One of the great advantages of using XML data is trans-
portability. But up until this point in the book, the

mechanics of how to deliver XML data to another system have
not yet been covered. As explained in Chapter 1, XML alone is
not data integration. Applications that send and receive XML
data need interfaces to generate XML and to integrate XML
data into applications. XML document parsing is used to inte-
grate XML data with existing applications.

The word parse comes from the Latin pars orationis, mean-
ing “part of speech.” In linguistics, parsing is the act of
breaking down sentences and word structures to establish
relationships and structures of language. These structures
are most often represented in a tree structure. Computer-
based parsing is similar, but is most commonly used to
break down and interpret characters in a string. Since XML
is by definition a set of characters in a string, breaking down
and separating parts of XML documents is also referred to
as parsing.

XML document parsing identifies and converts XML elements
contained in an XML document into either nested nodes in a
tree structure or document events, depending on the type of
XML parser that is being used:

✦ Document Object Model (DOM) parsing breaks a docu-
ment down into nested elements, referred to as nodes in
a DOM document representation. DOM nodes refer to
documents or fragments of documents, elements,
attributes, text data, processing instructions, comments,
and other types of data that I’ll cover in more detail in
Chapter 5.

✦ Simple API for XML (SAX) parsing breaks XML docu-
ments down into events in a SAX document representa-
tion. These nodes and events, once identified, can be

Note

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Parsing XML
documents

About XML parsers

Tree parsers

Event-driven parsers

Document Object
Model (DOM)

Simple API for
XML (SAX)

DOM versus SAX:
when to use what

✦ ✦ ✦ ✦

c538292 ch04.qxd 8/18/03 8:43 AM Page 79

80 Part I ✦ Introducing XML

used to convert the original XML document elements into other types of data,
based on the data represented by the elements, attributes, and text values in
the original XML document.

This chapter will focus on the concepts and theory behind XML document parsing
and manipulation using node tree-based parsers and event-based parsers. After an
introduction to the concepts, Chapters 5 and 6 provide practical examples of pars-
ing an XML document using DOM and SAX.

Chapters 4, 5, and 6 provide examples of how parsers work. For examples of how
to enable XML through Java code, refer to Chapter 16.

Document Object Model (DOM)
The W3C Document Object Model Recommendation is the only XML Document
parsing model that is officially recommended for XML document parsing by the
W3C. The full recommendation can be found at http://www.w3.org/TR/
DOM-Level-2-HTML. The W3C DOM can be used to create XML documents, navi-
gate DOM structures, and add, modify, or delete DOM nodes. DOM parsing can be
slower than SAX parsing because DOM creates a representation of the entire docu-
ment as nodes, regardless of how large the document is. However, DOM can be
handy for retrieving all the data from a document, or retrieving a piece of data sev-
eral times. The DOM stays resident in memory as long as the code that created the
DOM representation is running.

What is DOM?
The Document Object Mode (DOM) is a tree representation of XML data, with root
and nested elements and attributes in an XML document represented by instances
of nodes inside a single document node. Each node in the DOM tree represents a
matching item in the original XML document. Element, attribute, and text nodes are
nested at multiple levels matching the nested elements at the same level of the XML
document. The DOM root node always matches the root element in an XML docu-
ment, and other nodes in the tree are located by their relationship to the root node.

Listing 4-1 shows the very simple XML document from Chapter 1. In Chapter 1, I
compared the structure of an XML document to the structure of a computer’s hard
drive, with a single root directory that contains subdirectories and files. This com-
parison is perhaps even more applicable to the structure of a DOM node tree. The
DOM nodes map to the directories on a hard drive, with one or more files in some
of the directories. The hard drive starts with a root directory and several subdirec-
tories. Even if there are no files in a directory, the directory has a name and it can
contain subdirectories that contain files. In the same way, element nodes have

Cross-
Reference

c538292 ch04.qxd 8/18/03 8:43 AM Page 80

81Chapter 4 ✦ XML Parsing Concepts

names but no associated value. Element nodes, however, may contain other nodes,
such as attributes or text values. Attribute and text nodes can contain values asso-
ciated with an element node, just like directories can contain files that contain data.

DOM nodes represent all types of data in XML documents. Nodes have nodeType,
nodeName, and nodeValue properties. For example, the parsed DOM node for the
root element has a nodeName of rootelement and is an element nodeType. The
firstelement element is also an element nodetype. Both elements have a
nodeValue of null, as all elements do. The position attribute becomes a node
with an attribute nodeType, a nodeName of position, and a value of 1. The text
value of the level1 element has a nodeName of #text, a nodeType of text, and a
nodeValue of This is level 1 of the nested elements.

Listing 4-1: A Very Simple XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested

elements</level1>
</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested

elements</level2>
</level1>

</secondelement>
</rootelement>

You can easily visualize XML document structures and DOM structures by using
free tools that are available for download on the Web. Most tools use DOM parsers
to integrate XML document data with their own custom UI, and display XML docu-
ments using customized document node tree representations. I’ve included two
good ones in the list below, but you can find more at http://www.xmlsoftware.
com/browsers.html.

✦ The Microsoft XML Notepad is a small, simple XML document editor and
reader for Windows. It’s been a while since it was updated, but it’s still a good,
basic XML editor and viewer. You can download it by going to http://www.
microsoft.com/xmlnotepad.

✦ The IBM XML Viewer is great for viewing XML documents on non-Windows
machines that support Java. You can download it at http://alphaworks.
ibm.com/tech/xmlviewer. It’s a simple tool very similar to XML Notepad
but is better at handling more advanced XML such as namespaces. The trade-
off is that it lacks the basic editing capabilities of the Microsoft XML Notepad.

c538292 ch04.qxd 8/18/03 8:43 AM Page 81

82 Part I ✦ Introducing XML

Figure 4-1 shows an example of the very simple XML document from Listing 4-1 dis-
played in the Microsoft XML Notepad. Note how the tree structure in the parsed
XML document representation resembles the directory structures on a hard drive.

The rootlement and firstelement elements have a nodeValue of null. The
position attribute is an attribute nodeType with and a value of 1. In the XML
Notepad, text values show up as values of their associated elements. The text value
of the level1 element, for example, is shown as a value of the level1 element,
even though in reality the text value is a separate DOM node with a nodeType
of text.

Figure 4-1: A very simple XML document displayed in the Microsoft XML Notepad

About DOM 1, DOM 2, and DOM 3
The DOM Level 1 and Level 2 specifications are both W3C Recommendations. Both
specifications are final, and developers that build applications based on either
specification can be assured that the standards are complete and will not be
updated. However, it’s worth noting that DOM Level 1 is not compatible with DOM
Level 2, and there are no guarantees that DOM Level 1 or 2 will be compatible with
DOM Level 3, which is currently winding its way through the recommendation pro-
cess at the W3C. DOM 1 supports basic navigation and editing of DOM nodes in

c538292 ch04.qxd 8/18/03 8:43 AM Page 82

83Chapter 4 ✦ XML Parsing Concepts

HTML and XML documents. DOM 2 extends Level 1 with support for XML name-
spaces, and a few new features that are similar to SAX functionality such as filtered
views, ranges, and events.

Simple API for XML (SAX)
SAX parsing is faster than DOM parsing, but slightly more complicated to code.
XML document representations in SAX don’t follow the same type of directory and
file structure that defines DOM documents. SAX parsing is more appropriately com-
pared to getting information from this chapter of the book by going to the page
where the chapter starts, reading the chapter, and stopping when the chapter ends.
DOM parsers would extract the same information from this chapter by reformatting
the entire book into a DOM format, then reading through the DOM representation of
the book to find the beginning of the chapter, and reading the chapter. In other
words, SAX provides a specific chunk of information that you need from an XML
document, while DOM retrieves and reformats the whole document, and then
extracts the same chunk of information from the reformatted document.

What is SAX?
Like DOM, SAX is used to describe, parse, and manipulate XML documents. Unlike
DOM, SAX breaks a document down into a series of events that represent parts of
an XML document, such as StartDocument, StartElement, EndElement,
ProcessingInstruction, SAXWarning, SAXError, and EndDocument.

SAX is not developed or “recommended” by the W3C, though subsequent DOM
implementations usually borrow useful new features from the more advanced SAX
feature set. In general, SAX is usually ahead of DOM implementations, because the
W3C recommendation process does not hinder SAX development. There is no offi-
cial specification of SAX, just the implementation of the XMLReader class, which is
only written in Java at this time. There are other implementations of SAX on other
platforms, but these are either a result of bindings to code in the SAX Java archive
file, sax.jar, or a complete rewrite of code that simply mimics the functionality of
SAX Java classes, methods, and properties.

Updates to SAX can be downloaded at http://www.saxproject.org. The site
also contains information about parser implementations and bindings, and the FAQ
at that site is a fun read. Really.

SAX 1 and SAX 2
Most current parsers implement the SAX2 interfaces. Unlike DOM 1 and 2, SAX 2
parsers are usually backward compatible with SAX 1. SAX 1 supports Navigation

c538292 ch04.qxd 8/18/03 8:43 AM Page 83

84 Part I ✦ Introducing XML

around a document and manipulation of content via SAX 1 events via the SAX 1
Parser class. SAX 2 supports namespaces, filter chains, and querying and setting
features and properties via SAX events via the SAX 2 XMLReader interface.

In the previous DOM section of this chapter, I showed you two free tools that parse
an XML document into DOM nodes and display the nodes in a tree-based UI. At the
time of writing, there are unfortunately no simple tools that break down an XML
document into a visual display of SAX events. There is sample code written in Java
and other languages that parse XML documents with SAX and return output of
events to a screen, but no downloadable tools. The code ships with most SAX
parsers. You can find a good list of SAX parsers at the SAX project Website,
http://www.saxproject.org/?selected=links.

I’ll cover sample SAX code in more detail in Chapters 14 and 16.

Listing 4-2 shows an example of the very simple XML document from Listing 4-1
with annotation that identifies each SAX event associated with the original XML
document objects.

SAX parsers represent the rootlement element as the startDocument event,
because it’s the root element of the document.

Remember from Chapter 1 that the XML declaration is optional! This means that
an XML document actually starts at the root element, which is the first element
after the optional XML declaration.

The rootlement element is also represented by the startElement event,
because every event in the document has an associated startElement and
endElement event, including the root element.

The firstelement’s startElement event also contains an attributes object.
The attributes object contains information about one or more attributes associ-
ated with an element. The attributes object contains a single object, with a name
of position and a value of 1. SAX attribute names and values can be retrieved by
using several methods implemented in the SAX attributes interface, which I will
cover in more detail in Chapter 6.

Text values in SAX show up as values of the characters event. The text value
This is level 1 of the nested elements, for example, is a value of the
characters event after the level1 element startElement event and before
the level1 element endElement event.

There is no startCharacters or endCharacters event. SAX parsers see the
characters event as one uninterrupted string between startElement and
endElement events.

Note

Note

Cross-
Reference

c538292 ch04.qxd 8/18/03 8:43 AM Page 84

85Chapter 4 ✦ XML Parsing Concepts

Listing 4-2: A Very Simple XML Document with SAX
Event Listings

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>
<!--SAX Events:startDocument, startElement-->

<firstelement position=”1”>
<!--SAX Events:startElement, Attributes=position value=1-->

<level1 children=”0”>
<!--SAX Events:startElement Attributes=children value=0-->

This is level 1 of the nested elements
<!--SAX Event:characters-->

</level1>
<!--SAX Event:endElement-->

</firstelement>
<!--SAX Event:endElement-->

<secondelement position=”2”>
<!--SAX Events:startElement, Attributes=position value=2-->

<level1 children=”1”>
<!--SAX Events:startElement, Attributes=children value=1-->

<level2>
<!--SAX Event:startElement-->

This is level 2 of the nested elements
<!--SAX Event:characters-->

</level2>
<!--SAX Event:endElement-->

</level1>
<!--SAX Event:endElement-->

</secondelement>
<!--SAX Event:endElement-->

</rootelement>
<!--SAX Events:endDocument, endElement-->

c538292 ch04.qxd 8/18/03 8:43 AM Page 85

86 Part I ✦ Introducing XML

About XML Parsers
There are several XML parsers on the market, and a fairly complete listing of
parsers can be found at http://www.xmlsoftware.com/parsers.html. Of all
the parsers on the market, three parsers stand out from the pack in terms of stan-
dards support and general marketplace acceptance: Apache Xerces, IBM XML4J
(XML for Java), and Microsoft’s MSXML parser.

All of these parsers are available as free downloads. They include a parsing engine
and source code samples. Apache Xerces even includes the source code for the
parsing engine itself. Some of the downloads also include tools and functionality for
other purposes, such as processing XSL transformations.

XSL transformations are covered in Chapters 7 and 8.

The Java API for XML (JAXP) “pluggable interface” from Sun for XML document
parsing is also worthy of mention. The JAXP interface can be used as a front-end for
other parsers. JAXP seeks to mitigate some of the issues surrounding incompatible
and deprecated parser versions.

Parsers generally fall into two categories:

✦ Non-validating parsers check that an XML document adheres to basic XML
structure and syntax rules (well-formed XML).

✦ Validating parsers have the option to verify that an XML document is valid
according to the rules of a DTD or schema, as well as checking for a well-
formed document structure and syntax.

The latest versions of Apache Xerces, IBM XML for Java (XML4J), Sun’s JAXP, and
Microsoft’s MSXML parser are all validating parsers, and validation can be enabled
or disabled as needed by developers. All of these downloads also support both the
DOM and SAX interfaces for XML document parsing. Which parsing method is left
up to the developer. I’ll cover the pros and cons of each parsing method in the last
section of this chapter.

While the MSXML parser stands alone in its implementation and reuse in
browsers, on servers, and in .Net applications, the Java parsers tend to reuse parts
of other Java parsers to implement their functionality. For example, the parser in
XML4J is an implementation of the Xerces DOM parser, which IBM heavily con-
tributes to, and has subsequently reused for the DOM parser in XML4J.
Consequently, Java developers have to keep a close watch of the version of parser
they are using to ensure compatibility with their current code implementations.

Tip

Cross-
Reference

c538292 ch04.qxd 8/18/03 8:43 AM Page 86

87Chapter 4 ✦ XML Parsing Concepts

Apache’s Xerces
The Xerces parser is a validating parser that is available in Java and C++.
Apparently, the parser was named after the now extinct Xerces blue butterfly, a
native of the San Francisco peninsula. The butterfly was named after Xerxes,
emperor of Persia from 486 to 465 BC, the height of Persian power. Xerces the
emperor is also assumed to be extinct.

The Persian empire under Xerces’ rule stretched from India to parts of Turkey and
Greece. This led to several language and infrastructure integration issues. The solu-
tion to these issues was one of the greatest features of the empire: a royal messag-
ing infrastructure that was used to translate native languages and scripts from over
100 far-flung provinces. Xerces is subsequently the Persian word for king to this day.

Xerces the parser fully supports the W3C XML DOM (Levels 1 and 2) standards, the
DOM3 standards when they finally become a W3C recommendation, and SAX ver-
sion 2. Xerces is a validating parser, and provides support for XML document vali-
dation against W3C Schemas and DTDs. The C++ version of the Xerces parser also
includes a Perl wrapper and a COM wrapper that works with the MSXML parser.
Xerces can be downloaded at http://xml.apache.org.

For more details on Xerces and examples of using Xerces in J2EE applications,
please refer to Chapter 16.

IBM’s XML4J
The IBM XML for Java (XML4J) libraries, with some more recent help from the
Apache Xerces project and Sun (via project Crimson), is the mother of all Java-
based XML parsers, starting with version 1.0 in 1998. IBM and the Apache group
work closely on XML document parsing technologies. Consequently the IBM XML4J
libraries are based on Xerces. The latest version of the XML4J libraries support the
W3C XML Schema Recommendation when implementing the validating parser inter-
faces. Parsers include SAX 1 and 2, DOM 1 and 2, and some basic features of the as-
yet-unreleased DOM 3 standard, currently in the recommendation process. XML4J
also adds support for Sun’s JAXP, plus multi-lingual error messages. Recent updates
to XML4J can be downloaded from http://www.alphaworks.ibm.com/tech/xml4j.

For more details on XML4J and examples of using XML4J in J2EE applications,
please refer to Chapter 14.

Sun’s JAXP
As readers may have already noticed, not only are there several types of XML
parsers available from a single source, but also several versions of each Parser.
The Java API for XML Processing (JAXP) is designed to smooth over the various

Cross-
Reference

Cross-
Reference

c538292 ch04.qxd 8/18/03 8:43 AM Page 87

88 Part I ✦ Introducing XML

versions of SAX and DOM parsers and their associated incompatibilities through a
single “pluggable” interface. The pluggable interface consists of a set of Java classes
that can be reused to access different back-end parser classes at different levels
without having to change the Java code on the front end of the application.

A document could, for example, currently be parsed using DOM1 or DOM2. When
the new DOM3 recommendation is graduated through the W3C recommendation
process, DOM3 could be plugged into the same application, without having to
change the underlying code when the new parser is added to an application or
server, but still providing the newer performance and functionality.

JAXP can be downloaded from http://java.sun.com/xml/jaxp/.

For more details on JAXP and examples of using JAXP in J2EE applications, please
refer to Chapter 15.

Microsoft’s XML parser (MSXML)
Microsoft’s XML parser is part of Internet Explorer 5.5 or later, and the latest ver-
sion is separated from IE browser code, so that the parser does not have to wait for
the next version of the browser, and vice versa. The MSXML parser was recently
renamed the Microsoft XML Core Services, but is usually still referred to by the
original MSXML acronym. MSXML supports most XML standards and works with
JavaScript (and DHTML), Visual Basic, ASP, and C++, but not Java. MSXML4.x
includes support for DOM, XML Schema definition language for validating parsers,
the Schema Object Model (SOM, a Microsoft invention which parses XML Schemas
into an object model), XSLT, XPath, and SAX. Recent MSXML updates can be down-
loaded from http://www.microsoft.com/msxml.

For more details on Microsoft XML Core Services and examples of using MSXML in
Microsoft applications, please refer to Chapters 10 and 11.

DOM or SAX: Which Parser to Use?
I’ve provided an introduction to XML document parsing methods and some of the
parsers that are available on the market today. Building on this knowledge, I’ll
review some of the more esoteric issues related to XML document parsing.

The top three questions for XML document parsing are:

✦ What is a validating parser?

✦ Why are there two ways to parse XML documents?

✦ Which parsing method should I use?

Cross-
Reference

Cross-
Reference

c538292 ch04.qxd 8/18/03 8:43 AM Page 88

89Chapter 4 ✦ XML Parsing Concepts

It’s fairly easy to answer the first question by explaining validating parsers versus
non-validating parsers. It’s also fairly easy to explain the genesis of the DOM and
SAX parsers for XML, and why there are two. The most difficult thing to explain
about XML document parsing is the last question, “DOM or SAX: which one to use?”

I’ve already provided an explanation of validating parsers versus non-validating
parsers in the section “About XML Parsers.” I’ll provide the easy answer first about
the genesis of two parsers for XML document parsing first. The history leads in to
the more difficult question of which parser to use.

Back in the early days of XML, before the standards had completely gelled and W3C
recommendations were actually recommendations that could be followed or not,
everyone wrote their own XML document parsers. However, as standards emerged,
the W3C XML working group, who create the standards for most of the XML tech-
nologies in the marketplace today, standardized on a DOM parsing model, which
was the most flexible and easiest to understand. This was accepted by the commu-
nity at the time, because XML document structures were usually pretty simple and
small back then, and DOM is very good at efficiently handling small, simple XML
documents. IBM wrote the XML4J parser and handed it over to the Apache group,
which renamed it Xerces. Everyone was happy, for a while.

As XML was rapidly adopted by the IT and business world, XML documents grew
consistently larger and more complex. Xerces and other DOM parsers started to get
bogged down when reading an entire large, complex XML document from start to
finish and converting it to a node tree. Developers tried to make the code and the
methods more efficient, but they consistently ran up against the limitations of the
DOM architecture.

In the meantime, members of the XML-DEV mailing list got together and started
developing a leaner and more efficient model of document parsing that could find
and parse a segment of an XML document. This meant that developers and parsers
could focus on just the necessary parts of an XML document while ignoring irrele-
vant data. This model proved to be very efficient. David Megginson coordinated the
development of the original SAX parser and maintained earlier Java versions.

Because of the speed and efficiency of the SAX parser, it was rapidly adopted by
Java application developers. Though SAX is not a W3C-sanctioned XML recommen-
dation, most of the better features in the SAX parser usually find their way into
subsequent versions of the W3C DOM recommendation, which can be found at
http://www.w3.org/TR/DOM-Level-2-HTML. Current SAX parser code mainte-
nance is being handled by David Brownell, and the current SAX project Website and
parser code can be found at http://www.saxproject.org.

But just because SAX is faster and more efficient than DOM at handling large docu-
ments doesn’t mean SAX is better for every application. SAX is better at parsing
large documents. If your application is using smaller documents or needs to navi-
gate an XML document more than once, DOM parsing is probably more applicable.

c538292 ch04.qxd 8/18/03 8:43 AM Page 89

90 Part I ✦ Introducing XML

SAX is very good at parsing parts of a large document efficiently, but SAX passes
through a document once to collect needed data, and has to start over as more
document data is needed. DOM, on the other hand, holds a node tree in memory
until your application is finished with it, so once a document is parsed, pieces of
the document can be retrieved without having to re-parse the document.

As for which is better for a specific application, individual mileage may vary,
depending on the data you are working with. But in general, there is no downside to
using DOM to parse smaller XML documents that represent unstructured data, such
as a single-item inventory record. If you are working with a large document of struc-
tured data, such as the XML output of an inventor listing with hundreds of thou-
sands of records, SAX is probably the parser method to try first.

Summary
In this chapter I introduced readers to the theories behind parsing XML documents:

✦ An overview of XML document parsing

✦ Validating versus non-validating parsers

✦ Document Object Model (DOM) parsing

✦ Simple API for XML (SAX) parsing

✦ An introduction to popular XML parsers

✦ DOM versus SAX: when to use what

In the next chapter, I’ll discuss the details of parsing XML documents using the W3C
Document Object Model (DOM). Chapter 8 will cover the details of parsing XML
documents using the Simple API for XML (SAX). Both chapters will provide practi-
cal examples using the XSL document examples from our book application.

✦ ✦ ✦

c538292 ch04.qxd 8/18/03 8:43 AM Page 90

Parsing XML
with DOM

Chapter 4 provided a theoretical overview of the con-
cepts behind XML document parsing. This chapter

extends Chapter 4’s basic concepts and provides a deep dive
into XML Document Object Model (DOM) parsing. Chapter 6
provides the same level of detail for SAX parsing.

DOM parsing can initially appear to be a larger topic than it
really is, because of the sheer volume of sources for DOM
information. The number of DOM versions, the volume of
related W3C Recommendation documents, and the addition of
Microsoft’s MSXML classes and methods that are not part of
the W3C DOM all complicate the DOM picture. In this chapter,
I pull everything together into a single reference with a focus
on what’s important to XML programmers. For the most part,
the DOM interfaces and nodes in MXSML and the W3C DOM
are the same, except for the way that they are named. The real
differences begin when you get into the properties and meth-
ods of nodes. For each interface, node, property, and method,
I list the supporting DOM versions (W3C 1.0, 2.0, 3.0, and
MSXML).

The original DOM working drafts provided bindings for Java
and ECMAScript, a standardized version of JavaScript pro-
moted by the European Computer Manufacturers Association.
The Java interface caught on, but the ECMAScript version did
not. Since then, the DOM implementations have been devel-
oped by specific vendors for C, C++, PL/SQL, Python, and Perl.

Currently W3C documents use the Interface Definition
Language (IDL) to represent code examples using DOM node
properties and methods. IDL is an abstract language from the
Object Management Group (OMG) and is not portable to other
languages, such as Java, VB, or JScript.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding DOM
versions

Understanding
differences in
W3C and MSXML
DOM parser
implementations

DOM interfaces
and nodes

DOM node values

The node data type

Properties and
methods for W3C
and MSXML DOM
node data types

✦ ✦ ✦ ✦

c538292 ch05.qxd 8/18/03 8:43 AM Page 91

92 Part I ✦ Introducing XML

Since the IDL is not particularly practical as a development environment, this chap-
ter covers W3C DOM parsing in detail, but does not cover techniques for writing
code for working with DOM objects. Typically, DOM parsing is enabled by using the
Apache Xerces classes in Java, or using the Microsoft XML Core Services (MSXML)
in applications developed with MS Visual Studio. Java manipulation of DOM
objects, including plenty of Java code examples, can be found in Chapter 16. Using
MSXML for DOM parsing is covered in Chapters 10 and 11.

The W3C defines the specifications for DOM parsing in the W3C DOM
Recommendation. As I outlined in Chapter 4, the W3C DOM can be used to create
XML documents, navigate DOM structures, and add, modify, or delete DOM nodes.
DOM parsing can be slower than SAX parsing because DOM creates a representa-
tion of the entire document as nodes, regardless of how large the document is.
However, DOM can be handy for retrieving all the data from a document, or retriev-
ing a piece of data several times. The DOM stays resident in memory as long as the
code that created the DOM representation is running.

Understanding the DOM
The first Document Object Model for HTML pages was created by the Netscape
browser development team, as a standardized way to access HTML documents
from JavaScript. The original DOM shipped in 1995 with JavaScript in the Netscape
2.0 browser. Microsoft subsequently created a similar DOM for JScript, which was
included in the 1996 Internet Explorer 3.0 release.

DOM creates a representation of HTML and XML documents as a tree-like hierarchy
of Node objects. There is always one root node in a document. Some Node objects
can have child nodes, and are referred to as branch nodes. Other nodes are stan-
dalone nodes with no children, which are commonly referred to as leaf nodes. Some
nodes are colorful with fragrant essences, and are only available in the spring.
These nodes are referred to as blossom nodes. I’m just kidding about the blossom
nodes, but hopefully by now you get the whole “node and tree” concept, including
roots, branches, and leaves.

The W3C DOM 1 Recommendation
In 1997, a World Wide Web Consortium DOM working group was created to provide
a standardized DOM interface for all browsers. The result of this was the first W3C
DOM Recommendation, which can be viewed at http://www.w3.org/TR/REC-
DOM-Level-1/.

The first DOM Recommendation was developed just as corporate IT shops were
beginning to take notice of XML. Consequently, although most of the recommenda-
tion is applicable to XML objects because of similarities to HTML objects, the DOM 1
Recommendation focus is on HTML page objects. XML is only mentioned by name

Cross-
Reference

c538292 ch05.qxd 8/18/03 8:43 AM Page 92

93Chapter 5 ✦ Parsing XML with DOM

in the abstract of the DOM 1 Recommendation document. DOM 1 consists of a set
of core nodes, which are applicable to HTML pages. Several extended nodes accom-
modate XML document objects. Both types of nodes are listed later in this chapter.

The W3C DOM 2 Recommendation
The 2000 DOM Level 2 Recommendation adds to the functionality defined in DOM
Level 1 core. The following list describes the different Recommendations of DOM
Level 2. At the time of this writing, the DOM Level 2 core specification is the current
W3C DOM Recommendation. The DOM 2 Core Recommendation can be found at
http://www.w3.org/TR/DOM-Level-2-Core.

Five more recommendations are currently associated with the DOM 2 Core
Recommendation. All parsers must follow W3C DOM 2 Core Recommendations. The
rest of the related recommendations are not compulsory for W3C-compliant
parsers. Most parsers, however, do support most or all of the recommendations. I’ll
cover how to tell what version and feature sets are supported by a parser a little
later in this chapter, for now you just need to know what each Recommendation is:

✦ The DOM Level 2 Traversal-Range Recommendation defines a set of inter-
faces for traversing node sets and working with ranges of an XML or HTML
document.

✦ The DOM Level 2 HTML Recommendation defines HTML 4.01 and XHTML 1.0
document structures.

✦ The DOM Level 2 Views Recommendation defines functionality for defining
and manipulating different representations, or views, of an XML or HTML
document.

✦ The DOM Level 2 Style Recommendation defines interfaces for dynamically
accessing and manipulating Cascading Style Sheets (CSS).

✦ The DOM Level 2 Events Recommendation defines a standardized set of
interactive browser events for HTML pages and XML document node tree
events.

The W3C DOM 3 Recommendation
DOM 3 is currently under development, and at the time of this writing, most of the
core and related Recommendation documents are in the “Working Draft” stage.
There are three more stages for DOM 3 to go through (Candidate Recommendation,
Proposed Recommendation, and Recommendation) before the full and complete
feature set is published as a W3C Recommendation. We list the features in the cur-
rent DOM 3 Working Draft documents in this chapter, but keep in mind that
although most of these features will be in DOM 3, there is no guarantee that they
will all be present in their current form in the final Recommendation.

c538292 ch05.qxd 8/18/03 8:43 AM Page 93

94 Part I ✦ Introducing XML

I’ll post any changes to the DOM 3 Recommendation and updates to this chapter
as they evolve. The updated text can be downloaded from http://www.
XMLProgrammingBible.com.

There are several DOM 3 Recommendation Working Drafts currently in progress,
which represent DOM 3 modules. DOM modules usually end up as a class or set of
classes in whatever programming language they are developed in. Features in the
modules become subclasses, methods, and properties of the module base classes.

The DOM 3 Core Recommendation Working Draft extends namespace support
methods in DOM 2.

The DOM 3 Events Recommendation Working Draft adds more events on top of
the DOM 2 Events Recommendation. The specific objects and methods are listed
later in this chapter.

DOM 3 also has a very critical new Recommendation for XML programmers: The
DOM 3 Load and Save Recommendation Working Draft enables parsers to load
XML documents using DOM objects exclusively. Currently, in DOM 2, there is no
standardized way to feed a DOM parser an XML document directly from the file sys-
tem. XML document parsing code currently uses whatever methods are available in
the language used to call the parser to load XML documents from a file, and then
feed the loaded document to a parser. Even more important, new DOM 3 objects
can be saved to a file. Currently, in DOM 2, there is no way to extract a manipulated
DOM object and save it to the file system using DOM objects. Nodes can be
extracted and passed to another programming language, where they can be saved
as text or converted to other types of data. DOM 3 provides a standardized way to
save a Node tree directly from the DOM 3 object to a file system.

Another DOM 3 feature that will be very useful for developers is the support of
XPath for navigating and manipulating DOM nodes, courtesy of the DOM 3 XPath
Recommendation Working Draft. XPath provides a standard syntax for accessing
and manipulating the parsed nodes of an XML document. XPath for DOM makes
sense, as W3C XSLT Recommendations also support XPath. DOM support for XPath
streamlines what a developer needs to learn to navigate XML documents when
parsing and transforming XML documents, and will help standardize organizational
code libraries that only have to support one method for navigating XML documents
programmatically.

The DOM 3 Validation Recommendation Working Draft defines interfaces that
enforce validation of new or manipulated documents based on a DTD or Schema.

The DOM 3 Views and Formatting Working Draft builds on the DOM 2 Views
Recommendation. Views and Formatting Recommendation provide standard ways
to update the content of a DOM 3 node tree and related formatting instructions.

c538292 ch05.qxd 8/18/03 8:43 AM Page 94

95Chapter 5 ✦ Parsing XML with DOM

Microsoft MSXML DOM enhancements
Microsoft’s XML parser is part of Internet Explorer 5.5 or later. The MSXML parser
is currently called the Microsoft XML Core Services, but is usually still referred to
by the original MSXML acronym. The MSXML parser uses the same DOM interfaces
as W3C parsers. In addition to the W3C objects, MSXML parser has added several
additional methods and properties to the W3C DOM interface methods and proper-
ties. These methods and properties are commonly referred to as Microsoft DOM
extensions or MSXML extensions. MSXML extensions can be used in IE browser
applications and other types of Windows applications that use the MSXML parser
as their DOM parser. They are not supported by other parsers, such as Xerces.

Because MSXML and the Internet Explorer are so widely used, most XML program-
mers need to know about Microsoft’s additional properties and methods. The other
practical reason for knowing which methods and properties are part of the W3C
DOM and which are MXSML extensions is to know what properties and methods are
available in a specific parser, and when you can use them.

The MSXML download includes a great help database will full documentation and
examples for working with the MSXML DOM in JScript, Visual Basic, and C/C++.
Recent MSXML updates can be downloaded from
http://www.microsoft.com/msxml.

We’re documenting the MSXML 4.01 parser in this chapter, which may be updated
by the time this book is in print. We’ll post any changes to the MSXML documen-
tation and updates to this chapter as they evolve. The updated text can be down-
loaded from.

DOM Interfaces and Nodes
As mentioned in the introduction to this chapter, XML documents that are repre-
sented in DOM are parsed into a tree of root, branch, and leaf nodes. In addition to
nodes, a few DOM interfaces are not extensions of a DOM node, and consequently
are not considered part of the node “family.” Also, unlike some DOM nodes, none of
the DOM interfaces have children.

MSXML DOM node and interface names do not follow the W3C interface naming
standards, even though the interfaces support most of the W3C properties
and methods. For example, the W3C Document node is called IXMLDOM
DocumentNode in the MXSML DOM, and Document in the W3C DOM. The other
key difference between the MSXML DOM and the W3C DOM is error handling.
W3C DOM error handling is implemented in the W3C DOMException interface.
MSXML error handling is implemented through the parseError property of the
IXMLDOMDocumentNode.

Note

c538292 ch05.qxd 8/18/03 8:43 AM Page 95

96 Part I ✦ Introducing XML

Table 5-1 shows the current listing of these DOM interfaces.

Table 5-1
DOM Interfaces for HTML and XML Documents

Interface Name Description

DOMImplementation
Supported by:
W3C DOM 1 2, 3, and MSXML The DOMImplementation interface defines the version

of a DOM implementation that a parser supports, and
DOM features that are supported by the parser. The
hasFeature method of DOMImplementation returns true
if the feature is supported, or false if it is not.

DOMException
Supported by:
W3C DOM 1, 2, 3 An exception is passed to the calling program by a

parser when a parsing exception occurs, such as
modification of a node that can’t be modified, or adding
a node in the wrong place, such as trying to add an Attr
node to an Attr node (XML document attributes can’t
have attributes).

Note: The MSXML DOM does not use the DOMException
class for parsing error reporting. The MSXML ParseError
property of the IXMLDOMDocumentNode object is used
for the same purpose in MSXML implementations.

Node
Supported by:
W3C DOM 1, 2, 3, and MSXML The Node object is the base of a Document Object

Model, and represents a single node in the document
tree. All DOM nodes inherit properties and methods
from the node object. The node object is not part of a
document node tree. It serves as a properties and
methods container for other node types to inherit from.
Table 5-2 lists and explains all of the types of DOM
nodes.

c538292 ch05.qxd 8/18/03 8:43 AM Page 96

97Chapter 5 ✦ Parsing XML with DOM

Interface Name Description

NodeList
Supported by:
W3C DOM 1, 2, 3, and MSXML The NodeList object represents an editable in-memory

representation of a collection of Node objects. The
NodeList interface is used to contain child nodes of a
W3C DOM node. For example, an XML document
element that has an attribute and a text value is parsed
into an Element node. The Attr node and Text node
associated with the Element node are accessible via a
NodeList from the element Node. Nodes in a NodeList
are accessible by index number, starting with 0.
NodeLists are useful if programmers know the position
of a node in the structure of a Node tree.

NamedNodeMap
Supported by:
W3C DOM 1 2, 3 and MSXML A NamedNodeMap object represents and editable in-

memory representation of a collection of Node objects
that can be accessed by name. The NamedNodeMap
element is used to retrieve a list of attributes, entities,
or any other node that has a name associated with it.
This enables developers to retrieve a node by name,
instead of having to know the position of the node in
the node tree or a NodeList.

DOMSelection
Supported by:
MSXML A DOMSelection object contains a list of nodes returned

by an XML Path Language (XPath) expression.

DOMSchemaCollection
Supported by:
MSXML A DOMSchemaCollection contains one or more Schema

documents.

CharacterData
Supported by:
W3C DOM 1, 2, 3, and MSXML The CharacterData object is a base object for

manipulating text. The CDATASection, Comment, and
Text nodes inherit properties and methods from
CharacterData.

c538292 ch05.qxd 8/18/03 8:43 AM Page 97

98 Part I ✦ Introducing XML

Understanding DOM nodes
Table 5-1 describes the DOM node object from which all DOM nodes are derived.
DOM nodes that represent different types of XML document objects have different
node data types, but all DOM nodes inherit the same properties and methods from
the DOM node object. The only node that differs between the W3C DOM and the
MSXML DOM is element attributes, which are represented by the Attr object in the
W3C DOM and the Attribute object in the MXSML DOM. Table 5-2 shows the node
data types that are part of the DOM Core Recommendation.

Table 5-2
Core DOM Nodes for HTML and XML Documents

Node Name Description

DocumentType Represents a document’s doctype property, which
Children: None can reference a DTD that can contain entity
Supported by: references. The DocumentType object also provides
W3C DOM 1, 2, 3, and MSXML an interface to any elements with a notation

attribute.

ProcessingInstruction Represents document processing instructions,
Children: None including, for example, XML document declarations
Supported by: and stylesheet references, without the element
W3C DOM 1, 2, 3, and MSXML delimiters (<? and ?>).

Document Represents an XML document and serves as the root
Children: Element, node for entry to the rest of the node tree.
ProcessingInstruction, Comment,
DocumentType, DocumentFragment.
Supported by:
W3C DOM 1, 2, 3, and MSXML

DocumentFragment Represents part of a DOM Document node tree, or a
Children: Element, new fragment that can then be inserted into a
ProcessingInstruction, Comment, document. A DocumentFragment can represent a
Text, CDATASection, EntityReference new node tree, starting with any child of a
Supported by: Document object.
W3C DOM 1, 2, 3, and MSXML

Element Represents an XML document element. Attributes
Children: Element, and text values associated with an element become
ProcessingInstruction, Comment, child leaf nodes of the element in the node tree.
Text, CDATASection, EntityReference
Supported by:
W3C DOM 1, 2, 3, and MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 98

99Chapter 5 ✦ Parsing XML with DOM

Node Name Description

Text Represents the text of an Element object.
Children: None
Supported by:
W3C DOM 1, 2, 3, and MSXML

CDATASection Contains contents of an XML document CDATA
Children: None element content in a single node, without trying to
Supported by: parse it into different types of nodes.
W3C DOM 1, 2, 3, and MSXML

Attr Represents an attribute of an Element object in the
Children: Text, EntityReference W3C DOM.
Supported by:
W3C DOM 1, 2, 3
(MSXML as Attribute)

Comment Represents an XML document comments, without
Children: None the element delimiters (<!-- and -->).
Supported by:
W3C DOM 1, 2, 3, and MSXML

Notation Contains the read-only format for unparsed entities
Children: None or notation attribute values, including application
Supported by: processing instructions.
W3C DOM 1, 2, 3, and MSXML

Entity Represents a parsed or unparsed entity. In non-
Children: Element, validating parsers, the unparsed entity is contained
ProcessingInstruction, Comment, in the entity node and there are no child nodes. In
Text, CDATASection, EntityReference validating DOM parsers, the Entity node’s child list

represents the replaced node value.

EntityReference Represents a parsed or unparsed entity reference. In
Children: Element, non-validating parsers, the reference is contained in
ProcessingInstruction, Comment, the EntityReference node and there are no child
Text, CDATASection nodes. In validating DOM parsers, the EntityReference
Supported by: node’s child list represents the replaced node value.
W3C DOM 1, 2, 3, and MSXML

While NodeLists, NamedNodeMaps, DocumentFragments, DOMSelection, and
DOMSchemaCollection all contain a collection of nodes, they all serve different
purposes. The NodeList interface contains a list of child nodes at a single level in
the DOM node tree. None of the nodes in a NodeLists have children. The
NamedNodeMap interface contains a list of nodes accessible by name regardless
of their position in a node tree. Node names are accessible by the nodeName
property of a DOM node. A list of DOM nodes with names is shown in Table 5-6. A
DocumentFragment can represent an entire node tree, starting with any child of a

Note

c538292 ch05.qxd 8/18/03 8:43 AM Page 99

100 Part I ✦ Introducing XML

Document object. DOMSelection and DOMSchemaCollection objects are used in
MSXML only. DOMSelection returns a nodeList from an XPath Expression, while
DOMSchemaCollection can represent one or more parsed XML Schemas.

W3C DOM nodeTypes, constants, nodeNames,
and nodeValues
Each of the DOM nodes listed in Table 5-2 has a NodeType and a constant value
assigned to it. Nodes can be referred to by number or constants. W3C DOM nodes
can also be referenced by using the nodeType, nodeName, and nodeValue proper-
ties of the node interface. Table 5-3 lists all of the W3C DOM node types, with their
nodeType, nodeName, and nodeValue property values.

Table 5-3
Node Constants for XML and HTML Documents

nodeType Constant nodeName nodeValue

1 ELEMENT_NODE element name Null

2 ATTRIBUTE_NODE attribute name Attribute value

3 TEXT_NODE #text Text

4 CDATA_SECTION_NODE #cdata-section CDATA text

5 ENTITY_REFERENCE_NODE entity reference name Null

6 ENTITY_NODE entity name Null

7 PROCESSING_ target name processing
INSTRUCTION_NODE instruction

text

8 COMMENT_NODE #comment Comment text

9 DOCUMENT_NODE #document Null

10 DOCUMENT_TYPE_NODE document type name Null

11 DOCUMENT_FRAGMENT_NODE #document- fragment Null

12 NOTATION_NODE notation name Null

The MSXML DOM nodeTypeString property
The functionality of the MSXML DOM parser and W3C DOM parsers are identical
when dealing with W3C DOM nodes and interfaces, with one important exception.
DOM nodes that are created with and inherit from the MSXML parser DOM Node

c538292 ch05.qxd 8/18/03 8:43 AM Page 100

101Chapter 5 ✦ Parsing XML with DOM

object support the nodeTypeString property. In addition to the W3C nodeType
and constant values, the nodeTypeString can be used to access all node data
types. Table 5-4 shows the MSXML nodeType, Constant values, and
nodeTypeString values for the corresponding W3C DOM node data types.

Table 5-4
Node Constants for MSXML Node Trees

nodeType Constant nodeTypeString

1 ELEMENT_NODE element

2 ATTRIBUTE_NODE attribute

3 TEXT_NODE text

4 CDATA_SECTION_NODE cdatasection

5 ENTITY_REFERENCE_NODE entityreference

6 ENTITY_NODE entity

7 PROCESSING_INSTRUCTION_NODE processinginstruction

8 COMMENT_NODE comment

9 DOCUMENT_NODE document

10 DOCUMENT_TYPE_NODE documenttype

11 DOCUMENT_FRAGMENT_NODE documentfragment

12 NOTATION_NODE notation

DOM node properties
As illustrated in Table 5-3 by the values for the nodeType, nodeName, and
nodeValue properties, all of the nodes listed in Table 5-2 and many of the inter-
faces listed in Table 5-1 share properties and methods specified by the W3C DOM
Recommendation. Most W3C DOM node properties and methods are also sup-
ported in the MSXML DOM parser, along with several MSXML DOM extensions.

For all properties and methods in this chapter, we’re including annotations that
specify if the property or method is supported in the W3C DOM and/or the MSXML
DOM, and which version of W3C DOM is supports the property or method.

The common properties for all node data types are listed in Table 5-5.

c538292 ch05.qxd 8/18/03 8:43 AM Page 101

102 Part I ✦ Introducing XML

Table 5-5
DOM Node Properties

Property Property Value

Attributes A NamedNodeMap with an attribute list of
Supported by: attributes of the current node.
W3C DOM 1, 2, 3, and MSXML

baseName Returns the Namespace prefix for a namespace.
Supported by: For example, the baseName of “xmlns:
MSXML azlist=”http://www.benztech.

com/xsd/amazonlist” is aszlist.

childNodes A NodeList containing the child nodes of the
Supported by: current node.
W3C DOM 1, 2, 3, and MSXML

dataType Text containing the data type for this node. Data
Supported by: types can be assigned using a dt: prefix on an
MSXML attribute name, and an attribute value that maps

to a standard or schema-defined data type.

Definition Text containing the entity reference definition
Supported by: from a DTD or Schema.
MSXML

firstChild The first child node of the current node.
Supported by:
W3C DOM 1, 2, 3, and MSXML

lastChild The last child node of the current node.
Supported by:
W3C DOM 1, 2, 3, and MSXML

localName The local name of the node.
Supported by:
W3C DOM 2 and 3

namespaceURI Returns the URI for a namespace. For example,
Supported by: the namespaceURI of “xmlns:azlist=”
W3C DOM 2, 3, and MSXML http://www.benztech.com/xsd/

amazonlist” is http://www.
benztech.com/xsd/amazonlist.

nextSibling The next sibling node of the current node.
Supported by: (Siblings are nodes that share a parent node.)
W3C DOM 1, 2, 3, and MSXML

nodeName The node name of the current node.
Supported by:
W3C DOM 1, 2, 3, and MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 102

103Chapter 5 ✦ Parsing XML with DOM

Property Property Value

nodeType The number of the of the current node type.
Supported by:
W3C DOM 1, 2, 3, and MSXML

nodeTypedValue The specified node expressed in the named data
Supported by: type of that node. Data types can be assigned
MSXML using a dt: prefix on an attribute name, and an

attribute value that maps to a standard or
schema-defined data type.

nodeTypeString A text value representing the node data type.
Supported by: Table 5-4 lists the nodeTypeString for all DOM
MSXML node data types.

nodeValue The value of the current node. Can also be used
Supported by: to set attribute values.
W3C DOM 1, 2, 3, and MSXML

ownerDocument The Document node of the node tree.
Supported by:
W3C DOM 1, 2, 3, and MSXML

parentNode The parent node of the current node.
Supported by:
W3C DOM 1, 2, 3, and MSXML

parsed The parsed status of a node and child nodes.
Supported by: Useful for checking to see if parsing is finished on
MSXML an XML document before node tree reading and

manipulation begins.

prefix Returns the prefix for a namespace. For example,
Supported by: the namespaceURI of “xmlns:azlist=
W3C DOM 2, 3, and MSXML ”http://www.benztech.com/xsd/

amazonlist” is xmlns.

previousSibling The previous sibling node of the current node.
Supported by: (Siblings are nodes that share a parent node.)
W3C DOM 1, 2, 3, and MSXML

specified Boolean indicating that the node is a value in the
Supported by: XML document or the result of an entity
MSXML reference.

text A concatenated text value of the current node
Supported by: and its descendants.
MSXML

xml An XML representation of the node and its
Supported by: descendants.
MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 103

104 Part I ✦ Introducing XML

W3C DOM node methods
DOM node properties can be manipulated using the DOM node methods in
Table 5-6.

Table 5-6
Core DOM Node Methods

Method Description

appendChild (nodeName) Appends a new node to the current node. The
Supported by: example on the left appends the (nodename)
W3C DOM 1, 2, 3, and MSXML node to the child nodes of the current node.

cloneNode (Boolean) Copies the current node. If the Boolean value is
Supported by: true, the new node contains the current node
W3C DOM 1 2, 3 and MSXML and all the child nodes of the current node.

isSupported (feature, version) Returns true if a feature and version are
Supported by: supported. Functionally the same as the
W3C DOM 2 and 3 hasFeature in the DOMImplementation interface.

The version of DOM that a parser supports is
found by passing a number to the hasFeature
method: 1.0 for DOM Level 1, 2.0 for Level 2, and
3.0 for Level 3.

DOM feature constants for the hasFeature
method are not version specific, but can be called
using the following syntax:
hasFeature(feature, version)

DOM 2 Constants for features are: Core, XML,
HTML, Views, StyleSheets, CSS, CSS2, Events,
UIEvents, MouseEvents, MutationEvents,
HTMLEvents, Range, and Traversal. Constants are
not case sensitive.

hasAttributes () Returns true if the current node has associated
Supported by: attributes.
W3C DOM 2 and 3

hasChildNodes () Returns true if the current node has child nodes.
Supported by:
W3C DOM 1, 2, 3, and MSXML

insertBefore (nodeToInsert, Inserts a new node before an existing node. The
nodeName) example on the left inserts the nodeToInsert
Supported by: node before the nodeName node in the node
W3C DOM 1, 2, 3, and MSXML tree.

c538292 ch05.qxd 8/18/03 8:43 AM Page 104

105Chapter 5 ✦ Parsing XML with DOM

Method Description

normalize() Creates a single concatenated text node out of
Supported by: any adjacent child text nodes.
W3C DOM 2 and 3

Note: This method is supported in the element
interface in DOM 1 and in the node interface in
DOM 2 and 3.

removeChild (childNodeName) Removes a child node of the current node from a
Supported by: node tree. In the example on the left, the
W3C DOM 1, 2, 3, and MSXML childNodeName child node of the current node is

removed from the node tree.

replaceChild (newChildNodeName, Replaces a child node of the current node with a
oldChildNodeName) new node. In the example on the left, the
Supported by: newChildNodeName child node of the current
W3C DOM 1, 2, 3, and MSXML node is replaced with the newChildNodeName

node.

selectNodes () Returns a nodeList that is the result of an XPath
Supported by: expression.
MSXML

selectSingleNode () Returns the first matching node that is the result
Supported by: of an XPath expression.
MSXML

transformNode (stylesheet) Returns the result of an XSL Transformation on
Supported by: the selected node and its children using a
MSXML specified XSLT stylesheet. Chapters 7, 8, and 9

provide more details on XSLT transformations.

transformNodeToObject Passes the result of an XSL Transformation to a
(stylesheet,object) specified object. Commonly used to pass the
Supported by: results of an XSLT to a file on the file system.
MSXML Chapters 7, 8, and 9 provide more details on XSLT

transformations.

Other DOM node properties and methods
Each data type that inherits from the DOM node supports specific properties and
methods that are unique to that data type. The following node data types can be
assumed to also inherit and support all DOM node properties and methods in
Tables 5-5 and 5-6, unless otherwise specified.

c538292 ch05.qxd 8/18/03 8:43 AM Page 105

106 Part I ✦ Introducing XML

DOMImplementation
DOMImplementation is used in the W3C DOM 1 and MSXML parsers to check for
DOM version and feature support via the hasFeature method. In DOM 2, the
createDocument and creatDocumentType methods allow developers to create
their own document node trees and DTDs in a DOM parser. Table 5-7 shows the
methods for the DOMImplementation interface.

Table 5-7
Methods for the DOMImplementation Interface

Method Description

hasFeature (feature, version) Returns the DOM version and feature sets.
Supported by:
W3C DOM 1, 2, 3, and MSXML The version of DOM that a parser supports is

found by passing a number to the hasFeature
method: 1.0 for DOM Level 1, 2.0 for Level 2, and
3.0 for Level 3.

DOM feature constants for the hasFeature
method are not version specific, but can be called
using the following syntax:
hasFeature(feature, version)

DOM 2 Constants for features are: Core, XML,
HTML, Views, StyleSheets, CSS, CSS2, Events,
UIEvents, MouseEvents, MutationEvents,
HTMLEvents, Range, and Traversal. Constants are
not case sensitive.

createDocument (namespaceURI, Creates a new document node tree. This node
qualifiedName, doctype) tree can be created, but not saved directly from a
Supported by: parser. It needs to be passed to classes in a
W3C DOM 2 and 3 programming language that can save to the file

system. A document type definition created with
the DOMImplementation createDocumentType
method can be associated with a document
using the doctype parameter of the
createDocument method.

createDocumentType Creates a new documentType node. The new
(qualifiedName, publicID, systemID) documentType node can be use to provide a DTD
Supported by: for new node trees created with the
W3C DOM 2 and 3 DOMImplementation createDocument method.

c538292 ch05.qxd 8/18/03 8:43 AM Page 106

107Chapter 5 ✦ Parsing XML with DOM

ProcessingInstruction
Processing instructions are used to pass information and instructions to proces-
sors outside of the parser environment. In DOM 1, 2, 3, and the MSXML parser, the
processing instruction target can be read and the instructions can be modified.
Table 5-8 shows the properties for the ProcessingInstruction data type.

Table 5-8
Properties for the ProcessingInstruction Data Type

Property Description

data Retrieves contents of the processing instruction and
Supported by: the target. Also used to update the processing
W3C DOM 1, 2, 3, and MSXML instruction. The target cannot be edited, as it is

read-only.

target The processing instruction target.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Document
The property listings of the DOM document class reflects the new direction in the
DOM 3 Recommendations toward filtering data segments and producing smaller,
faster, leaner DOM nodes of document portions, rather than entire XML documents.
Table 5-9 shows the properties for the Document data type.

Table 5-9
Properties for the Document Data Type

Property Description

async True if asynchronous download is permitted by this
Supported by: document.
MSXML

doctype A documentType node that specifies the DTD for an XML
Supported by: document.
W3C DOM 1, 2, 3, and MSXML

documentElement The root element of an XML document.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Continued

c538292 ch05.qxd 8/18/03 8:43 AM Page 107

108 Part I ✦ Introducing XML

Table 5-9 (continued)

Property Description

implementation The DOM Implementation for the document.
Supported by:
W3C DOM 1, 2, 3, and MSXML

ondataavailable The event handler for the ondataavailable event. When the
Supported by: async property is set to true, the ondataavailable property
MSXML is used to begin parallel processing of a DOM document

when a specific piece of data is available. The readyState
property is used to check download and parsing status of
an XML document.

onreadystatechange An event handler to be called when the readyState
Supported by: property changes.
MSXML

ontransformnode An event handler for ontransformnode events in this
Supported by: document, which is triggered when an XSLT transformation
MSXML occurs on a node using the transformNode or

transformNodetoObject method.

parseError Returns an MSXML DOMParseError object that contains
Supported by: information about the last parsing error. Returns null if
MSXML there are no parsing errors. MSXML DOM parsing code

usually checks this property for parsing errors before
proceeding.

preserveWhiteSpace If true, XML document whitespace (line feeds, tabs, spaces,
Supported by: and carriage returns) is preserved. If false, MSXML ignores
MSXML any whitespace in the XML document. MSXML respects the

xml:space attribute, so any space designated with the
xml:space attribute is preserved regardless of the
preserveWhiteSpace property value.

readyState The current state of the XML document.
Supported by:
MSXML There are four states that the readyState property

represents:

1 The load is in progress; parsing has not yet begun.
2 The document is loaded and parsing has begun, but the
DOM is not yet at a stage that it can be used.
3 The document may or may not be loaded completely,
but enough of the data is parsed, so processing can begin
on what is parsed so far.
4 The document has been completely loaded and parsed,
or the parsing was aborted due to an error.

c538292 ch05.qxd 8/18/03 8:43 AM Page 108

109Chapter 5 ✦ Parsing XML with DOM

Property Description

resolveExternals If true, external definitions such as entity and namespace
Supported by: references are resolved when the document is parsed. If
MSXML false, references are not resolved.

url The URL for the current XML document.
Supported by:
MSXML

validateOnParse If true, the parser validates the XML document during
Supported by: parsing.
MSXML

DOM document methods also reflect new directions for DOM Recommendations,
this time into full support for namespaces. Table 5-10 shows the methods for the
Document data type.

Table 5-10
Methods for the Document Data Type

Method Description

abort () Aborts an asynchronous download.
Supported by:
MSXML

createAttribute (attributeName) Creates a new attribute node with the specified
Supported by: name.
W3C DOM 1, 2, 3, and MSXML

createAttributeNS (attributeName, Creates a new attribute node with the specified
qualifiedName) name and a namespace prefix using the
Supported by: Namespace qualified name.
W3C DOM 2 and 3

createCDATASection (textData) Creates a CDATAsection node that contains the
Supported by: supplied text data.
W3C DOM 1, 2, 3, and MSXML

createComment (commentData) Creates a comment node that contains the
Supported by: supplied text data.
W3C DOM 1, 2, 3, and MSXML

createDocumentFragment() Creates an empty DOM DocumentFragment
Supported by: object.
W3C DOM 1, 2, 3, and MSXML

Continued

c538292 ch05.qxd 8/18/03 8:43 AM Page 109

110 Part I ✦ Introducing XML

Table 5-10 (continued)

Method Description

createElement (elementName) Creates an element node using the specified
Supported by: name.
W3C DOM 1, 2, 3, and MSXML

createElementNS (elementName, Creates an element node using the specified
qualifiedName) name and a namespace prefix using the
Supported by: Namespace qualified name.
W3C DOM 2 and 3

createEntityReference Creates a new EntityReference object with the
(referenceName) supplied name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

createNode (Type, name, Creates a node using the supplied nodeType,
namespaceURI) node name, and namespace URI. Valid
Supported by: nodeTypes are listed in Table 5-3.
MSXML

createProcessingInstruction Creates a processing instruction node that
(target, data) contains the supplied target and data.
Supported by:
W3C DOM 1, 2, 3, and MSXML

createTextNode (textData) Creates a text node that contains the supplied
Supported by: text data.
W3C DOM 1, 2, 3, and MSXML

getElementByID (elementID) Returns an element that has a matching ID
Supported by: attribute value.
W3C DOM 2 and 3

getElementsByTagName Returns a collection of elements that match the
(elementName) specified name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

getElementsByTagNameNS Returns a collection of elements that match the
(namespaceURI, localName) specified name and namespace URI.
Supported by:
W3C DOM 2 and 3

importNode (nodetoImport, Import a node from another document. If the
includeChildren) second parameter is true all child nodes of the
Supported by: named node are imported as well.
W3C DOM 2 and 3

Load(url) Loads an XML document from the specified URL
Supported by: location.
MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 110

111Chapter 5 ✦ Parsing XML with DOM

Method Description

loadXML Loads a passed XML document in string form.
Supported by:
MSXML

nodeFromID Returns the node that matches the ID attribute.
Supported by: This is an MXSML-specific method that loads any
MSXML node by ID, not just element nodes.

save Saves an XML document to the specified object.
Supported by: The object can be a file name (but not a URL),
MSXML DOMDocument object, or any object that

supports persistence.

documentType
documentType nodes contain DTDs that can either be used for data validation or
to store values for entity references. Table 5-11 shows the properties for the
documentType data type.

Table 5-11
Properties for the DocumentType Data Type

Property Description

dataType Specifies the data type for a node. A full list of
Supported by: DOM dataTypes is available in Table 5-3.
MSXML

entities Returns a namedNodeMap of entity nodes
Supported by: representing entities declared in a DTD.
W3C DOM 1, 2, 3

Name Returns the name of the document type.
Supported by:
W3C DOM 1, 2, 3, and MSXML

publicId Returns the public identifier associated with the
Supported by: entity.
W3C DOM 2 and 3

systemId Returns the system identifier associated with the
Supported by: entity.
W3C DOM 2 and 3

internalSubset Returns text containing internal subset
Supported by: declarations.
W3C DOM 2 and 3

c538292 ch05.qxd 8/18/03 8:43 AM Page 111

112 Part I ✦ Introducing XML

nodeList
nodeList does not inherit from the DOM Node interface, and therefore does not
support DOM node properties and methods. All of the properties and methods that
nodeList supports are listed in Tables 5-12 and 5-13, respectively.

Table 5-12 shows the properties for the nodeList data type.

Table 5-12
Properties for the nodeList Data Type

Property Description

Length Indicates the number of items in the collection.
Supported by: Read-only.
W3C DOM 1, 2, 3, and MSXML

Table 5-13 shows the methods for the nodeList data type.

Table 5-13
Methods for the nodeList Data Type

Method Description

Item Facilitates access to individual nodes within the
Supported by: nodeList.
W3C DOM 1, 2, 3, and MSXML

nextNode Returns the next node in the nodeList.
Supported by:
MSXML

reset Resets the iterator to 1, moves the pointer to the
Supported by: first node (item) in the list.
MSXML

namedNodeMap
namedNodeMap does not inherit from the DOM Node interface, and therefore does
not support DOM node properties and methods. All of the properties and methods
that namedNodeMap supports are listed in Tables 5-14 and 5-15, respectively.

Table 5-14 shows the property for the namedNodeMap data type.

c538292 ch05.qxd 8/18/03 8:43 AM Page 112

113Chapter 5 ✦ Parsing XML with DOM

Table 5-14
Properties for the namedNodeMap Data Type

Property Description

length Indicates the number of items in the
Supported by: namedNodeMap
W3C DOM 1, 2, 3, and MSXML

Table 5-15 shows the methods for the namedNodeMap data type. Note the diver-
gence between the W3C DOM method names and the MSXML method names. For
example, there are two namespace-aware methods for getNamedItem. The W3C
DOM implementation calls theirs getNamedItemNS, while MSXML refers to the
same thing as getQualifiedItem. Hopefully, this is a short-term situation.
Personally, I’d like to see the getNamedItem method do the job with an optional
second namespace parameter.

Table 5-15
Methods for the namedNodeMap Data Type

Method Description

getNamedItem (nodeName) Returns a node with the specified name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

getNamedItemNS (nodeName, Returns a node with the specified name and
qualifiedName) namespace.
Supported by:
W3C DOM 2 and 3

getQualifiedItem (nodeName) Returns a node with the specified namespace
Supported by: and attribute name.
MSXML

Item() Facilitates access to individual nodes within the
Supported by: namedNodeMap.
W3C DOM 1, 2, 3, and MSXML

removeNamedItem (nodeName) Removes a named node from the
Supported by: namedNodeMap.
W3C DOM 1, 2, 3, and MSXML

removeNamedItemNS (nodeName, Removes an attribute specified by name and
qualifiedName) namespace from the collection.
Supported by:
W3C DOM 2 and 3

Continued

c538292 ch05.qxd 8/18/03 8:43 AM Page 113

114 Part I ✦ Introducing XML

Table 5-15 (continued)

Method Description

removeQualifiedItem (nodeName, Removes the attribute with the specified
qualifiedName) namespace and attribute name.
Supported by:
MSXML

reset() Resets the iterator to 1, moves the pointer to the
Supported by: first node (item) in the list.
MSXML

setNamedItem (nodeName) Adds the supplied node to the collection.
Supported by:
W3C DOM 1, 2, 3, and MSXML

setNamedItemNS (nodeName, Adds the supplied node to the collection with a
qualifiedName) specific namespace prefix.
Supported by:
W3C DOM 2 and 3

Element
Note that the MSXML DOM does not support the MXSML-specific nodeTypedValue
property for element nodes that it does for all other nodes. Table 5-16 shows the
property for the element data type.

Table 5-16
Properties for the element Data Type

Property Description

tagName Returns an element name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Note that aside from the lack of nodeTypedValue support for element node prop-
erties, there are also a couple of anomalies in the DOM 2 element node methods.
MSXML does not support the hasAttribute method, and DOM 2 does not have a
namespace variant for the removeAttributeNode method. Table 5-17 shows the
methods for the element data type.

c538292 ch05.qxd 8/18/03 8:43 AM Page 114

115Chapter 5 ✦ Parsing XML with DOM

Table 5-17
Methods for the element Data Type

Method Description

getAttribute (attributeName) Returns an attribute value.
Supported by:
W3C DOM 1, 2, 3, and MSXML

getAttributeNS (attributeName, Returns an attribute value within a namespace.
qualifiedName)
Supported by:
W3C DOM 2 and 3

getAttributeNode (attributeName) Gets an attribute node.
Supported by:
W3C DOM 1, 2, 3, and MSXML

getAttributeNodeNS (attributeName, Gets an attribute node within a namespace.
qualifiedName)
Supported by:
W3C DOM 2 and 3

getElementsByTagName Returns a list of all elements that match the
(elementName) supplied name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

getElementsByTagNameNS Returns a list of all elements that match the
(elementName, qualifiedName) supplied name within a namespace.
Supported by:
W3C DOM 2 and 3

hasAttribute (attributeName) Returns true if a node has an attribute.
Supported by:
W3C DOM 2 and 3

hasAttributeNS (attributeName, Returns true if a node has an attribute within a
qualifiedName) namespace.
Supported by:
W3C DOM 2 and 3

normalize() Creates a single concatenated text node out of
Supported by: any adjacent child text nodes.
W3C DOM 1 and MSXML

Note: The W3C normalize method is part of the
DOM 2 and DOM 3 node interface. MSXML and
DOM 1 implementations still use normalize as
part of the element interface.

Continued

c538292 ch05.qxd 8/18/03 8:43 AM Page 115

116 Part I ✦ Introducing XML

Table 5-17 (continued)

Method Description

removeAttribute (attributeName) Removes the named attribute. If the attribute that
Supported by: is being removed has a default value, the
W3C DOM 1, 2, 3, and MSXML attribute is re-created with the default value.

removeAttributeNS (attributeName, Removes the named attribute within a
namespaceURI) namespace. If the attribute that is being removed
Supported by: has a default value, the attribute is re-created
W3C DOM 2 and 3 with the default value.

removeAttributeNode Removes an attribute node from the current
(attributeName) element.
Supported by:
W3C DOM 1, 2, 3, and MSXML

setAttribute (attributeName) Sets the value of the named attribute.
Supported by:
W3C DOM 1, 2, 3, and MSXML

setAttributeNS (attributeName, Sets the value of the named attribute within a
qualifiedName) specific namespace.
Supported by:
W3C DOM 2 and 3

setAttributeNode (attributeName) Sets or updates the named attribute node in the
Supported by: current element.
W3C DOM 1, 2, 3, and MSXML

setAttributeNodeNS Sets or updates the named attribute node in the
(attributeName, qualifiedName) current element within a specific namespace.
Supported by:
W3C DOM 2 and 3

Attr
There are only a few properties for the DOM Attr interface and no Attr methods.
Manipulation of DOM attributes is done through the element interface, because all
attributes have to have an associated element. Table 5-18 shows the properties for
the Attr data type.

c538292 ch05.qxd 8/18/03 8:43 AM Page 116

117Chapter 5 ✦ Parsing XML with DOM

Table 5-18
Properties for the Attr Data Type

Property Description

name Returns an attribute name.
Supported by:
W3C DOM 1, 2, 3, and MSXML

value Returns an attribute value.
Supported by:
W3C DOM 1, 2, 3, and MSXML

ownerElement Returns the element that an attribute belongs to.
Supported by:
W3C DOM 2 and 3

CharacterData and Comment
Comment inherits properties and methods from CharacterData and has no addi-
tional properties or methods, so we’ve listed them together. Table 5-19 shows the
properties for the CharacterData and Comment data types.

Table 5-19
Properties for the CharacterData and Comment Data Types

Property Description

data Returns node character data if there is a character
Supported by: value associated with the node type.
W3C DOM 1, 2, 3, and MSXML

length Returns the number of characters in a string.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Table 5-20 shows the methods for the CharacterData and Comment data types.

c538292 ch05.qxd 8/18/03 8:43 AM Page 117

118 Part I ✦ Introducing XML

Table 5-20
Methods for the CharacterData and Comment Data Types

Method Description

appendData (string) Appends a string to the existing string data.
Supported by:
W3C DOM 1, 2, 3, and MSXML

deleteData (start, Deletes a substring, string starting at a specific
numberofCharacters) point in a string and continuing for a specific
Supported by: number of characters.
W3C DOM 1, 2, 3, and MSXML

insertData (start, string) Inserts the specified string starting at a specific
Supported by: point in a string.
W3C DOM 1, 2, 3, and MSXML

replaceData (start, Replaces a substring, string starting at a specific
numberofCharacters, string) point in a string and continuing for a specific
Supported by: number of characters.
W3C DOM 1, 2, 3, and MSXML

substringData (start, Returns a substring of a string using a specified
numberofCharacters) range.
Supported by:
W3C DOM 1, 2, 3, and MSXML

CDATASection and Text
CDATASection and Text nodes also inherit properties and methods from
CharacterData, but both have one additional method –– SplitText, so they can’t
be listed with the comment properties and methods without confusion. Because
both the CDATASection and Text nodes have the same properties and methods,
we’ve listed them together.

Table 5-21 shows the properties for the CDATASection and Text data types.

c538292 ch05.qxd 8/18/03 8:43 AM Page 118

119Chapter 5 ✦ Parsing XML with DOM

Table 5-21
Properties for the CDATASection and Text Data Types

Property Description

Data Returns node character data if there is a character
Supported by: value associated with the node type.
W3C DOM 1, 2, 3, and MSXML

Length Returns the number of characters in a string.
Supported by:
W3C DOM 1, 2, 3, and MSXML

Table 5-22 shows the methods for the data types.

Table 5-22
Methods for the CDATASection and Text Data Types

Method Description

appendData (string) Appends a string to the existing string data.
Supported by:
W3C DOM 1, 2, 3, and MSXML

deleteData (start, Deletes a substring, string starting at a specific
numberofCharacters) point in a string and continuing for a specific
Supported by: number of characters.
W3C DOM 1, 2, 3, and MSXML

insertData (start, string) Inserts the specified string starting at a specific
Supported by: point in a string.
W3C DOM 1, 2, 3, and MSXML

replaceData (start, Replaces a substring, string starting at a specific
numberofCharacters, string) point in a string and continuing for a specific
Supported by: number of characters.
W3C DOM 1, 2, 3, and MSXML

splitText Creates a new sibling text node that starts at a
Supported by: specific point in a string and continues for a
W3C DOM 1, 2, 3, and MSXML specific number of characters.

substringData (start, Returns a substring of a string using a specified
numberofCharacters) range.
Supported by:
W3C DOM 1, 2, 3, and MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 119

120 Part I ✦ Introducing XML

Entity
Entities can be parsed or unparsed in the DOM entity node. Table 5- 23 shows the
properties for the entity data type.

Table 5-23
Properties for the entity Data Type

Property Description

notationName Contains the notation name of an unparsed
Supported by: entity. If the entity is parsed, the notationName is
W3C DOM 1, 2, 3, and MSXML null.

publicId Returns the public identifier associated with the
Supported by: entity.
W3C DOM 1, 2, 3, and MSXML

systemId Returns the system identifier associated with the
Supported by: entity.
W3C DOM 1, 2, 3, and MSXML

Notation
Table 5-24 shows the properties for the Notation data type.

Table 5-24
Properties for the Notation Data Type

Property Description

publicId Returns the public identifier associated with the
Supported by: entity.
W3C DOM 1, 2, 3, and MSXML

systemId Returns the system identifier associated with the
Supported by: entity.
W3C DOM 1, 2, 3, and MSXML

c538292 ch05.qxd 8/18/03 8:43 AM Page 120

121Chapter 5 ✦ Parsing XML with DOM

Summary
In this chapter, I’ve provided a deep dive into the details of the Document Object
Model (DOM):

✦ A history of the DOM

✦ DOM versions and evolution

✦ Understanding differences in W3C and MSXML DOM parser implementations

✦ DOM interfaces and nodes

✦ DOM node values

✦ The node data types

✦ Properties and methods for W3C and MSXML DOM node data types

In the next chapter, I’ll dive into the details at the other end of the parsing pool: the
Simple API for XML (SAX). SAX is an event-driven interface, which contrasts sharply
with DOM parsing concepts. It is, however, worth the learning curve because of
superior performance over many DOM parsing solutions.

✦ ✦ ✦

c538292 ch05.qxd 8/18/03 8:43 AM Page 121

Parsing XML
with SAX

Chapter 4 provided a theoretical overview of the con-
cepts behind XML document parsing, and Chapter 5 pro-

vided a deep dive into what makes DOM parsing tick. This
chapter extends Chapter 4’s basic concepts and provides a
deep dive into the Simple API for XML (SAX) parsing.

SAX parsing takes a little more of a learning curve to master
when compared to DOM parsing. While DOM nodes can be
directly mapped to corresponding XML source document
objects, SAX events do not provide the same level of direct
comparison.

Once you get around the theory of the event model concepts,
SAX parsing solutions can actually be much easier to imple-
ment than DOM solutions. This is because there is only one
official source for SAX event specifications and documenta-
tion: the SAX project. There is also an MSXML SAX implemen-
tation, which is based on SAX, but rewritten as Microsoft XML
core nodes. But these two sources are relatively simple to
keep on top of when compared to the exponential growth of
W3C DOM Working Drafts that appear with each new DOM
version, and DOM node property and method variants that
appear with every new version of the MXSML DOM parser. For
each event we discuss in this chapter, we list the supporting
SAX versions (SAX 1 and 2, and MSXML), and the differences
in each event between the platforms.

In addition, SAX parsers only have to handle XML documents,
while DOM interfaces must work for HTML and XML docu-
ments. This single-purpose approach greatly streamlines the
interfaces needed to implement a full SAX solution versus the
W3C DOM, which needs to consider HTML objects when
developing new interfaces, properties, and methods.

One other thing that makes SAX solutions simpler to imple-
ment is that they are less diplomatic about the language used
to describe objects and develop parser classes — Java. The
W3C uses the Interface Definition Language (IDL) to represent

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
SAX versions

Understanding
differences in SAX
and MSXML
SAX parser
implementations

SAX interfaces
and events

SAX event values

Properties and
methods for SAX API
and MSXML SAX
events

✦ ✦ ✦ ✦

c538292 ch06.qxd 8/18/03 8:44 AM Page 123

124 Part I ✦ Introducing XML

DOM code examples. IDL is an abstract language from the Object Management
Group (OMG) and is not portable to other languages, such as Java, VB, or Jscript.
Because SAX uses Java as a base for examples and development, it’s much easier to
implement Java solutions using Java-based parsers such as the Apache Xerces
parser. Microsoft has copied SAX objects and events, but they are not implements
in Java.

The W3C defines the specifications for DOM parsing in the W3C DOM recommenda-
tion. As I showed you in Chapter 4 and 5, the W3C DOM can be used to create XML
documents, navigate DOM structures, and add, modify, or delete DOM nodes. DOM
parsing can be slower than SAX parsing because DOM creates a representation of
the entire document as nodes, regardless of how large the document is. However,
DOM can be handy for retrieving all the data from a document, or retrieving a piece
of data several times. The DOM stays resident in memory as long as the code that
created the DOM representation is running.

Understanding SAX
SAX parsing tends to be faster than DOM parsing in most situations, but can also be
more complicated to code. SAX’s event-based parsing model can be compared to
getting information from this chapter of the book by going to the page where the
chapter starts, reading the chapter, and stopping when the chapter ends. DOM
would extract the same information from this book by creating a copy of the book
as a collection of several chapter objects, then looking through the objects to find
this chapter, then extracting information from the chapter. SAX parsers look for a
particular object in an XML document and commit that object to memory as they
pass though the document, using start and end events for that object. As a SAX
parser passes through a document, it passes the objects it collects to the calling
program for reading and manipulation.

Where SAX comes from
Like DOM, SAX is used to describe, parse, and manipulate XML Documents. Unlike
DOM, SAX breaks a document down into a series of events, such as the start of a
document (StartDocument), the start of an element (StartElement), the end of
an element (EndElement), encountering a processing instruction (Processing
Instruction), a condition that requires a warning message (SAXWarning), or
the end of a document (EndDocument).

It’s important to note that SAX is not developed or “recommended” by the W3C,
though evolving DOM implementations often borrow features from more advanced
SAX feature sets. In general, SAX is usually ahead of DOM implementations, because
the W3C recommendation process does not hinder SAX development. There is no
official specification of SAX, just the implementation of the XMLReader class, which
is only written in Java at this time. There are other implementations of SAX on other
platforms, but these are either a result of bindings to code in the SAX archive file,

c538292 ch06.qxd 8/18/03 8:44 AM Page 124

125Chapter 6 ✦ Parsing XML with SAX

sax.jar, or a complete rewrite of code that simply mimics the functionality of SAX
classes, as in the case of the MSXML SAX parser objects, properties, and methods.

Official updates to SAX are implemented in the latest version of the sax.jar file.
This file and associated documentation can be downloaded at http://www.
saxproject.org/. The site also contains information about parser implementa-
tions and bindings, and the FAQ at that site is not only helpful and informative, but
probably the funniest parser API FAQ you’ll ever read. Other implementations of
SAX parsers can be found on the links page of http://www.saxproject.org/,
and a more or less complete listing of available parsers of all kinds is available at
http://www.xmlsoftware.com/parsers.html.

SAX 1 and SAX 2
Unlike DOM 1 and 2, SAX 2 is backward compatible with SAX 1. Though most cur-
rent Parsers implement the SAX2 interface and its updated feature set, the SAX 1
interface will still work. A SAX 1 driver implements the Parser interface and a SAX 2
Driver implements the XMLReader interface, but SAX 2 parsers still support proper-
ties and methods of the parser interface. SAX 1 supports Navigation around a docu-
ment and manipulation of content via SAX events. SAX 2 enhancements include
support for Namespaces, filter chains, plus querying and setting features and prop-
erties via SAX Events.

Microsoft MSXML SAX extensions
Microsoft’s XML parser is part of Internet Explorer 5.5 or later. The MSXML parser
is currently called the Microsoft XML Core Services, but is usually still referred to
by the original MSXML acronym. The MSXML parser uses the same SAX events as
Java-based SAX parsers such as Xerces, but the MSXML SAX implementation is an
unofficial copy of the SAX project events. The SAX project offers their materials
with no copyright royalty restrictions, so there is no legal issue with the Microsoft
copy, but there are inevitable compatibility issues between original events and
copied events. We’ll highlight the differences in the listing of properties and meth-
ods later in this chapter.

The biggest difference in the MSXML SAX implementation versus other SAX imple-
mentations is that the MSXML 4 SAX parser does not support XML document vali-
dation against DTDs, just Schemas. On the other hand, the SAX API does not
explicitly support Schema validation, just DTD (though most SAX implementations
including Xerces support Schema validation). If you are developing an XML appli-
cation using MS Visual Studio.Net and your application requires a validating parser
that supports DTDs, you can use a combination of a SAX and DOM parsing using
the MSXML IMXWriter interface to pass a DOM object from SAX to DOM. We cover
the IMXWriter interface later in this chapter. If this doesn’t work for your solution,
you’ll have to use the MSXML DOM parser or develop/download a third-party SAX
implementation that supports DTD validation and works with your programming
language of choice.

Tip

c538292 ch06.qxd 8/18/03 8:44 AM Page 125

126 Part I ✦ Introducing XML

Just as in the MXSMLDOM implementation, the MSXML SAX parser adds several
additional methods and properties to the W3C DOM interface methods and proper-
ties. These methods and properties are commonly referred to as Microsoft SAX
extensions or MSXML extensions. MSXML extensions can be used in IE browser
applications and other types of Windows applications that use the MSXML
parser as their SAX parser. Other parsers, such as Xerces, do not support these
applications.

Because MSXML and the Internet Explorer are so widely used, most XML program-
mers need to know about Microsoft’s additional properties and methods. The other
practical reason for knowing which methods and properties are part of Java SAX
implementations and which are MXSML extensions is to know what properties and
methods are available in a specific parser, and when you can use them.

The MSXML download includes a great help database will full documentation
and examples for working with the MSXML SAX events in JScript, Visual Basic,
and C/C++. Recent MSXML updates can be downloaded from http://www.
microsoft.com/msxml.

We’re documenting the MSXML 4.01 parser in this chapter, which may be updated
by the time this book is in print. We’ll post any changes to the MSXML documen-
tation and updates to this chapter as they evolve. The updated text can be down-
loaded from http://www.XMLProgrammingBible.com.

Interfaces for SAX and MSXML
As with W3C and MSXML DOM implementations, SAX uses a set of interfaces to pro-
vide access to XML document events. Each interface has a number of properties
and methods that I will review later in this chapter. In addition, SAX has several
helper classes for Java implementations, and MSXML has two extension interfaces
for manipulating attributes and writing parsed output.

MSXML SAX interface names do not follow the official SAX interface naming stan-
dards, even though MSXML interfaces support most of the SAX interfaces, proper-
ties, and methods. For example, the SAX XMLReader interface is ISAXXMLReader in
the MXSML SAX implementations.

SAX interfaces are the “official” interfaces that are listed in the SAX API documenta-
tion at http://www.saxproject.org/apidoc. They consist of core interfaces
and extension interfaces.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 126

127Chapter 6 ✦ Parsing XML with SAX

SAX core interfaces
Complete XML documents are not usually represented in SAX. Individual objects in
XML documents are identified and collected through a series of events. While SAX 1
and 2 are supported by standard SAX implementations such as Xerces, SAX 2
should be used for new development, unless there is a very good reason for using
the older, slower, more limited SAX 1 classes. Also, note that SAX 1 classes are not
supported by MSXML 4. Table 6-1 shows the current listing of SAX 1 and 2 core
interfaces.

Table 6-1
SAX 1 and 2 Interfaces for XML Documents

Interface Name Description

XMLReader The main interface for SAX 2 XML parsing
Supported by: functionality.
SAX 2, MSXML

Parser The main interface for SAX 1 XML parsing
Supported by: functionality. The Parser interface has been
SAX 1 replaced by the SAX2 XMLReader interface, and

should not be used for new development.

XMLFilter XMLFilters are similar to the XML Reader
Supported by: interface, except that an XMLFilter source is
SAX 2, MSXML another XMLReader object, not an XML document

from the file system. XMLFilters can be used to
quickly and easily produce fragments of
documents. For example, a XMLFIlter could be
used to create a representation of an XML
document without any comments, or a document
representation that has all attributes removed.

ContentHandler The main interface for a SAX 2 document’s
Supported by: content.
SAX 2, MSXML

DocumentHandler The main interface for a SAX 1 document’s
Supported by: content. This interface has been replaced by the
SAX 1 SAX2 ContentHandler interface, and should not

be used for new development.

Locator Associates a SAX event with a document location.
Supported by: Locators provide the line and column in an XML
SAX 2, MSXML document that a SAX event takes place.

Information about public and/or system IDs
associated with that location can also be
provided, if there are any.

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 127

128 Part I ✦ Introducing XML

Table 6-1 (continued)

Interface Name Description

Attributes The SAX 2 interface for a list of XML attributes.
Supported by:
SAX 2, MSXML

AttributeList The SAX 1 interface for a list of XML attributes.
Supported by: This interface has been replaced by the SAX2
SAX 1 Attributes interface, and should not be used for

new development.

DTDHandler The main interface for a DTD document’s content.
Supported by:
SAX 1 and 2, MSXML Note: The MSXML DOM parser and
(MSXML SAX is non-validating) other SAX parsers, such as Xerces, provide

support for validation and parsing for DTDs and
Schemas. The MSXML 4 SAX parser can parse
DTD documents, but does not provide support for
validating documents using DTDs, just Schemas.
DTD can still be used as containers for entity
references when using the MSXML SAX parser.

EntityResolver The SAX 1 and 2 interface for creating custom
Supported by: methods for resolving entitles. SAX parsers
SAX 1 and 2, MSXML resolve regular entity references with values in

DTDs automatically. The EntityResolver interface
allows developers to create a custom interface to
external values that can be used during SAX
parsing.

ErrorHandler The SAX 1 and 2 interface for handling errors
Supported by: while parsing an XML document.
SAX 1 and 2, MSXML

SAX extension interfaces
Aside from the SAX core interfaces, there are several extension interfaces that are
implemented using the SAX extension API, as described in Table 6-2. SAX extensions
are optional interfaces for SAX parsers. For example, the MSXML parser supports
the DeclHandler and LexicalHandler interfaces, while the Apache Xerces parser
classes support all extension interfaces. They can also be implemented indepen-
dently of the SAX core interfaces. All extensions have been developed using the
SAX 2 extensions API, and are not available in SAX 1.

c538292 ch06.qxd 8/18/03 8:44 AM Page 128

129Chapter 6 ✦ Parsing XML with SAX

You may see SAX documentation that refers to “SAX Extensions 1.x.” This refers to
the SAX 2 Extensions 1.x API, not SAX 1. There is no SAX extension API for SAX 1.

Table 6-2
SAX Extension Interfaces

Interface Name Description

Attributes2 Checks a DTD to see if an attribute in an XML document
Supported by: was declared in a DTD, and if the DTD specifies a default
SAX 2 (Optional) value.

DeclHandler Returns declared values in a DTD for attributes, elements,
Supported by: and internal and external entities.
SAX 2 (Optional), MSXML

EntityResolver2 Programmatically adds external entity reference subsets to
Supported by: an XML document that has no subset reference in the
SAX 2 (Optional) DOCTYPE declaration, or has no DOCTYPE declaration.

LexicalHandler Returns information about lexical events in an XML
Supported by: document. Comments, the start and end of a CDATA
SAX 2 (Optional), MSXML section, the start and end of a DTD declaration, and the

start and end of an entity can be tracked with
LexicalHandler.

Locator2 Extends the Locator interface to return the encoding and
Supported by: the XML version for an XML document.
SAX 2 (Optional)

SAX also provides a number of Java helper classes that are used to gain access to
the XMLReader classes, identify input sources, access extension classes, and other
tasks. I’ll cover these in mode detail later in the chapter.

MSXML SAX extension interfaces
MSXML has implemented SAX extension classes that support additional functional-
ity for MSXML SAX applications, as described in Table 6-3. SAX schemas gain access
to information via the IMXSchemaDeclHandler interface. The IMXAttributes inter-
face provides the ability to create and edit attribute collections. The IMXWriter
Interface permits writing to the file system.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 129

130 Part I ✦ Introducing XML

Table 6-3
MSXML SAX Extension Interfaces

Interface Name Description

IMXAttributes Provides access to edit, add, and delete attribute names
Supported by: and values.
MSXML

IMXSchemaDeclHandler Provides schema information about an element being
Supported by: parsed, including attributes.
MSXML

IMXWriter Writes parsed XML output to:
Supported by:
MSXML An IStream object: A stream object representing a

sequence of bytes that can be forwarded to another
object such as a file or a screen.

A string (remember, all XML documents are technically
strings).

A DOMDocument object, which can be passed to the
MSXML DOM parser for further processing. For example,
a new XML document could be parsed using SAX for
speed, then sent to the DOM parser for DTD validation.

SAX Methods and Properties
Each of the interfaces listed previously in Tables 6-1, 6-2, and 6-3 contains methods
and properties that are accessible through the SAX API. I’ve listed them in the same
order that they are listed in Tables 6-1, 6-2, and 6-3. This is the same way that you
would most likely encounter them in a SAX parsing application.

One of the key differences between the SAX API and the MSXML implementation
is that the SAX API relies exclusively on methods for interface functionality. The
MSXML SAX parser has implemented a few properties, but these are not part of
the “official” API, and usually have a SAX method equivalent.

SAX interfaces
SAX interfaces are the “official” interfaces that are listed in the SAX API documenta-
tion at http://www.saxproject.org/apidoc. They consist of core interfaces
and extension interfaces.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 130

131Chapter 6 ✦ Parsing XML with SAX

XMLReader
XMLReader is the main interface for SAX 2 XML parsing functionality. The methods
are described in Table 6-4.

MSXML XMLReader Interface methods differ slightly. The SAX setFeature and
setProperty methods are the same as the MSXML putFeature and
putProperty methods. Also, the MSXML parseURL method is the same as
using a SAX parse method with a systemID parameter.

Table 6-4
XMLReader Interface Methods

Method Name Description

getContentHandler() Returns the current ContentHandler object, which
Supported by: contains the content of a source XML document.
SAX 2, MSXML

getDTDHandler() Returns the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML

getEntityResolver() Returns the current entityResolver object.
Supported by:
SAX 2, MSXML

getErrorHandler() Returns the current errorHandler object.
Supported by:
SAX 2, MSXML

getFeature(name) Look up the value of a feature flag. Feature flags
Supported by: tell you if your SAX parser supports a specific
SAX 2, MSXML feature, such as namespaces or Schema

validation, or the optional Attributes2 interface.
The MSXML getFeature method also gets the XML
document namespace support, schema validation
support, and a few other features.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core
documentation, under the SAXXMLReader
interface.

SAX feature flags vary by parser. Official SAX
feature flags are listed at http://www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 131

132 Part I ✦ Introducing XML

Table 6-4 (continued)

Method Name Description

getProperty(name) Looks up the value of a property. SAX properties
Supported by: tell you a SAX object class supports the default
SAX 2, MSXML class or a custom class for entity declarations,

lexical handlers, and a few other items. The
MSXML getProperty method also gets the XML
document declaration encoding, version, and
standalone attributes. Otherwise, it’s the same as
setProperty in the SAX API.

SAX properties vary by parser. Official SAX
properties are listed at http://www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

Parse(InputSource input) Parses the InputSource XML document.
Supported by:
SAX 2 , MSXML

parse(systemId) Parses the XML document specified by systemID.
Supported by:
SAX 2, MSXML

parseURL(URL) Parses an XML document at the specified URL.
Supported by:
MSXML

setContentHandler Sets the current ContentHandler object, which
(ContentHandler handler) contains the content of a source XML document.
Supported by:
SAX 2, MSXML

setDTDHandler(DTDHandler handler) Sets the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML

setEntityResolver Sets the current entityResolver object.
(EntityResolver resolver)
Supported by:
SAX 2, MSXML

setErrorHandler Sets the current errorHandler object.
(ErrorHandler handler)
Supported by:
SAX 2, MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 132

133Chapter 6 ✦ Parsing XML with SAX

Method Name Description

setFeature(name, boolean value) Sets the value of a feature flag. Feature flags tell
Supported by: you if your SAX parser supports a specific feature,
SAX 2 , MSXML such as namespaces or Schema validation, or the

optional Attributes2 interface. Similar to
putFeature in the MSXML SAX parser.

SAX feature flags vary by parser. Official SAX
feature flags are listed at http://www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

putFeature Sets the value of a feature flag. Feature flags tell
Supported by: you if your SAX parser supports a specific feature,
MSXML, MSXML such as namespaces or Schema validation, or the

optional Attributes2 interface. MSXML also sets
the XML document namespace support, schema
validation support, and a few other features
putFeature. Otherwise, it’s the same as setFeature
in the SAX API.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core documen-
tation, under the SAXXMLReader interface.

setProperty(name, dataType) Sets the value of a property. SAX properties tell
Supported by: you a SAX object class supports the default class
SAX 2 , MSXML or a custom class for entity declarations, lexical

handlers, and a few other items. Similar to
putProperty in the MSXML SAX parser.

SAX properties vary by parser. Official SAX
properties are listed at http://www.
saxproject.org/apidoc/org/xml/sax/
package-summary.html#package_
description.

putProperty(name, dataType) Sets the value of a property. SAX properties tell
Supported by: you a SAX object class supports the default class
MSXML or a custom class for entity declarations, lexical

handlers, and a few other items. MSXML also sets
the XML document declaration encoding, version
and standalone attributes from putProperty. Other-
wise, it’s the same as setProperty in the SAX API.

SAX properties vary by parser. MSXML SAX parser
properties are listed in the MSXML Core documen-
tation, under the SAXXMLReader interface.

c538292 ch06.qxd 8/18/03 8:44 AM Page 133

134 Part I ✦ Introducing XML

Parser
Parser is the main interface for SAX 1 XML parsing functionality, as described in
Table 6-5. The Parser interface has been replaced by the SAX2 XMLReader interface
and should not be used for new development. We’ve included it here so you can
understand legacy applications when upgrading them to SAX 2 Interfaces.

Table 6-5
Parser Interface Methods

Method Name Description

parse(InputSource source) or Parses the InputSource document or an XML
parse(systemId) document specified by a System ID.
Supported by:
SAX 1

setDocumentHandler Sets the documentHandler object.
(DocumentHandler handler)
Supported by:
SAX 1

setDTDHandler(DTDHandler handler) Sets the DTDHandler object.
Supported by:
SAX 1

setEntityResolver Sets the entityResolver object.
(EntityResolver resolver)
Supported by:
SAX 1

setErrorHandler Sets an errorHandler for an application.
(ErrorHandler handler)
Supported by:
SAX 1

setLocale(locale) Returns a locale for errors and warnings.
Supported by:
SAX 1

XMLFilter
XMLFilters are similar to the XML Reader interface, except that an XMLFilter source
comes from an existing XMLReader object. XMLFilters can be used to quickly and
easily produce fragments of documents. For example, an XMLFIlter could be used
to create a representation of an XML document without any comments, or a docu-
ment representation that has all attributes removed. Table 6-6 describes the proper-
ties, and Table 6-7 describes the methods.

c538292 ch06.qxd 8/18/03 8:44 AM Page 134

135Chapter 6 ✦ Parsing XML with SAX

The MSXML SAX implementation parent property supports the same functionality
as the SAX setParent and getParent methods. Also, the MSXML parent prop-
erty is the same as the SAX API getParent() method.

Table 6-6
XMLFilter Interface Properties

Property Name Description

Parent Sets or gets the XMLReader parent of the
Supported by: XMLFilter.
MSXML

Table 6-7
XMLFilter Interface Methods

Method Name Description

getParent() Gets the XMLReader parent of the XMLFilter.
Supported by:
SAX 2, MSXML

setParent(XMLReader parent) Sets the XMLReader parent of the XMLFilter.
Supported by:
SAX 2, MSXML

ContentHandler
ContentHandler is the main interface for a SAX 2 document’s content. XMLReader
uses ContentHandler to track all of the SAX events for an XML document.

The SAX API ContentHandler interface uses the setDocumentLocator method
to get a locator interface, while MSXML SAX uses the ContentHandler
documentLocator property to do the same thing.

Handling attributes in SAX
Note that there are no startAttribute and endAttribute events in SAX. On
first look at SAX, handling attribute events like other document content events may
seem logical, but attributes are only associated with elements, and there are
enough exceptions when working with groups of attributes to warrant that they
have their own interface. Attributes in SAX are returned by the startElement
event in their own Attributes object, which is manipulated using the attributes
interface. Table 6-8 describes the properties, and Table 6-9 describes the methods.

Note

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 135

136 Part I ✦ Introducing XML

Table 6-8
ContentHandler Interface Properties

Property Name Description

documentLocator Returns a pointer to the Locator interface, which
Supported by: returns the column number, line number, public
MSXML ID, or system ID for a SAX event.

Table 6-9
ContentHandler Interface Methods

Method Name Description

startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document.
SAX 2, MSXML

endDocument() This event is triggered when the parser
Supported by: encounters the end of a document.
SAX 2, MSXML

startElement(uri, localName, This event is triggered when the parser
qName, Attributes atts) encounters the beginning of an element.
Supported by:
SAX 2, MSXML

endElement(uri, localName, qName) This event is triggered when the parser
Supported by: encounters the end of an element.
SAX 2, MSXML

startPrefixMapping(prefix, uri) Explicitly map a prefix to a URI. This is used with
Supported by: the startElement and endElement events to map
SAX 2, MSXML a prefix to a URI at time of parsing. The prefix

and/or URI do not need to be in the original XML
document.

endPrefixMapping(prefix) End the explicit mapping of a prefix to a URI.
Supported by:
SAX 2, MSXML

characters(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters character data.
SAX 2, MSXML

ignorableWhitespace This event is triggered when the parser
(char[] ch, start, length) encounters ignorable whitespace in element
Supported by: content.
SAX 2, MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 136

137Chapter 6 ✦ Parsing XML with SAX

Method Name Description

processingInstruction(target, data) This event is triggered when the parser
Supported by: encounters a processing instruction.
SAX 2, MSXML

setDocumentLocator(Locator locator) Returns a pointer to the Locator interface, which
Supported by: returns the column number, line number, public
SAX 2 ID, or system ID for a SAX event.

skippedEntity(name) This event is triggered when the parser
Supported by: encounters a skipped entity.
SAX 2, MSXML

DocumentHandler
DocumentHandler is the main interface for a SAX 1 document’s content, as
described in Table 6-10. This interface has been replaced by the SAX2
ContentHandler interface, and should not be used for new development.

The documentHandler interface is associated with the deprecated Parser class.
Neither should be used for new development. We’ve included the method listing
to help developers debug and upgrade legacy code to the SAX 2 ContentHandler
and XMLReader interfaces.

Table 6-10
DocumentHandler Interface Methods

Method Name Description

characters(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters character data.
SAX 1

endDocument() This event is triggered when the parser
Supported by: encounters the end of a document.
SAX 1

endElement(name) This event is triggered when the parser
Supported by: encounters the end of an element.
SAX 1

ignorableWhitespace This event is triggered when the parser
(char[] ch, start, length) encounters ignorable whitespace in element
Supported by: content.
SAX 1

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 137

138 Part I ✦ Introducing XML

Table 6-10 (continued)

Method Name Description

processingInstruction(target, data) This event is triggered when the parser
Supported by: encounters a processing instruction.
SAX 1

setDocumentLocator(Locator locator) Returns a pointer to the Locator interface, which
Supported by: returns the column number, line number, public
SAX 1 ID, or system ID for a SAX event.

startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document.
SAX 1

startElement This event is triggered when the parser
(name, AttributeList atts) encounters the beginning of an element.
Supported by:
SAX 1

Locator
Locator associates a SAX event with a document location. Locators provide the line
and column in an XML document that a SAX event takes place. Information about
public and/or system IDs associated with that location can also be provided, if
there are any.

The Locator interface is accessible via the ContentHandler interface, as described
in Table 6-11. Use the setDocumentLocator method for SAX API-compliant
parsers such as Xerces, and the documentLocator property in MSXML.

Table 6-11
Locator Interface Methods

Method Name Description

getColumnNumber() Returns the ending column number of a SAX event. XML
Supported by: document columns start at the beginning of a new line. The
SAX 1, 2, and MSXML first column (1) is the first character of a line in an XML

document. The column counts increments by one for each
character in the line, until a line end is encountered.

getLineNumber() Returns the ending line number of a SAX event. Lines in
Supported by: Locators start at 1.
SAX 1, 2, and MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 138

139Chapter 6 ✦ Parsing XML with SAX

Method Name Description

getPublicId() Returns the public ID of a SAX event.
Supported by:
SAX 1, 2, and MSXML

getSystemId() Returns the system ID of a SAX event.
Supported by:
SAX 1, 2, and MSXML

Attributes
Attributes is the SAX 2 interface for a list of XML attributes. The properties and
methods are described in Table 6-12 and Table 6-13, respectively. Attributes in SAX
are returned by the ContentHandler interface startElement event. They are con-
tained in their own Attributes object.

Calling the MSXML getIndexFromName and getIndexFromQName return the
same results as calling the SAX API getIndex with a namespace name or a
Qname. The same goes for the SAX getType and getValue methods. Also, the
MSXML length property returns the same result as the SAX getLength()
method. The only difference is that if there are no attributes.

Table 6-12
Attributes Interface Properties

Property Name Description

Length Returns the count of element attributes, starting at 0.
Supported by:
MSXML

Table 6-13
Attributes Interface Methods

Method Name Description

getIndex(qName) Returns the index of an attribute by qualified
or name or namespace name. Attribute indexes
getIndex(uri, localName) start at 0.
Supported by:
SAX 2

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 139

140 Part I ✦ Introducing XML

Table 6-13 (continued)

Method Name Description

getIndexFromName (uri, localName) Returns the index of an attribute by name.
Supported by: Attribute indexes start at 0.
MSXML

getIndexFromQName (qName) Returns the index of an attribute by qualified
Supported by: name. Attribute indexes start at 0.
MSXML

getLength() Returns the count of element attributes,
Supported by: starting at 0.
SAX 2

getLocalName(index) Returns an attribute name from an index.
Supported by: Attribute indexes start at 0.
SAX 2 and MSXML

getQName(index) Returns an attribute qualified name from an
Supported by: index. Attribute indexes start at 0.
SAX 2 and MSXML

getType(index) Returns an attribute type from an index. SAX API
Supported by: values are “CDATA”, “ID”, “IDREF”, “IDREFS”,
SAX 2 and MSXML “NMTOKEN”, “NMTOKENS”, “ENTITY”, “ENTITIES”,

or “NOTATION” (all in uppercase).

getType(qName) or Returns an attribute type from an attribute
getType(uri, localName) qualified name or namespace name. SAX API
Supported by: values are “CDATA”, “ID”, “IDREF”, “IDREFS”,
SAX 2 “NMTOKEN”, “NMTOKENS”, “ENTITY”, “ENTITIES”,

or “NOTATION” (all in uppercase).

getTypeFromName (uri, localName) Returns an attribute type from a namespace
Supported by: name. SAX API values are “CDATA”, “ID”, “IDREF”,
MSXML “IDREFS”, “NMTOKEN”, “NMTOKENS”, “ENTITY”,

“ENTITIES”, or “NOTATION” (all in uppercase).

getTypeFromQName (qName) Returns an attribute type from a qualified name.
Supported by: SAX API values are “CDATA”, “ID”, “IDREF”,
MSXML “IDREFS”, “NMTOKEN”, “NMTOKENS”, “ENTITY”,

“ENTITIES”, or “NOTATION” (all in uppercase).

getURI(index) Returns an attribute’s namespace URI by index.
Supported by:
SAX 2 and MSXML

getValue(index) Returns an attribute’s value by index.
Supported by:
SAX 2 and MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 140

141Chapter 6 ✦ Parsing XML with SAX

Method Name Description

getValue(qName) or Returns an attribute’s value by qualified name or
getValue(uri, localName) namespace name.
Supported by:
SAX 2

getValueFromName (qName) Returns an attribute’s value by qualified name.
Supported by:
MSXML

getValueFromQName (uri, localName) Returns an attribute’s value by namespace name.
Supported by:
MSXML

AttributeList
AttributeList is the SAX 1 interface for a list of XML attributes, as described in Table
6-14. As with the Parser and ContentHandler interfaces, AttributeList should not be
used for new development. We’ve included it here to help debug and upgrade SAX 1
code to the SAX 2 XMLReader, ContentHandler, and Attributes interfaces.

Table 6-14
AttributeList Interface Methods

Method Name Description

getLength() Returns the count of element attributes, starting at 0.
Supported by:
SAX 1

getName(i) Returns the name of an attribute by index. Attribute indexes
Supported by: start at 0.
SAX 1

getType(i) Returns the type of an attribute by index. Attribute indexes start at 0.
Supported by:
SAX 1

getType(name) Returns the type of an attribute by name.
Supported by:
SAX 1

getValue(i) Returns the value of an attribute by index. Attribute indexes
Supported by: start at 0.
SAX 1

getValue(name) Returns the value of an attribute by name.
Supported by:
SAX 1

c538292 ch06.qxd 8/18/03 8:44 AM Page 141

142 Part I ✦ Introducing XML

DTDHandler
DTDHandler is the main interface for a DTD document’s content. Table 6-15
describes the methods.

The SAX 2 API does not currently supply explicit support for Schema validation.
However, SAX parser implementations, such as Xerces, provide support for valida-
tion and parsing for Schemas and DTDs.

The MSXML 4 SAX parser can parse DTD documents, but does not provide support
for validating documents using DTDs, just schemas. DTD can still be used as con-
tainers for entity references when using the MSXML SAX parser, but not for data
validation. MSXML developers who want to validate against schemas can use the
MSXML DOM parser, or download/develop a SAX parser that supports schema
validation.

Table 6-15
DTDHandler Interface Methods

Method Name Description

notationDecl(name, publicId, This event is triggered when the parser
systemId) encounters a notation declaration event.
Supported by:
SAX 1, 2, and MSXML

unparsedEntityDecl(name, publicId, This event is triggered when the parser
systemId, notationName) encounters an unparsed entity declaration event.
Supported by:
SAX 1, 2, and MSXML

EntityResolver
EntityResolver is the SAX 1 and 2 interface for creating custom methods for resolv-
ing entitles, as described in Table 6-16. SAX parsers resolve regular entity refer-
ences with values in DTDs automatically. The EntityResolver interface allows
developers to create a custom interface to external values that can be used during
SAX parsing.

Table 6-16
EntityResolver Interface Methods

Method Name Description

resolveEntity(publicId, systemId) Designate a public ID and/or System ID for
Supported by: resolving external entities. This reference will be
SAX 1, 2, and MSXML called first when resolving external entities.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 142

143Chapter 6 ✦ Parsing XML with SAX

ErrorHandler
ErrorHandler is The SAX 1 and 2 interface for handling errors while parsing an XML
document. Table 6-17 describes the methods.

The SAX warning and the MSXML ignorableWarning are similar in functional-
ity. The SAX API passes a SAXParseException object to the ErrorHandler inter-
face, which contains an error message string, a Locator, and an error code. MSXML
does not support the SAXPArseException class, so it passes the error message
string, Locator, and error code directly to the ErrorHandler interface. We’ll cover the
SAXParseException class and several other SAX helper classes in the next part
of this chapter.

Table 6-17
ErrorHandler Interface Methods

Method Name Description

error This event is triggered when the parser
Supported by: encounters a recoverable error. Passed values are
SAX 1, 2, and MSXML (SAXParseException exception) for SAX or

(Locator, errorMessage, errorCode) for MSXML.

fatalError This event is triggered when the parser
Supported by: encounters a non-recoverable error. Passed
SAX 1, 2, and MSXML values are (SAXParseException exception) for SAX

or (Locator, errorMessage, errorCode) for MSXML.

warning(SAXParseException This SAX API event is triggered when the parser
exception) encounters a warning.
Supported by:
SAX 1 and 2

ignorableWarning (Locator, This MSXML event is triggered when the parser
errorMessage, errorCode) encounters a warning.
Supported by:
MSXML

SAX helper classes
So far in this chapter you’ve read all about SAX API interfaces. Interfaces are a great
way to describe features for an application, but interfaces alone do not allow pro-
grammatic access to their properties and methods. To gain programmatic access to
the SAX API interface properties and methods, object classes have to be imple-
mented that support the interfaces. SAX Helper classes are optional classes that are
included in most Java implementations of the SAX parser.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 143

144 Part I ✦ Introducing XML

The SAX Helper classes are only for Java implementations. Currently, MSXML does
not support helper classes, though they do support some of the functionality
through additional methods in the core interfaces.

XMLReaderFactory
This class has one single purpose, to gain access to the XMLReader interface and
its associated properties and methods. The createXMLReaderFactory method of
the XMLReaderFactory is used by the calling program to create the XMLReader
object. Table 6-18 describes the methods.

Table 6-18
XMLReaderFactory Class Methods

Method Name Description

createXMLReader() Create an XMLReader from system default reader.
The system default reader is the value specified by
the org.xml.sax.driver system property.

createXMLReader(className) Create an XMLReader from a supplied class name.

XMLReaderAdapter
XMLReaderAdapter implements the SAX1 Parser interface for backward compati-
bility. To implement this helper class in your Java applications, just replace any
instances of calls to the Parser interface with calls to the XMLReaderAdapter inter-
face. This interface supports all of the methods of the SAX 2 ContentHandler and
the SAX 1 DocumentHandler interfaces for inter-version compatibility. Table 6-19
describes the methods.

When using the XMLReaderAdapter class in Java applications, the
http://xml.org/sax/features/namespace-prefixes property must
be set to true.

Table 6-19
XMLReaderAdapter Class Methods

Method Name Description

Parse(InputSource source) or Parses the InputSource document or an XML
parse(systemId) document specified by a System ID.
Supported by:
SAX 1 and 2

Note

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 144

145Chapter 6 ✦ Parsing XML with SAX

Method Name Description

setDocumentHandler Sets the documentHandler object.
(DocumentHandler handler)
Supported by:
SAX 1

setDTDHandler(DTDHandler handler) Sets the DTDHandler object.
Supported by:
SAX 1

setEntityResolver Sets the entityResolver object.
(EntityResolver resolver)
Supported by:
SAX 1

setErrorHandler Sets an errorHandler for an application.
(ErrorHandler handler)
Supported by:
SAX 1

setLocale(locale) Returns a locale for errors and warnings.
Supported by:
SAX 1

startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document.
SAX 2

endDocument() This event is triggered when the parser
Supported by: encounters the end of a document.
SAX 2

startElement(uri, localName, This event is triggered when the parser
qName, Attributes atts) encounters the beginning of an element.
Supported by:
SAX 2

endElement(uri, localName, qName) This event is triggered when the parser
Supported by: encounters the end of an element.
SAX 2

startPrefixMapping(prefix, uri) Explicitly map a prefix to a URI. This is used with
Supported by: the startElement and endElement events to map
SAX 2 a prefix to a URI at time of parsing. The prefix

and/or URI do not need to be in the original XML
document.

endPrefixMapping(prefix) End the explicit mapping of a prefix to a URI.
Supported by:
SAX 2

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 145

146 Part I ✦ Introducing XML

Table 6-19 (continued)

Method Name Description

characters(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters character data.
SAX 2

ignorableWhitespace(char[] ch, This event is triggered when the parser
start, length) encounters ignorable whitespace in element
Supported by: content.
SAX 2

processingInstruction(target, data) This event is triggered when the parser
Supported by: encounters a processing instruction.
SAX 2

setDocumentLocator Returns a pointer to the Locator interface, which
(Locator locator) returns the column number, line number, public
Supported by: ID, or system ID for a SAX event.
SAX 2

skippedEntity(name) This event is triggered when the parser
Supported by: encounters a skipped entity.
SAX 2

AttributesImpl
AttributesImpl is the implementation class for the SAX 2 Attributes interface. It
supports all the methods of the Attributes interface for retrieving information
about attributes associated with an element. In addition, it has methods that can be
used to add, edit, and remove attributes, as described in Table 6-20.

MSXML implements much of the functionality of the Attributes interface through
the IMXAttributes interface. The optional SAX 2 Attributes 2 extension interface
supports additional functionality. Access to the Attributes 2 interface is through the
Attributes2Impl class. We cover these topics later in this chapter.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 146

147Chapter 6 ✦ Parsing XML with SAX

Table 6-20
AttributesImpl Class Methods

Method Name Description

getIndex(qName) or Returns the index of an attribute by qualified name or
getIndex(uri, localName) namespace name. Attribute indexes start at 0.
Supported by:
SAX 2

getLength() Returns the count of element attributes, starting at 0.
Supported by:
SAX 2

getLocalName(index) Returns an attribute name from an index. Attribute
Supported by: indexes start at 0.
SAX 2 and MSXML

getQName(index) Return an attribute’s qualified (prefixed) name.
Supported by:
SAX 2

getType(index) Returns an attribute type from an index. SAX API values
Supported by: are “CDATA”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”,
SAX 2 and MSXML “NMTOKENS”, “ENTITY”, “ENTITIES”, or “NOTATION” (all

in uppercase).

getType(qName) or Returns an attribute type from an attribute qualified
getType(uri, localName) name or namespace name. SAX API values are “CDATA”,
Supported by: “ID”, “IDREF”, “IDREFS”, “NMTOKEN”, “NMTOKENS”,
SAX 2 “ENTITY”, “ENTITIES”, or “NOTATION” (all in uppercase).

getURI(index) Returns an attribute’s namespace URI by index.
Supported by:
SAX 2 and MSXML

getValue(index) Returns an attribute’s value by index.
Supported by:
SAX 2 and MSXML

getValue(qName) or Returns an attribute’s value by qualified name or
getValue(uri, localName) namespace name.
Supported by:
SAX 2

addAttribute(uri, localName, Add an attribute to the end of the attribute list.
qName, type, value)
Supported by:
SAX 2

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 147

148 Part I ✦ Introducing XML

Table 6-20 (continued)

Method Name Description

removeAttribute(index) Remove an attribute from the attribute list.
Supported by:
SAX 2

clear() Clear the attribute list.
Supported by:
SAX 2

setAttribute(index, uri, Change the attribute at the specified index position in
localName, qName, type, value) the list. Attribute indexes start at 0.
Supported by:
SAX 2

setAttributes(Attributes atts) Copy the specified Attributes object to a new Attributes
Supported by: object. Attribute indexes start at 0.
SAX 2

setLocalName Set the local name of the attribute at the specified index
(index, localName) position in the list. Attribute indexes start at 0.
Supported by:
SAX 2

setQName(index, qName) Set the qualified name of the attribute at the specified
Supported by: index position in the list. Attribute indexes start at 0.
SAX 2

setType(index, type) Set the type of the attribute at the specified index
Supported by: position in the list. Attribute indexes start at 0.
SAX 2

setURI(index, uri) Set the namespace of the attribute at the specified
Supported by: index position in the list. Attribute indexes start at 0.
SAX 2

setValue(index, value) Set the value of the attribute at the specified index
Supported by: position in the list. Attribute indexes start at 0.
SAX 2

DefaultHandler
The DefaultHandler class is a grab bag of properties and methods in various
SAX 2 interfaces with all have one thing in common — they are all callback meth-
ods. Callback methods in SAX applications are methods that return something
when they are triggered by an event. The event actions are predefined in the appli-
cation code using these methods. When a SAX parser encounters an event, the
method is triggered, which invokes some kind of action in the application.

c538292 ch06.qxd 8/18/03 8:44 AM Page 148

149Chapter 6 ✦ Parsing XML with SAX

DefaultHandler is very useful for developers who are developing a bare-bones
parsing application using SAX. DefaultHandler implements access to the key
methods of ContentHandler, DTDHandler, EntityResolver, and
ErrorHandler in one class. Table 6-21 describes the methods.

Table 6-21
DefaultHandler Class Methods

Method Name Description

startDocument() This event is triggered when the parser
Supported by: encounters the beginning of a document. Source
SAX 2 Interface is ContentHandler.

endDocument() This event is triggered when the parser
Supported by: encounters the end of a document. Source
SAX 2 Interface is ContentHandler.

startElement(uri, localName, This event is triggered when the parser
qName, Attributes atts) encounters the beginning of an element. Source
Supported by: Interface is ContentHandler.
SAX 2

endElement(uri, localName, qName) This event is triggered when the parser
Supported by: encounters the end of an element. Source
SAX 2 Interface is ContentHandler.

startPrefixMapping(prefix, uri) Explicitly map a prefix to a URI. This is used with
Supported by: the startElement and endElement events to map
SAX 2 a prefix to a URI at time of parsing. The prefix

and/or URI do not need to be in the original XML
document. Source Interface is ContentHandler.

endPrefixMapping(prefix) End the explicit mapping of a prefix to a URI.
Supported by: Source Interface is ContentHandler.
SAX 2

characters(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters character data. Source Interface is
SAX 2 ContentHandler.

ignorableWhitespace(char[] ch, This event is triggered when the parser
start, length) encounters ignorable whitespace in element
Supported by: content. Source Interface is ContentHandler.
SAX 2

processingInstruction(target, data) This event is triggered when the parser
Supported by: encounters a processing instruction. Source
SAX 2 Interface is ContentHandler.

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 149

150 Part I ✦ Introducing XML

Table 6-21 (continued)

Method Name Description

setDocumentLocator Returns a pointer to the Locator interface, which
(Locator locator) returns the column number, line number, public
Supported by: ID, or system ID for a SAX event. Source Interface
SAX 2 is ContentHandler.

skippedEntity(name) This event is triggered when the parser
Supported by: encounters a skipped entity. Source Interface is
SAX 2 ContentHandler.

notationDecl(name, publicId, This event is triggered when the parser
systemId) encounters a notation declaration event. Source
Supported by: Interface is DTDHandler.
SAX 1, 2

unparsedEntityDecl(name, This event is triggered when the parser
publicId, systemId, notationName) encounters an unparsed entity declaration event.
Supported by: Source Interface is DTDHandler.
SAX 1, 2

resolveEntity(publicId, systemId) Designate a public ID and/or System ID for
Supported by: resolving external entities. This reference will be
SAX 1, 2 called first when resolving external entities.

Source Interface is EntityResolver.

error This event is triggered when the parser
Supported by: encounters a recoverable error. Passed values are
SAX 1, 2 (SAXParseException exception) for SAX or

(Locator, errorMessage, errorCode) for MSXML.
Source Interface is ErrorHandler.

fatalError This event is triggered when the parser
Supported by: encounters a non-recoverable error. Passed
SAX 1, 2 values are (SAXParseException exception) for SAX

or (Locator, errorMessage, errorCode) for MSXML.
Source Interface is ErrorHandler.

warning(SAXParseException This SAX API event is triggered when the parser
exception) encounters a warning. Source Interface is
Supported by: ErrorHandler.
SAX 1, 2

LocatorImpl
LocatorImpl is the implementation class for locator, which associates a SAX
event with a document location. Locators provide the line and column in an XML
document that a SAX event takes place.

c538292 ch06.qxd 8/18/03 8:44 AM Page 150

151Chapter 6 ✦ Parsing XML with SAX

The Locator interface is accessible via the ContentHandler interface. Use the
setDocumentLocator method for SAX API-compliant parsers such as Xerces, and
the documentLocator property in MSXML. Table 6-22 describes the methods.

Table 6-22
LocatorImpl Class Methods

Method Name Description

getColumnNumber() Returns the ending column number of a SAX
Supported by: event. XML document columns start at the
SAX 1, 2 beginning of a new line. The first column (1) is

the first character if a line in an XML document.
The column count increments by one for each
character in the line, until a line end is
encountered.

getLineNumber() Returns the ending line number of a SAX event.
Supported by: Lines in Locators start at 1.
SAX 1, 2

getPublicId() Returns the public ID of a SAX event.
Supported by:
SAX 1, 2

getSystemId() Returns the saved system identifier.
Supported by:
SAX 2

setColumnNumber(columnNumber) Sets the column number of a Locator. XML
Supported by: document columns start at the beginning of a
SAX 2 new line. The first column (1) is the first character

of a line in an XML document. The column count
increments by one for each character in the line,
until a line end is encountered.

setLineNumber(lineNumber) Sets the line number of a Locator. Lines in
Supported by: Locators start at 1.
SAX 2

setPublicId(publicId) Sets the public ID of a Locator.
Supported by:
SAX 2

setSystemId(systemId) Sets the system ID of a Locator.
Supported by:
SAX 2

c538292 ch06.qxd 8/18/03 8:44 AM Page 151

152 Part I ✦ Introducing XML

NamespaceSupport
Individual namespaces associated with element events can be accessed by the
startPrefixMapping() and endPrefixMapping() methods in the Content
Handler interface. NameSPaceSupport provides features to globally declare and
track namespaces in a Java application, as described in Table 6-23.

Table 6-23
NameSpaceSupport Class Methods

Method Name Description

declarePrefix(prefix, uri) Declare a namespace prefix and associated uri.
Supported by:
SAX 2

getDeclaredPrefixes() Return all prefixes declared in this context in
Supported by: enumeration format.
SAX 2

getPrefix(uri) Return a prefix associated with a provided uri.
Supported by:
SAX 2

getPrefixes() Return all prefixes active in this context in enumeration
Supported by: format.
SAX 2

getPrefixes(uri) Return all prefixes declared for a provided uri in
Supported by: enumeration format.
SAX 2

getURI(prefix) Return a uri associated with a provided prefix.
Supported by:
SAX 2

processName(qName, [] parts, Add a namespace to a name. The parts parameter is a
boolean isAttribute) string array that contains the namespace information.
Supported by:
SAX 2

setNamespaceDeclUris Turns on and off the ability for processName to declare
(boolean value) namespace attributes.
Supported by:
SAX 2

isNamespaceDeclUris() Checks the current state of the ability for processName
Supported by: to declare namespace attributes.
SAX 2

c538292 ch06.qxd 8/18/03 8:44 AM Page 152

153Chapter 6 ✦ Parsing XML with SAX

Method Name Description

pushContext() Starts a new namespace context. Namespaces are in a
Supported by: stack model, which is usually “pushed” at the
SAX 2 startElement event and “popped” at the endElement

event.

popContext() Reverts to the previous namespace context.
Supported by: Namespaces are in a stack model, which is usually
SAX 2 “pushed” at the startElement event and “popped” at the

endElement event.

reset() Resets the NameSpaceSupport object.
Supported by:
SAX 2

XMLFilterImpl
XMLFilterImpl is an implementation class for the XMLFilter interface in Java
applications. XMLFilters are similar to the XML Reader interface, except that an
XMLFilter source comes from an existing XMLReader object. XMLFilters can be
used to quickly and easily produce fragments of documents. Table 6-24 describes
the methods.

XMLFilterImpl implements all of the methods of the ContentHandler,
XMLReader, XMLFilter, DTDHandler, EntityResolver, and ErrorHandler interfaces.

Table 6-24
XMLFilterImpl Class Methods

Method Name Description

startDocument() Filtering is triggered when the parser encounters
Supported by: the beginning of a document. Source interface is
SAX 2, MSXML ContentHandler.

endDocument() Filtering is triggered when the parser encounters
Supported by: the end of a document. Source interface is
SAX 2, MSXML ContentHandler.

startElement(uri, localName, Filtering is triggered when the parser encounters
qName, Attributes atts) the beginning of an element. Source interface is
Supported by: ContentHandler.
SAX 2, MSXML

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 153

154 Part I ✦ Introducing XML

Table 6-24 (continued)

Method Name Description

endElement(uri, localName, qName) Filtering is triggered when the parser encounters
Supported by: the end of an element. Source interface is
SAX 2, MSXML ContentHandler.

startPrefixMapping(prefix, uri) This is used with the startElement and
Supported by: endElement events to filter on a namespace
SAX 2, MSXML prefix. Source interface is ContentHandler.

endPrefixMapping(prefix) End the filtering of a namespace prefix event.
Supported by: Source interface is ContentHandler.
SAX 2, MSXML

characters(char[] ch, start, length) Filtering is triggered when the parser encounters
Supported by: character data. Source interface is
SAX 2, MSXML ContentHandler.

ignorableWhitespace(char[] ch, Filtering is triggered when the parser encounters
start, length) ignorable whitespace in element content. Source
Supported by: interface is ContentHandler.
SAX 2, MSXML

processingInstruction(target, data) Filtering is triggered when the parser encounters
Supported by: a processing instruction. Source interface is
SAX 2, MSXML ContentHandler.

setDocumentLocator(Locator locator) Filtering is triggered when the parser encounters
Supported by: a new document locator event. Source interface
SAX 2 is ContentHandler.

skippedEntity(name) Filtering is triggered when the parser encounters
Supported by: a skipped entity. Source interface is
SAX 2, MSXML ContentHandler.

getContentHandler() Returns the current ContentHandler object, which
Supported by: contains the content of a source XML document.
SAX 2 Source interface is XMLReader.

getDTDHandler() Returns the current DTDHandler object, which
Supported by: contains the content of a source DTD. Source
SAX 2 interface is XMLReader.

getEntityResolver() Returns the current entityResolver object. Source
Supported by: interface is XMLReader.
SAX 2

getErrorHandler() Returns the current errorHandler object. Source
Supported by: interface is XMLReader.
SAX 2

c538292 ch06.qxd 8/18/03 8:44 AM Page 154

155Chapter 6 ✦ Parsing XML with SAX

Method Name Description

getFeature(name) Look up the value of a feature flag. Feature flags
Supported by: tell you if your SAX parser supports a specific
SAX 2 feature, such as namespaces or Schema

validation, or the optional Attributes2 interface.
Source interface is XMLReader. SAX feature flags
vary by parser. Official SAX feature flags are listed
at http://www.saxproject.org/
apidoc/org/xml/sax/package-
summary.html#package_description.

getProperty(name) Looks up the value of a property. SAX properties
Supported by: tell you a SAX object class supports the default
SAX 2 class or a custom class for entity declarations,

lexical handlers, and a few other items. Source
interface is XMLReader. SAX properties vary by
parser. Official SAX properties are listed at
http://www.saxproject.org/apidoc/
org/xml/sax/package-summary.html#
package_description.

Parse(InputSource input) Parses the InputSource XML document. Source
Supported by: interface is XMLReader.
SAX 1 and 2

Parse(systemId) Parses the XML document specified by systemID.
Supported by: Source interface is XMLReader.
SAX 1 and 2

setContentHandler Sets the current ContentHandler object, which
(ContentHandler handler) contains the content of a source XML document.
Supported by: Source interface is XMLReader.
SAX 2

setDTDHandler(DTDHandler handler) Sets the current DTDHandler object, which
Supported by: contains the content of a source DTD. Source
SAX 2 interface is XMLReader.

setEntityResolver Sets the current entityResolver object. Source
(EntityResolver resolver) interface is XMLReader.
Supported by:
SAX 2

setErrorHandler Sets the current errorHandler object. Source
(ErrorHandler handler) interface is XMLReader.
Supported by:
SAX 2

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 155

156 Part I ✦ Introducing XML

Table 6-24 (continued)

Method Name Description

setFeature(name, boolean value) Sets the value of a feature flag. Feature flags tell
Supported by: you if your SAX parser supports a specific feature,
SAX 2 such as namespaces or Schema validation, or the

optional Attributes2 interface. Source interface is
XMLReader. SAX feature flags vary by parser.
Official SAX feature flags are listed at http://
www.saxproject.org/apidoc/org/xml/
sax/package-summary.html#package_
description.

setProperty(name, Sets the value of a property. SAX properties tell
java.lang.Object value) you a SAX object class supports the default class
Supported by: or a custom class for entity declarations, lexical
SAX 2 handlers, and a few other items. SAX properties

vary by parser. Source interface is XMLReader.
Official SAX properties are listed at http://
www.saxproject.org/apidoc/org/xml/
sax/package-summary.html#package_
description.

getParent() Gets the XMLReader parent of the XMLFilter.
Supported by: Source interface is XMLReader.
SAX 2

setParent(XMLReader parent) Sets the XMLReader parent of the XMLFilter.
Supported by: Source interface is XMLReader.
SAX 2

resolveEntity(publicId, systemId) Designate a public ID and/or System ID for
Supported by: resolving external entities. This reference will be
SAX 2 called first when resolving external entities.

Source interface is EntityResolver.

notationDecl(name, Filtering is triggered when the parser encounters
publicId, systemId) a notation declaration event. Source interface is
Supported by: DTDHandler.
SAX 2

unparsedEntityDecl(name, publicId, Filtering is triggered when the parser encounters
systemId, notationName) an unparsed entity declaration event. Source
Supported by: interface is DTDHandler.
SAX 2

error(SAXParseException e) Filtering is triggered when the parser encounters
Supported by: a recoverable error. Passed values are
SAX 2 (SAXParseException exception) for SAX or

(Locator, errorMessage, errorCode) for MSXML.
Source interface is ErrorHandler.

c538292 ch06.qxd 8/18/03 8:44 AM Page 156

157Chapter 6 ✦ Parsing XML with SAX

Method Name Description

fatalError(SAXParseException e) Filtering is triggered when the parser encounters
Supported by: a non-recoverable error. Passed values are
SAX 2 (SAXParseException exception) for SAX or

(Locator, errorMessage, errorCode) for MSXML.
Source interface is ErrorHandler.

warning(SAXParseException e) Filtering is triggered when the parser encounters
Supported by: a warning. Source interface is ErrorHandler.
SAX 2

ParserAdapter
ParserAdapter adds namespace support and other SAX 2 XMLReader interface
features to a SAX 1 parser. To implement this helper class in your Java applications,
call ParserAdapter() to create a new embedded SAX 2 parser object and Parser
Adapter(parserName) to adapt an existing SAX 1 parser. Once the
ParserAdapter is available, it can be used like an XMLReader object. Table 6-25
describes the methods.

This interface supports all of the methods of the SAX 2 XMLReader and
ContentHandler interfaces (except for startPrefixMapping, endPrefixMapping, and
skippedEntity) for inter-version compatibility. However, most of the Content
Handler methods are intended to be used exclusively by the ParserAdapter
class to convert the Parser object to an XMLReader object, and should not be
called from applications, even though they are exposed and documented. For this
reason I’ve excluded all of the adapter implementation methods from the docu-
mentation. Also, getFeature, setFeature, getProperty, and
setProperty are limited (see the notes in the table).

Table 6-25
ParserAdapter Class Methods

Method Name Description

getContentHandler() Returns the current ContentHandler object, which
Supported by: contains the content of a source XML document.
SAX 2, MSXML

getDTDHandler() Returns the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 157

158 Part I ✦ Introducing XML

Table 6-25 (continued)

Method Name Description

getEntityResolver() Returns the current entityResolver object.
Supported by:
SAX 2, MSXML

getErrorHandler() Returns the current errorHandler object.
Supported by:
SAX 2, MSXML

getFeature(name) Look up the value of a feature flag. SAX feature
Supported by: flags for ParserAdapter are limited to namespaces
SAX 2, MSXML and namespace-prefixes.

Parse(InputSource input) Parses the InputSource XML document.
Supported by:
SAX 2 , MSXML

parse(systemId) Parses the XML document specified by systemID.
Supported by:
SAX 2, MSXML

setContentHandler Sets the current ContentHandler object, which
(ContentHandler handler) contains the content of a source XML document.
Supported by:
SAX 2, MSXML

setDTDHandler(DTDHandler handler) Sets the current DTDHandler object, which
Supported by: contains the content of a source DTD.
SAX 2, MSXML

setEntityResolver Sets the current entityResolver object.
(EntityResolver resolver)
Supported by:
SAX 2, MSXML

setErrorHandler Sets the current errorHandler object.
(ErrorHandler handler)
Supported by:
SAX 2, MSXML

setFeature(name, boolean value) Sets the value of a feature flag. SAX feature flags
Supported by: for ParserAdapter are limited to namespaces and
SAX 2 , MSXML namespace-prefixes.

ParserFactory
This helper class was implemented in SAX 1 for use with the Parser interface. It is
no longer recommended for new development, but is included here to debug and
upgrade SAX 1 code to SAX 2. Table 6-26 describes the methods.

c538292 ch06.qxd 8/18/03 8:44 AM Page 158

159Chapter 6 ✦ Parsing XML with SAX

Table 6-26
ParserFactory Class Methods

Method Name Description

makeParser() Create a new SAX parser using the ‘org.xml.sax.parser’
Supported by: system property.
SAX 1

makeParser(className) Create a new SAX parser object using the class name
Supported by: provided.
SAX 1

AttributeListImpl
AttributeListImpl is the SAX helper class of the SAX 1 interface for a list of
XML attributes. As with the Parser and ContentHandler interfaces, AttributeList
interface should not be used for new development. Consequently, the
AttributeListImpl class should not be used either. We’ve included it here to
help debug and upgrade SAX 1 code to the SAX 2 XMLReader, ContentHandler, and
Attributes interfaces. Table 6-27 describes the methods.

Table 6-27
AttributeListImpl Class Methods

Method Name Description

addAttribute(name, type, value) Adds an attribute to an attribute list.
Supported by:
SAX 1

clear() Clears the attribute list.
Supported by:
SAX 1

getLength() Returns the count of element attributes,
Supported by: starting at 0.
SAX 1

getName(i) Returns the name of an attribute by index.
Supported by: Attribute indexes start at 0.
SAX 1

getType(i) Returns the type of an attribute by index.
Supported by: Attribute indexes start at 0.
SAX 1

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 159

160 Part I ✦ Introducing XML

Table 6-27 (continued)

Method Name Description

getType(name) Returns the type of an attribute by name.
Supported by:
SAX 1

getValue(i) Returns the value of an attribute by index.
Supported by: Attribute indexes start at 0.
SAX 1

getValue(name) Returns the value of an attribute by name.
Supported by:
SAX 1

removeAttribute(name) Removes an attribute from the attribute list.
Supported by:
SAX 1

setAttributeList(AttributeList atts) Reset the contents of the attribute list.
Supported by:
SAX 1

SAX extension interfaces
Aside from the SAX core interfaces, there are several extension interfaces that are
implemented using the SAX extension API. SAX extensions are optional interfaces
for SAX parsers. For example, the MSXML parser supports the DeclHandler and
LexicalHandler interfaces, while the Apache Xerces parser classes support all
extension interfaces. They can also be implemented independently of the SAX core
interfaces. All extensions have been developed using the SAX 2 extensions API, and
are not available in SAX 1.

At the beginning of this chapter, you reviewed the SAX extensions at the interface
level. Now let’s review the methods that are contained in the extension interfaces.

You may see SAX documentation that refers to “SAX Extensions 1.x.” This refers to
the SAX 2 Extensions 1.x API, not SAX 1. There is no SAX extension API for SAX 1.

Attributes2
The Attributes2 interface checks a DTD to see if an attribute in an XML document
was declared in a DTD. It also checks to see if the DTD specifies a default value for
the attribute. This interface is used mainly for data validation. Table 6-28 describes
the methods.

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 160

161Chapter 6 ✦ Parsing XML with SAX

Table 6-28
Attributes2 Interface Methods

Method Name Description

isDeclared(index) or Returns true if attribute was declared in the DTD.
isDeclared(qName) or isDeclared accepts an index (starting with 0), a
isDeclared(uri, localName) qualified name, or a local name.
Supported by:
SAX 2

isSpecified(index) or Returns false if the default attribute value was
isSpecified(qName) or specified in the DTD. isSpecified accepts an index
isSpecified(uri, localName) (starting with 0), a qualified name, or a local
Supported by: name.
SAX 2

DeclHandler
The DeclHandler interface returns declaration values in a DTD for attributes, ele-
ments, and internal and external entities. Table 6-29 describes the methods.

Table 6-29
DeclHandler Interface Methods

Method Name Description

attributeDecl(eName, aName, Returns a DTD attribute type declaration. Values
type, mode, value) returned include any valid DTD values, such as
Supported by: “CDATA”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”,
SAX 2 and MSXML “NMTOKENS”, “ENTITY”, or “ENTITIES”, a token

group, or a NOTATION reference.

elementDecl(name, model) Returns a DTD element type declaration. Values
Supported by: returned include any valid DTD values, such as
SAX 2 and MSXML “EMPTY”, “ANY”, order specification, and so on.

externalEntityDecl(name, publicId, Returns a parsed external entity declaration.
systemId)
Supported by:
SAX 2 and MSXML

internalEntityDecl(name, value) Returns a parsed internal entity declaration.
Supported by:
SAX 2 and MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 161

162 Part I ✦ Introducing XML

EntityResolver2
EntityResolver2 extends the EntityResolver interface by programmatically adding
external entity reference subsets. This can be useful for automatically adding pre-
defined DTD references to an XML document for validation while parsing. Table 6-30
describes the methods.

Table 6-30
EntityResolver2 Interface Methods

Method Name Description

getExternalSubset(name, baseURI) Returns an external subset for documents
Supported by: without a valid DOCTYPE declaration.
SAX 2

resolveEntity(name, publicId, Allows applications to map external entities to
baseURI, systemId) XML document inputSources, or map an external
Supported by: entity by URI.
SAX 2

LexicalHandler
LexicalHandler returns information about lexical events in an XML document.
Comments, the start and end of a CDATA section, the start and end of a DTD decla-
ration, and the start and end of an entity can be tracked with LexicalHandler. Table
6-31 describes the methods.

Table 6-31
LexicalHandler Interface Methods

Method Name Description

comment(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters a comment anywhere in the
SAX 2 and MSXML document.

endCDATA() This event is triggered when the parser
Supported by: encounters the end of a CDATA section.
SAX 2 and MSXML

endDTD() This event is triggered when the parser
Supported by: encounters the end of a DTD declaration.
SAX 2 and MSXML

c538292 ch06.qxd 8/18/03 8:44 AM Page 162

163Chapter 6 ✦ Parsing XML with SAX

Method Name Description

endEntity(name) This event is triggered when the parser
Supported by: encounters the end of an entity.
SAX 2 and MSXML

startCDATA() This event is triggered when the parser
Supported by: encounters the start of a CDATA section.
SAX 2 and MSXML

startDTD(name, publicId, This event is triggered when the parser
systemId) encounters the start of DTD a declaration.
Supported by:
SAX 2 and MSXML

startEntity(name) This event is triggered when the parser
Supported by: encounters the beginning of internal or external
SAX 2 and MSXML XML entities.

Locator2
Locator2 extends the Locator interface to return the encoding and the XML version
for an XML document. Table 6-32 describes the methods.

Table 6-32
Locator2 Interface Methods

Method Name Description

getXMLVersion() Returns the entity XML version.
Supported by:
SAX 2

getEncoding() Returns the type of character encoding for the entity.
Supported by:
SAX 2

SAX extension helper classes
The SAX extension helper classes provide the same programmatic access to the
SAX Extension interfaces that the SAX helpers do to the SAX Core Interfaces. The
optional SAX 2 Extension API interface properties, methods and object classes have
to be implemented to support these classes.

c538292 ch06.qxd 8/18/03 8:44 AM Page 163

164 Part I ✦ Introducing XML

The SAX Extension Helper classes are only for Java implementations. Currently,
MSXML does not support helper classes, though they do support some of the
functionality through additional methods in the core interfaces.

Attributes2Impl
The Attributes2Impl helper class is the implementation class of the Attributes2
interface. Attributes2 checks a DTD to see if an attribute in an XML document was
declared in a DTD. It also checks to see if the DTD specifies a default value for the
attribute. It’s used mainly for data validation. Attributes2Impl extends the interface
functionality by letting you add, edit, and delete attributes from lists, as described
in Table 6-33.

Table 6-33
Attributes2Impl Interface Methods

Method Name Description

addAttribute(uri, localName, Adds an attribute to the end of the attribute list, setting
qName, type, value) its “specified” flag to true.
Supported by:
SAX 2

isDeclared(index) or Returns true if attribute was declared in the DTD.
isDeclared(qName) or isDeclared accepts an index (starting with 0), a qualified
isDeclared(uri, localName) name, or a local name.
Supported by:
SAX 2

isSpecified(index) or Returns false if the default attribute value was specified
isSpecified(qName) or in the DTD. isSpecified accepts an index (starting with 0),
isSpecified(uri, localName) a qualified name, or a local name.
Supported by:
SAX 2

removeAttribute(index) Removes an attribute from the attribute list. Attribute
Supported by: indexes start at 0.
SAX 2

setAttributes(Attributes atts) Copy the specified Attributes object to a new Attributes
Supported by: object.
SAX 2

setDeclared(index, Set the “declared” flag of a specified attribute. Attribute
boolean value) indexes start at 0.
Supported by:
SAX 2

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 164

165Chapter 6 ✦ Parsing XML with SAX

Method Name Description

setSpecified(index, Set the “specified” flag of a specified attribute. Attribute
boolean value) indexes start at 0.
Supported by:
SAX 2

DefaultHandler2
The DefaultHandler2 class extends the SAX2 DefaultHandler class with prop-
erties and methods from the SAX2 LexicalHandler, DeclHandler, and
EntityResolver2 extension interfaces. Table 6-34 describes the methods.

Table 6-34
DefaultHandler2 Interface Methods

Method Name Description

attributeDecl(eName, aName, type, Returns a DTD attribute type declaration. Values
mode, value) returned include any valid DTD values, such as
Supported by: “CDATA”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”,
SAX 2 “NMTOKENS”, “ENTITY”, or “ENTITIES”, a token

group, or a NOTATION reference. Source interface
is DeclHandler.

elementDecl(name, model) Returns a DTD element type declaration. Values
Supported by: returned include any valid DTD values, such as
SAX 2 “EMPTY”, “ANY”, order specification, etc. Source

interface is DeclHandler.

externalEntityDecl(name, publicId, Returns a parsed external entity declaration.
systemId) Source interface is DeclHandler.
Supported by:
SAX 2

internalEntityDecl(name, value) Returns a parsed internal entity declaration.
Supported by: Source interface is DeclHandler.
SAX 2

comment(char[] ch, start, length) This event is triggered when the parser
Supported by: encounters a comment anywhere in the
SAX 2 document. Source interface is LexicalHandler.

startDTD(name, publicId, systemId) This event is triggered when the parser
Supported by: encounters the start of a DTD declaration. Source
SAX 2 interface is LexicalHandler.

Continued

c538292 ch06.qxd 8/18/03 8:44 AM Page 165

166 Part I ✦ Introducing XML

Table 6-34 (continued)

Method Name Description

endDTD() This event is triggered when the parser
Supported by: encounters the end of a DTD declaration Source
SAX 2 interface is LexicalHandler.

startCDATA() This event is triggered when the parser
Supported by: encounters the start of a CDATA section. Source
SAX 2 interface is LexicalHandler.

endCDATA() This event is triggered when the parser
Supported by: encounters the end of a CDATA section. Source
SAX 2 interface is LexicalHandler.

startEntity(name) This event is triggered when the parser
Supported by: encounters the beginning of internal or external
SAX 2 XML entities. Source interface is LexicalHandler.

endEntity(name) This event is triggered when the parser
Supported by: encounters the end of internal or external XML
SAX 2 entities. Source interface is LexicalHandler.

getExternalSubset(name, baseURI) Returns an external subset for documents
Supported by: without a valid DOCTYPE declaration. Source
SAX 2 interface is EntityResolver2.

resolveEntity(publicId, systemId) Allows applications to map an external entity by
Supported by: URI. Source interface is EntityResolver2.
SAX 2

resolveEntity(name, publicId, Allows applications to map external entities to
baseURI, systemId) XML document inputSources, or map an external
Supported by: entity by URI. Source interface is EntityResolver2.
SAX 2

Locator2Impl
Locator2Impl is the implementation class for the Locator2 SAX extension interface.
Locator2 extends the Locator interface to return the encoding and the XML version
for an XML document. Table 6-35 describes the methods.

c538292 ch06.qxd 8/18/03 8:44 AM Page 166

167Chapter 6 ✦ Parsing XML with SAX

Table 6-35
Locator2Impl Interface Methods

Method Name Description

getEncoding() Returns the type of character encoding for the entity.
Supported by:
SAX 2

getXMLVersion() Returns the entity XML version.
Supported by:
SAX 2

setEncoding(encoding) Sets the type of character encoding for the entity.
Supported by:
SAX 2

setXMLVersion(version) Sets the entity XML version.
Supported by:
SAX 2

MSXML Extension Interfaces
This section explains the MSXML extension interfaces.

IMXAttributes
The IMXAttributes extension interface provides access to edit, add, and delete
attribute names and values. Table 6-36 describes the methods.

Many of the methods in IMXAttributes are similar to the Attributes2 SAX API exten-
sion class methods.

Table 6-36
IMXAttributes Interface Methods

Method Name Description

addAttribute (URI, LocalName, Adds an attribute to the end of an attribute list.
QName, Type, Value)
Supported by:
MSXML

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 167

168 Part I ✦ Introducing XML

Table 6-36 (continued)

Method Name Description

addAttributeFromIndex Adds the attribute specified by an index value to
(attributes, index) the end of an attribute list. Attribute indexes start
Supported by: with 0.
MSXML

clear Clears the attribute list. Attribute indexes start
Supported by: with 0.
MSXML

removeAttribute (index) Removes an attribute from the attribute list.
Supported by: Attribute indexes start with 0.
MSXML

setAttribute (index, URI, localName, Sets an attribute in the list. Attribute indexes start
QName, type, value) with 0.
Supported by:
MSXML

setAttributes (attributes) Resets the contents of the attribute list.
Supported by:
MSXML

setLocalName (index, localName) Sets the local name of a specified attribute.
Supported by: Attribute indexes start with 0.
MSXML

setQName (index, QName) Sets the qualified name (QName) of a specified
Supported by: attribute. Attribute indexes start with 0.
MSXML

setType (index, type) Sets the type of a specified attribute. Attribute
Supported by: indexes start with 0.
MSXML

setURI (index, URI) Sets the namespace URI of a specified attribute.
Supported by: Attribute indexes start with 0.
MSXML

setValue (index, value) Sets the value of a specified attribute. Attribute
Supported by: indexes start with 0.
MSXML

IMXSchemaDeclHandler
The MSXML IMXSchemaDeclHandler extension interface provides schema informa-
tion about an element being parsed, including attributes. Table 6-37 describes the
methods.

c538292 ch06.qxd 8/18/03 8:44 AM Page 168

169Chapter 6 ✦ Parsing XML with SAX

Table 6-37
IMXSchemaDeclHandler Interface Methods

Method Name Description

schemaElementDecl Declares a schema for validation of an element. Assists
Supported by: in MSXML SAX validation when parsing.
MSXML

IMXWriter
IMXWriter writes parsed XML output to:

✦ An IStream object: A stream object representing a sequence of bytes that
can be forwarded to another object such as a file or a screen.

✦ A string (remember, all XML documents are technically strings).

✦ A DOMDocument object: Can be passed to the MSXML DOM parser for further
processing. For example, a new XML document could be parsed using SAX for
speed, then sent to the DOM parser for DTD validation.

The encoding and version properties of IMXWriter are similar to the
getXMLVersion() and getEncoding() methods of the SAX API Locator2
extension interface. Also, one piece of trivia: Note that this is the only SAX interface
that has more properties than methods.

Table 6-38 describes the properties.

Table 6-38
IMXWriter Interface Properties

Property Name Description

byteOrderMark (boolean) Controls the writing of the Byte Order Mark
Supported by: (BOM) for encoding, according to XML 1.0
MSXML specifications.

disableOutputEscaping (boolean) Sets the flag for the disable-output-escaping
Supported by: attribute of the <xsl:text> and <xsl:value-of>
MSXML elements. If True, entity reference symbols and

other non-XML data are passed without entity
resolution.

Continued

Note

c538292 ch06.qxd 8/18/03 8:44 AM Page 169

170 Part I ✦ Introducing XML

Table 6-38 (continued)

Property Name Description

encoding (string) Sets and gets XML document encoding for the
Supported by: written output.
MSXML

Indent (boolean) Sets indentation in the output.
Supported by:
MSXML

omitXMLDeclaration (boolean) If true, the output will not include the XML
Supported by: declaration.
MSXML

output (variant) Sets the destination and the type of IMXWriter
Supported by: output.
MSXML

standalone (boolean) Sets the XML declaration standalone attribute to
Supported by: “yes” or “no.”
MSXML

version (string) Specifies the XML declaration version.
Supported by:
MSXML

Table 6-39 describes the methods.

Table 6-39
IMXWriter Interface Methods

Method Name Description

flush() Flushes the object’s internal buffer to its destination (not
for DOMDocument output).

c538292 ch06.qxd 8/18/03 8:44 AM Page 170

171Chapter 6 ✦ Parsing XML with SAX

Summary
In this chapter, I provided a deep dive into the details of the Simple API for XML
(SAX):

✦ A history of SAX

✦ SAX versions and evolution

✦ Understanding differences in W3C and MSXML SAX parser implementations

✦ SAX interfaces, extension interfaces, and helper classes

✦ SAX interface event callback methods

✦ SAX helper classes for implementing SAX 1 to SAX 2 compatibility

✦ Properties and methods for W3C and MSXML SAX interfaces

In the next chapter, we move on to something completely different: Extensible
Stylesheet transformations. The chapters will follow the same format as the parsing
chapters. Chapter 7 is an introduction to XSL and XSLT, while Chapter 8 provides
more information on implementing XSLT and includes working examples.

✦ ✦ ✦

c538292 ch06.qxd 8/18/03 8:44 AM Page 171

XSLT Concepts

Chapters 1, 2, and 3 showed you what XML was all about,
how to develop XML documents, and how to make sure

that XML document structures are enforced using data valida-
tion. Chapters 4, 5, and 6 showed you some of the things you
can do with XML documents, namely parsing them for conver-
sion to other types of data.

This chapter will discuss the syntax, structure, and theory of
Extensible Stylesheet Language (XSL) and XSL Transform-
ations (XSLT), with some basic examples for illustration.
Chapter 8 will show you XML and XSLT in real-world examples
and tips for writing XSL stylesheets for XML documents.
Chapter 9 will extend those examples to show you how to use
XSL: Formatting Objects (XSL:FO) with XML documents.

All of the XML document and stylesheet examples
contained in this chapter can be downloaded from the
xmlprogrammersbible.com Website, in the Downloads
section.

Introducing the XSL Transformation
Recommendation

XSL stands for Extensible Stylesheet Language. The XSL
stylesheet XSL Transformation Recommendation describes
the process of applying an XSL stylesheet to an XML docu-
ment using a transformation engine, and also specifies the
XSL language covered in this chapter. XSLT is based on DSSSL
(Document Style Semantics and Specification Language), which
was originally developed to define SGML document output
formatting. XSLT 1.0 became a W3C Recommendation in 1999,
and the full specification is available for review at http://
www.w3.org/TR/xslt.

The XSLT Recommendation should not be confused with
the very confusingly named Extensible Stylesheet Language
(XSL) Version 1.0 Recommendation, which achieved W3C

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introduction to XSLT

How XSLT uses XPath

An introduction to
XSL stylesheet
elements

Useful XPath and
XSLT functions for
stylesheet developers

Extending XSLT with
the help of EXSLT.org

✦ ✦ ✦ ✦

c538292 ch07.qxd 8/18/03 8:44 AM Page 173

174 Part I ✦ Introducing XML

Recommendation status on 15 October 2001. This recommendation has more to do
with XSL: Formatting Objects (XSL:FO) than XSL Transformations (XSLT). You can
view the Extensible Stylesheet Language (XSL) Version 1.0 Recommendation at
http://www.w3.org/TR/xsl/. Chapter 9 covers XSL XSL: Formatting Objects,
including most of the W3C Extensible Stylesheet Language 1.0 Recommendation.

Another W3C Recommendation that affects XSLT is the XML Path Language (XPath).
XPath is a tree-based representation model of an XML document that is used in
XSLT to describe elements, attributes, text data, and relative positions in an XML
document. The full recommendation document can be seen at http://www.
w3.org/TR/xpath.

Version 2.0 of XSLT and XPath are currently in the Recommendation process, and
are expected to become W3C Recommendations sometime in late 2003. The current
documents and their status can be reviewed at http://www.w3.org/TR/
xslt20req and http://www.w3.org/TR/xpath20req.

Stylesheet structure and syntax is defined in the W3C XSLT Recommendation docu-
ment, and Transformation engines are based on these definitions. Transformation
engines support a variety of programming languages, usually based on the language
that they are developed in. At time of writing, there is no comprehensive list of
XSLT engines available, but the Open Directory Project provides a good overview at
http://dmoz.org/Computers/Data_Formats/Markup_Languages/XML/
Style_Sheets/XSL/Implementations/. Despite a multitude of XSLT engines
supporting a multitude of languages, mainstream XSLT engines are split into two
platform camps: Java and Microsoft.

One of the first Java transformation engines was the LotusXSL engine, which IBM
donated to the Apache Software Group, where it became the Xalan Transformation
engine. Since then, Apache has developed Xalan Version 2, which implements a
pluggable interface into Xalan 1 and 2, as well as integrated SAX and DOM parsers.
Both of the Java versions of XALAN implement the W3C Recommendations XSLT
and XPath. You can find more information on Xalan at http://xml.apache.org/
xalan-j/index.html.

Microsoft support for XML 1.0 and a reduced implementation of the W3C XSLT rec-
ommendation began with the MS Internet Explorer 5, which also supported the
Document Object Model (DOM), XML Namespaces, and beta support for XML
Schemas. XML and XSL functionality was extended in later browser versions and
separated from the browser into the MSXML parser, more recently renamed the
Microsoft XML Core Services. MSXML is for use in client applications, via Web
browsers, Microsoft server products, and is a core component of the .NET platform.

c538292 ch07.qxd 8/18/03 8:44 AM Page 174

175Chapter 7 ✦ XSLT Concepts

How an XSL Transformation Works
Developers create code that identifies an XML source, an XSL stylesheet, and a
transformation output method and destination to a transformation engine, which is
usually described as an XSL processor. Instructions from source code to the XSL
processor perform a transformation using the predefined components. The XSL
processor reads the Source XML document and performs a transformation of the
XML attributes, elements, and text values based on instructions in the XSL
stylesheet.

XSLT stylesheets are well-formed XML documents that conform to W3C standards
for syntax. Output format is specified in the XSL document as well, and can be
HTML, text, or XML.

XSL stylesheets
XSL processors use XSL stylesheets to gather instructions for transforming source
XML documents to output XML documents. Stylesheets describe XML documents
as a series of templates, much like our W3C XML Schema example in Chapter 3
described XML document structures as a series of XML data types. Stylesheets can
be used to change the structure of an XML document by moving, adding, or remov-
ing elements, attributes, and text data from a source XML document.

XSL for attributes and elements
XSL directives and functions combined with XPath functions make up the vocabu-
lary for XSL stylesheet transformations. All of the directives and functions will be
explained a little later in this chapter. Before I get into the full list of directives and
functions, let’s step through a very basic transformation using very basic source,
output, and stylesheet formats. Listing 7-1 shows the very simple XML document
that is based on the first XML document examined in Chapter 1. The document
has a root element and a few nested elements, a few attributes, and a few text data
values.

Listing 7-1: A Very Simple XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type=”text/xsl” href=
“attributestoelements.xsl”?>
<rootelement>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

Continued

c538292 ch07.qxd 8/18/03 8:44 AM Page 175

176 Part I ✦ Introducing XML

Listing 7-1 (continued)

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested elements</level2>

</level1>
</secondelement>

</rootelement>

The XML document starts with a standard declaration for an XML document, then
contains a second XML declaration that explicitly links the XML document to the
attributestoelements.xsl document. In this case, the XML document has to be in the
same directory as the XSL document for the transformation to take place:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type=”text/xsl”
href=”attributestoelements.xsl”?>

This is a minimal XML-stylesheet processing instruction, showing the mandatory
type and the href attributes. Here’s a full listing:

✦ type: Must contain a valid MIME type, and is almost always text/xsl, or some-
times text/xml.

✦ href: Must be a valid URI.

✦ title: Used for distinguishing between more than one XML-stylesheet process-
ing instruction in the same XML document.

✦ media: A list of values as defined in the W3C HTML Recommendation Version
4.0 and higher. Used in addition to or instead of the title attribute.

✦ charset: Used to specify a separate encoding for a stylesheet. For example,
the XML document may be UTF-8, and the XSL stylesheet could be ISO-8859-1.
Theoretically, the XSLT processor should know how to handle the charset
differences.

✦ alternate: For use when more than one XML-stylesheet processing instruction
is in the same XML document. If the attribute value is no, the stylesheet
should be used first. All other stylesheets should have an alternate attribute
value of yes.

There are three ways that transformations happen:

✦ Referencing the XSL explicitly: As illustrated in the reference code earlier,
and in Listing 7-1, a reference to a stylesheet can be explicitly declared using
the XML-stylesheet processing instruction. This is useful when automatic

c538292 ch07.qxd 8/18/03 8:44 AM Page 176

177Chapter 7 ✦ XSLT Concepts

client-side XSLT transformations are necessary and the client software, usu-
ally a Web browser, is W3C XSLT compliant. Explicit referencing is most com-
monly used for separation of data in XML documents from display
characteristics in XSL stylesheets. The XML is usually transformed to HTML
on a server or in a browser client before the HTML is displayed to a user.

✦ Referencing the stylesheet programmatically: Programs can declare the XML
source, the XSL stylesheet, and the output destination, then invoke an XSLT
processor to perform the transformation. This is the technique used on
servers to separate XML document data from XSL stylesheet HTML display
characteristics in XML-based Websites, where one stylesheet controls the dis-
play of many XML documents. It is also the way that most XML-to-XML and
XML-to-text transformations occur in XML applications.

✦ Embedding XML into an XSL stylesheet: XML data can also be embedded
into an XSL document. This is not recommended for the same reasons that
embedded DTDs are not recommended. This is only mentioned here in case a
developer comes across this technique in a legacy system. Embedded
stylesheets represent a maintenance nightmare if the transformation or the
source data should ever need to be altered, and defeat the purpose of trans-
formations. In most cases, the transformed document can be substituted for
the XML data and stylesheet combination document.

Next is the remainder of the XML document, which consists of a single-value
rootelement element:

<rootelement>

Next are the nested elements, attributes, and text, as illustrated by the nested
firstelement under the root element in our example:

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>

The firstelement has an attribute called position with a value of 1. The
position attribute adds a little more information about the firstelement, in this
case that the original sorting position of the first element in the XML document is 1.
Nested under the “firstelement” element is the level1 element, which contains
an attribute called children. The element name is used to describe the nesting
level in the XML document, and the attribute is used to describe how many more
levels of nesting are contained under the level1 element, in this case, no more
nested levels (0). The phrase This is level 1 of the nested elements
represents a textual data value for the level1 element that the text is nested in.

The secondelement element is a variation of the firstelement element. Let’s
compare the firstelement and secondelement elements to get a better sense
of the structure of the document:

c538292 ch07.qxd 8/18/03 8:44 AM Page 177

178 Part I ✦ Introducing XML

<secondelement position=”2”>
<level1 children=”1”>

<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

Like the firstelement, the secondelement has an attribute called position,
this time with a value of 2. Nested under the secondelement element is another
level1 element. The level1 element in the secondelement also has an attribute
called children. The level1 element is again used to describe the nesting level in
the XML document, and the attribute is used to describe how many more levels of
nesting are contained under the level1 element, in this case, one more nested
level (1). The phrase This is level 2 of the nested elements inside the
level2 element represents a textual data value for the level2 element.

Last but not least, to finish the XML document, the rootelement tag is closed:

</rootelement>

Listing 7-2 shows a stylesheet that transforms attributes in Listing 7-1 to elements
by matching a pattern and applying a template to items in the source XML docu-
ment that transforms them into a new format in the destination XML document.

Listing 7-2: A Very Simple XSL Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml”/>
<xsl:template match=”@*”>

<xsl:element name=”{name()}”>
<xsl:value-of select=”.”/>

</xsl:element>
</xsl:template>
<xsl:template match=”*”>

<xsl:copy>
<xsl:apply-templates select=”*|@*”/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

c538292 ch07.qxd 8/18/03 8:44 AM Page 178

179Chapter 7 ✦ XSLT Concepts

The XSL stylesheet starts with an optional XML declaration and an attribute that
sets the encoding style for the XSL stylesheet. Encoding style for the transforma-
tion output is handled separately:

<?xml version=”1.0” encoding=”UTF-8”?>

Next is the stylesheet Namespace declaration in the root element:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

The xsl: prefix is mandatory for well-formed stylesheets, but the stylesheet ele-
ment name can be replaced with transform. However, stylesheet is the element
name that is used most, and therefore transform is recommended only if there is
a good reason for not using stylesheet. For XSLT 1.0, the version attribute is
optional if stylesheet is used as the element name, but must be included if
transform is used. When using stylesheet as the element name, the default ver-
sion is 1.0 if the attribute is not included, which does not impact XSLT transforma-
tions until XSLT 2.0 becomes an official W3C Recommendation.

There is one other Namespace declaration that developers may see in legacy appli-
cations and older stylesheets:

<xsl:Stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

This Namespace declaration was used in older stylesheets to maintain compatibil-
ity with Microsoft IE 5.0 browsers, which supported an older version of the W3C
Recommendation. This Namespace should not be used unless compatibility with
5.0 browsers needs to be maintained.

XSLT Elements
The stylesheet element is used to specify the root element of W3C stylesheets.
XSLT vocabularies are mostly made up of elements that describe template instruc-
tions or types of data that XSLT processors use during transformations. Table 7-1
describes the full listing of XSL elements available to stylesheet developers.

c538292 ch07.qxd 8/18/03 8:44 AM Page 179

180 Part I ✦ Introducing XML

Table 7-1
W3C XSLT Elements

Element Description

stylesheet Defines a root element of a stylesheet. Can be used
interchangeably with transform, but most stylesheets use
stylesheet as a de facto standard.

transform Defines a root element of a stylesheet. Should only be used to
replace stylesheet as the root element of a stylesheet, but
only if there is a good reason not to use stylesheet.

output Defines the format of the output document. html, xml, and text
output methods are predefined. If the output method is xml,
output is well-formed xml, html formats the output as HTML, and
text is any character data, including RTF and PDF files. If no
output method is specified, the XSLT processor usually checks to
see if the document is html-based on html output document tree
node prefixes, and defaults to xml if no other determination can
be made. Must be a child of the stylesheet element.

Several optional attributes can also be used to define the output
version, the encoding type, to include or not include an XML
declaration declaration, define the standalone attribute, define a
doctype, support output document indentation, and indicate a
media type.

namespace-alias Replaces a source document Namespace with a new
Namespace in the output node tree. Must be a child of the
stylesheet element.

preserve-space Defines whitespace preservation for elements. Must be a child of
the stylesheet element.

strip-space Defines whitespace removal for elements. Must be a child of the
stylesheet element.

key Adds key values to each node in the result of an XPath
expression. Must be defined as a child of the stylesheet
element. For use with the key function in XPath expressions
(functions are defined in Table 7-4).

import Imports an external stylesheet into the current stylesheet. If there
are conflicts between the current stylesheet and the imported
stylesheet, the current stylesheet takes precedence. Must be
defined as a child of the stylesheet element.

apply-imports Follows the apply-template rules but overrides a stylesheet
template with the template from an imported template.
Normally, the current stylesheet takes precedence over the
imported stylesheet.

c538292 ch07.qxd 8/18/03 8:44 AM Page 180

181Chapter 7 ✦ XSLT Concepts

Element Description

Include Includes an external stylesheet in the current stylesheet. If there
are conflicts between the current stylesheet and the included
stylesheet, it’s up to the XSLT processor to decide precedence.
Must be defined as a child of the stylesheet element.

template Applies rules in a match or select action. Optional attributes can
be used for specifying a node-set by match, template name,
processing priority for this template in case of conflicts in the
stylesheet, and an optional QName for a subset of nodes in a
nodeset.

apply-templates Applies templates to all children of the current node, or a
specified node-set using the optional select attribute.
Parameters can be passed using the with-param element.

call-template Calls a template by name. Parameters can be passed using the
with-param element. Results can be assigned to a variable.

param Defines a parameter and a default value in a stylesheet template.
A global parameter can be defined as a child of the
stylesheet element.

with-param Passes a parameter value to a template when call-template or
apply-templates is used.

variable Defines a variable in a template or a stylesheet. A global variable
can be defined as a child of the stylesheet element.

copy Copies the current node and any related Namespace only.
Output matches the current node (element, attribute, text,
processing instruction, comment, or Namespace).

copy-of Copies the current node, Namespaces, descendant nodes, and
attributes. Scope can be controlled with a select attribute.

If Conditionally applies a template if the test attribute expression
evaluates to true.

choose Makes a choice based on multiple options. Used with when and
otherwise.

when An action for choose elements.

otherwise A default action for choose elements. Must be the last child of a
choose element

for-each Iteratively processes each node in a node-set defined by an XPath
expression.

sort Defines a sort key used by apply-templates to a node-set and by
for-each to specify the order of iterative processing of a node set.

Continued

c538292 ch07.qxd 8/18/03 8:44 AM Page 181

182 Part I ✦ Introducing XML

Table 7-1 (continued)

Element Description

element Adds an element to the output node tree. Names, Namespaces,
and attributes can be added with the names, Namespaces,
and use-attribute-sets attributes.

attribute Adds an attribute to the output node tree. Must be a child of an
element.

attribute-set Adds a list of attributes to the output node tree. Must be a child
of an element.

text Adds text to the output node tree.

value-of Retrieves a string value of a node and write it to the output node
tree.

decimal-format Specifies the format of numeric characters and symbols when
converting to strings. Used with the format-number function
only, not with the number element. (Functions are defined in
Table 7-4.)

number Adds a sequential number to the nodes of a node-set, based on
the value attribute. Can also define the number format for the
current node in the output node tree.

fallback Defines alternatives for instructions that the current XSL processor
does not support.

message Adds a message to the output node tree. This element can also
optionally stop processing on a stylesheet with the terminate
attribute. Mostly used by developers for debugging stylesheets
and XSLT processors.

processing- Adds a processing instruction to the output node tree.
instruction

comment Adds a comment to the output node tree.

All of the elements in Table 7-1 should be prefixed by xsl: and follow the format
xsl:elementname.

Next, our sample stylesheet declares the output method for the transformation,
which, in this case, is XML, using the XSLT output element:

<xsl:output method=”xml”/>

Note

c538292 ch07.qxd 8/18/03 8:44 AM Page 182

183Chapter 7 ✦ XSLT Concepts

The other XSLT 1.0 output options are text or HTML, or a valid prefixed QName that
can be resolved into a URI. For more complete documentation on this element,
please refer to the XSLT element listings in Table 7-1.

Next, the stylesheet goes hunting for all the attributes in the XML document using
the template element and the match attribute:

<xsl:template match=”@*”>

The match attribute is available with the template and key elements, and is used
to match the pattern specified by the match attribute value. When an XSLT proces-
sor is invoked, the source XML document is parsed into a set of nodes in a tree,
starting with the root element in the document. XSLT uses pattern matching to look
through the document node tree and retrieve nodes that match the patterns speci-
fied. The @* attribute value is an XPath expression and instructs the processor to
look at all child nodes of the root node (*) and find all the attributes (@) in the
source XML document.

XSL and XPath
The match attribute is one of several XSLT pattern-matching attributes that are
used to find nodes in an XML source document. The match attribute is used to
match a pattern in an XML document, for example, to detect the root element, or an
attribute in the second element under the root element. Pattern matching is facili-
tated through XPath expressions, which express the parsed nodes of an XML docu-
ment in tree hierarchy references. XPath follows a syntax that closely mirrors file
system paths but in the context of an XML document. XPath tree representations
break XML documents down into a series of connected root, element, text,
attribute, Namespace, processing instruction, and comment nodes.

Imagine that the XSLT processor parses a document and places each of the ele-
ments in the document into a directory on a file system, and defining attributes,
Namespaces, and text data in each directory with special identifiers. The new file
system starts with the root directory (/), and each descendant element can be
found in a subdirectory under the root. XPath doesn’t work exactly like this, but on
the surface it appears to, and the directory metaphor is a good point of reference
for starting to understand how XPath really does work. Table 7-2 shows the basic
location operators for XPath expressions.

c538292 ch07.qxd 8/18/03 8:44 AM Page 183

184 Part I ✦ Introducing XML

Table 7-2
XPath Location Operators

Operator Description

. The current node

.. The parent node

/ The root element

// All descendants

@ Attribute identifier

* All child nodes

The location operators are actually abbreviations of commonly used XPath node
axes. Node axes are expressions that relate to the current node and radiate out
from that node in different directions, to locate parents, ancestors, children,
descendants, and siblings, in relation to the current node. Table 7-3 lists and
describes the XPath node axes.

Table 7-3
XPath Node Axes

Axis Description

self The current node

ancestor Ancestors, excluding the current node

ancestor-or-self The current node and all ancestors

attribute The attributes of the current node

child Children of the current node

descendant Descendants, excluding the current node

descendant-or-self The current node and all descendants

following The next node in the document order, including all descendants
of the next node, and excluding the current node descendants
and ancestors

following-sibling The next sibling node in the document order, including all
descendants of the sibling node, and excluding the current node
descendants and ancestors

namespace All Namespace nodes of the current node

parent The parent of the current node

c538292 ch07.qxd 8/18/03 8:44 AM Page 184

185Chapter 7 ✦ XSLT Concepts

Axis Description

preceding The previous node in the document order, including all
descendants of the previous node, and excluding the current
node descendants and ancestors

preceding-sibling The previous sibling node in the document order, including all
descendants of the sibling node, and excluding the current node
descendants and ancestors

XPath axes, attributes, and namespaces
XPath axis nodes treat attributes and Namespaces differently than they treat ele-
ments, text values, processing instructions, and comments, depending on the axis
and the current node. This is because attributes and Namespaces in the document
are not part of the hierarchy of elements, text values, processing instructions, and
comments, but are located separately in the node tree.

✦ Attributes are only available from element nodes or the root node, not from
other attribute and namespace nodes.

✦ The child, descendant, following, following-sibling, preceding, and preceding-
sibling axes do not contain attributes or Namespaces, and are empty if the
current node is an attribute or a Namespace node.

✦ Attributes of the current node can be accessed using the attribute axis or the
attribute identifier (@), as long as the current node is an element node.

The next few lines in our example stylesheet create a new element based on the
name of the current node in the XML document tree. The current node is set to an
attribute in the XML document, based on the previous line in the XSL stylesheet
(xsl:template match=”@*”). However, XPath has limitations on what can be
accessed if the current node is an attribute or Namespace. To get around this limi-
tation, the XSLT name() function is used to pass the name of the current attribute
node to the new element declaration. The XPath location operator representing the
self node (.) is used to pass the value of the attribute into the value of the new ele-
ment using the value-of select element, and then the new element is finished
with a hard-coded closing tag, and the template is finished with the template clos-
ing tag:

<xsl:element name=”{name()}”>
<xsl:value-of select=”.”/>

</xsl:element>
</xsl:template>

c538292 ch07.qxd 8/18/03 8:44 AM Page 185

186 Part I ✦ Introducing XML

The name() function is one of many functions that can be used in stylesheets.
Unlike other types of XML, XPath supports five types of data, even though the data
itself remains text.

✦ boolean objects: True or false values.

✦ numbers: Any numeric value.

✦ string: Any string.

✦ node-set: A set of nodes selected by an XPath expression or series of
expressions.

✦ external object: A set of nodes returned by an XSLT extension function other
than an XPath or XSLT expression. Support for external objects depends on
the XSLT processor support for extensions.

There are also several functions related to each data type that can be used in XSL
stylesheets. Table 7-4 describes the functions supported for each data type.

Table 7-4
Functions by Data Type

Function Description

Boolean Functions

boolean() Converts an expression to the Boolean data type value and
returns true or false.

true() Binary true.

false() Binary false.

not() Reverse binary true or false: not(true
expression)=false, not(false
expression)=true

Number Functions

number() Converts an expression to a numeric data type value.

round() Rounds a value up or down to the nearest integer:
round(98.49) = 98, round(98.5) = 99

floor() Rounds a value down to the nearest integer:
floor(98.9) = 98.

ceiling() Rounds a value up to the nearest integer:
ceiling(98.4) = 99.

sum() Sums the numeric values in a node-set.

count() Counts the nodes in a node-set.

c538292 ch07.qxd 8/18/03 8:44 AM Page 186

187Chapter 7 ✦ XSLT Concepts

Function Description

String Functions

string() Converts an expression to a string data type value.

format-number() Converts a numeric expression to a string data type value,
using the decimal-format element values as a guide if the
decimal-format element is present in a stylesheet.

concat() Converts two or more expressions to a concatenated string
data type value.

string-length() Counts the characters in a string data type value.

contains() Checks for a substring in a string. Returns Boolean true
or false.

starts-with() Checks for a substring at the beginning of a string. Returns
Boolean true or false.

translate() Replaces an existing substring with a specified substring in
a specified string data type value.

substring() Retrieves a substring in a specified string data type value
starting at a numeric character position and optionally
ending at a specified numeric length after the starting
point.

substring-after() Retrieves a substring of all characters in a specified string
data type that occurs after a numeric character position.

substring-before() Retrieves a substring of all characters in a specified string
data type that occurs before a numeric character position.

normalize-space() Replaces any tab, newline, and carriage return characters in
a string data type value with spaces, then removes any
leading or trailing spaces from the new string.

Node Set Functions

current() The current node in a single-node node-set.

position() The position of the current node in a node-set.

key() A node-set defined by the key element.

name() The name of the selected node

local-name() The name of a node without a prefix, if a prefix exists.

namespace-uri() The full URI of a node prefix, if a prefix exists.

unparsed-entity-uri() The URI of an unparsed entity via a reference to the source
document DTD, based on the entity name.

id() A node-set with nodes that match the id value.

Continued

c538292 ch07.qxd 8/18/03 8:44 AM Page 187

188 Part I ✦ Introducing XML

Table 7-4 (continued)

Function Description

generate-id() A unique string for a selected node in a node-set. The
syntax follows well-formed XML rules.

lang() A Boolean true or false depending on if the xml:lang
attribute for the selected node matches the language
identifier provided in an argument.

last() The position of the last node in a node-set.

document() Builds a node tree from an external XML document when
provided with a valid document URI.

External Object Functions (Note: These functions may also apply to other data types.)

system-property() Returns information about the processing environment.
Useful when building multi-version and multi-platform
stylesheets in conjunction with the fallback element.

element-available() A Boolean true or false based on if a processing instruction
or extension element is supported by the XSLT processor.

function-available() A Boolean true or false based on if a function is supported
by the XSLT processor.

The next segment of the sample stylesheet uses the wildcard to create a template
from all child nodes in the document. The copy element is used to copy the con-
tents of the current XML document and apply the predefined templates related to
the attribute match (@*) and the current template match (*) while copying by using
the select attribute of the apply-templates element. After that, the XSL
stylesheet is closed by the stylesheet closing tag.

<xsl:template match=”*”>
<xsl:copy>

<xsl:apply-templates select=”*|@*”/>
</xsl:copy>

</xsl:template>
</xsl:stylesheet>

Listing 7-3 shows the output from the transformation. Note that there are no longer
any attributes or values in the new XML document, just elements and text data. The
attribute template was applied when the copy took place, replacing attributes
with child elements.

c538292 ch07.qxd 8/18/03 8:44 AM Page 188

189Chapter 7 ✦ XSLT Concepts

Listing 7-3: The transformation output document

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement>
<position>1</position>
<level1>

<children>0</children>
</level1>

</firstelement>
<secondelement>

<position>2</position>
<level1>

<children>1</children>
<level2/>

</level1>
</secondelement>

</rootelement>

XSLT Extensions with EXSLT.org
As mentioned earlier in this chapter, the W3C XSLT stylesheet Recommendation will
probably be updated from Version 1.0 to Version 2.0 in late 2003. In the meantime,
the 1999 1.0 Recommendation has been showing its age. The 1.0 specification does,
however, leave room for extensions to existing stylesheet structure and syntax via
the external-object data type and the extension-element-prefixes attribute in the
stylesheet and transform elements, and the element-available and function-available
functions. Many XSLT processors now support external extensions, and a good
source of extensions can be found at EXSLT.org. Most extensions take the form of
code that acts as add-in modules to existing XSLT processors and support functions
that can be used as if they were part of the W3C Recommendation, once the mod-
ules are installed. EXSLT.org provides several free-distribution modules, plus setup
instructions and function documentation. Developers are also welcomed to con-
tribute to the group with their own extensions.

c538292 ch07.qxd 8/18/03 8:44 AM Page 189

190 Part I ✦ Introducing XML

Summary
In this chapter, I provided an introduction to XSL and provided a theoretical
overview of XSLT, XSL stylesheet elements, structure, and syntax, XPath axes, func-
tions, and data types, and a few XSLT-specific functions.

✦ The history of XSLT

✦ How XSLT works

✦ An introduction to XPath

✦ XSL stylesheet elements

✦ XPath and XSLT tips and tricks for stylesheet developers

✦ Extending XSLT

✦ All about EXSLT.org

In the next chapter, you’ll be putting all the lessons you have learned so far
about XSLT Transformations to use by showing examples for transforming XML
to text and HTML. We’ll also cover changing the format of XML documents using
transformation.

✦ ✦ ✦

c538292 ch07.qxd 8/18/03 8:44 AM Page 190

XSL
Transformations

In the last chapter, you were introduced to the theory of
XSLT, XSL stylesheets, and XPath expressions. In this chap-

ter, you’ll apply that theory to real-world examples that will
show you how to use XSLT elements, functions, and XPath
expressions to transform XML documents to other formats of
XML, text, and HTML. The next chapter will extend the HTML
examples in this chapter even further by using XSL:FO in our
transformations.

All of the XML document and stylesheet examples con-
tained in this chapter can be downloaded from the
xmlprogrammingbible.com Website, in the Downloads
section.

To Begin...
All of the examples in this chapter use the same source XML
file, which is the sample XML document I have used in previ-
ous chapters. This example starts with a list of selected
quotes from William Shakespeare, then goes on to list three
books that contain the quotes that are available for purchase
from Amazon.com, and a Spanish translation of Macbeth,
Romeo and Juliet, Hamlet, and other volumes that are avail-
able from http://www.elcorteingles.es. Amazon.com
provides a service that returns XML documents based on a
URL query, and the Amazon element is based on this format.
The elcorteingles.com book listing format and the quote
listing, as well as other parts of the document are used to
illustrate several features of XSLT stylesheet transformations.
I convert the source document into HTML, delimited text, and
HTML to show you some advanced XSLT tips and tricks.

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Transforming
XML to XML

Transforming
XML to HTML

Transforming
XML to text

XSLT conditions

XSLT variables

XSLT iterations

XSLT sorting

XSLT extensions
and fallbacks

✦ ✦ ✦ ✦

c538292 ch08.qxd 8/18/03 8:44 AM Page 191

192 Part I ✦ Introducing XML

Listing 8-1 shows the XML document, named AmazonMacbethSpanish.xml, which I
will refer back to in the next few examples.

Listing 8-1: The Contents of AmazonMacbethSpanish.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<quotedoc>

<quotelist author=”Shakespeare, William” quotes=”4”>
<quote source=”Macbeth” author=”Shakespeare,
William”>When the hurlyburly’s done, / When the battle’s
lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare,
William”>Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord,
fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who
would have thought the old man to have had so much blood
in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is
this a dagger which I see before me, the handle toward
my hand? Come, let me clutch thee: I have thee not, and
yet I see thee still. Art thou not, fatal vision,
sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from
the heat-oppressed brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-
morrow, and to-morrow, and to-morrow,creeps in this
petty pace from day to day, to the last syllable of
recorded time; and all our yesterdays have lighted fools
the way to dusty death. Out, out, brief candle! Life’s
but a walking shadow; a poor player, that struts and
frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>
<quote/>

</quotelist>
<catalog items=”4”>

<amazon items=”3”>
<product>

<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8432040231.01.TZZZZZZZ.jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>

c538292 ch08.qxd 8/18/03 8:44 AM Page 192

193Chapter 8 ✦ XSL Transformations

<tagged_url>http://www.amazon.com:80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&path=ASIN/
8432040231</tagged_url>

</product>
<product>

<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>
<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&path=ASIN/
1583488340</tagged_url>

</product>
<product>

<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&path=ASIN/
8420617954</tagged_url>

</product>
</amazon>
<elcorteingles items=”1”>

<product xml:lang=”es”>
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El sueño de una noche de verano/
El mercader de Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>

Continued

c538292 ch08.qxd 8/18/03 8:44 AM Page 193

194 Part I ✦ Introducing XML

Listing 8-1 (continued)

<precio>7,59 €</precio>
<fecha_de_publicación>6/04/1999
</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto
/libro_descripcion.asp?CODIISBN=8449503639</librourl>

</product>
</elcorteingles>

</catalog>
</quotedoc>

XML to XML
Transforming XML to other forms of XML is probably the second most common
type of transformation, after XML to HTML transformations. As you learned in
Chapter 7, XSLT processors parse XML documents into document node trees before
transforming them. In an XML to XML transformation, it’s important to identify the
source XML document nodes needed in the source and target of the transformation.

A simple technique using xsl:copy-of
One of the simplest ways to start using XSL is to use the xsl:copy-of element to
create a new XML document using a subset of a larger XML document. Listing 8-2
shows the contents of the XMLtoQuotes.xsl stylesheet. This stylesheet creates a
new XML document containing just the quotes from the sample XML document in
Listing 8-1.

Listing 8-2: The Code for the XMLtoQuotes.xsl Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”xml”/>
<xsl:template match=”/”>

<transformedquotes>
<xsl:apply-templates select=”/quotedoc/quotelist/*”>

</xsl:apply-templates>
</transformedquotes>

</xsl:template>
<xsl:template match=”*”>

<xsl:copy-of select=”.”/>
</xsl:template>

</xsl:stylesheet>

c538292 ch08.qxd 8/18/03 8:44 AM Page 194

195Chapter 8 ✦ XSL Transformations

Walking through the transformation, I declare the XSL stylesheet as an XML docu-
ment, and then declare an xsl: Namespace for the XSL elements in the stylesheet.
Next, I specify the output method for the stylesheet as xml, and also specify the
encoding for the output as ISO-8859-1, the same as the origin document. Note
that the output encoding differs from the stylesheet encoding. This is a good illus-
tration of the fact that the source XML document, the XSL stylesheet, and the trans-
formation output can all be different encoding types if needed. However, it’s worth
pointing out that most XSLT processors support only UTF-8 and UTF-16 encoding. I
also set the indent attribute to “yes”. The indent attribute is one of the optional
and vague attributes that must be recognized but do not necessarily need to be
supported in an XSLT processor. If the indent attribute is set to “yes”, the XSLT
processor is supposed to perform rudimentary formatting on the XSLT output.

Stylesheet Output XML Document Result

<?xml version=”1.0” encoding= <?xml version=”1.0”
”UTF-8”?> encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=
”http://www.w3.org/1999/XSL/
Transform” version=”1.0”>

<xsl:output method=
”xml” encoding=”ISO-8859-1”
indent=”yes”/>

Once this is done, I specify the output as XML and start XPath pattern matching at
the root element (/). Next, a hard-coded element is added to the output to illustrate
that the output was manipulated by the stylesheet. The original quotes element
becomes a transformedquotes element in the XSLT output. At the root element I
instruct the XSL processor to apply the template to all descendants of the
quotelist element in the source document, which is a child of the quotedoc root
element using the select attribute of the apply-templates element
(select=”/quotedoc/quotelist/*”>):

Stylesheet Output XML Document Result

<xsl:template match=”/”> <transformedquotes>

<transformedquotes>

<xsl:apply-templates select=
”/quotedoc/quotelist/*”>

c538292 ch08.qxd 8/18/03 8:44 AM Page 195

196 Part I ✦ Introducing XML

The only template in the stylesheet is called as a result of the apply-templates
element. The template is applied to all XML data in the node-set via the match=”*”
attribute of the template element. In this case, the node-set contains all the descen-
dants of the /quotedoc/quotelist element. The xsl:copy-of element makes a
copy of all the nodes in a node-set without exception, including namespaces,
attributes, and so on. The select attribute could limit the copy-of element to a
specific scope, for example all of the attributes in the node-set, but in this case the
select just passes the whole node-set to the transformation output document by
using the XPath current node operator (.):

Stylesheet Output XML Document Result

<xsl:template match=”*”> <quote source=”Macbeth”
author=”Shakespeare,

<xsl:copy-of select=”.”/> William”>When the hurlyburly’s
done, / When the battle’s lost

</xsl:template> and won.</quote>
<quote source=”Macbeth”
author=”Shakespeare,
William”>Out, damned spot! out,
I say!-- One; two; why, then
‘tis time to do’t ;--Hell is
murky!--Fie, my lord, fie! a
soldier, and afeard? What need
we fear who knows it, when
none can call our power to
account?--Yet who would have
thought the old man to have had
so much blood in him?</quote>
<quote source=”Macbeth”
author=”Shakespeare,
William”>Is this a dagger which
I see before me, the handle
toward my hand? Come, let me
clutch thee: I have thee not,
and yet I see thee still. Art
thou not, fatal vision,
sensible to feeling as to
sight? or art thou but a dagger
of the mind, a false creation,
proceeding from the heat-
oppressed brain?</quote>

c538292 ch08.qxd 8/18/03 8:44 AM Page 196

197Chapter 8 ✦ XSL Transformations

Stylesheet Output XML Document Result

<quote source=”Macbeth”
author=”Shakespeare,
William”>To-morrow, and to-
morrow, and to-morrow,creeps in
this petty pace from day to
day, to the last syllable of
recorded time; and all our
yesterdays have lighted fools
the way to dusty death. Out,
out, brief candle! Life’s but a
walking shadow; a poor player,
that struts and frets his hour
upon the stage, and then is
heard no more: it is a tale
told by an idiot, full of sound
and fury, signifying nothing.
</quote>

Once the template is finished, control is passed back to the template that called the
copy-of template, and the hard-coded transformedquotes closing tag is added to
the XSLT output. Next, the template and the stylesheet closing tags finish the XSLT
process.

Stylesheet Output XML Document Result

</xsl:apply-templates> </transformedquotes>
</transformedquotes>
</xsl:template>......

</xsl:stylesheet>

Listing 8-3 shows the final XSLT transformation output in its entirety.

Listing 8-3: The XSLT Output Document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<transformedquotes>

<quote source=”Macbeth” author=”Shakespeare, William”>When
the hurlyburly’s done, / When the battle’s lost and
won.</quote>

Continued

c538292 ch08.qxd 8/18/03 8:44 AM Page 197

198 Part I ✦ Introducing XML

Listing 8-3 (continued)

<quote source=”Macbeth” author=”Shakespeare, William”>Out,
damned spot! out, I say!-- One; two; why, then ‘tis time to
do’t ;--Hell is murky!--Fie, my lord, fie! a soldier, and
afeard? What need we fear who knows it, when none can call our
power to account?--Yet who would have thought the old man to
have had so much blood in him?</quote>

<quote source=”Macbeth” author=”Shakespeare, William”>Is this
a dagger which I see before me, the handle toward my hand?
Come, let me clutch thee: I have thee not, and yet I see thee
still. Art thou not, fatal vision, sensible to feeling as to
sight? or art thou but a dagger of the mind, a false creation,
proceeding from the heat-oppressed brain?</quote>

<quote source=”Macbeth” author=”Shakespeare, William”>To-
morrow, and to-morrow, and to-morrow,creeps in this petty pace
from day to day, to the last syllable of recorded time; and all
our yesterdays have lighted fools the way to dusty death. Out,
out, brief candle! Life’s but a walking shadow; a poor player,
that struts and frets his hour upon the stage, and then is
heard no more: it is a tale told by an idiot, full of sound and
fury, signifying nothing. </quote>

<quote/>
</transformedquotes>

Advanced techniques using iteration, sorting, and variables
The stylesheet in Listing 8-4 shows you many more advanced techniques to over-
come several common XSLT challenges. This time the stylesheet is building a prod-
uct catalog from the products in the stylesheet. This sounds simple enough, but
there are actually several hurdles to overcome in making this work with the XML
source document that I have to work with. For example, products are nested under
the amazon and the elcorteingles elements, and they need to be grouped
together and sorted as a single list without losing the original structure of the prod-
ucts. Instead of using the xsl:copy-of element to copy a hierarchy, this
stylesheet builds a hierarchy using an iterative for-each element, replaces element
names using variables, and sorts the output by ISBN number.

Listing 8-4: The Code for the XMLtoCatalog.xsl Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”xml” encoding=”ISO-8859-1” indent=”yes”/>

c538292 ch08.qxd 8/18/03 8:44 AM Page 198

199Chapter 8 ✦ XSL Transformations

<xsl:template match=”/”>
<catalogproducts>

<xsl:apply-templates select=”/quotedoc/catalog/*/*”>
<xsl:sort select=”asin | isbn” data-type=”number”

order=”ascending”></xsl:sort>
</xsl:apply-templates>

</catalogproducts>
</xsl:template>
<xsl:template match=”*”>

<catalogproduct>
<xsl:for-each select=”*”>

<xsl:variable name=”isbnname”>
<xsl:choose>

<xsl:when test=”name()=’asin’”>isbn</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:element name=”{$isbnname}”>

<xsl:value-of select=”.”/>
</xsl:element>

</xsl:for-each>
</catalogproduct>

</xsl:template>
</xsl:stylesheet>

As with the previous example, I’ll break up the stylesheet code into pieces and
show the effect that each piece of code has on the output. The initial template dec-
larations are the same as the last example:

Stylesheet Output XML Document Result

<?xml version=”1.0” encoding=
”UTF-8”?>

<xsl:stylesheet xmlns:xsl=
”http://www.w3.org/1999/XSL/
Transform” version=”1.0”>

<xsl:output method=”xml”
encoding=”ISO-8859-1” indent=
”yes”/>

<xsl:template match=”/”> <?xml version=”1.0”
encoding=”ISO-8859-1”?>

c538292 ch08.qxd 8/18/03 8:44 AM Page 199

200 Part I ✦ Introducing XML

After starting at the root element via the xsl:template element and the match
attribute with a value of /, I hard-code a root element for the new XML document
called catalogproducts. Next, the apply-templates element makes a selection of
all products in the source XML document, which are identified as the grandchildren
of the catalog element, using the abbreviated XPath operators (/quotedoc/
catalog/*/*). The xsl:sort element is processed next. The data is not exactly
sorted right away, but node-set templates are sorted and processed simultaneously,
based on the sorting criteria. Note that the sorting takes place on the source data
and the original element names, not on the output and any new element names.

Stylesheet Output XML Document Result

<catalogproducts> <catalogproducts>

<xsl:apply-templates select=
”/quotedoc/catalog/*/*”>

<xsl:sort select=”asin |
isbn” data-type=”number” order=
”ascending”></xsl:sort>

The apply-templates element calls the template element. The template ele-
ment contains a wildcard operator (*) that processes all the elements and text in
the node-set that it receives. The for-each select attribute contains the same
value. In a select attribute, however, the same character (*) instructs an XSLT pro-
cessor to transform the child elements of the current node-set only. By passing all
the product elements and their children, but only processing the children, I am able
to maintain the same structure for the product elements and children as they had
in the original document.

The original product structure is maintained, but there are two changes to the
products themselves for the new XML document. First, I rename the product ele-
ment to catalogproduct by adding a hard-coded element to the selected child
elements. The for-each statement will be called each time a new product and its
child elements are called, which will create a new catalogproduct element for
each original product element:

Stylesheet Output XML Document Result

<xsl:template match=”*”> <catalogproduct>

<catalogproduct>

<xsl:for-each select=”*”>

c538292 ch08.qxd 8/18/03 8:44 AM Page 200

201Chapter 8 ✦ XSL Transformations

Next, the ASIN in the Amazon book records needs to be changed to an ISBN to be
consistent in all products. ASIN is Amazon’s unique ID for all items on their
Website, not just books. However, in this case, our listing only contains books,
so we want to maintain the ISBN identifier on all book records. To change the ASIN
element names to ISBN, I create a new variable called “isbnname” with the
xsl:variable element, then conditionally assign a value to the variable using the
xsl:choose element combined with the xsl:when and the xsl:otherwise ele-
ments. Multiple xsl:when elements and a single xsl:otherwise element can
only be children of the xsl:choose element, and xsl:otherwise must be the
last child element. The xsl:if element can be used for the same effect in a simple
Boolean decision, but if there’s a possibility of adding additional decision condi-
tions in the future, xsl:choose is probably better to use from the start. This code
checks the name of the node using the name() function, and if the name is asin,
the xsl:when element renames it to isbn. The xsl:otherwise element catches
all other conditions and saves the name of the source element to the isbnname
variable. This variable is used to assign a name to an element for each element in
the source XML document. If the source element was named asin, it’s renamed to
isbn, otherwise the original element name is passed to the new element name:

Stylesheet Output XML Document Result

<xsl:variable name=”isbnname”> <isbn>1583488340</isbn>

<xsl:choose>

<xsl:when test=”name()=
’asin’”>isbn</xsl:when>

<xsl:otherwise>

<xsl:value-of select=”name()”/>

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<xsl:element name=”{$isbnname}”>

Next, the value of the current element, if any, is passed to the element as a value,
and then the element tag is closed. The process is repeated for each element that is
a child of a product element in the source document. Each time a new product ele-
ment child node-set is called, the for-each exits, and the catalogproduct ele-
ment closing tag is added to the output document:

c538292 ch08.qxd 8/18/03 8:44 AM Page 201

202 Part I ✦ Introducing XML

Stylesheet Output XML Document Result

<xsl:value-of select=”.”/> <catalogproduct>

</xsl:element> <ranking>2</ranking>

</xsl:for-each> <title>MacBeth</title>

</catalogproduct> <isbn>1583488340</isbn>

</xsl:template> <author>Shakespeare,
William</author>

</catalogproduct>

Once all of the product elements are processed, control is passed back to the origi-
nal template that made the original apply-templates call. The hard-coded
catalogproducts root element closing tag is added to the XML document, and
processing is finished with the final xsl:template element closing tag:

Stylesheet Output XML Document Result

</xsl:apply-templates> </catalogproducts>

</catalogproducts>

</xsl:template>

Listing 8-5 shows the complete output for this stylesheet.

Listing 8-5: The XSLT Output Document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<catalogproducts>

<catalogproduct>
<ranking>2</ranking>
<title>MacBeth</title>
<isbn>1583488340</isbn>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>

c538292 ch08.qxd 8/18/03 8:44 AM Page 202

203Chapter 8 ✦ XSL Transformations

<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&path=ASIN/
1583488340</tagged_url>

</catalogproduct>
<catalogproduct>

<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<isbn>8420617954</isbn>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441&
camp=1793&link_code=xml&path=ASIN/8420617954
</tagged_url>

</catalogproduct>
<catalogproduct>

<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<isbn>8432040231</isbn>
<author>Shakespeare, William</author>

<small_image>http://images.amazon.com/images/P
/8432040231.01.TZZZZZZZ.jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability />
<tagged_url>http://www.amazon.com:80/exec/obidos
/redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&
path=ASIN/8432040231</tagged_url>

</catalogproduct>
<catalogproduct>

<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El sueño de una noche de verano/ El
mercader de Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>

Continued

c538292 ch08.qxd 8/18/03 8:44 AM Page 203

204 Part I ✦ Introducing XML

Listing 8-5 (continued)

<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 ¤</precio>
<fecha_de_publicación>6/04/1999</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

</catalogproduct>
</catalogproducts>

More advanced techniques: namespaces,
XSLT extensions, and fallbacks
The stylesheet in Listing 8-6 shows you a few more advanced techniques. This time
the stylesheet creates two namespaces and assigns them to catalog data depending
on the language of the source data, represented by the xml:lang predefined
attribute.

This stylesheet also shows an example of implementing XSLT extensions. The XSLT
document element is part of the XSLT 2.0 working draft. Currently, the result of XSL
transformations has to be passed to an external processor or object to be written
to a file. The document element adds the ability to produce transformation output
directly to a file without the aid of external objects or processors. The document
element will probably make it into the final XSLT 2.0 Recommendation, but some
XSLT engine developers have already added the functionality into their products as
an extension. EXSLT.org has implemented an extension interface that can be used to
implement the document element into stylesheets. For now, XSLT processors that
support EXSLT.org extensions can use the document element to produce an XML
document, and if not, the fallback element in the stylesheet produces normal
XSLT 1.0 transformation output.

Listing 8-6: The XMLtoCatalogNamespaces.xsl Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
xmlns:azlist=”http://www.benztech.com/xsd/amazonlist”
xmlns:ellist=”http://www.benztech.com/xsd/elcorteingleslist”
xmlns:exsl=”http://exslt.org/common” extension-element-
prefixes=”exsl”>

<xsl:import href=”exsl/exsl.xsl”/>

c538292 ch08.qxd 8/18/03 8:44 AM Page 204

205Chapter 8 ✦ XSL Transformations

<exsl:document href=”exsloutput.xml” method=”xml”
indent=”yes”>
<xsl:fallback>

<xsl:output method=”xml” indent=”yes”/>
</xsl:fallback>

</exsl:document>
<xsl:template match=”/”>

<catalogproducts>
<xsl:apply-templates select=”/quotedoc/catalog/*/*[1]”>

<xsl:sort select=”asin | isbn” data-type=”number”
order=”ascending”/>

</xsl:apply-templates>
</catalogproducts>

</xsl:template>
<xsl:template match=”*”>

<xsl:variable name=”namespaceelementname”>
<xsl:choose>

<xsl:when test=”@xml:lang=’es’”>ellist</xsl:when>
<xsl:otherwise>azlist</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:element
name=”{$namespaceelementname}:catalogproduct”>
<xsl:for-each select=”*”>

<xsl:variable name=”isbnname”>
<xsl:choose>

<xsl:when test=”name()=’asin’”>isbn</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:element
name=”{$namespaceelementname}:{$isbnname}”>
<xsl:value-of select=”.”/>

</xsl:element>
</xsl:for-each>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

In the interest of brevity, I’ll omit most of what I have covered in previous examples.
After the XML declaration, there are few additional namespaces in the xsl:
stylesheet element, and an extension-element-prefixes element. The first
two namespaces are used to differentiate between the data in the XML source docu-
ment that comes from Amazon (azlist) and elcorteingles (ellist).

c538292 ch08.qxd 8/18/03 8:44 AM Page 205

206 Part I ✦ Introducing XML

The exsl namespace is used to define extension elements in the stylesheet. The
extension-element-prefixes attribute defines the exsl namespace prefix as
an indicator of extension elements in the stylesheet. If more than one extension
Namespace prefix is being used, the extension-element-prefixes attribute
should contain a whitespace-delimited list of prefixes. The processor does not eval-
uate exsl elements and expressions as W3C stylesheet elements, but follows the
rules specified in the EXSLT.org specifications and/or via imported stylesheets,
which in this case are imported from the exsl/exsl.xsl stylesheet using the
xsl:import element:

<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”
xmlns:azlist=”http://www.benztech.com/xsd/amazonlist”
xmlns:ellist=”http://www.benztech.com/xsd/elcorteingleslist”
xmlns:exsl=”http://exslt.org/common” extension-element-
prefixes=”exsl”>
<xsl:import href=”exsl/exsl.xsl”/>

The imported stylesheet can be downloaded from http://EXSLT.org, in the
downloads section, and implementation instructions for XSLT processor developers
and stylesheet developers are located at the site as well.

Next, the exsl:document element instructs the XSLT processor to create a new
output file in the same directory as the stylesheet, with the name exsloutput.xml.
Note that the esxl:document element has the same attributes as the xsl:output
element, which makes creating the subsequent fallback element very easy. The
xsl:fallback element is used to provide an alternative for the extension element,
in case the processor does not support the extended element, or there is something
wrong with the extension implementation. The xsl:fallback element is part of
the W3C XSLT 1.0 Recommendation and must be the child of an extension element.

In this case, the xsl:fallback element specifies that if the XSLT processor is
unable to process the esxl:document element, the xsl:output element should
be substituted, reverting the stylesheet to a basic XML-to-XML transformation:

<exsl:document href=”exsloutput.xml” method=”xml”
indent=”yes”>
<xsl:fallback>

<xsl:output method=”xml” indent=”yes”/>
</xsl:fallback>

</exsl:document>

Next, I create a new XML document for transformation output with a hard-coded
root element called catalogproducts.

The xsl:apply-templates select attribute elects all of the grandchildren (/*/*)
of the quotedoc/catalog element that appear in source document order. The [1]
conditional XPath expression instructs the processor to just retrieve the first child
that is encountered for each grandchild. Most developers would probably expect

c538292 ch08.qxd 8/18/03 8:44 AM Page 206

207Chapter 8 ✦ XSL Transformations

that this would retrieve only one set of data, but because there are two grand-
children under the quotedoc/catalog element (amazon/product and elcorteingles/
product), the first grandchild each is selected:

<xsl:template match=”/”>
<catalogproducts>

<xsl:apply-templates select=”/quotedoc/catalog/*/*[1]”>
<xsl:sort select=”asin | isbn” data-type=”number”
order=”ascending”/>

</xsl:apply-templates>
</catalogproducts>

</xsl:template>

Now that the stylesheet has selected the two grandchildren to process, the name-
spaces for each grandchild must be assigned. One of the main things that sets the
elcorteingles elements apart from the amazon elements in the source document is
the xml:lang attribute, which is set to “es” for the elcorteingles elements. Using
this difference, an xsl:choose element can assign the correct Namespace to a
local variable named namespaceelementname, which can be reused during the
transformation. If the xml:lang attribute exists and is set to “es”, the ellist
namespace prefix is assigned; otherwise, the variable defaults to the azlist
Namespace prefix:

<xsl:template match=”*”>
<xsl:variable name=”namespaceelementname”>

<xsl:choose>
<xsl:when test=”@xml:lang=’es’”>ellist</xsl:when>
<xsl:otherwise>azlist</xsl:otherwise>

</xsl:choose>
</xsl:variable>

Next, I select all the child elements of the product element and change the product
element name by hard-coding the catalogproduct element name and attaching
the Namespace prefix in the process. Then I select the children of each original
product element with the xsl:for-each element, and change any asin elements
in Amazon records to isbn elements using the isbnname variable, as I did in the
last example. After defining all the variables needed to create a new element, the
stylesheet creates the new element that combines the current Namespace prefix
with the current variable value to create the new element value with a namespace
prefix attached, and adds the text value associated with the element.

The isbnname variable is reassigned each time a new element is encountered in
the source XML document, courtesy of the select attribute in the xsl:for-each
element. The namespaceelementname is reassigned each time the template finds
a match from the original select attribute at the top of the stylesheet.

<xsl:element
name=”{$namespaceelementname}:catalogproduct”>
<xsl:for-each select=”*”>

c538292 ch08.qxd 8/18/03 8:44 AM Page 207

208 Part I ✦ Introducing XML

<xsl:variable name=”isbnname”>
<xsl:choose>

<xsl:when test=”name()=’asin’”>isbn</xsl:when>
<xsl:otherwise>

<xsl:value-of select=”name()”/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<xsl:element
name=”{$namespaceelementname}:{$isbnname}”>
<xsl:value-of select=”.”/>

</xsl:element>
</xsl:for-each>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Listing 8-7 shows the transformation output, with namespaces attached to each
individual book record, depending on the source.

Listing 8-7: Output from the XMLtoCatalogNamespaces.xsl
Transformation

<?xml version=”1.0” encoding=”UTF-8”?>
<catalogproducts
xmlns:azlist=”http://www.benztech.com/xsd/amazonlist”
xmlns:ellist=”http://www.benztech.com/xsd/elcorteingleslist”>

<azlist:catalogproduct>
<azlist:ranking>1</azlist:ranking>
<azlist:title>Hamlet/MacBeth</azlist:title>
<azlist:isbn>8432040231</azlist:isbn>
<azlist:author>Shakespeare, William</azlist:author>
<azlist:image>http://images.amazon.com/images/P/
8432040231.01.MZZZZZZZ.jpg</azlist:image>
<azlist:small_image>http://images.amazon.com/images/P/
8432040231.01.TZZZZZZZ.jpg</azlist:small_image>

<azlist:list_price>$7.95</azlist:list_price>
<azlist:release_date>19910600</azlist:release_date>
<azlist:binding>Paperback</azlist:binding>
<azlist:availability />
<azlist:tagged_url>http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231

</azlist:tagged_url>
</azlist:catalogproduct>
<ellist:catalogproduct>

<ellist:titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La
fierecilla domado/El sueño de una noche de verano/ El
mercader de Venecia</ellist:titulo>
<ellist:isbn>8484036324</ellist:isbn>

c538292 ch08.qxd 8/18/03 8:44 AM Page 208

209Chapter 8 ✦ XSL Transformations

<ellist:autor>Shakespeare, William</ellist:autor>
<ellist:imagen>http://libros.elcorteingles.es/
producto/verimagen_blob.asp?ISBN=8449503639
</ellist:imagen>
<ellist:precio>7,59 ¤</ellist:precio>
<ellist:fecha_de_publicación>6/04/1999
</ellist:fecha_de_publicación>
<ellist:Encuadernación>Piel</ellist:Encuadernación>
<ellist:librourl>http://libros.elcorteingles.es/producto
/libro_descripcion.asp?CODIISBN=8449503639
</ellist:librourl>

</ellist:catalogproduct>
</catalogproducts>

XML to text
XML to text transformations are paradoxically very simple when implemented for
basic transformations and very complex for detailed requirements. This is usually
due to how an XSLT processor handles whitespace (tabs, new lines, carriage
returns, and spaces) in a document. W3C specifications are very explicit for some
aspects of whitespace, and vague for many others, so it’s usually up to the devel-
oper to be as explicit as possible about how whitespace should be preserved in
transformation output. There are two ways to manipulate whitespace in transfor-
mation output.

You can use the xsl:preserve-space element to preserve the whitespace from
the source XML document, and the xsl:strip-space to remove unwanted
whitespace. For a single element, the normalize-space() function can be used to
strip leading and trailing spaces, and replace any whitespace characters with a sin-
gle space character.

For our fairly simple example, however, the stylesheet is leaving the whitespace as-
is and showing one technique for maintaining other whitespace in the output XML.
Listing 8-8 shows the entire XMLtoCatalogText.xsl stylesheet.

Listing 8-8: The XMLtoCatalogText.xsl Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”text”/>
<xsl:template match=”/”>

XML Bible Catalog Example:
<xsl:apply-templates select=”/quotedoc/catalog/*/*”>

Continued

c538292 ch08.qxd 8/18/03 8:44 AM Page 209

210 Part I ✦ Introducing XML

Listing 8-8 (continued)

<xsl:sort select=”asin | isbn” data-type=”number”
order=”ascending”/>

</xsl:apply-templates>
-End of File-

</xsl:template>
<xsl:template match=”*”>

<xsl:for-each select=”*[text()]”>”<xsl:value-of
select=”.”/>”<xsl:if test=”position()!=last()”>,
</xsl:if>
</xsl:for-each>
<xsl:text>
</xsl:text>

</xsl:template>
</xsl:stylesheet>

For this example, I start by changing the output method to text and hard-code an
example explanation as a heading in the text output:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”text”/>
<xsl:template match=”/”>

XML Bible Catalog Example:

As in previous examples, the stylesheet sorts the data by the asin/isbn elements
in the original source XML document as the results are processed, even though
these elements will not be in the destination output. When the templates are fin-
ished building the output text, I add an -End of File- indicator to the text:

<xsl:apply-templates select=”/quotedoc/catalog/*/*”>
<xsl:sort select=”asin | isbn” data-type=”number”
order=”ascending”/>

</xsl:apply-templates>
-End of File-

</xsl:template>

The next template of the stylesheet is usually where things get tricky. The
xsl:preserve-space and the xsl:strip-space elements and the normalize-
space() are used to handle whitespace from the source document elements, not
add space in the output. Whitespace that is specified in an XSLT stylesheet has to
be explicitly declared in most places, because XSLT processor engines may handle
arbitrary hard-coding of spaces, carriage returns, tabs, and new lines differently. In
the case of the following example, the xsl:for-each statement is explicitly

c538292 ch08.qxd 8/18/03 8:44 AM Page 210

211Chapter 8 ✦ XSL Transformations

located in one long line rather than in a nested structure to be sure that an XSLT
processor that uses this stylesheet will not misinterpret a new line that formats an
element as a new line that needs to be added to the output. Conversely, each repre-
sentation of a book record in the source XML document should indicate an end-of
record with a new line, so an xml:text element has been added to the stylesheet
under the for-each element, with a hard-coded new line value as an entity refer-
ence (
).

Node selection is limited to text nodes only by using the conditional XPath expres-
sion as part of the select attribute (*[text()]). The rest of the output follows
basic delimited text rules, with text values being wrapped with double quotes and
separated by commas. The xsl:if element checks to see if the element is the last
in the list and does not add the comma unless there are more elements for that
book record:

<xsl:template match=”*”>
<xsl:for-each select=”*[text()]”>”<xsl:value-of
select=”.”/>”<xsl:if test=”position()!=last()”>,
</xsl:if>
</xsl:for-each>
<xsl:text>
</xsl:text>

</xsl:template>
</xsl:stylesheet>

Listing 8-9 shows the text file that results from this transformation. Each element
value is delimited with double quotes, and each set of elements is separated by a
new line character.

Listing 8-9: Results of the XMLtoCatalogText.xsl Stylesheet
Transformation

XML Bible Catalog Example:
“2”, “MacBeth”, “1583488340”, “Shakespeare, William”,
“http://images.amazon.com/images/P/1583488340.01.MZZZZZZZ.jpg”,
“http://images.amazon.com/images/P/1583488340.01.TZZZZZZZ.jpg”,
“$8.95”, “19991200”, “Paperback”,
“http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/1583488
340”
“3”, “William Shakespeare: MacBeth”, “8420617954”,
“Shakespeare, William”,
“http://images.amazon.com/images/P/8420617954.01.MZZZZZZZ.jpg”,
“http://images.amazon.com/images/P/8420617954.01.TZZZZZZZ.jpg”,
“$4.75”, “19810600”, “Paperback”,
“http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8420617
954”

Continued

c538292 ch08.qxd 8/18/03 8:44 AM Page 211

212 Part I ✦ Introducing XML

Listing 8-9 (continued)

“1”, “Hamlet/MacBeth”, “8432040231”, “Shakespeare, William”,
“http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”,
“http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”,
“$7.95”, “19910600”, “Paperback”,
“http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432040
231”
“Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla domado/El
sueÃ±o de una noche de verano/ El mercader de Venecia”,
“8484036324”, “Shakespeare, William”,
“http://libros.elcorteingles.es/producto/verimagen_blob.asp?ISB
N=8449503639”, “7,59 â‚¬”, “6/04/1999”, “Piel”,
“http://libros.elcorteingles.es/producto/libro_descripcion.asp?
CODIISBN=8449503639”
-End of File-

XML to HTML
Just a few years ago, most XML, XSL, and even some HTML development was done
in simple text editors without the aid of customized tools for the job. Because of
the complexity of modern HTML page formats, XML data issues, and XSL stylesheet
development issues, XML to HTML conversions should not be attempted without
the aid of one of the many easy-to-use tools out there for formatting and debugging
XML, XSL, and HTML documents. The tool used to develop and debug the examples
in this chapter is ALtova’s XMLSPy 5 Enterprise Edition. A trial version can be
downloaded from http://www.xmlspy.com.

For this example, Altova’s XMLSpy stylesheet designer was used to develop the
basic format of the stylesheet, and a few custom touches were added by hand.
Altova’s Stylesheet designer is a separate product from the XMLSpy UI and is a
good environment for generating stylesheets by example. For the example in this
chapter, a DTD was added to the stylesheet designer, and HTML tables were created
from XML elements and attributes. The Altova stylesheet designer was very impres-
sive, and most of the formatting I needed was facilitated by dragging and dropping
element, attribute, and text nodes from the DTD to an example HTML page. Once
the overall format of the HTML page was completed, the Generate XSLT Stylesheet
option was used to generate a stylesheet called XMLtoCatalogHTML.xsl, which is
based on the original DTD and the target HTML page. There were a few small things
that could not be cleaned up in the stylesheet designer UI, which does not permit
editing of the stylesheet directly. The stylesheet was saved and reopened in the
XMLSpy’s XML editor, and a few items were added, which are highlighted here.

c538292 ch08.qxd 8/18/03 8:44 AM Page 212

213Chapter 8 ✦ XSL Transformations

The full XMLtoCatalogHTML.xsl stylesheet (the generated version is very repetitive
and much too long to print in the book) can be downloaded from the XML
Programmer’s Bible Website. Figure 8-1 shows the HTML output that was generated
by the transformation.

Figure 8-1: HTML output that was generated by the transformation using
XMLtoCatalogHTML.xsl

Most of the code in the sample file will be very familiar to anyone who has worked
with or viewed HTML. However, what happened to get there is probably somewhat
new. For example, the following code segment contains the elements and attributes
that define the stylesheet and start template processing at the root element, just as
in the previous examples. Note that the generated stylesheet does not specify the
output method as HTML, via the xsl:output element, but lets the processor fig-
ure it out via the HTML tag a few elements down in the stylesheet. This is accept-
able but not recommended for most stylesheets; it’s always best to define the
output method explicitly if possible. Next, there are a few hard-coded HTML tags
defining the HTML head and body. The TEXT and BGCOLOR attributes for the page
were hand-coded after stylesheet generation. The text is set to white, and the page
background is set to black.

c538292 ch08.qxd 8/18/03 8:44 AM Page 213

214 Part I ✦ Introducing XML

The rest of this segment of the stylesheet takes the XSLT processor on a trip though
the node tree to get to the quotedoc/quotelist/quote element, before defining
a table heading (thead) for the table that will display the quotes from the XML doc-
ument. Elements are added using a combination of the xsl:text element, the
disable-output-escaping attribute, which suppresses an XSLT processor’s nor-
mal conversion of illegal XML characters to their entity reference equivalent. In this
case, the less than (<) and greater than (>) symbols need to be wrapped around the
body tag to make it a well-formed HTML element. Once this is done, the table can
be formatted.

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>
<html>

<head>
<title>XML Programmer's Bible XML to HTML
Example</title>

</head>
<body title=”XML Programmer's Bible XML to HTML
Example” TEXT=”000000” BGCOLOR=”#000000”>
<xsl:for-each select=”quotedoc”>

<xsl:for-each select=”quotelist”>
<xsl:for-each select=”quote”>

<xsl:if test=”position()=1”>
<xsl:text disable-output-
escaping=”yes”><table
border=”0”></xsl:text>

</xsl:if>
<xsl:if test=”position()=1”>

<thead>
<tr>
<td style=”background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5”>

The next challenge was to get the URLs for images and links that are stored in the
XML document formatted to be displayed and active on the HTML page. This was
done by wrapping some hard-coded element and tribute values around existing
templates. Here’s what the generated stylesheet values for the images looked like
before they were altered:

<td style=”background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5”>

<xsl:for-each select=”small_image”>
<span style=”background-color:white;
font-family:Arial; font-size:small”>

c538292 ch08.qxd 8/18/03 8:44 AM Page 214

215Chapter 8 ✦ XSL Transformations

<xsl:apply-templates/>

</xsl:for-each>
</td>

In this case, the original elements were simply passed to the HTML page as table
data using the xsl:apply-templates element. However, the small_image ele-
ment contains a URL that could be used to display an image, so adding an HTML
img element with an src attribute that links to the image for display on the page
would probably be a better use for the data. To convert the URL to an image refer-
ence, the image element is wrapped around the value using the xsl:element ele-
ment, and the src attribute becomes the new location for the source XML
document URL:

<td style=”background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5”>
<xsl:for-each select=”small_image”>
<span style=”background-color:white;
font-family:Arial; font-size:small”>
<xsl:element name=”img”>
<xsl:attribute name=”src”>
<xsl:apply-templates/>

</xsl:attribute>
</xsl:element>

</xsl:for-each>

</td>

The same technique was applied to link URLs as well. Instead of just passing URLs
to the table as content, the URLs in the source XML document are converted to
active links in the HTML page by adding an HTML element and a related href
attribute, which is passed the value of the source document URL:

<td style=”background-color:white;
padding-bottom:5; padding-left:5;
padding-right:5; padding-top:5”>
<xsl:for-each select=”tagged_url”>
<span style=”background-color:white;
font-family:Arial; font-size:small”>
<xsl:element name=”a”> <xsl:attribute
name=”href”> <xsl:apply-templates/>
</xsl:attribute>Amazon.com
</xsl:element>

</xsl:for-each>

</td>

c538292 ch08.qxd 8/18/03 8:44 AM Page 215

216 Part I ✦ Introducing XML

Summary
In this chapter, you built on your introduction to XSLT in Chapter 7 and illustrated
several techniques for transforming various formats of XML to other formats of
XML, text, and HTML. I also reviewed ways to generate and format stylesheets that
convert XML to HTML using XMLSpy.

✦ XML to XML transformations

✦ XML to HTML transformations

✦ XML to text transformations

✦ Advanced XSLT topics: conditions, variables, iteration, and sorting

✦ XSLT extensions and fallbacks

In the next chapter, I’ll expand on this knowledge to transform XML documents
using XSL: Formatting Objects (XSL:FO) to convert XML documents to PDF files,
PostScript, and other nonstandard document formats.

✦ ✦ ✦

c538292 ch08.qxd 8/18/03 8:44 AM Page 216

XSL Formatting
Objects

XSL Formatting Objects (XSL:FO) provides the capability
to dynamically format XML documents as “camera-

ready” artwork or printable pages. For example, let’s say that
a publishing house maintains content as standardized XML
documents. The source XML document can be transformed
into HTML and displayed on a Website, using techniques we
showed you in Chapters 7 and 8. With XSL:FO, the same
source XML document can also be the basis for a print ver-
sion of the article.

In Chapter 7, we applied the XSL theory covered in Chapter 6
to transform a sample XML file to other formats of XML, text,
and HTML. To do this, we used XSLT elements, functions, and
XPath expressions to perform the transformations. This chap-
ter will extend our HTML example from Chapter 8 further by
using XSL:FO in an XSL transformation to gain more control
over the output format. We’re using the same source XML
document, named AmazonMacbethSpanish.xml, for the exam-
ple in this chapter. This time, however, we’re transforming an
XML document to a Portable Document format (PDF) file.

The XML document and XSL:FO Stylesheet examples con-
tained in this chapter can be downloaded from the
http://www.xmlprogrammingbible.com Website, in the
Downloads section.

Understanding XSL Formatting
Objects

The W3C stylesheet working group has actually produced two
parts to the Extensible Stylesheet Language Recommendation.
Chapter 7 introduced the XSL Stylesheet Transformation
(XSLT) 1.0 Recommendation, which describes the process of

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Transforming
XML documents to
PDF format

About the W3C
Extensible Stylesheet
Language (XSL)
Recommendation

XSL:FO syntax

FOP processors

Handling images in
XSL:FO

✦ ✦ ✦ ✦

c538292 ch09.qxd 8/18/03 8:44 AM Page 217

218 Part I ✦ Introducing XML

applying an XSL stylesheet to an XML document using a transformation engine.
XSLT is based on DSSSL (Document Style Semantics and Specification Language),
which was originally developed to define SGML document output formatting.
XSLT 1.0 became a W3C Recommendation in 1999, and the full specification is
available for review at http://www.w3.org/TR/xslt. The second part of the
XSL 1.0 Recommendation is called Extensible Stylesheet Language (XSL) 1.0. XSL 1.0
achieved W3C Recommendation status on 15 October 2001. The 2001 XSL 1.0
Recommendation has more to do with XSL: Formatting Objects (XSL:FO) than XSL
transformations (XSLT). The Extensible Stylesheet Language (XSL) Version 1.0
Recommendation can be viewed at http://www.w3.org/TR/xsl/.

XSL Formatting Objects (XSL:FO) is the biggest part of the 2001 XSL
Recommendation, so most developers refer to the XSL 1.0 Recommendation as
XSL:FO, which describes the page formatting part of the Recommendation docu-
ment. XSL:FO is a page description language that converts an XML document into
an electronic presentation format. To create a useful presentation, you need to be
able to assign page events to the part of an application that will display content on
a screen. That’s relatively hard to do with a single, unframed XML or HTML docu-
ment that flows from top to bottom without page start, end, and column markers.

XSL:FO addresses page structure issues by breaking down a page into headers,
footers, left and right margins, columns, and lines. XSL:FO Regions contain text
blocks, and text blocks can contain just about any type of content that can be
displayed as text.

When the XSL:FO Recommendation was released in 2001, there were high hopes
among XML developers that browsers would implement XSL:FO adapters. Such a
feature would provide developers with much more control over page layouts than
any competing formatting standards today. HTML, XHTML, and CSS, for example,
are great for rapidly developing content and separating presentation from data, but
none of them can provide developers with the same layout control of a Windows
client application, or other type of application that supports rich text formats.

Alas, currently there are no XSL:FO adapters or plug-ins on the market for main-
stream browsers, though some niche browsers do support XSL:FO page formatting.
There has been, however, a great deal of interest in one aspect of XSL:FO: trans-
forming XML data to PDF files. Most of the activity in XSL:FO revolves around pro-
ducing PDFs from XML data, which is the example covered later in this chapter.

Adobe Portable Document Format (PDF) is a universal file format that preserves all
the fonts, formatting, graphics, and color of any source document, regardless of the
application and platform used to create it. Adobe PDF files are compact and can be
shared, viewed, navigated, and printed — but by default, not edited — by anyone
with free Adobe Acrobat Reader software or any other compatible reader (MS Word
2003 supports reading and editing of PDFs). When a solution requires a document
that can be easily and efficiently transported and printed without loss of the origi-
nal document format, PDF is the most common format chosen.

c538292 ch09.qxd 8/18/03 8:44 AM Page 218

219Chapter 9 ✦ XSL Formatting Objects

Understanding FOP Servers
XSL Transformations need an XSLT processor to make transformations happen. In
the same way, XSL:FO processing requires a FOP (Formatting Objects Processor)
engine to make XSL:FO processing happen. XML that is formatted with XSL:FO tags
is fed into a FOP, which produces a print-ready document. XSL:FO theoretically sup-
ports the display output in a number of common output standards: Portable
Document Format (PDF), Hewlett-Packard PCL Printer Format, PostScript, Rich Text
Format (RTF), Standard Vector Graphics (SVG), Java AWT events (content is
described and displayed as graphics), the Maker Interchange Format (MIF) for
Adobe FrameMaker, and text.

The original and most popular FOP server is the Apache FOP server, which is dis-
tributed as open source software, and can be found at http://xml.apache.
org/fop. The engine can be downloaded and run from a command prompt, or inte-
grated with one of several XSL:FO editors on the market, a partial list of which can
also be found at http://www.xmlsoftware.com/xslfo.html. A list of other
XSL:FO tools, including several FOP servers for several platforms and languages,
can be viewed at http://www.xmlsoftware.com/xslfo.html.

Converting XML to PDF
As we’ve indicated earlier in this chapter, currently the most popular task for
XSL:FO is to transform and display XML data in PDF format. On top of that, the
most popular FOP engine is the Apache FOP processor. With this in mind, we’ve put
together an example that converts an XML document to a PDF using the Apache
FOP server.

Although the Apache FOP server can be run from the command line, there are sev-
eral editing tools that integrate the FOP server for syntax checking, previewing, and
debugging. As we did in previous chapters, we’re using XMLSpy to develop a
stylesheet and preview it using Acrobat (a free trial version of XMLSpy can be
found at http://www.xmlspy.com). The Apache FOP engine, or any other engine
that can be run from the command line, can be easily integrated with XMLSpy.

When compared to XSL, XSL:FO stylesheets are even more verbose and complex,
which is one of the factors that has hampered XSL:FO marketplace adoption so far.
On top of this, there are numerous formatting options for XSL:FO output that you’ll
be tempted to fuss with. The simple example that later in this chapter results in a
two-page PDF that shows a table with a few rows of data in it. The XSL:FO output
for this document generates a 378-line stylesheet. We highly recommend using a
FOP-compliant editor to create XSL:FO stylesheets, to save you time and sanity.
Figure 9-1 shows the XMLSpy Stylesheet designer displaying the contents of the
XSL:FO stylesheet. XMLSpy supports previewing an XML document in an IE browser
and an Adobe PDF client directly in the UI, which is a great time saver for iterative
development.

c538292 ch09.qxd 8/18/03 8:44 AM Page 219

220 Part I ✦ Introducing XML

Figure 9-1: Working with the XMLSpy Stylesheet Designer

Figure 9-2 shows the final result of the transformation and FOP processing, saved
on the file system as a PDF and opened in the Adobe Acrobat PDF reader.

Let’s review the XSL:FO stylesheet, named XMLtoPDF.xsl, which we’re using for this
example. It transforms our sample AmazonMacbethSpanish.xml document into a
PDF. We’ll break it down by segment for you so you can get a better understanding
of what is happening in each piece when it is passed to a FOP server.

We haven’t included the entire stylesheet in the printed version of the book
because at 378 lines, it’s simply too long, and all three of the tables in the exam-
ple output use the same functionality, so the final two-thirds of the stylesheet has
no new information. As mentioned before, the XSL:FO stylesheet can be quite ver-
bose, so if you have an XML editor available on a nearby computer that formats
and color-codes XSL stylesheets and is XSL:FO compliant, you can download the
full file at http://www.XMLProgrammingBible.com and follow along with
the descriptions here.

c538292 ch09.qxd 8/18/03 8:44 AM Page 220

221Chapter 9 ✦ XSL Formatting Objects

Figure 9-2: PDF output that was generated by the XSL:FO transformation using
XMLtoCatalogHTML.xsl

The first part of the document is a straightforward XML declaration, followed by an
xsl and fo namespace declaration. XSL-FO uses the xmlns:fo = “http://
www.w3.org/1999/XSL/Format namespace to identify Formatting Object ele-
ments. This can be confusing, because the part of the Recommendation that
includes XSL:FO is the 2001 XSL Recommendation, the full text of which can be
found at http://www.w3.org/TR/xsl.

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

Next, an XSL variable declaration defines the layout of the page by using layout-
master-set as a variable name. A layout-master-set is a container for one or
more page masters. This example has one page master, with a name of default-
page-master. default-page-master defines parameters for global page layout
settings, such as page margins and page sizes. Note that in this example we use a
landscape page format by simply reversing the default portrait page measurements
(page-height=”11in” page-width=”8.5in”) to landscape (page-height=
”8.5in” page-width=”11in”).

c538292 ch09.qxd 8/18/03 8:44 AM Page 221

222 Part I ✦ Introducing XML

Page masters contain regions of a page, which define information for the header,
footer, and body of the page. The region-before and region-after regions
contain header information, and in this case act as a page header and footer. The
extent attribute of region-before and region-after indicate the actual size
of the header and footer. In this case, the extent is set to 0, meaning that the
header and footer on this page are just there to contain header and footer margins,
not content. The body region never has an extent attribute, because its extent is
whatever is left of the page when all of the page margins and header/ information
are set within the page layout.

The page-height and page-width specify the outside bounds of a printable page,
and are offset by any margins. For example, an 8.5 inch page-width and an 11
inch page-height with top, bottom, left, and right margins of 1 inch results in a
printable area of 7.5 inches X 10 inches on the page output. Additionally, margins
in the region-before, region-after, and region-body specify other off-
sets to the page layout that separate printable output in regions of the page.

<xsl:variable name=”fo:layout-master-set”>
<fo:layout-master-set>

<fo:simple-page-master master-name=”default-page-master” page-
height=”8.5in” page-width=”11in” margin-top=”0.79in” margin-
bottom=”0.79in” margin-left=”0.6in” margin-right=”0.6in”>
<fo:region-before margin-right=”0.6in” extent=”0cm”/>
<fo:region-body margin-top=”0cm” margin-bottom=”0cm” font-
family=”Helvetica,Times,Courier” font-size=”14pt” line-
height=”16pt”/>
<fo:region-after extent=”0cm”/>

</fo:simple-page-master>
</fo:layout-master-set>

</xsl:variable>

Next is a standard XSLT template element with a match attribute that we covered in
Chapters 7 and 8. That’s a good reminder that this is still an XSL stylesheet, despite
all of the XSL:FO formatting taking place. The next line is the fo:root element,
which is the root element of a XSL:FO output document format. Next, the layout-
master-set variable that defined earlier in the stylesheet is passed to the output
during transformation.

A couple of empty block, start-content, and flow elements are defined next.
These are empty because their region-before and region-after containers
are empty. flow represents text that will flow from one page to another, and
static-content represents text that will be the same on every page.

<xsl:template match=”/”>
<fo:root>

<xsl:copy-of select=”$fo:layout-master-set”/>
<fo:page-sequence master-reference=”default-page-master”>

<fo:static-content flow-name=”xsl-region-before”>
<fo:block/>

Note

c538292 ch09.qxd 8/18/03 8:44 AM Page 222

223Chapter 9 ✦ XSL Formatting Objects

</fo:static-content>
<fo:static-content flow-name=”xsl-region-after”>

<fo:block/>
</fo:static-content>

The next line is a result of typing text values into the XMLSpy stylesheet designer.
Based on the placement of the text, the stylesheet designer decided that the text
was part of the output body, which places it at the top of the first page of the PDF
output. The output displays a title that says “AmazonMacbethSpanish.xml
Transformed to a PDF using XSL:FO.”

A manual font size change generates the inline font-size element, which con-
trols in-line font changes in body text. In-line fonts are fonts that may change inside
a text block. For example, italics in a sentence that is otherwise regular text consti-
tutes two in-line fonts, italic and regular, for that sentence. Because the in-line
font-size is a single value, it can be inherited from the previously defined
fo:region-body font value. Note the XML &apos entity references, which are
converted to single quotes in the final output.

<fo:flow flow-name=”xsl-region-body”>
<fo:block>

<fo:inline font-size=”inherited-property-value('
font-size') + 4pt”>AmazonMacbethSpanish.xml Transformed to
a PDF using XSL:FO</fo:inline>

Next comes the processing of the quotes in the table. An xsl:for-each processes
all of the quotes, each of which starts with a quote element. For each quote ele-
ment encountered, XSL:FO creates a new table row. In each row, for each new ele-
ment encountered, the FO processor creates a table column.

The select statements contain XPath expressions that iterate through each value
under the quotelist/quote element in the source XML document. A three-
column table header is created, and columns are defined to contain values from the
XML document.

<xsl:for-each select=”quotedoc”>
<fo:block>

<fo:leader leader-pattern=”space”/>
</fo:block>
<xsl:for-each select=”quotelist”>

<xsl:for-each select=”quote”>
<xsl:if test=”position()=1”>

<fo:table width=”100%” space-before.optimum=”4pt”
space-after.optimum=”4pt”>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-header>

<fo:table-row>

c538292 ch09.qxd 8/18/03 8:44 AM Page 223

224 Part I ✦ Introducing XML

For each table column, a table-cell is defined. Table cell borders are solid black
and match the white background of the page.

<fo:table-cell background-color=”white” padding-
after=”5pt” padding-before=”5pt” padding-
end=”5pt” padding-start=”5pt” border-
style=”solid” border-width=”1pt” border-
color=”black”>

Each table-cell contains a block, which contains information about the format-
ting of that block. Next, content is placed in the block. The first row of the table is
the table header, so a hard-coded text description is passed to the table header
row. The first two headings have values (source and author).

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>source</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white” padding-
after=”5pt” padding-before=”5pt” padding-
end=”5pt” padding-start=”5pt” border-
style=”solid” border-width=”1pt” border-
color=”black”>
<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>author</fo:inline>

</fo:block>
</fo:table-cell>

The third column heading is intentionally left blank. There is a definition for the
table-cell, but the block is blank. The block tag still needs to be included to
meet XSL:FO requirements, even if it is empty.

<fo:table-cell background-color=”white” padding-
after=”5pt” padding-before=”5pt” padding-
end=”5pt” padding-start=”5pt” border-
style=”solid” border-width=”1pt” border-
color=”black”>
<fo:block/>

</fo:table-cell>
</fo:table-row>

</fo:table-header>
<fo:table-body>

c538292 ch09.qxd 8/18/03 8:44 AM Page 224

225Chapter 9 ✦ XSL Formatting Objects

Next, another row is defined for the table using the table-row element.

<xsl:for-each select=”../quote”>
<fo:table-row>

This row matches the characteristics of the heading row, but this time referenced
values from the original XML document are passed instead of hard-coded values.

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”24pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The value of the source attribute is placed in the table-cell using the XPath
@source reference expression to get the value of the attribute (value-of-
select=.). The block defines the display for the cell, and inherits the font-size
from the previously defined size value.

<fo:block>
<xsl:for-each select=”@source”>
<fo:inline background-color=”white” font-
size=”inherited-property-
value('font-size') - 2pt”>
<xsl:value-of select=”.”/>

</fo:inline>
</xsl:for-each>

</fo:block>
</fo:table-cell>

The value of the author attribute is placed in the table-cell using the XPath
@author reference expression. Font attributes are unchanged from the previous
cell.

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”24pt” border-style=”solid” border-
width=”1pt” border-color=”black”>
<fo:block>
<xsl:for-each select=”@author”>
<fo:inline background-color=”white” font-
size=”inherited-property-
value('font-size') - 2pt”>
<xsl:value-of select=”.”/>

</fo:inline>
</xsl:for-each>

</fo:block>
</fo:table-cell>

c538292 ch09.qxd 8/18/03 8:44 AM Page 225

226 Part I ✦ Introducing XML

The text value of the quote is placed in the table-cell using the XPath text()
reference expression. No value-of-select expression is needed this time,
because there is only one value returned by text() - text. Font attributes are
unchanged from the previous cell.

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”24pt” border-style=”solid” border-
width=”1pt” border-color=”black”>
<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>
<xsl:apply-templates select=”text()”/>

</fo:inline>
</fo:block>

</fo:table-cell>

Once all of the quotes in the source XML document have been added to their own
row in the three-column table, the table tags and the for-each are closed, ending
this table in the XSL:FO output.

</fo:table-row>
</xsl:for-each>

</fo:table-body>
</fo:table>

</xsl:if>
</xsl:for-each>

</xsl:for-each>
</xsl:for-each>

Next comes the processing of the book listing values from the original XML docu-
ment. An xsl:for-each processes all of the book listings, each of which starts
with a quotedoc element. XSL:FO creates a new table row for each book listing,
which is located under the quotedoc/catalog/amazon/product or quotedoc/
catalog/elcorteingles/product element. In each row, for each new element
encountered, the FO processor creates a table column. The table rows and columns
repeat in the same pattern for the rest of the stylesheet, except for one graphic ref-
erence, which we will point out a little later.

The select statements contain XPath expressions that iterate through each value
under the quotedoc/catalog/amazon/product or quotedoc/catalog/
elcorteingles/product element in the source XML document. As in the previ-
ous table, a table header is created for each of the nine columns in the new table.
Columns are defined to contain values from the XML document.

<xsl:for-each select=”quotedoc”>
<xsl:for-each select=”catalog”>

<xsl:for-each select=”amazon”>

c538292 ch09.qxd 8/18/03 8:44 AM Page 226

227Chapter 9 ✦ XSL Formatting Objects

<xsl:for-each select=”product”>
<xsl:if test=”position()=1”>

<fo:table width=”100%” space-before.optimum=”4pt”
space-after.optimum=”4pt”>
<fo:table-column column-width=”148pt”/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-column/>
<fo:table-header>
<fo:table-row>

For each column in the table, a table-cell is defined. To match the previous
table, cell borders are solid black and match the white background of the page.

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” width=”148pt” border-
style=”solid” border-width=”1pt” border-
color=”black”>

Each table-cell contains a block, which contains information about the format-
ting of that block. The first row of the table is the table header, so a hard-coded
text description is passed to each column heading in the row. The first column
heading is title.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>title</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>
<fo:block>

The second column heading is asin.

<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>asin</fo:inline>

</fo:block>
</fo:table-cell>

c538292 ch09.qxd 8/18/03 8:44 AM Page 227

228 Part I ✦ Introducing XML

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The third column heading is author.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>author</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The fourth column heading is image.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>image</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The fifth column heading is small_image.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>small_image</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

c538292 ch09.qxd 8/18/03 8:44 AM Page 228

229Chapter 9 ✦ XSL Formatting Objects

The sixth column heading is list_price.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>list_price</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The seventh column heading is release_date.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size')-2pt”>release_date</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The eighth column heading is binding.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') - 2pt”>binding</fo:inline>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
height=”36pt” border-style=”solid” border-
width=”1pt” border-color=”black”>

The ninth column heading is availability.

<fo:block>
<fo:inline background-color=”white” font-
size=”inherited-property-value('font-
size') -
2pt”>availability</fo:inline>

</fo:block>

c538292 ch09.qxd 8/18/03 8:44 AM Page 229

230 Part I ✦ Introducing XML

</fo:table-cell>
</fo:table-row>

</fo:table-header>

Next, a table-body is defined for the table. Each value that matches the
.../product XPath expression creates a new row in the table-body.

<fo:table-body>
<xsl:for-each select=”../product”>

A new row is defined for the table using the table-row element. This row matches
the characteristics of the heading row, but as in the last table; referenced values
from the original XML document are passed instead of hard-coded heading values.
The values that appear under each column heading are selected using XPath
expressions and placed in their cell blocks.

<fo:table-row>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
width=”148pt” border-style=”solid” border-
width=”1pt” border-color=”black”>
<fo:block>
<xsl:for-each select=”title”>
<fo:inline background-color=”white”
font-size=”inherited-property-
value('font-size') - 2pt”>
<xsl:apply-templates/>

</fo:inline>
</xsl:for-each>

</fo:block>
</fo:table-cell>
<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
border-style=”solid” border-width=”1pt”
border-color=”black”>
<fo:block>
<xsl:for-each select=”asin”>
<fo:inline background-color=”white”
font-size=”inherited-property-
value('font-size') - 2pt”>
<xsl:apply-templates/>

</fo:inline>
</xsl:for-each>

</fo:block>
</fo:table-cell>

c538292 ch09.qxd 8/18/03 8:44 AM Page 230

231Chapter 9 ✦ XSL Formatting Objects

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
border-style=”solid” border-width=”1pt”
border-color=”black”>
<fo:block>
<xsl:for-each select=”author”>
<fo:inline background-color=”white”
font-size=”inherited-property-
value('font-size') - 2pt”>
<xsl:apply-templates/>

</fo:inline>
</xsl:for-each>

</fo:block>
</fo:table-cell>

We’ve removed a few of the table-cell and block references for the rest of this table
because they are all the same, with different values, and we’re pretty sure you get
the idea by now. All of the cell references in this table are basically the same, except
for the next one. In this case, we are passing the literal value of URLs to the output
as image references. The image references in this case link to the Amazon Website
and display a small graphic of the book cover in the output. This is facilitated
through the fo:external-graphic element, which creates a src attribute for the
image. The src attribute refers to the source for the graphic reference, which in
this case is the value of the content in the cell, accessed via the xsl:value-of-
select element.

<fo:table-cell background-color=”white”
padding-after=”5pt” padding-before=”5pt”
padding-end=”5pt” padding-start=”5pt”
border-style=”solid” border-width=”1pt”
border-color=”black”>
<fo:block>
<xsl:for-each select=”image”>
<fo:external-graphic space-
before.optimum=”4pt” space-
after.optimum=”4pt”>
<xsl:attribute
name=”src”>url(‘<xsl:value-of
select=”.”/>’)</xsl:attribute>

</fo:external-graphic>
</xsl:for-each>

</fo:block>
</fo:table-cell>

The actual stylesheet continues on for several hundred more lines and is a repeat of
what you’ve seen so far. The complete file can be downloaded at http://www.
XMLProgrammingBible.com.

c538292 ch09.qxd 8/18/03 8:44 AM Page 231

232 Part I ✦ Introducing XML

Summary
In this chapter, you were introduced to XSL:FO and the Apache FOP server, and
learned about:

✦ The difference between the 1999 XSLT and 2001 XSL W3C recommendations

✦ The history of XSL:FO

✦ FOP servers

✦ The Apache FOP Server

✦ Output formats for XSL:FO

✦ Using XSL and XSL:FO to produce PDF output

✦ Formatting options for XSL:FO output documents

This chapter concludes the introduction to XML concepts. Now that you have a
solid understanding of the fundamentals of XSML, DTD, Schemas, Parsing, XSL, and
XSL:FO, you will move on to apply these concepts to practical use. The next part of
the book covers the use of XML in Microsoft Windows applications, including more
details on the Microsoft Core Services (MSXML), and working with XML in MS office
applications. After that, we’ll cover the “other” side of XML: working with XML in
J2EE.

✦ ✦ ✦

c538292 ch09.qxd 8/18/03 8:44 AM Page 232

Microsoft Office
and XML

Part II provides examples of generating XML from MS
access data as well as creating an Excel spreadsheet

from an XML data source. These examples illustrate MS-
Specific techniques for parsing and generating MS-Derived
XML. We review the sample code in the chapters line-by line
so that previous VBA/VB code knowledge is not necessary
to understand and work with the examples.

✦ ✦ ✦ ✦

In This Part

Chapter 10
Microsoft XML Core
Services

Chapter 11
Working with the
MSXML DOM

Chapter 12
Generating XML from
MS Access Data

Chapter 13
Creating an Excel
Spreadsheet from an
XML Data Source

✦ ✦ ✦ ✦

P A R T

IIII

d538292 pp02.qxd 8/18/03 8:44 AM Page 233

Microsoft XML
Core Services

Microsoft is a strong presence in both its use and pro-
motion of XML for building business and consumer

applications. Many if not all of the applications Microsoft
develops for the software market use XML in some way. In like
manner, Microsoft has crafted its Windows platform and
development tools while giving XML an increasingly promi-
nent role.

This chapter is about the services Microsoft has provided for
working with XML on Windows, its MSXML component library.
The focus here is on Microsoft’s pre-.NET software develop-
ment environment, COM. The .NET XML toolset is extensive
enough to require a separate discussion, which it does in
other chapters of this book. In this chapter you will learn
about how to install MSXML and get started using its core fea-
tures. You will learn about how MSXML is versioned and how
to keep things straight when side-by-side versions are
installed. You will learn about how it parses and what new
objects have been most recently added.

Getting Started
Early on, Microsoft introduced its XML parser and made it
available via download. However, it was really an adjunct util-
ity. Additionally, its faithful adherence to the evolving W3
standard XML was sometimes not without error. As time has
passed, Microsoft has worked with other major software ven-
dors in the evolution of the XML standard itself and its uses.
Microsoft has also made significant advances to the simple
XML parser that was once an optional download. In this chap-
ter, we will take a closer look at the Microsoft XML parser con-
tained in MSXML (version 4.1 as of this writing). The latest
version of the parser offers significant advances over the pre-
vious versions. We will not explore a complete side-by-side
comparison of the versions here, because our focus is mainly

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to install
MSXML

How to implement
side-by-side versions

Basic features and
an introduction to
the DOM

New objects added
to MSXML

✦ ✦ ✦ ✦

e538292 ch10.qxd 8/18/03 8:44 AM Page 235

236 Part II ✦ Microsoft Office and XML

on the latest, greatest version of the parser itself. However, we will point out a few
significant issues as they arise in order to save you time when either installing or
upgrading your MSXML version.

Microsoft’s MSXML supplies a generous class library that makes it possible to do a
lot of things with XML. At the heart of XML is the capability to easily read and
manipulate data. But the changing nature of Web applications means that a decent
XML toolset must make it possible to send XML content to a variety of displays and
to convert it to a variety of structures. At the same time, the need for data integrity
is critical to any serious application. Additionally, the toolset must be approach-
able, easy to use, and straightforward in its implementation. Given these and other
requirements in the real world, MSXML provides the following:

✦ A rich Document Object Model (DOM) for doing simple and advanced
operations with XML

✦ An XSLT processor that allows you to write code for converting XML content

✦ Support of schemas using XSD, DTDs, and XDR

✦ Support for SAX (Simple XML API)

✦ New objects for using XML on the Web

But first things first. Before any of these benefits are accessible, you need to get
MSXML installed.

System requirements and installation
With newer versions of the Windows operating system, MSXML comes installed.
This should tell you something about what customers have requested to be pre-
installed and what dependencies Windows programs have on XML. Windows XP
comes with MSXML installed as does Windows.NET. Nonetheless, you may want to
install MSXML on an operating system that does not yet have it installed, or you
may want to explicitly update the version running on your operating system. It may
seem obvious, but just in case someone out there is still running a 16-bit Microsoft
OS, you need a 32-bit OS to run the MSXML services. That’s the bare minimum
requirement. Candidates for an MSXML installation include:

✦ Windows 98

✦ Windows Millennium

✦ Windows NT 4.0

✦ Windows XP

✦ Windows.NET

e538292 ch10.qxd 8/18/03 8:44 AM Page 236

237Chapter 10 ✦ Microsoft XML Core Services

Installing Microsoft Core XML Services (MSXML) is pretty easy. You need to down-
load MSXML from Microsoft’s MSDN Website (http://msdn.microsoft.com).
Go to the Downloads area of the site to find the download for Microsoft XML Core
Services. This download (fortunately provided in many languages) will contain both
the core MSXML files and the MSXML SDK. When you run the installation package,
you will be able to choose what you want to install. To do this, you will need to
choose a custom installation (a good choice no matter what you install on your
computer) instead of using the standard installation set. If you decide to customize,
you will be presented with two main features of the installation as shown in Figure
10-1. On your development workstation, it is a good idea to install the SDK, which
includes documentation and an IDL and header files for use with C++.

Figure 10-1: Choosing to install the SDK and/or the
XML parser

While these files are useful for developer workstations, you would not want to use
this installation package for deployments on production servers and workstations.
If you build an application that depends on MSXML, you should use the redis-
tributable package titled “CAB File for Redistribution” on the Microsoft Website.
This package will contain the bare minimum files you need on a production
machine to leverage MSXML. Figure 10-2 shows the list of files contained in the
redistributable cab file.

e538292 ch10.qxd 8/18/03 8:44 AM Page 237

238 Part II ✦ Microsoft Office and XML

Figure 10-2: Files found in the
redistributable cab file

Core files and versions
The heart and soul of MSXML is in one file: msxml.dll (shown in Figure 10-2 as the
versioned msxml4.dll). Now, this is where knowing a little about Microsoft’s ver-
sioning for XML is important. The very first version of the parser includes the file
msxml.dll. The second major version of the parser (actually version 2.6) includes
msxml2.dll, the third and fourth — you guessed it — msxml3.dll and msxml4.dll,
respectively. These versions are particularly important because Microsoft permits
side-by-side installations of the various versions of MSXML. The advantage is that a
single developer workstation can be used to create applications that target the dif-
ferent parsers. Thus, an application used to target the accounting department
where the workstations have MSXML 3.0 installed for the foreseeable future can be
created on the same workstation that is used to create an application targeting the
corporate Web servers that have MSXML 4.0 installed. This flexibility, while quite
useful, also introduces a few complexities about which you should know. The chief
potential problem occurs when developers decide to use version-independent
ProgIDs and GUIDs.

You should be aware that if you want to load a DOMDocument in MSXML 4.0 and
you want to use that specific version of the class when you load it, then you should
use the version class name, like this: DOMDocument40, even though there is also
another class name, DOMDocument, available to you. In other words, unexpected
things can happen when creating an instance of the MSXML DOM using a version
independent ProgID, as shown in Listing 10-1.

Listing 10-1: Creating an Instance of an Object in MSXML

Dim oDOM as Object
Set oDOM=new MSXML2.DOMDocument

e538292 ch10.qxd 8/18/03 8:44 AM Page 238

239Chapter 10 ✦ Microsoft XML Core Services

The result of this code would be that oDOM would contain an instance, not of
DOMDocument40 but of a DOMDocument for version 3.0 or lower. In other words,
referencing the generic component class name, DOMDocument, does not actually
reveal what class is actually being used. What would happen if the developer
thought the target machine only had MSXML 2.0 installed, but the machine really
had version 3.0 installed? With either version installed, the above statement will
work. However, if version 3.0 is installed but the developer really intended the code
to use only the features of version 2.0, the above instancing statement would actu-
ally pick up whatever the latest installed version is and use that. On one hand,
there is a benefit to this. Developers can write code that automatically starts
employing the latest, greatest MSXML version on a target machine without having
to update the code libraries they have installed to use MSXML. But this adaptability
comes at a price. As you can imagine, this automatic sensing of the newest version
could also cause to break; for example, if the version 2.0 compatible code tries to
use a method or property that has a different signature in the newer version or that
has been removed altogether. While this can happen in a compiled Windows pro-
gram, it is actually more likely in ASP applications where developers are forced to
exclusively use late-bound objects in a scripted environment. Many ASP developers
were disappointed to find that after installing MSXML 3.0, their code broke, and
they could not immediately tell why.

With MSXML 4.0, Microsoft responded to the concerns that version-independent
ProgID’s and GUIDs introduced, so they drew the line and made MSXML 4.0 ProgID
and GUID version dependent. What this means is that if you go to version 4.0, you
need to make it clear in the language you are using, even if you are using late-bound
objects. To be sure, some developers have complained about having to do a little
more work, but at the end of the day, it makes for cleaner, more explicit code and
reduces the chance for unexpected results in a production environment. Our dis-
cussion will focus on this version of the parser, and you should keep these version-
ing issues in mind as you develop applications and consider their deployment on
different workstations.

One last aspect of this issue to keep in mind is the tight integration between
MSXML and Microsoft Internet Explorer. Internet Explorer relies on MSXML for pro-
cessing XML that it requests and retrieves. Microsoft Internet Explorer 4.0 was the
first browser to have XML support built right in. In version 4.0 of the browser,
Microsoft shipped a very basic DOM-based XML parser called MSXML 1.0. As XML
standards evolved, Microsoft added and improved MSXML features, and today it is
much more than just a parser. The default parser for Internet Explorer is MSXML
2.0. Installing IE 5.5 means that you are also installing MSXML 2.0. In other words, IE
5.5 has a built-in dependency on this version of the parser, and just installing the
newer parser will not change this. Fortunately, Microsoft has provided a nice little
utility to help you point your browser to a newer version of the parser. It is called
xmslinst.exe. However, this is not supported with respect to version 4.0 of the
parser. In other words, when you install IE, it will not automatically use the latest
version, and, while you can make it dependent, Microsoft does not recommend
doing so.

e538292 ch10.qxd 8/18/03 8:44 AM Page 239

240 Part II ✦ Microsoft Office and XML

Figure 10-2 also shows two other libraries. The msxml4a.dll file is an ANSI resource
file. This file is installed only on Windows 98 or Windows ME because they both
lack the ANSI support upon which MSXML depends. In a similar way, the
Msxml4r.dll is the Unicode equivalent version of the resource file, and would not be
installed on Windows 98 or Windows ME platforms as it is used mainly for Windows
NT platform machines. If you are running Windows 2000 or Windows XP, you typi-
cally will need just the MSXML4.dll on the target machine to run your code.

As just mentioned, the main workhorse of MSXML is the msxml4.dll. The standard
MSXML 4.0 installation will place the DLL in the following location:
%SystemRoot%\System32\msxml4.dll. The library is actually comparatively small,
just 1.7MB, but it actually does quite a few things. Using this parser, you have the
ability to parse XML, use XSL and XSLT. You can send XML documents using the
HTTP protocol and use the SAX API. As you can tell from reading this book, the
bread and butter of XML is just parsing, searching, and transforming structured
data. That is what this parser does well.

Identifying components
Before introducing the core classes of MSXML, it is important to know how to refer-
ence them in code. Basically, there are three main ways to access a component on
the Windows platform: ProgIDs, GUIDs, and component class names (defined in the
actual IDL by the original developers). If you are programming in Visual Basic 6 or
earlier (or are using COM Interop in .NET), the language will expose all public
objects using the component class name that the original creators of MSXML 4.0
put in the IDL when they wrote it. In other words, the creators of MSXML 4.0 at
Microsoft called their object DOMDocument40 for MSXML 4.0, DOMDocument30 for
version 3.0, and so on. That means you can address that object in VB 6 as
DOMDocument40 or Msxml2.DOMDocument40. Additionally, MSXML2 was the
library name given in the IDL. You only need the latter notation when you need to
resolve ambiguity with another object of the same name in another library (or
within your own project). This is the naming convention, accessing the actual com-
ponent class names, when you are using a language that can bind to the type
library information or the header files create by the IDL. However, there are times
when this is not possible. For example, VBScript is not a typed language, and all
objects are late-bound, meaning that the type library information is not accessible
until the script is interpreted and runs. Traditional ASP applications are typically
coded in VBScript, and so using the component class name, DOMDocument40,
when instancing an object is not permitted. The same is true when using JScript in
an ASP application. Simply put, these languages know nothing about the names you
used in the IDL. We need another naming convention then.

While one can always use the component’s GUID (Globally Unique Identifier) to
access the class, these are long and make for hideous code. Fortunately, Microsoft
also provides another name called the ProgID. A ProgID is a name found in the
Windows registry (found in HKEY_CLASSES_ROOT) that maps over to the GUID rep-
resenting the component class. So, for example, the ProgIDs for MSXML are
“Msxml2.DOMDocument.4.0” and so on. In a scripted environment, you can gain
access to a desired component by using this ProgID name.

e538292 ch10.qxd 8/18/03 8:44 AM Page 240

241Chapter 10 ✦ Microsoft XML Core Services

Keep in mind that the version-independent issues already mentioned apply whether
one is using the component class name, the GUID, or the ProgID. In other words,
irrespective of what mechanism you choose to access a class, if you do not specifi-
cally target version 4.0 of that class, you will have no guarantee that the resulting
object instance will be of the correct version.

Parsing and Features Overview
With each release of its MSXML services, Microsoft offers new features and fixes
some of the known bugs. Some of the improvements in MSXML 4.0 include support
for XML schemas. In previous versions of MSXML, schemas were not supported.
This is not all that surprising given that XML schemas had not yet become even a
W3 recommendation until the spring of 2001. Thus, there was still no widely
accepted standard way, either an official standard or a practical standard, to vali-
date XML documents. DTDs were reasonably popular, but with known limitations
(see Chapter 3 for more on XML validation). XDR did not look like it could provide
the full breadth of features that XML schemas have come to provide, so it has not
been fully embraced either. Given the nascent stage of XML and the lack of a
clear winner in the schema department, and probably for other reasons as well,
Microsoft did not add schema support until version 4.0 of MSXML. The XML schema
support in MSXML 4.0 is pretty thorough. Of course, XSDs can be used for validating
in the DOM, but they can also be used with XPATH and XSLT (see Chapter 4).

Another improvement made in version 4 is in performance. Microsoft claims a four-
fold increase in performance for XSLT processing. This is because they made signifi-
cant enhancements to the XSLT engine that ships with MSXML. Microsoft also
claims a two-fold increase in performance when doing normal parsing of docu-
ments. This is the result of changes made to the parser that ships with MSXML.
These changes accompany fixes for known problems, and extended support for the
SAX2 API. Additionally, so that C++ developers can make SAX components more
easily, there is the SaxAppWizard utility for Microsoft Visual Studio. The primary
benefit of the wizard is that it sets up the main structure SAX applications just as
console or WFC applications are developed when creating a new project.

Parsing
The MSXML parser is chiefly responsible for parsing XML in the DOM, parsing XSL
instructions, and validating XML structures using schemas. If a parser is doing its
job, developers will not give it much thought. The API should be all developers
need to think about as they work with XML content. In this way, you can focus on
how an application works and interacts with the data, thus being insulated, to some
extent, from the innerworkings of the XML content. In this light, there are two basic
types of XML parsing modes to accommodate different development needs: validat-
ing or nonvalidating. Simply put, nonvalidating parsing means that the parser does
not validate the document structure against a DTD, even though the parser may

e538292 ch10.qxd 8/18/03 8:44 AM Page 241

242 Part II ✦ Microsoft Office and XML

know there is a DTD present. As a generality, you typically want to validate the XML
in a business application so as to ensure its integrity. This is one of the main func-
tions of parsing and can be specified using the new validateOnParse property of the
DOM.

The job of the MSXML parser, then, is to get the content out of the XML document
and make it accessible via the appropriate API. Figure 10-3 shows this relationship.

Figure 10-3: The MSXML parser consumes the XML data so they can be
used via the DOM or SAX.

You notice here how both APIs are referenced. This is because parsing XML is really
just confirming the content’s intelligibility. This is only half of the story. The other
half is actually getting to the intelligible data in code. That is the job of the API. You
will use the fundamental classes of MSXML to do this, and this is where you focus
your energy as a developer.

Fundamental classes
Before looking at some of the lesser-known features of MSXML 4.0, we will first look
at the bread-and-butter classes it offers. There are many classes defined in the
library that support 27 COM interfaces, five major XML-related technologies, and a
host of utility features. Our focus is on the DOM, SAX, XSL, XSD, and some new
classes recently added.

Document Object Model
The root object in the XML object model, according to the specification, is the
DOMDocument40 object. This is the one you will use most often to do the bulk of
your work with XML. The MSXML DOM (Document Object Model) implements both

XML
Content Parser

DOM

SAX

Available data

e538292 ch10.qxd 8/18/03 8:44 AM Page 242

243Chapter 10 ✦ Microsoft XML Core Services

fundamental and extended interfaces and also provides additional methods to sup-
port XSL Transformations (XSLT), XPath, namespaces, and data types. In essence,
the fundamental interfaces are those required for adherence to the XML 1.0 stan-
dard. However, fidelity to the standard need not get in the way of making some of
the functions in the specification easier to use for developers. Hence, designers of a
parser are at liberty to implement extended interfaces, ones that make it easier to
access some of the basic functions of the XML specification. Microsoft’s parser
does implement some of these, and most developers agree that they are welcome
additions.

Gaining access to the various classes in MSXML is fairly straightforward. The class
names in MSXML are specified in this way: MSXML2.classname. For example, the
principal class in the entire library, the DOMDocument40, is accessible via this
name: MSXML2.DOMDocument40. But this name cannot be used when coding an
ASP application in script. Not only this, but in both the scripted and non-scripted
environments, the name you choose can give you unexpected results if you use a
version-independent class name or ProgID. Earlier, we discussed how Microsoft
dropped version-independent ProgIDs and GUIDs from MSXML 4.0, but there is a lit-
tle more to the story, especially in a scripted environment. Understanding better
how Microsoft’s naming schemes work for component class libraries will be very
beneficial and eliminate confusion when you are coding both in a compiled lan-
guage or in script.

The main interfaces that give you access to various aspects of the DOM are as
follows:

✦ DOMDocument40

✦ IXMLDOMNode

✦ IXMLDOMNodeList

✦ IXMLDOMNamedNodeMap

Using an instance of the DOMDocument40 class you can create new documents
from scratch, load existing XML strings or streams, load XML documents from the
file system or a URL, transform one XML file into another, and save XML content to
the file system or a URL. The DOM object then exposes instances of
IXMLDOMNode, which can be accessed via instances of IXMLDOMNodeList.
IXMLDOMNamedNodeMap permits you to gain access to node attributes by using
the name of the attribute instead of its ordinal number. All of the MSXML classes
under the hood take care of the W3 XML standard compliance for you.

While Chapter 11 delves into the DOM more fully, a brief introduction is useful here.
First, let’s load a DOMDocument40 object using a simple file. Listing 10-2 shows the
code used to get an instance of the object and fill it with the contents of the local file.

e538292 ch10.qxd 8/18/03 8:44 AM Page 243

244 Part II ✦ Microsoft Office and XML

Listing 10-2: Loading XML Content

Dim oDOM As DOMDocument40
Set oDOM = New DOMDocument40
oDOM.Load (“c:\XMLBible\quotes.xml”)

Once loaded, all of the functions and features provided by DOMDocument40 are
accessible to your code. You could also reference the file using a valid URL instead
of the local file path. UNC paths are equally acceptable. You can use the Save
method to persist XML to a file, URL, or UNC path as well. When the MSXML parser
loads an XML document into a DOM, it reads it from start to finish and creates a log-
ical model of nodes from the structures and content contained in the XML docu-
ment. The document itself is a node that contains all of the other nodes, primarily
the root element, which, in turn, contains all the rest of the content in the docu-
ment. If there are errors in the source XML, the Document object cannot parse the
entire file properly, and it posts parsing errors. Unless you look for the errors, all
you will notice is that the Document object will be empty. However, the object does
expose an object that lets you figure out precisely what caused the error, the
parseError object. Figure 10-4 shows the output from the parseError object
after an error has occurred.

Figure 10-4: Error information provided by the
MSXML parser

Listing 10-3 is the code used to post this error information to a Windows form
application.

Listing 10-3: Discovering and Reporting Parse Errors

Dim oDOM As DOMDocument40
Set oDOM = New DOMDocument40

e538292 ch10.qxd 8/18/03 8:44 AM Page 244

245Chapter 10 ✦ Microsoft XML Core Services

oDOM.Load (“c:\XMLBible\quotes.xml”)
With oDOM.parseError

txtResult.Text = “Error: “ & _
CStr(.errorCode) & vbCrLf

txtResult.Text = txtResult.Text & _
“Postion: “ & CStr(.filepos) & vbCrLf

txtResult.Text = txtResult.Text & _
“Line: “ & CStr(.Line) & vbCrLf

txtResult.Text = txtResult.Text & _
“Character: “ & CStr(.linepos) & vbCrLf

txtResult.Text = txtResult.Text & _
“Reason: “ & CStr(.reason) & vbCrLf

txtResult.Text = txtResult.Text & _
“Source Text: “ & CStr(.srcText) & vbCrLf

txtResult.Text = txtResult.Text & _
“URL: “ & CStr(.url) & vbCrLf

End With

While accessing files is common, it is becoming increasingly common to use XML in
memory. XML can be loaded from streams and output to streams rather than to and
from actual files. Listing 10-4 displays the code used to create a new XML document
entirely from scratch using methods of the Document object.

Listing 10-4: Creating XML Content from Scratch

Dim oDOM As DOMDocument40
Dim oElRoot As IXMLDOMElement
Dim oNode As IXMLDOMNode
Dim oNode2 As IXMLDOMNode

Set oDOM = New DOMDocument40

oDOM.insertBefore _
oDOM.createProcessingInstruction(“xml”, _

“version=””1.0”””), _
oDOM.childNodes.Item(0)

Set oElRoot = oDOM.createNode(_
NODE_ELEMENT, “quotes”, “”)

Set oDOM.documentElement = oElRoot

Set oNode = oDOM.createNode(_
NODE_ELEMENT, “quote”, “”)

oElRoot.appendChild oNode

e538292 ch10.qxd 8/18/03 8:44 AM Page 245

246 Part II ✦ Microsoft Office and XML

The resulting XML, however simple, is well-formed XML and is shown here:

<?xml version=”1.0”?>
<quotes><quote/></quotes>

Notice how the processing instruction contains double quotes. The MSXML parser
will actually permit single quotes here, but it is preferable to use double quotes
whenever possible. This is worth mentioning because, in the code sample, you can
see how double sets of double quotes are used so that the resulting XML loaded in
the document contain a single set of double quotes. Keep this fact in mind when
using strings as names for elements or for text when loading from a database or
some other source.

Another feature of the DOMDocument40 class is the ability to use schema defini-
tions using XSDs and transforming XML data structures and output formatting
using XSL stylesheets. Support for XSDs was added with version 4.0, while support
for XSL did exist in previous versions. However, the performance of XSL and XSLT
was improved in this version of MSXML, and the output of transformation has
become more reliable. Support for DTDs continues as part of MSXML.

Other objects
There are many other classes available in MSXML. Notably, there is support for
SAX, XSD, and XSL. SAX, as explained in Chapter 9, is an event-based way of getting
at XML content. SAX is particularly useful when the content being accessed is quite
large or when the code you are writing wants to have greater distance from the
source XML structure. The key with SAX is to remember that it merely produces
events as it steps through the XML source content. You must provide code and
objects that listen to and respond to these events. Listing 10-5 shows using SAX to
create an XML document that gets loaded into a DOM object.

Listing 10-5: Using SAX to Produce a Content in the DOM

Dim oDOM As New MSXML2.DOMDocument40
oDOM.validateOnParse = True
Dim oXMLWriter As New MXXMLWriter40
Dim oSAXEvents As IVBSAXContentHandler
Dim oSAXAttributes As New SAXAttributes40
Set oSAXEvents = oXMLWriter
oXMLWriter.output = oDOM
oXMLWriter.indent = True
oSAXEvents.startDocument
oSAXEvents.startElement “”, “”, “quotes”, oSAXAttributes
oSAXAttributes.addAttribute “”, “”, “type”, “CDATA”, “general”
oSAXEvents.startElement “”, “”, “quote”, oSAXAttributes
oSAXAttributes.Clear
oSAXEvents.startElement “”, “”, “source”, oSAXAttributes

e538292 ch10.qxd 8/18/03 8:44 AM Page 246

247Chapter 10 ✦ Microsoft XML Core Services

oSAXEvents.characters “Mark Twain”
oSAXEvents.endElement “”, “”, “source”
oSAXEvents.startElement “”, “”, “text”, oSAXAttributes
oSAXEvents.characters “When in doubt, tell the truth.”
oSAXEvents.endElement “”, “”, “text”
oSAXEvents.endElement “”, “”, “quote”
oSAXEvents.endElement “”, “”, “quotes”
oSAXEvents.endDocument

In this listing, there are other objects being used, but don’t worry about them just
yet. The focus here is on the events raised by the use of the SAX event handler. As
elements and attributes are added and completed, the events are raised to what-
ever is listening for these events. In this case, it is an instance of the MXXMLWriter
class. It receives the events and hands its output off to the DOM. To be truthful, all
of this content can be created with the DOM directly, but using SAX is in some ways
a simpler manner of doing so.

The ability to change the way XML is presented or structured is made possible via
MSXML’s support for XSL. Chapter 11 deals with XSL using Microsoft’s XML Core
Services in greater detail, but suffice it to say here that MSXML is able to transform
XML content because it has a powerful XSL processor on board. The easiest way to
begin using XSL is to reference a stylesheet in your XML source file, in this way:
<?xml-stylesheet type=”text/xsl” href=”quotes01.xsl”?>. This state-
ment should follow the initial processing instruction in your source XML file. As the
file is parsed by MSXML, the XSL file will be accessed, and the instructions in the
XSL file will be applied to the XML file as it is processed.

Schema files, for validating XML content according to your own rules, are refer-
enced in much the same way. The difference is that the XSD reference is usually
made inside the root element of the XML document. For example, this statement
<quotes xmlns=”po.xsd”> references an XSD in the same directory as the
source XML file. As the parser processes the source XML, it will look to the schema
definition in the XSD and report an error if the XML does not conform to the rules
of the XSD.

New objects
There are new objects in MSXML 4.0, such as the MXHTMLWriter, MXNamespace
Manager, and MXXMLWriter. The first is used to create HTML output from an XML
source. The MXNamespaceManager class defines methods that let you manage and
track namespace declarations in your documents and resolve them either in the
current context or in the context of a specific DOM node. The latter one, MXXML
Writer, was used in the sample that showed how to use the SAX API. It was used
to produce XML content which was then loaded into the DOM. Let’s take another
look in Listing 10-6 at the code and focus on how MXXMLWriter was used, repre-
sented as the oXMLWriter object.

e538292 ch10.qxd 8/18/03 8:44 AM Page 247

248 Part II ✦ Microsoft Office and XML

Listing 10-6: Outputting XML Using MXXMLWriter

Set oSAXEvents = oXMLWriter
oXMLWriter.output = oDOM
oXMLWriter.indent = True
oSAXEvents.startDocument
oSAXEvents.startElement “”, “”, “quotes”, oSAXAttributes
oSAXAttributes.addAttribute “”, “”, “type”, “CDATA”, “general”
oSAXEvents.startElement “”, “”, “quote”, oSAXAttributes
oSAXAttributes.Clear
oSAXEvents.startElement “”, “”, “source”, oSAXAttributes
oSAXEvents.characters “Mark Twain”
oSAXEvents.endElement “”, “”, “source”
oSAXEvents.startElement “”, “”, “text”, oSAXAttributes
oSAXEvents.characters “When in doubt, tell the truth.”
oSAXEvents.endElement “”, “”, “text”
oSAXEvents.endElement “”, “”, “quote”
oSAXEvents.endElement “”, “”, “quotes”
oSAXEvents.endDocument

What makes the instance of MXXMLWriter work is that it is set equal to an instance
of a SAX event handler. Therefore, as new elements are created and other content is
added, the respective events are handed off to MXXMLWriter so that a more acces-
sible representation of the data becomes available. The MXXMLWriter can only pro-
duce parsable XML, not HTML. But producing HTML is a common need, so MSXML
also provides the MXHTMLWriter.

The MXHTMLWriter lets applications create HTML output directly using a stream of
SAX events, much in the same way that the <xsl:output> element in XSLT can
generate HTML from a result tree. The main benefit of this is that Active Server
Pages can be developed that read XML using a SAX reader and then send the data
to the buffer as HTML in one smooth operation. Of course, the MXHTMLWriter can
also be used to create HTML manually.

Following, in Listing 10-7, is a simple example that uses this object to write out
HTML. In this sample, an instance of the MXHTMLWriter40 class is used to dynami-
cally assemble both the HTML elements with some actual page data. The oContent
object is defined as an instance of the IVBSAXContentHandler class and is used
to actually construct the content.

Listing 10-7: Producing HTML Using the MXHTMLWriter

Dim oXMLWriter As MXHTMLWriter40
Dim oSAXEvents As IVBSAXContentHandler
Dim oSAXReader As SAXXMLReader40
‘Create the object instances

e538292 ch10.qxd 8/18/03 8:44 AM Page 248

249Chapter 10 ✦ Microsoft XML Core Services

Set oXMLWriter = New MXHTMLWriter40
Set oSAXReader = New SAXXMLReader40
Set oSAXEvents = oXMLWriter
‘Begin creating a document from scratch
oSAXEvents.startDocument
oSAXEvents.startElement “”, “”, “HTML”, Nothing
oSAXEvents.characters “this is dynamically written HTML”
oSAXEvents.endElement “”, “”, “HTML”
oSAXEvents.endDocument
oSAXReader.parse oXMLWriter.output

In this example, the output is not XML at all, although it could have been made XML
using the MXXMLWriter instead. Selecting HTML as the output demonstrates the
flexibility of the objects. The SAXXMLReader object is used to actually do the final
parsing before the content is rendered.

Summary
In this chapter, you have been introduced to the Microsoft Core XML Services, com-
monly referred to as MSXML. There are some specific system requirements you
need to know before you install MSXML, the main one being which operating sys-
tem can support the different versions. If you are running Windows 2000 or greater,
things are much easier, and upgrading to a newer OS is recommended if you are
running Windows 9x or Windows ME anyway. You also learned in this chapter about
the various versions of MSXML. You saw how the files that provide the core ser-
vices have changed as versions have been released, and you learned about the sig-
nificant changes Microsoft made with version 4.0. The main one to remember is
that version-independent GUIDs and ProgIDs are no longer possible with version 4.0
and above.

This chapter introduced you to how Microsoft uses GUIDs, ProgIDs, and component
names as ways to correctly address classes when you are using instances of them in
code. You learned the correct way to code your applications to ensure that you get
object instances of the correct underlying version if you have side-by-side versions
of MSXML installed. You also learned about the registry entries and other Windows-
related details that will help you troubleshoot applications that use MSXML.

With this kind of housekeeping out of the way, the chapter introduced you to pars-
ing and the main features of MSXML. Without a doubt, the DOM is the object you
will most likely use with the greatest frequency. However, there are other very use-
ful features such as the SAX event handler, support for XSL, and XSD. Furthermore,
you have learned about a couple of new classes introduced with version 4.0,
MXXMLWriter and MXHTMLWriter, for aiding in working with XML on the Web.

✦ ✦ ✦

e538292 ch10.qxd 8/18/03 8:44 AM Page 249

Working with
the MSXML
DOM

In order for your programs to access the content of XML
documents, the parser must read the XML and make sense

of them. If the content is in a file, the parser processes the file
and converts it into an XML document object in memory by
the XML parser. The resulting document object contains a
hierarchical tree that contains the data and structure of the
information contained in the XML document. This tree of
information can be accessed and modified using the DOM API.

In Microsoft’s COM world, the Document Object Model (DOM)
is your vehicle to process XML documents using compiled
applications or scripts. The DOM allows programs and scripts
to dynamically access and update the content, structure, and
style of documents.

The main function of MSXML’s DOM implementation lets you
load existing XML from file or in memory. You can then access
and work with the data structures contained within the docu-
ment. Finally, you can complete the cycle of working with XML
by saving the document as a file or sending to another appli-
cation as a stream or in-memory structure. It is not an under-
statement to say that nearly everything you will ever do with
MSXML will use the DOM.

In this chapter, you will learn how to work with the DOM in
applications, the most commonly used methods and proper-
ties of the DOM, how to load XML, and how to persist it for
use in other systems or for later consumption.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Basic functions of
the DOM

Accessing databases
to create DOM
content

Transforming
XML content

Controlling the DOM
using Visual Basic
and JavaScript

✦ ✦ ✦ ✦

e538292 ch11.qxd 8/18/03 8:44 AM Page 251

252 Part II ✦ Microsoft Office and XML

Introduction
It has already been said that the DOM is the focus of working with XML. The DOM is
what gives you access to the members of the IXMLDOMDocument interface. In the
previous introduction to MSXML, it was mentioned that the component class name
for the DOM is DOMDocument40, with the version number included so as to make
clear in your code which underlying version of MSXML you are using. Keep in mind
that in a compiled-language environment, this is the preferable manner in which
you should gain reference to the DOM. However, you can also use the ProgID in a
scripted environment or when using code where the type library information is not
accessible to the application. For the most part, the listings in this chapter will use
the component class name. Now let’s look at how to use the DOM.

DOM members
The object model of the DOM is fairly extensive, exhibiting a large number of prop-
erties and methods, but only two events. The properties list shown in Figure 11-1
contains a number of simple properties and others that are collections. For exam-
ple, the attributes, child nodes, namespaces, and schemas are properties that
return collections of their respective items.

Figure 11-1: The node structure of an XML file that
will be searched using selectNodes

Other notable properties include:

✦ documentElement: The root element of the entire XML document

✦ errorCode: Reveals the error code of the last encountered parsing error

✦ filepos: The precise position in the file where an error occurred

e538292 ch11.qxd 8/18/03 8:44 AM Page 252

253Chapter 11 ✦ Working with the MSXML DOM

✦ firstChild: Returns the very first child node of a node in the document

✦ lastChild: Returns the very last child node of a node in the document

✦ line: Specifies the line where an error occurred

✦ linepos: Specifies the character position in a line where an error occurred

✦ nodeType: Specifies the type of a node (attribute, element, text, and so on)

✦ nodeValue: Sets or returns the value of a node

✦ ownerDocument: Returns the overall parent document in which a node is
contained

✦ text: Returns the text content of a node

✦ xml: Returns the XML of a node and all of its descendants

Which properties are of greatest use to you will, of course, depend on the type of
applications you are creating. You should consult the XML SDK document for the
meaning and purpose of some of the more obscure properties as you encounter
them.

There are a number of methods exposed by the DOM, and for the most part they
are designed to help you manipulate and navigate the content of an XML document.
Some of the more prominent methods are summarized as follows:

✦ appendChild: Appends a new child node to a target node

✦ createAttribute: Creates a new attribute for a specified element

✦ createElement: Creates a new element node with a specified name. The
element must then be appended as a child of another node.

✦ createNode: Creates a new node which can be appended to another node.
This node can be of different types (attribute, element, text, and so on).

✦ createProcessingInstruction: Creates a processing instruction such as <? xml
version=”1.0”?>

✦ createTextNode: Creates a new node, but it is only of the text type.

✦ getElementsByTagName: Gets all of the elements in a document that have the
tag name passed to the method. They are returned as a collection of elements
in an IXMLDOMNodeList.

✦ hasChildNodes: Specifies whether the target node has children or not

✦ load: Loads XML content from a persistent source

✦ loadXML: Loads XML content from a source in memory

✦ removeChild: Removes and returns a node from a list of child nodes

✦ save: Persists XML content of the DOM to a file

✦ selectNodes: Returns a collection of nodes from a starting point. You must
provide a pattern to look for in the descendants of the target node.

e538292 ch11.qxd 8/18/03 8:44 AM Page 253

254 Part II ✦ Microsoft Office and XML

✦ selectSingleNode: Returns a single node from a starting point. You must pro-
vide a pattern to look for in the descendants of the target node. It returns the
first node to match the pattern.

✦ transformNode: Transforms a target node and all of its descendants using
provided XSL instructions and returns the result as a string

✦ transformNodeToObject: Transforms a target node and all of its descendants
using provided XSL instructions and returns the result as an object

We are going to explore detailed examples of loading, selecting, and transforming
XML content using methods of the DOM as these are probably the most common
tasks you will want to perform with the DOM. Before doing so, however, this is a
good time to mention the two events that can be raised by the DOM:
ondataavailable and onreadystatechanged.

The first event, ondataavailable, is useful when loading XML content asyn-
chronously. You may want to begin processing the data as soon as they are avail-
able in the DOM. This event will let your code know when the data can be accessed
for processing. The second method, onreadystatechanged, fires whenever the
state of the readystate property has changed. The readystate property tells
you what the current state of the document is. Its possible values are:

✦ Loading: The loading process is under way. You cannot do much with the
document at this point.

✦ Loaded: The document is ready to be parsed, and the object model is not yet
available.

✦ Interactive: The data have been partially read and parsed, and what has been
read and parsed can now be accessed in the object model as read only.

✦ Completed: The document is completely ready in the object model.

Loading XML content
Two methods, Load and loadXML, are ones that make many of the other properties
and methods meaningful. The Load function populates the XML document from a
location you specify. The location can refer to a UNC pathname, a URL, or a local
file system path. Listing 11-1 shows accessing an XML file using a URL.

Listing 11-1: Loading XML Content in the DOM

Dim oDOM As DOMDocument40
Set oDOM = New DOMDocument40
oDOM.Load (“http://localhost/xmlbible” _

& “/chapter11/quotes.xml”)
txtResult.Text = oDOM.xml

e538292 ch11.qxd 8/18/03 8:44 AM Page 254

255Chapter 11 ✦ Working with the MSXML DOM

The alternative approach is to use the loadXML method, which loads the document
using a string. In Listing 11-2, a string is used to load the document. In this case, the
string is loaded dynamically as records are retrieved from a database. You need not
worry too much about the data access code included here as it may differ depend-
ing on the type of database you are accessing. In this listing, a Microsoft SQL Server
database is accessed to retrieve quote data.

Listing 11-2: Loading XML Content from a Database

Dim rs As Recordset
Dim cn As Connection
Dim oDOM As DOMDocument40
Dim str As String
Set rs = New Recordset
Set cn = New Connection

cn.Open “Provider=SQLOLEDB;” _
& “Data Source=(local);” _
& “Initial Catalog=quotes;” _
& “User ID=User;Password=7Secret9x;”

rs.Open “SELECT Date,Source,” _
& “Quote FROM QuoteTable”, _

cn, adOpenForwardOnly, _
adLockReadOnly

If Not rs.EOF Then
str = “<?xml version=””1.0”” ?><quotes>”
While Not rs.EOF

str = str & “<quote>”
str = str & “<date>” _

& rs(“Date”).Value _
& “</date>”

str = str & “<source>” _
& rs(“Source”).Value _
& “</source></quote>”

rs.MoveNext
Wend
str = str & “</quotes>”
rs.Close
cn.Close

End If
Set rs = Nothing
Set cn = Nothing
Set oDOM = New DOMDocument40
oDOM.loadXML str

Taking a closer look at the XML-oriented aspects of the code, you see that a simple
string variable is used to hold all of the XML tags and data that will be assembled

e538292 ch11.qxd 8/18/03 8:44 AM Page 255

256 Part II ✦ Microsoft Office and XML

along the way. The first item that must be included is the XML declaration. Notice
how the double quotes are used around the version number in this string. Of
course, each language will differ, but here, in Visual Basic 6.0, the two double
quotes are needed to ensure that when the XML is loaded into the DOM, there will
be a single set of quotes around the version number. This technique applies to all
cases where a single set of double quotes is needed in the final XML output.

Next the code adds a root element to the XML file, in this case <quotes>. One of
the most common problems is forgetting to include this root element with an
accompanying close tag somewhere else in the code. Because the XML content is
being assembled as part of a logical loop, it is sometimes difficult to keep things
straight, so making sure you thoroughly test your code before deploying it will help
in detecting omissions of this sort.

The code enters a loop that begins to load the bulk of the data. These data are the
main quotes contained in the data table. In this example, a Microsoft ADO recordset
is used to retrieve data values. Keep in mind that you are assembling a large string,
and some of the data types of fields being retrieved may not be string data types.
You should take care to convert values when necessary. In Listing 11-2, implicit con-
versions are used so that the code is less cluttered, thus making it easier to see the
XML operations. However, the best practice for production code is to handle the
data type conversions explicitly. Additionally, you should trap errors and recover
from problems in the code gracefully so that, despite problems that may arise, you
still end up with a well-formed XML file when the code finishes executing.

In the code you have just seen, the string is assembled from data retrieved directly
from the database, and the names of the elements are hard coded. However, even
the names of the elements could be dynamic by making a slight adjustment to the
structured code loop, as shown in Listing 11-3.

Listing 11-3: Generate XML Content from Any Table

If Not rs.EOF Then
str = “<?xml version=””1.0”” ?><” & _

rs(1).Properties(“BASETABLENAME”).Value _
& “s>”

While Not rs.EOF
str = str & “<” & _

rs(1).Properties(“BASETABLENAME”).Value _
& “>”

str = str & “<” & rs(1).Name & “>” _
& rs(1).Value _
& “</” & rs(1).Name & “>”

e538292 ch11.qxd 8/18/03 8:44 AM Page 256

257Chapter 11 ✦ Working with the MSXML DOM

str = str & “<” & rs(2).Name & “>” _
& rs(2).Value _
& “</” & rs(2).Name & “></” _

& rs(1).Properties(“BASETABLENAME”).Value _
& “>”

rs.MoveNext
Wend

str = str & “</” _
& rs(1).Properties(“BASETABLENAME”).Value _
& “s>”

rs.Close
cn.Close

End If

What makes code like this particularly powerful is that it can produce well-formed
XML by using records from many different types of queries or data sources without
altering the code. Taking a closer look, you can see that no names for the elements
are included in the code. Instead, a property of the ADO recordset is used to
retrieve the table name. It is probable that other data access technologies provide a
similar technique to acquire this information when accessing a data source. Here,
the BASETABLENAME property is used to acquire the table name. This will become
the root element for the XML content. As the code progresses, fields are referenced
ordinally in the recordset rather than by name as in Listing 11-2. The flexibility of
this code can be tested by changing the statement used to retrieve the data from
the database. Different field names can be used there, or a different table in a differ-
ent database can be referenced altogether.

One of the challenges in loading code in this fashion is that the XML content could
be very, very large. Unfortunately, in Visual Basic 6.0, while the string data type can
contain a lot of data, it is not very efficient in doing so. Each language differs, so be
aware of how well your code performs.

Selecting nodes
Once XML content is loaded into the DOM, you will want to get to certain areas of
the data hierarchy as quickly and as easily as possible. Two wonderfully flexible
methods, selectNodes and selectSingleNode, will help you do so. The first of
these methods is accessible via a target node. From that node, the method will
return all descendant nodes that can be found to match a pattern you provide to
the method. In the following example in Listing 11-4, the method is used to find all
nodes that have a name of Source. Keep in mind that these searches are case sen-
sitive, as is always the case when working with XML elements. You can also use
more sophisticated search expressions to find nodes that match irrespective of
case, using wild-card searches and much, much more.

e538292 ch11.qxd 8/18/03 8:44 AM Page 257

258 Part II ✦ Microsoft Office and XML

Listing 11-4: Selecting Specific Nodes in the DOM

Dim oDOM As Msxml2.DOMDocument40
Dim oNL As IXMLDOMNodeList
Set oDOM = New DOMDocument40
oDOM.Load “C:\Quotes.xml”
oDOM.setProperty _

“SelectionLanguage”, “XPath”
Set oNL = oDOM.documentElement. _
selectNodes(“//Source”)

In this code sample, the source file has the structure shown earlier in Figure 11-1.
The root node is Quotes, and there are a number of child nodes named QuoteTable.
Each QuoteTable node contains a Source element that contains the text of a quote.

A portion of the result of the method search in Listing 11-4 is shown in Listing 11-5.
Notice how the list shows only nodes with the name of Source.

Listing 11-5: Results of the selectNodes Method

<Source>Joke-Of-The-Day</Source>
<Source>Pat Newberry</Source>
<Source>Tammy Vanoss</Source>
<Source>Joke-Of-The-Day</Source>
<Source>Tammy Vanoss</Source>
<Source>Joke-Of-The-Day</Source>

But what would happen if the structure of the XML were not so regular? In other
words, notice how the current structure is very predictably
Quotes/QuoteTable/Source. Each QuoteTable element contains elements for
Date, Source, Quote, and QuoteKey. However, Figure 11-2 shows a revised struc-
ture where one of the QuoteKey elements in just one of the QuoteTable nodes
contains an additional Source element. Without changing the code, this irregularly
placed element can still be found, and it will be grouped with the rest of the nodes
that follow the more predictable structure.

The list of nodes containing Source elements is shown in shortened form in List-
ing 11-6. Notice how the results do not distinguish where a node came from in the
source hierarchy. All that matters is whether the node matched the search pattern.

e538292 ch11.qxd 8/18/03 8:44 AM Page 258

259Chapter 11 ✦ Working with the MSXML DOM

Figure 11-2: Revised XML structure with an oddly
placed element

Listing 11-6: Results of a selectNodes Search Including an
Irregularly Structured Element

<Source>Anyone</Source>
<Source>This is an element that does not fit the regular
structure</Source>
<Source>Joke-Of-The-Day</Source>
<Source>Tammy Vanoss</Source>
<Source>Joke-Of-The-Day</Source>
<Source>Tammy Vanoss</Source>

The reason why this irregularity in the hierarchy is returned is because in the pat-
tern passed to the selectNodes method, we used the double-slash, like this:
“//Source. Double-slashes are a way of telling the query processor that we want
to find matches to our pattern irrespective of structure. If we changed it like this:
QuoteTable/Source, the irregular element would not be found. This is because
we are deliberately telling the DOM to only find Source elements directly below
QuoteTable elements. If we changed the pattern like this, QuoteTable//Source,
our element would once again be found. Any descendant of QuoteTable that is
named Source would be found.

e538292 ch11.qxd 8/18/03 8:44 AM Page 259

260 Part II ✦ Microsoft Office and XML

Similar to the selectNodes method is the selectSingleNode method. The
pattern-matching rules are the same in both cases. The main difference is that with
the latter method, the first node that matches the search pattern is returned, and
the process stops right there.

Transforming using XSL
One of the strengths of the code that loads data from into the DOM from a database
(as in the earlier section on loading XML) is that the final XML output can be pretty
much of any structure you desire. The code does the work of transforming the data
in the database into a different structure and format. But what if the data were not
in a database and were in a file instead? This is a common occurrence, and XML
would truly lose a lot of its strength if it were unable to provide the capability to do
with XML files what we have done here with a database table. Fortunately, the DOM
object exposes a set of methods and objects that make it possible to transform
XML content from one structure to another or from one structure to a completely
different mechanism of display. Chapter 4 deals with XSL specifically, whereas here
we will look at how to use MSXML to transform XML files.

There are two fundamental ways to tell the MSXML XSLT processor to do a transfor-
mation. One is to use the TransformNode or TransformNodeToObject methods
of the DOM. The second is to reference a valid XSL document in an XML file. To
start, take a look at the XML in Listing 11-7. It shows a portion of the XML file that
will be transformed using the DOM.

Listing 11-7: Resulting XML from XSL Instructions

<Quotes>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Joke-Of-The-Day</Source>
<Quote><![CDATA[Should you trust a stockbroker
who’s married to a travel agent?]]></Quote>
<QuoteKey>HNEY-4TTL67</QuoteKey>
</QuoteTable>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Tammy Vanoss</Source>
<Quote>Each day I try to enjoy something
from each of the four food groups:
the bonbon group, the salty-snack group</Quote>
<QuoteKey>HNEY-4TTL6G</QuoteKey>
</QuoteTable>
</Quotes>

e538292 ch11.qxd 8/18/03 8:44 AM Page 260

261Chapter 11 ✦ Working with the MSXML DOM

The actual XML file contains many more quotes than are shown here, and we have
another system that will consume these data. However, in order to use the data,
they need to be in a different structure. Listing 11-8 shows the contents of the XSL.

Listing 11-8: Stylesheet Content to Transform XML

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”Quotes”>
<citations>
<xsl:apply-templates select=”QuoteTable” />
</citations>
</xsl:template>
<xsl:template match=”QuoteTable”><citation>
<quote_date><xsl:value-of select=”Date”/></quote_date>
<text><xsl:value-of select=”Quote”/></text>
</citation>
</xsl:template>
</xsl:stylesheet>

The XSL here looks for the root node and transforms it into a new node
<citations>. Then the second template creates new element names with the
same data in the original file. Listing 11-9 shows how the DOM is used to transform
the XML into the new structure.

Listing 11-9: Transforming Using the DOM

Dim DOM1 As MSXML2.DOMDocument40
Dim DOM2 As MSXML2.DOMDocument40
Dim DOM3 As MSXML2.DOMDocument40
Set DOM1 = New MSXML2.DOMDocument40
Set DOM2 = New MSXML2.DOMDocument40
Set DOM3 = New MSXML2.DOMDocument40
DOM1.Load (“C:\QuoteTable_plain.XML”)
DOM2.Load (“C:\Quotes02.xsl”)
DOM1.transformNodeToObject DOM2, DOM3
DOM3.save “C:\QuoteTable_02.xml”

This code creates three instances of the DOM. The first loads the content of the
XML data file. The second loads the content of the XSL file. The third file is merely a
container to hold the results of the transformation of the XML. The resulting XML is
shown in Listing 11-10.

e538292 ch11.qxd 8/18/03 8:44 AM Page 261

262 Part II ✦ Microsoft Office and XML

Listing 11-10: Resulting XML from a Transformation

<?xml version=”1.0” encoding=”UTF-16”?>
<citations>

<citation>
<quote_date>03/30/1998</quote_date>
<text>Should you trust a stockbroker
who’s married to a travel agent?</text>
</citation>
<citation>
<quote_date>03/30/1998</quote_date>
<text>Each day I try to enjoy something
from each of the four food groups:
the bonbon group, the salty-snack grou</text>
</citation>
<citation>
<quote_date>03/30/1998</quote_date>
<text>Is boneless chicken considered to be an

invertebrate?</text></citation></citations>

The second primary technique for processing files using XSLT with MSXML is to ref-
erence the style sheet in the XML data file. There is nothing notably different in the
syntax with Microsoft’s parser. You’ll need to reference the XSL file using a state-
ment such as this: <?xml-stylesheet type=”text/xsl”
href=”quotes01.xsl”?>. When the XML file loads, instead of loading the XML
data directly, the contents of the source will be processed according to the instruc-
tions of the XSL file. Other than that, there is no resultant difference between using
this technique or using the DOM’s TransformNodeToObject method.

As Chapter 4 explains, you can use XSL stylesheets not only to transform XML
structure, but also to alter the final presentation output. Listing 11-11 shows XSL
that produces HTML as the final output. The source XML file contains a reference to
this stylesheet, so the final output is as shown in Figure 11-1.

Listing 11-11: Stylesheet for Transforming Content

<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output indent=”yes” omit-xml-declaration=”yes” />
<xsl:template match=”Quotes”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head><title>Quotes
</title></head><body>
<table BORDER=”1” CELLPADDIUNG=”0” CELLSPACING=”1”>

e538292 ch11.qxd 8/18/03 8:44 AM Page 262

263Chapter 11 ✦ Working with the MSXML DOM

<tr bgcolor=”blue”><th>Date</th><th>Quote</th></tr>
<xsl:apply-templates select=”QuoteTable” />
</table></body></html>
</xsl:template>
<xsl:template match=”QuoteTable”>
<tr><td><xsl:value-of select=”Date”/></td>
<td><xsl:value-of select=”Quote”/></td></tr>
</xsl:template>
</xsl:stylesheet>

Building XML-Based Applications
Now that you are more familiar with the DOM, it’s time to leverage the object model
in a more comprehensive way. The following example is a browser-based solution
that uses XML, XSL, and HTML to produce a simple, dynamic menu. The scripting is
all done with JavaScript, and there is some HTML style usage. There are a few dif-
ferent files that make up the solution. They are as follows:

✦ WorkWithMenus.html: Contains the HTML and JavaScript routines

✦ menus.xml: Contains menu elements that contain information for standard
menus on our Web page

✦ menuitems.xml: Contains menu elements that contain information for
custom menus

✦ transform_menus.xsl: Contains XSL instructions to transform the XML menu
elements into standard HTML that can be displayed on the Web page

The Web page HTML content is as shown in Listing 11-12. Essentially, the HTML
contains one TextArea element that is used to show the content of the XML after a
new element has been dynamically added to it. Also, there are two SPAN elements
contained in a separate column. The initial view of the page is shown in Figure 11-3.

Listing 11-12: HTML Content in Browser-Based Solution

<body>
<table>
<tr>
<td></td>
<td>
<table>
tr>

Continued

e538292 ch11.qxd 8/18/03 8:44 AM Page 263

264 Part II ✦ Microsoft Office and XML

Listing 11-12 (continued)

<td colspan=”2”
onclick=”ConfigureMenus(‘Information’)” id=”Information”
name=”Information”>
Information</td>
</tr>
<tr>
<td colspan=”2”
onclick=”ConfigureMenus(‘Contact’)” id=”Contact”
name=”Contact”>
Contact</td>
</tr>
</table>

<textarea cols=”80” id=”txtXML” name=”txtXML”
rows=”11”></textarea>
</td>
</tr>
</table>
</body>

Figure 11-3: Initial view of example Web page

What is significant about the SPAN elements is that when they are clicked, they call
a function defined in JavaScript called ConfigureMenus. This function accepts one
parameter that is the ID of the SPAN that was clicked.

e538292 ch11.qxd 8/18/03 8:44 AM Page 264

265Chapter 11 ✦ Working with the MSXML DOM

The script of the ConfigureMenus procedure is shown here in Listing 11-13. This
procedure loads the menus.xml file into a DOM object. This file contains elements
that hold the data we will use for standard menus (see Listing 11-14).

Listing 11-13: Script of the ConfigureMenus Function

function ConfigureMenus(menuItem)
{

var objNode;
var objDOM=new ActiveXObject(“Msxml2.DOMDocument”);
var objChildNode;
var nIndex;
var strElementName;
var strElementValue;
var root;
var str;
var objTransformedDOM=

new ActiveXObject(“Msxml2.DOMDocument”);
objDOM.async = false;
objDOM.load(“menus.xml”);
nIndex = 2;
root = objDOM.documentElement;
objNode=GetMenuItem(menuItem);
objChildNode =

root.insertBefore(objNode,
root.childNodes.item(nIndex));

txtXML.value=root.xml;
str=GetTransformed(objDOM);
menu.outerHTML =str

}

The XML file is rather simple, containing a root element with two child elements.
Each child element has menuID, menucaption, and href attributes. These
attributes are useful for the final HTML display on the Web page. The href attribute
will be used as the hyperlink in an anchor tag. The menucaption attribute is used
as the text of the anchor tag.

Listing 11-14: Contents of the menus.xml File

<menus>
<menu menuID=”getdata” menucaption=”Get Data”

href=”http://http://www.wiley.com”/>
<menu menuID=”sendmessage” menucaption=”Send Message”

href=”http://http://www.wiley.com”/>
</menus>

e538292 ch11.qxd 8/18/03 8:44 AM Page 265

266 Part II ✦ Microsoft Office and XML

After loading the menus.xml file, the ConfigureMenus function calls another pro-
cedure, GetMenuItem, to get an xml node that will contain XML data that corre-
spond to which item was clicked on the page. For example, if the user clicks on the
SPAN with the text Information, the GetMenuItem procedure will find an XML
element in another file and return that element as a node to the ConfigureMenus
procedure. The text of GetMenuItem function is shown in Listing 11-15.

Listing 11-15: Script of the GetMenuItem Function

function GetMenuItem(menuItem)
{

var objNode;
var objDOM=new ActiveXObject(“Msxml2.DOMDocument”);
var objChildNode;
var nIndex;
var strElementName;
var strElementValue;
var root;
objDOM.async = false;
objDOM.load(“menuitems.xml”);
objNode =

objDOM.selectSingleNode
(“menus/menu[@menuID = ‘“ + menuItem + “‘]”);

return(objNode);
}

The GetMenuItem functions loads the content of the menuitems.xml file. This file
is nearly identical to the menus.xml file, but the data are different. The premise is
that this file contains elements that are not used as part of the standard menus.
Rather than returning all of the elements in the document, however, the function
only returns the one that matches a search criteria. The function uses the
selectSingleNode method and looks for only the menu item whose menuID
attribute matches the value passed to the procedure. This value is the same as the
text in the SPAN attribute.

With the XML node returned, the ConfigureMenus function calls another function,
GetTransformed, and passes the DOM object to it. The function returns an HTML
string that is then appended to the Web page. The GetTransformed procedure is
shown in Listing 11-16.

e538292 ch11.qxd 8/18/03 8:44 AM Page 266

267Chapter 11 ✦ Working with the MSXML DOM

Listing 11-16: Contents of the GetTransformed Function

function GetTransformed(objDOM)
{
var objXSL=new ActiveXObject(“Msxml2.DOMDocument”);
objXSL.load(“transform_menus.xsl”);
str = objDOM.transformNode(objXSL);
return (str);
}

This procedure loads the contents of the transform_menus.xsl file whose contents
are shown in Listing 11-17. What is significant in this file is that it does not output
XML. It actually produces HTML by using a couple of simple templates.

Listing 11-17: Contents of the transform_menus.xsl
Instructions

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:output indent=”yes” omit-xml-declaration=”yes” />

<xsl:template match=”menus”>
<TABLE CELLPADDING=’1’ CELLSPACING=’0’ BORDER=’1’>
<xsl:apply-templates select=”menu”/>
</TABLE>
</xsl:template>
<xsl:template match=”menu”>

<xsl:variable name=”hrefvalue” select=”./@href”/>
<TR><TD>
<xsl:value-of select=”./@menucaption”/>
</TD></TR>
</xsl:template></xsl:stylesheet>

The XSL instructions include the declaration of a variable, “hrefvalue”, which is
used by the template to embed the value of the href attribute of the element as an
attribute of the HTML anchor tag. The result of a transformation is shown in Listing
11-18. The actual data will differ, of course, depending on what a user has clicked.

e538292 ch11.qxd 8/18/03 8:44 AM Page 267

268 Part II ✦ Microsoft Office and XML

Listing 11-18: Results of an XSL Transformation in the
Browser Example

<TABLE CELLPADDING=”1” CELLSPACING=”0” BORDER=”1”>
<TR><TD>Get Data
</TD></TR>
<TR><TD>Get Info
</TD></TR>
<TR><TD>Send Message
</TD></TR>
</TABLE>

Once the GetTransformed function returns the string containing the HTML result of
the transformation, a simple DHTML method is used to display the HTML. Figure 11-4
shows the resulting Web page after choosing the “Contact” SPAN on the page. Once
this is clicked, the ConfigureMenus procedure loads the supplemental XML element
and transforms the entire XML content to produce an HTML table.

Figure 11-4: View of Web page after making a selection

Notice how the content of the XML is also shown on the Web page, providing you
with a peek at what the JavaScript has assembled along the way. What this example
shows is how MSXML can be used to create dynamic content in a Web page using
methods of the DOM and simple JavaScript.

e538292 ch11.qxd 8/18/03 8:44 AM Page 268

269Chapter 11 ✦ Working with the MSXML DOM

Summary
This chapter has introduced you to the MSXML DOM object library. Clearly there
are many properties and methods, and these have been explained to you. However,
a particular emphasis has been placed on loading XML, finding specific elements in
the content, and transforming the content to produce new XML or HTML. The rea-
son these characteristics of the DOM have been favored over others is because
they are most likely targets of your code in the bulk of your applications.

Undoubtedly, if you create enough XML applications, you will use an increasing
number of the properties and methods that have received less emphasis here. As
you do, you will find that the DOM object model is surprisingly flexible and easy to
use. You will want to use its ability to reports errors so that your applications can
gracefully handle problems that arise. You will also want to use more sophisticated
search expressions when selecting nodes, and you may want to persist XML as part
of a complete solution.

✦ ✦ ✦

e538292 ch11.qxd 8/18/03 8:44 AM Page 269

Generating
XML from
MS Access Data

Microsoft’s XML support in its Office technologies con-
tinues to grow, and Microsoft Access has XML sup-

port that reflects the changing use of Access and databases
generally. With Office XP, Access enhanced its capability to
export and import data by fully embracing the XML standard
and embedding XML support in its application features and
programmability features.

This chapter will deal exclusively with Access 2002, the ver-
sion released with Office XP. It was possible to cause previ-
ous versions to work with XML, but this was exclusively
through means that were not directly part of Access. In
other words, it was possible to use the DOM in your Access
code, but Access itself had no built-in features to work with
XML as a native data exchange mechanism. This capability
is the exclusive province of Access 2002 and later editions.

This chapter looks at the XML features in Access and shows
how they can be used to create more flexible and more full-
featured applications. You will learn about how XML data can
be imported and exported both using the user interface as
well as through code. You will learn how XSDs can be used to
ensure data integrity for imports and exports. You will also
learn more about leveraging XSL to convert XML data that is
not structured properly for import into data that can be
directly consumed by Access.

Note

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Importing and
exporting data with
Microsoft Access

Working with
elements and
attributes

Validating and
displaying data

Using Access XML
data with other
applications like
Excel or remote
systems

✦ ✦ ✦ ✦

e538292 ch12.qxd 8/18/03 8:44 AM Page 271

272 Part II ✦ Microsoft Office and XML

Introduction
With this version, Access allows you to export XML data, including XML schema
information and XSL stylesheets for displaying Access data. You can also import
XML data directly into tables and leverage XSDs to ensure that imported data pos-
sess the correct characteristics for your data structures in the database. Not sur-
prisingly, each of the features available in the user interface is also available via the
Access object model.

When MS Access was first introduced, most developers created single-tier solu-
tions. Access went a long way to popularizing the use of databases for ad hoc data-
driven applications. As a result, many organizations witnessed a bloom of small,
tightly focused database applications in many departments. Often, these applica-
tions became mission-critical applications, serious dependencies for the success of
their businesses. Small businesses fully adopted Access as a means for driving the
core applications of their business. As small businesses grew to become large busi-
nesses or were purchased by other, larger, businesses, the needs of Access applica-
tions also changed. In like manner, as small ad hoc database applications became
more powerful, the possibility of connecting them to other systems and data
became more promising and more necessary. Another need that became increas-
ingly important is the requirement that the database applications make their data
available to the ever-expanding legion of Web applications companies have created.
As a result of these and other changes, Access has had to become more conversant
with other systems and with the Web.

The focus of Access XML support is on exporting, importing, and displaying Access
objects using XML. In all cases, nearly, if not all, XML features accessible via the UI
can be done in code as well, and there are a few features that can be done in code
only. We will look at these features, starting with importing and exporting, and then
show how they can be used in more complete applications that reach beyond the
borders of Access.

Exporting and Importing Data
Exporting and importing data from the Access user interface is a fairly straightfor-
ward affair. First we will look at the overall process, then we will see how to do the
same things and more in code.

Exporting
The simplest example of exporting XML from Access is to right-click on a table. An
export menu appears on the pop-up menu (see Figure 12-1). Access will then
prompt you for a location where it can place the XML file containing the data from

e538292 ch12.qxd 8/18/03 8:44 AM Page 272

273Chapter 12 ✦ Generating XML from MS Access Data

the table. In addition to tables you can export the data from a query, datasheet,
form, or report into an XML file. In this example, all of the table data will be
exported. In a moment, you will see how you can export filtered data using queries.
But, first, as you export data you need to give the file a name when you specify the
location. If the file name already exists, you will not be prompted to overwrite the
file at this time. That will come later. You can save the XML file to any valid path
that Windows can recognize. This includes a valid URL to a Web server.

Figure 12-1: Exporting XML via the user interface

More needs to be said about posting XML files to a Web server or to other loca-
tions than a typical file path. First, not just any old Web server will do. This is
because the file is posted using special features within Microsoft’s Web publishing
world: a server that has the FrontPage Server Extensions installed. We can also
export to a .NET Web Service or to a SQL Server, all techniques we will look at
more closely in turn. Initially, we will set up the export so that the resulting files are
placed on the local file system. However, in later examples, we will look at using
more sophisticated techniques to export and import XML with Access.

Before the objects are exported, you are given the chance to configure how the
export will occur and what its results will be. Figure 12-2 shows the initial dialog
box where you can choose to configure these settings. The resulting XML file con-
tents will depend upon the options you have selected. The advanced options, con-
figurable in the export settings dialog box, allow you to include the schema
information, either embedded within the XML document or as a separate XSD docu-
ment. You can also have Access create a separate XSL document containing format-
ting information so your page can be displayed as HTML.

Note

e538292 ch12.qxd 8/18/03 8:44 AM Page 273

274 Part II ✦ Microsoft Office and XML

Figure 12-2: Export settings with the
user interface

Let’s look at the contents of these files. First, the XML file itself. This file contains
the data contents of the object exported from Access. Figure 12-3 shows some of
the final XML from the export.

Figure 12-3: A view of the XML exported from Access

Now, look at the design of the data table in Access shown in Figure 12-4 and notice
how the fields relate one to the other. You can see that the same data elements are
there, but more than just the data are present. Access has also exported and thus
preserved the definition of the data themselves in the XSD schema file.

The schema information will include datatypes, field lengths, and other characteris-
tics that allow your data to conform to the structure defined in Access. As you saw
previously in Figure 12-3, the XSD file is referenced as QuoteTable.xsd. By default
XSD file names, and the file names of the XSL and HTML (ASP) files generated by
Access, will have the same name as the XML file, differing only by the file extension.
In Figure 12-5, you can see a portion of the XSD exported by Access. Notice how the
schema information communicates the structure that Access preserves in the table
design (as shown previously in Figure 12-4).

e538292 ch12.qxd 8/18/03 8:44 AM Page 274

275Chapter 12 ✦ Generating XML from MS Access Data

Figure 12-4: Design of table exported
from Access

Figure 12-5: XSD information exported from Access

As you can see, the XSD contains information such as whether there is a key con-
straint on the database table, whether the key enforces uniqueness, what the field
names are, their datatypes, and lengths.

The other files exported by Access relate to how the data are displayed. Access
uses an XSL file to create instructions so that the XML data can be displayed as
HTML. You have your choice to create an HTML or ASP file. In either case, the con-
tent is the same, and the only difference is the file extension. You can see how the
page looks in Figure 12-6.

e538292 ch12.qxd 8/18/03 8:44 AM Page 275

276 Part II ✦ Microsoft Office and XML

Figure 12-6: Final HTML output from Access export

The HTML is pretty simple; it merely references the XSL file, as you can see in
Listing 12-1.

Listing 12-1: HTML Content of Exported Display File

<HTML xmlns:signature=”urn:schemas-microsoft-
com:office:access”>
<HEAD>
<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html;charset=UTF-
8”/>
</HEAD>
<SCRIPT event=onload for=window>

objData = new ActiveXObject(“MSXML.DOMDocument”);
objData.async = false;
objData.load(“QuoteTable.xml”);
if (objData.parseError.errorCode != 0)

alert(objData.parseError.reason);

objStyle = new ActiveXObject(“MSXML.DOMDocument”);
objStyle.async = false;
objStyle.load(“QuoteTable.xsl”);
if (objStyle.parseError.errorCode != 0)

alert(objStyle.parseError.reason);
document.open(“text/html”,”replace”);
document.write(objData.transformNode(objStyle));

</SCRIPT>
</HTML>

e538292 ch12.qxd 8/18/03 8:44 AM Page 276

277Chapter 12 ✦ Generating XML from MS Access Data

You can easily see that there are no data in this file nor are there any explicit
instructions for how the data are supposed to be displayed. What you do see are
references to two external files. The first is to the XML file that contains the
exported data (refer to Figure 12-3). The second relevant file is to the XSL
stylesheet that contains the display instructions. Figure 12-7 shows a portion of
those instructions.

Figure 12-7: XSL display instructions for exported data

The XSL templates produce, by default, a fairly simple but nonetheless pleasant
HTML display of the data. It also includes a lengthy script block that is used to walk
the XML nodes of the source data file and format dates, strings, and do other more
sophisticated operations than can be reasonably accomplished using straight XSL
commands. Obviously, the strength of the entire XML support model in Access is
that you can create your own XSL or XSD files to use with the data and customize
the export process.

When you export an object in Access, if you click the advanced button (as shown
previously in Figure 12-2) you are presented with a dialog box so you can choose
the file names and locations of each of the files discussed thus far (see Figure 12-8).

This dialog lets you choose to export the data from the selected object and place
the resulting file in the location of your choosing. You can choose whether you
want UTF-8 (the default) or UTF-16 encoding. If you do not need any special charac-
ters, leaving the default will suffice. The other two tab sheets are shown in Figure
12-9. Here you can see that you can export the schema as a separate file or just
embed the schema information in the XML file itself. On the presentation side, you
can export an HTML or ASP file. The section for images is only relevant if you are
exporting an object, such as a form or report, which uses images for buttons and
so forth.

e538292 ch12.qxd 8/18/03 8:44 AM Page 277

278 Part II ✦ Microsoft Office and XML

Figure 12-8: First tab of the advanced export dialog box

Figure 12-9: Other tabs of the advanced export dialog

One of the tricky things of this dialog box is that the file paths are not all the same.
For instance, just because you choose to put the XML data file in one directory, the
paths for the other files are not relative to this main file path. You must explicitly
tell Access where you want the other files to be placed.

Exporting programmatically
Now that we have seen the overall process and how to do these tasks in the user
interface, it’s time to look at some code. The Application object, representing the
Access application itself, has a method called ExportXML. This method is the entry
point for the entire XML exporting process. It accepts eight different parameters, of

e538292 ch12.qxd 8/18/03 8:44 AM Page 278

279Chapter 12 ✦ Generating XML from MS Access Data

which only two are actually required. These two are the type of object you are
exporting and the path for the file that will result from the export. The parameters
and their explanation are shown in Table 12-1.

Table 12-1
Parameters for the ExportXML Method

Parameter Description

ObjectType The type of Access object that will be exported

DataSource The name of the Access object to export

DataTarget The file name and path for the exported data

SchemaTarget The file name and path for the exported schema information

PresentationTarget The file name and path for the exported presentation information

ImageTarget The path for exported images

Encoding The text encoding to use for the exported XML

OtherFlags Specifies additional options for exporting XML

The ObjectType parameter is specified using an AcExportXMLObjectType con-
stant. The possible values include:

✦ acExportDataAccessPage

✦ acExportForm

✦ acExportFunction

✦ acExportQuery

✦ acExportReport

✦ acExportServerView

✦ acExportStoredProcedure

✦ acExportTable

These actual Access objects to which these values refer are fairly obvious. It is
likely you will export queries, reports, and tables. There is also the possibility that
you will export Data Access Pages (DAPs), functions, views, stored procedures, and
forms. The final parameter, OtherFlags, bears mentioning as well. This parameter is
useful for permitting other advanced behaviors when exporting data. They are
described in Table 12-2.

e538292 ch12.qxd 8/18/03 8:44 AM Page 279

280 Part II ✦ Microsoft Office and XML

Table 12-2
Values for the OtherFlags Parameter

Value Description

1 Embed schema: Writes schema information into the document specified by the
DataTarget argument; this value takes precedence over the SchemaTarget
argument.

2 Exclude primary key and indexes: Does not export primary key and index schema
properties.

4 Run from server: Creates an Active Server Pages (ASP) wrapper; otherwise, the
default is an HTML wrapper. Only applies when exporting reports.

8 Live report source: Creates a live link to a remote Microsoft SQL Server 2000
database. Only valid when exporting reports bound to Microsoft SQL Server 2000.

16 Persist ReportML: Persists the exported object’s ReportML file.

Well, let’s put it to work. Listing 12-2 shows using the ExportXML method in code.
What this code does is to export a single query object from the Access database.
The resulting file is called output.xml. The schema information is also exported, as
are the XSLT instructions and an accompanying ASP. This one line of instruction
encapsulates all the basic features shown in the user interface.

Listing 12-2: Using the ExportXML Method

Application.ExportXML _
ObjectType:=acExportQuery, _
DataSource:=”QuoteTable”, _
DataTarget:=”C:\output.xml”, _
SchemaTarger:=”C:\QuoteTable.xsd”, _
PresentationTarget:=”C:\QueryTable.xsl”, _
OtherFlags:=4

Now, let’s put things together for a more realistic application. It would be useful if
we could have Access export its data as XML so we can apply an XSL stylesheet so
that the results are formatted for use in Excel 2002. The final result, in Excel, is
shown in Figure 12-10.

e538292 ch12.qxd 8/18/03 8:44 AM Page 280

281Chapter 12 ✦ Generating XML from MS Access Data

Figure 12-10: XML spreadsheet shown in Excel 2002 after an XML export
from Access

The code to export the XML has only one essential difference from the code in
Listing 12-2 in that the OtherFlags parameter has a value of 1 instead of 4. This
means that the schema information will come embedded in the XML file rather than
being separate. The XSL information is optional, because we are going to apply our
own XSL stylesheet to the XML content.

In Listing 12-3 you can see the code used to convert the XML output from Access
into an Excel spreadsheet. This code applies a special XSL file to produce the final
XML file. A portion of code for the XSL is shown in Listing 12-4.

Listing 12-3: Converting an XML from the Standard Access
Output to Excel

Dim oDOM1 As DOMDocument40
Dim oDOM2 As DOMDocument40
Dim oDOM3 As DOMDocument40
Set oDOM1 = New DOMDocument40
Set oDOM2 = New DOMDocument40
Set oDOM3 = New DOMDocument40
oDOM1.Load “C:\output.xml”
oDOM2.Load “C:\excel_transform.xsl”
oDOM1.transformNodeToObject oDOM2, oDOM3
oDOM3.Save “C:\Spreadsheet.xml”

e538292 ch12.qxd 8/18/03 8:44 AM Page 281

282 Part II ✦ Microsoft Office and XML

The XSL instructions are actually based on an XSL file that ships with the Microsoft
XML Spreadsheet Add-In for Microsoft Access 2002. The add-in can be downloaded
from the Microsoft MSDN Website (http://msdn.microsoft.com/code/
default.asp?url=/code/sample.asp?url=/msdn-files/027/001/691/
msdncompositedoc.xml). This add-in leverages an XSL stylesheet called
od2ss.xsl. You can modify this sheet as needed to produce Excel spreadsheets
that suit your liking.

Listing 12-4: A View of the XSL to Convert Access Output to
an Excel Spreadsheet

<xsl:template match=”xsd:element”>
<xsl:variable name=”worksheetName” select=”@name”/>
<xsl:value-of

select=”ss:init(xsd:complexType/xsd:sequence/xsd:element[
not(xsd:complexType)],xsd:complexType/
xsd:sequence/xsd:element[
not(xsd:complexType)]/@od:jetType)”/>
<Worksheet xmlns =
“urn:schemas-microsoft-com:office:spreadsheet”>

<xsl:attribute name=”ss:Name”><xsl:value-of
select=”ss:truncateWorksheetName(ss:replaceHex(@name))”/>

</xsl:attribute>
<Table>
<xsl:for-each

select=”xsd:complexType/xsd:sequence/
xsd:element[not(xsd:complexType)]”>

<Column>
<xsl:attribute name=”ss:StyleID”>

<xsl:value-of select=”ss:colstyle()”/></xsl:attribute>
</Column>
</xsl:for-each>
<Row ss:StyleID=”Header”>
<xsl:for-each

select=”xsd:complexType/xsd:sequence/
xsd:element[not(xsd:complexType)]”>

<Cell>
<Data ss:Type=”String”><xsl:value-of

select=”ss:replaceHex(@name)”/></Data>
</Cell>
</xsl:for-each>
</Row>
<!--
<Row><Cell><Data ss:Type=”String”>

<xsl:value-of select=”ss:debug()”/></Data></Cell></Row>
-->
<xsl:for-each

select=”/root/dataroot//*[name()=$worksheetName]”>

e538292 ch12.qxd 8/18/03 8:44 AM Page 282

283Chapter 12 ✦ Generating XML from MS Access Data

<xsl:value-of select=”ss:initRow()”/>
<Row>
<xsl:for-each select=”*”>
<xsl:if test=”ss:showcell(.)”>
<Cell>
<xsl:if test=”ss:iscellstyleid()”>
<xsl:attribute name=”ss:StyleID”>

<xsl:value-of select=”ss:cellstyleid()”/>
</xsl:attribute>

</xsl:if>
<xsl:if test=”ss:iscellhyperlink()”>
<xsl:attribute name=”ss:HRef”>

<xsl:value-of
select=”ss:cellhyperlink()”/></xsl:attribute>

</xsl:if>
<xsl:if test=”ss:iscellindex()”>
<xsl:attribute name=”ss:Index”>

<xsl:value-of select=”ss:cellindex()”/></xsl:attribute>
</xsl:if>
<Data>
<xsl:attribute name=”ss:Type”>

<xsl:value-of select=”ss:celltype()”/></xsl:attribute>
<xsl:value-of select=”ss:cellvalue()”/></Data>
</Cell>
</xsl:if>
</xsl:for-each>
</Row>
</xsl:for-each>
</Table>

</Worksheet>
</xsl:template>

What you can see in this XSL stylesheet is that a new worksheet is added to the
workbook. The name of the worksheet is set to match the name of the exported
object from Access. Also, column headers are added and some styles are applied.
Then, the XSL adds the row and cell data to the spreadsheet. Fortunately, Excel
2002 has native support for XML, so the results of the transformation can be saved
as an XML file that can then be opened directly in Excel.

What this example shows is one way in which the results of Access XML exports
can be sent to other applications to suit other purposes. Access XML files can be
transformed for Excel, Visio 2002, Web Services, BizTalk Server processes, custom
component applications, and any other system that can parse XML. Moreover,
Access can import XML from these sources by using a companion method to the
ExportXML method.

e538292 ch12.qxd 8/18/03 8:44 AM Page 283

284 Part II ✦ Microsoft Office and XML

Importing
The full strength of the XML support in Access is brought to bear with the fact that
data can make a round-trip from Access to another system and back into an Access
table or other object once again. As was the case with XML exports, there is the
ability to import XML in the user interface, but you can also do so programmati-
cally. First, let’s look at the XML to import. Listing 12-5 shows some XML that needs
to be inserted into an Access database. These data will be added to a table.

Listing 12-5: XML to Be Imported into Access 2002

<QuoteTable>
<Date>12/22/2002</Date>
<Source>Jim Morrison</Source>
<Quote>Some of the worst mistakes of
my life have been haircuts.</Quote>
<QuoteKey>HNEY-1TTJRD</QuoteKey>
</QuoteTable>

Notice how the structure of the data in the XML file conforms to the structure of the
database table. What is not shown in Listing 12-5 is the equally important schema
information. The schema information would help ensure that the structure of the
data in the XML import meet the requirements of the data definition in the table
itself.

If Access encounters a problem when inserting data into Access, it will place the
errors in a new table called ImportErrors (see Figure 12-11). If the table does not
exist, Access will create it; otherwise, new errors will be appended to the table.

Figure 12-11: ImportErrors table in
table list of Access database

e538292 ch12.qxd 8/18/03 8:44 AM Page 284

285Chapter 12 ✦ Generating XML from MS Access Data

To see the kind of information that Access places in the ImportErrors, let’s try to
add a record to the database where a field value exceeds the maximum allowed in
Access. The record in the ImportErrors table for the error is shown in Figure 12-12.

Figure 12-12: Error reported in Access when a field in the data
violates a field constraint in the database

To begin an attempted import, you can choose the File | Get External Data | Import
menu in Access, or you can choose a pop-up menu when right-clicking in the pane
that lists tables, queries, or other objects in Access. Either way, you will be pre-
sented with a dialog box to let you navigate to the XML file that contains the data
you wish to import. After selecting the file and clicking the button to import the file,
you will see the dialog box shown in Figure 12-13.

Figure 12-13: Import dialog box

e538292 ch12.qxd 8/18/03 8:44 AM Page 285

286 Part II ✦ Microsoft Office and XML

This dialog box presents you with three options. Your import behavior can be
altered according to the setting you choose. The possible choices are:

✦ Structure Only: This imports the table structure only. If the table does not
exist, it will be created. If the table already exists, a new one will be added
with a number appended to distinguish it from the pre-existing table of the
same name.

✦ Structure and Data: This imports the table and the data into the database. If
the table exists, a new one will be added with a number appended. The differ-
ence between this and the previous option is that this one tells Access to
import the data as well.

✦ Append Data to Existing Table(s): This option tells Access to merely append
data to existing tables. If the tables do not exist, the import will fail.

Another aspect of the import is that Access can figure out if you are importing data
for a single table or for multiple tables. For example, if you have an XML file that
contains hierarchically structured XML that really should be structured as separate
tables, such as customer and order information in a single file, these will be split
into two tables in Access. You should make sure you include the appropriate
schema information with the file so that Access does not try to figure out the struc-
ture implicitly. Access should be given instructions on how the file is to be under-
stood by using an XSD file.

Figure 12-14 shows the result of importing the XML of Listing 12-5.

Figure 12-14: Result of the XML import

Importing programmatically
Using the user interface is fine, but, as with all things, programmability is what
makes a feature truly powerful. The Application object has a single method for
XML imports, ImportXML. The method accepts three parameters. They are:

e538292 ch12.qxd 8/18/03 8:44 AM Page 286

287Chapter 12 ✦ Generating XML from MS Access Data

✦ DataSource: This is the name and path of the XML file you are going to
import.

✦ DataTransform: This is the name of an XSL file you can apply to the incoming
XML data.

✦ OtherFlags: A bitmask which specifies other behaviors associated with
importing from XML. Table 12-3 describes the behavior that results from spe-
cific values; values can be added to specify a combination of behaviors.

Table 12-3
Values for the OtherFlags Parameter

Value Description

1 Overwrite — With this setting, Access overwrites the target table if it already exists.

2 Don’t create structure — By default, Access will create a new structure for the
object being imported. If you have not also added the Overwrite value to the
bitmask, a message box will appear asking the user for permission to overwrite.

4 Don’t import data — A schema will be used to create the structure, and the data
will be imported as well, unless you add this value to the bitmask.

To put it together, let’s take an Excel spreadsheet and import its data into an Access
table. A portion of the XML spreadsheet contents is shown in Listing 12-6.

Listing 12-6: A Portion of the XML Spreadsheet Contents

<Row>
<Cell><Data ss:Type=”String”>12/22/2002Jimi Hendrix</Data>
<NamedCell ss:Name=”Quote”/></Cell>
<Cell ss:Index=”3”><Data ss:Type=”String”>Imagination is

the key to my lyrics. The rest is painted
with a little science fiction. </Data>
<NamedCell ss:Name=”Quote”/></Cell>

<Cell><Data ss:Type=”String”>HNEY-2TTJRD</Data>
<NamedCell ss:Name=”Quote”/></Cell>

</Row>

As you can see, the structure of this file is not at all in conformity with the structure
needed for input into the Access database. Hence, a transformation must be
applied to the XML spreadsheet before it can be imported. Listing 12-7 shows the
XSL used to accomplish the transformation.

e538292 ch12.qxd 8/18/03 8:44 AM Page 287

288 Part II ✦ Microsoft Office and XML

Listing 12-7: XSL Used to Prepare XML for Import into Access

<?xml version=’1.0’?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:d=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:x=”urn:schemas-microsoft-com:office:excel”
xmlns:ss=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:html=”http://www.w3.org/TR/REC-html40”>

<xsl:output indent=”yes” omit-xml-declaration=”no” />
<xsl:template match=”d:Workbook”>

<QuoteTable>
<Date><xsl:value-of select=
“Worksheet/Table/Row/Cell

[NamedCell[@ss:Name=’Date’]]”/></Date>
<Source><xsl:value-of select=

“Worksheet/Table/Row/Cell
[NamedCell[@ss:Name=’Source’]]”/></Source>

<Quote><xsl:value-of select=
“Worksheet/Table/Row/Cell
[NamedCell[@ss:Name=’Quote’]]”/></Quote>

<QuoteKey><xsl:value-of select=
“Worksheet/Table/Row/Cell
[NamedCell[@ss:Name=’QuoteKey’]]”/></QuoteKey>
</QuoteTable>

</xsl:template>
</xsl:stylesheet>

With the transformation complete, the data are ready to be imported into Access.
What this example shows is how external applications and processes can be used
as valid sources for new Access data. As long as all of the parties involved use XML,
the data are candidates for import. One thing that must be mentioned is regarding
the use of namespaces. The source XML file for the import in the previous example
was an XML spreadsheet from Microsoft Office. As such, it will reference a
Microsoft Office namespace: xmlns:d=”urn:schemas-microsoft-
com:office:spreadsheet. This is important because without it, the XSL will not
be able to find the elements of the source XML file. The lesson is, if your source
XML files contain essential namespaces, make sure your XSL also knows about
them.

e538292 ch12.qxd 8/18/03 8:44 AM Page 288

289Chapter 12 ✦ Generating XML from MS Access Data

Summary
Access has long been a favorite for both large and small organizations. It is highly
programmable, and it is fairly easy to administer. As the demands of the market-
place have changed, so have the features of Access. XML support is high on the list
for any database environment. Access has support for native XML operations. Data
can be exported and imported, all using standard XML and no strings attached.
Additionally, Access makes it easy to build applications that consume the XML by
providing a mechanism for exporting schema information and display characteris-
tics. Data interaction with another environment becomes more likely as well
because schema and/or data can be imported into Access. What heightens the
power of Access is that it allows you to do all of these things programmatically so
that your application can silently accomplish full round-trips of data using XML.

✦ ✦ ✦

e538292 ch12.qxd 8/18/03 8:44 AM Page 289

Creating an
Excel
Spreadsheet
from an XML
Data Source

Excel is a perennial favorite for report writing, and, as
time has passed, it has come to do so much more. It is

now a full development platform for applications. Initially,
Excel was used for ad hoc reporting, and the sources were
comparatively limited. Now, data sources for Excel are very
diverse, and its ability to consume data from non-ODBC
sources and simple HTML has had to expand.

While it was possible to integrate XML into earlier versions of
Microsoft Excel, the release of Excel 2002 with Office XP made
it much easier. This version of Excel has built-in native sup-
port for XML. Microsoft Excel 2002 now recognizes and opens
XML documents including XSL processing instructions. The
Range object has also been amended so that developers can
access data in a spreadsheet using XML-based access. In addi-
tion, Microsoft Excel spreadsheets can be persisted as an XML
file while preserving the format, structure, and data through
the XML spreadsheet file format. In this chapter, you will learn
about how Excel can consume and produce XML. You will
learn about the XML spreadsheet file format and the XML
Spreadsheet Schema (XML-SS). You will see some of the differ-
ent source and destination types for the XML that Excel uses.
You will also learn how to build applications that use XML.
You’ll also see how to use Excel programmatically to export
data to XML and how XML-SS can work with scripts or Web
pages to produce alternate displays of Excel.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing XML data
sources with Excel

Importing XML with
stylesheets and
importing HTML data

Transforming content
through the XML
Flattener

Using Excel Web
queries to import XML

Exporting XML using
the XML Spreadsheet
Schema

✦ ✦ ✦ ✦

e538292 ch13.qxd 8/18/03 8:44 AM Page 291

292 Part II ✦ Microsoft Office and XML

Introduction
One of the most important things to keep in mind when integrating XML with Excel
is that the XML needs no special tags, styles, or instructions to be used. Excel can
use any data and structure, as long as it is well-formed. Let’s first look at opening
XML files in Excel. Then we will look at how to export XML from spreadsheets. We
will also take a look under the hood to see how Excel does its work. We will also see
how to use Web queries to acquire XML from URLs before taking a look at how to
consume data from SQL Server using features SQL-XML.

Importing XML
When Excel attempts to open an XML file, it has no idea about the source from
which the XML came or what its ultimate purposes may be. In the end, the applica-
tion is left to try to display the data in the spreadsheet format, which is the only
format available to a user once the data is loaded. What makes it possible to inter-
pret and then alter the XML so that the data can be viewed as a spreadsheet is what
is known as the XML Flattener. The Flattener contains processing logic so that the
data in an XML file can be converted into a two-dimensional spreadsheet. The
exception to this is when the file is already saved in the XML spreadsheet format. In
this case, no flattening is required because the file is already in the Microsoft Excel
native XML file format. This means that the XML stylesheet is being used to make
sure that the XML is in a structure that Excel can understand. Figure 13-1 shows
when the Flattener is invoked depending on the XML being opened.

Figure 13-1: The Flattener is used
when the source XML is not in a
structure that can be used in Excel’s
spreadsheet structure.

XML
SS

MSO
HTML/XML

Parser

XML
Generic

Excel
Native

Excel Native
(Flattener)

e538292 ch13.qxd 8/18/03 8:44 AM Page 292

293Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

The Flattener is used when you use code to open a workbook or an XML spread-
sheet using the Workbooks.Open or Workbooks.OpenXML methods to open XML
files. As already stated, the XML file must be well-formed. If it is not, an error will
result and the file will not be opened (or saved if attempting to save the XML).
When an XML file is opened and the Flattener is used, the original file is opened as a
read-only file so that the flattened file does not replace the original file. You then
have the choice of saving the flattened file under a different name.

There are a few different ways you can get XML data into Excel. There are user
interface features to facilitate this, and there are programmatic methods you can
use to import XML as well. The easiest user interface method is to go to the
File➪Open menu and navigate to an XML file. Figure 13-2 shows the result of navi-
gating to and opening a file containing a shortened view of the XML shown in
Listing 13-1.

Listing 13-1: Source XML for an Excel Spreadsheet

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml-stylesheet type=”text/xsl” href=”quotes01.xsl”?>
<Quotes>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Joke-Of-The-Day</Source>
<Quote><![CDATA[Should you trust a

stockbroker who’s married to a travel agent?]]></Quote>
<QuoteKey>HNEY-4TTL67</QuoteKey>
</QuoteTable>
<QuoteTable>
<Date>03/30/1998</Date>
<Source>Tammy Vanoss</Source>
<Quote>Each day I try to enjoy something

from each of the four food groups:
the bonbon group, the salty-snack grou</Quote>

<QuoteKey>HNEY-4TTL6G</QuoteKey>
</QuoteTable>
</Quotes>

One of the things that is notable in these data is the reference to a stylesheet.
Without the stylesheet, the resulting worksheet in Excel will look like Figure 13-2.
The result with the stylesheet applied when importing is shown in Figure 13-3.

e538292 ch13.qxd 8/18/03 8:44 AM Page 293

294 Part II ✦ Microsoft Office and XML

Figure 13-2: View of imported XML not using a stylesheet

Figure 13-3: View of imported XML using a
stylesheet

Remember, Excel needs to constrain the structure of the XML into a structure it can
display in a typical spreadsheet. Notice how in Figure 13-2, Excel figures out what
should be represented as rows and what should be represented as columns pretty
well. It even applies some default formatting to the XML by bolding and coloring the
column headings. When you import XML into Excel, you can choose to apply any
stylesheet referenced in the XML. However, if more than one stylesheet is refer-
enced, only one can be used. When opening a workbook from an XML file that has a
stylesheet, a dialog appears (see Figure 13-4).

e538292 ch13.qxd 8/18/03 8:44 AM Page 294

295Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

Figure 13-4: Dialog to choose a
stylesheet when importing XML in Excel

It’s hard to see, but there is actually a scrollable list box containing the names of
the stylesheets referenced in the source XML file. If you choose to not use the
stylesheets, the XML is imported as shown in Figure 13-5.

Programmatically, these same capabilities are possible. Using the OpenXML method
from the Workbooks object in Excel, you can import XML content. The method
accepts two parameters:

✦ FileName: A string containing the name of the file to open.

✦ Stylesheets: This is either a single value or an array of values that tell Excel
which XSLT stylesheet processing instructions to apply.

Previously, we mentioned how Excel can only apply one of the stylesheets it finds
referenced in the source XML file. However, this policy only applies to activities in
the user interface. If you import XML programmatically, you can apply multiple
stylesheets. For example, if the XML file references two stylesheets, they can be
both used when importing if you call the OpenXML method this way:
Workbooks.OpenXML “C:\Source.XML”, Array(1, 2). The use of the array
tells Excel to apply the first referenced stylesheet first, then reference the second
stylesheet. However, this sequential application of stylesheets will only work if the
first stylesheet produces XML. In other words, if the first stylesheet produces non-
XML output (such as HTML) or not well-formed XML output, then the second
stylesheet cannot be applied.

Once the XML has been loaded into Excel, the normal capabilities of Excel can be
brought to bear on the data as you would expect. At this point, Excel has no knowl-
edge that the data in the spreadsheet actually came from an XML source of some
kind. This does not mean, however, that the data cannot be represented as XML
once again. Before looking at how to export data in an XML spreadsheet, it is worth-
while to look at another feature in Excel for representing spreadsheet data as XML:
the use of the Range object.

The Range object is one of the most commonly used objects in the Excel object
model. Much of the work Excel programmers do with Excel involves using this
object because it allows us to isolate areas in a spreadsheet, transform them, copy
them, format them, calculate them, and do many other things. If this is so, it would

e538292 ch13.qxd 8/18/03 8:44 AM Page 295

296 Part II ✦ Microsoft Office and XML

be extra convenient if the data in a range could be easily changed into XML. Thus, a
specific range of cells, say a named range, could be extracted from the spreadsheet
and used in another process that requires XML. The code in Listing 13-2 shows how
to load an XML file into Excel while applying a stylesheet. Then, a range is popu-
lated with the cells in the worksheet that contain data. The value of this range is
subsequently retrieved as an XML string. This is accomplished by using the
xlRangeValueXMLSpreadsheet option when retrieving the range value. This con-
stant tells Excel to dump the range contents as a fully well-formed XML string. The
string is used as the source for an instance of a DOM object. If the DOM success-
fully loads the string, it is saved as an XML file.

Listing 13-2: Working with XML Data in a Range Object

Dim oDoc As DOMDocument40
Dim oSheet As Worksheet
Dim oRange As Range

Workbooks.OpenXML Filename:= _
“C:\QuoteTable.xml”

Set oDoc = New DOMDocument40
Set oSheet = Application.ActiveWorkbook.ActiveSheet
Set oRange = oSheet.Cells.SpecialCells(xlCellTypeConstants)
oDoc.loadXML (oRange.Value(xlRangeValueXMLSpreadsheet))
oDoc.Save (“C:\Destination.xml”)

Ultimately, this is really doing the same thing that will be possible by simply saving
the spreadsheet as an XML spreadsheet, a technique that will be explained when
we delve more into exporting XML. What is important to see right now is that if
even the XML data have been imported into Excel spreadsheet format, they can still
be easily accessed as well-formed XML.

Another way of importing XML into Excel is by using a special feature known as
Web queries. A Web query is a way to import data into Excel using a URL. With
a Web query, you can import data from any page that is served up and parsed by
the Web browser. This excludes components and other display elements that are
rendered by something other than the browser, such as a Shockwave component or
something of that sort. One of the greatest benefits of Web queries is that they free
users and developers from having to worry about hard-coded paths to XML files.
URLs are easier to remember, and they are more accessible.

To see how they work, let’s load the XML file we imported using the OpenXML
method in Listing 13-2. Web queries are accessible from the Data➪Import External
Data➪New Web query menu. When you click this menu, a dialog box (Figure 13-5)

e538292 ch13.qxd 8/18/03 8:44 AM Page 296

297Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

will appear that will let you navigate to the Web file you want to import. Remember,
these files can be XML, HTML, or any other parsable combination of files that the
browser can interpret.

Figure 13-5: Web query dialog

As you can see, the Web query dialog has an address bar so that a user can navi-
gate to a Web file just as one would in a typical Web browser. The browser will
attempt to locate and load the page, and if it encounters errors, it will provide error
messages in the normal way. If it can load the page, it will do so and place a small
yellow box containing a black arrow next to certain portions of the file. These boxes
indicate which portions Excel identifies as candidates for imports into a spread-
sheet. Areas that cannot be imported will still display in the dialog window, but
they will not be accompanied by an arrow. As one clicks on an arrow, the box turns
green and the arrow changes to a check, as you can see in Figure 13-5. Notice how
what is being imported here is a portion of an XML file that was altered using an
XSL stylesheet. With a section checked, just clicking the Import button will import
the section, but there are more options that can be selected to alter the behavior of
the import.

If you click on the Options button on the Web query dialog, you will see the dialog
shown in Figure 13-6. First, you have the option of importing the content with no
formatting, rich text formatting, or full HTML formatting. There are settings for pre-
formatted HTML blocks, and two additional settings. The first of the two additional
settings is to disable date recognition in the source data. For example, a string of
characters such as “1/3” will be interpreted as “January 3.” If this is not a correct
interpretation (say, if the characters really mean “one third”), then checking this
box will ensure that the characters will not be turned into dates.

e538292 ch13.qxd 8/18/03 8:44 AM Page 297

298 Part II ✦ Microsoft Office and XML

Figure 13-6: Options for new Web
queries

The second of the two additional attributes has to do with Web query redirections.
With Microsoft Excel 2002, you can create a Web query to a specific HTML page that
additionally retrieves data from another Web location by using special commands
in the HTML file. For example, if an HTML page contains data for current projects in
your organization, a table of data in that page can contain a command to retrieve
data from another data source. Here is an example of the special command used for
Web query redirections:

<TABLE NAME=”ProjectStatus”
o:WebQuerySourceHRef=”http://localhost/Projects/ProjectStatus.
XML”>.

One of the main reasons for this feature is that the Web page you are accessing can
be formatted for viewing as a Web page, but the accompanying data can be opti-
mized for analysis (for example, in XML format). Another advantage is that the
HTML page can be optimized for paged viewing (say, ten rows at a time), whereas
the data table that the Web query accesses can retrieve the entire data sample at
once. Sometimes you will not want to use this redirection, so it can be disabled by
checking the box in the Options dialog box.

With the options set, you can click the Import button to begin the import. When
you do, you will see the dialog box shown in Figure 13-7. This lets you specify where
you want the import results to go. You can import them into an existing spread-
sheet or to a new spreadsheet entirely.

e538292 ch13.qxd 8/18/03 8:44 AM Page 298

299Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

Figure 13-7: Import Data dialog box

There are other options that can be set at this point. There is a Properties button
that can be clicked to show the External Data Range Properties dialog box (see
Figure 13-8). The first option allows you to save the query definition. This is impor-
tant because if you choose to save the query definition, the Web query can be
refreshed on a button of a small toolbar later on (see Figure 13-9). If you choose to
not save the query definition, the data are imported, and the spreadsheet retains
no knowledge that the data came from a Web query at all. Web queries can be
refreshed after the import by clicking on the exclamation point icon on the Web
query toolbar. The dialog box shows settings for the refresh frequency. A back-
ground refresh means that the data can be refreshed without the user initiating
the process manually. The refresh frequency can be set to a number of minutes
(up to 99), and the data can be set to refresh as the file is opened. As the data are
refreshed, there may be times when new cells are added.

Figure 13-8: External Data Range
Properties dialog box

e538292 ch13.qxd 8/18/03 8:44 AM Page 299

300 Part II ✦ Microsoft Office and XML

There are settings in the dialog box to tell Excel what to do when it encounters new
rows as well as what to do when existing imported rows are no longer needed.

Another important aspect of the process is to set how the data will be formatted.
Settings can be configured so that the column widths of the spreadsheet automati-
cally adjust to the size of the data in the source. Also, a check box allows you to tell
Excel to apply its default formatting or not. If you preserve cell formatting, Excel
will attempt to apply the original cell formatting; otherwise, Excel will use format-
ting directives in the template being used. For example, this can specify that col-
umn headings will be automatically bolded and their background color changes as
the data are imported. The last setting to be mentioned is one that tells Excel what
to do if new data are added and there are formulas in the spreadsheet.

The result of the import is shown in Figure 13-9. You can see that the full HTML for-
matting was preserved. You can also see that there is a small toolbar for refreshing
the Web query. This is because Excel was told to save the Web query definition
with the spreadsheet. This means that when the spreadsheet is saved and opened
again, the Web query will still be present so that it can be refreshed.

Figure 13-9: Web query import results

e538292 ch13.qxd 8/18/03 8:44 AM Page 300

301Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

The Web query can also be edited by clicking on the toolbar (Figure 13-10). This
will reopen the Web query dialog box so that a new URL can be specified, or other
settings can be configured.

Figure 13-10: Initiating the edit of an existing Web query

This is a lot of information about Excel, but it is only to help us understand how to
exploit its ability to work with XML. As the example shown in Figure 13-9 demon-
strates, an XML file can be imported. This particular XML file referenced an XSL
stylesheet, so the actual results were formatted as HTML. However, Excel could just
as easily import the results from an XML file that has no formatting specified at all.
Figure 13-11 shows the Web query dialog box for initiating an import of pure XML.
Notice how the entire XML content can be imported, or just specific data sections.
Figure 13-12 shows the results of the final import.

Figure 13-11: Importing an unformatted XML file

e538292 ch13.qxd 8/18/03 8:44 AM Page 301

302 Part II ✦ Microsoft Office and XML

Figure 13-12: Results of the final XML import

Excel 2002 supports creating Web query to an XML file that contains a schema.
However, the schema does not have some of the benefits one would expect. For
example, the data types in the schema are not directly meaningful to Excel. The
alternative is to open an XML spreadsheet. This format is unique to Excel in that it
is a complete XML representation of a spreadsheet. All of the data, formatting, and
other aspects of the Excel spreadsheet are persisted in the XML. A Web query can
be directed to an XML spreadsheet, and in doing so, there are unique benefits. This
means that the XML file can:

✦ Preserve data types

✦ Preserve formulas for ad hoc analysis

✦ Preserve named ranges

✦ Preserve Excel-specific formatting

Regular XML files are not the only source for the Web query. XML can be brought
in using other techniques. For example, XML can be returned from Microsoft SQL
Server as a direct response to a database query. Here is the URL used to return
the XML:

http://localhost/nwind?sql=SELECT+*+FROM+Authors+FOR+XML+AUTO&
root=root

e538292 ch13.qxd 8/18/03 8:44 AM Page 302

303Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

This query will return XML that can be imported and then placed in an Excel
spreadsheet. The results are shown in Figure 13-13.

Figure 13-13: Importing XML from Microsoft SQL Server

The next thing to see is how to accomplish the XML/HTML import through a Web
query using Excel’s programmability. VBA code can be used to do this, and the
object that represents a Web query is called the QueryTable object. A
QueryTable can be accessed through a worksheet, and all of the settings of the
user interface dialogs are available through it. Listing 13-3 shows how to use a
QueryTable in code that accesses the Northwind database.

Listing 13-3: Creating a Web Query Programmatically

With ActiveSheet.QueryTables.Add(Connection:= _
“URL;http://dpower26/nwind?sql=SELECT+*+FROM+Authors+FOR+XML+AU
TO&root=root”, _

Destination:=Range(“A1”))
.Name = “Authors”
.FieldNames = True
.RowNumbers = False
.FillAdjacentFormulas = False
.PreserveFormatting = False
.RefreshOnFileOpen = False

Continued

e538292 ch13.qxd 8/18/03 8:44 AM Page 303

304 Part II ✦ Microsoft Office and XML

Listing 13-3 (continued)

.BackgroundQuery = True

.RefreshStyle = xlInsertDeleteCells

.SavePassword = False

.SaveData = True

.AdjustColumnWidth = True

.RefreshPeriod = 0

.WebSelectionType = xlEntirePage

.WebFormatting = xlWebFormattingNone

.WebPreFormattedTextToColumns = True

.WebConsecutiveDelimitersAsOne = True

.WebSingleBlockTextImport = False

.WebDisableDateRecognition = False

.WebDisableRedirections = False

.Refresh BackgroundQuery:=False
End With

This code imports XML from SQL Server, just as was done previously through the
user interface. Based on certain conditions in the code, a different URL could be
used, or other settings could be changed depending on the conditions. This code
can be used in VBA code in the application or through an external program that ani-
mates the Excel object model. What all of the examples shown demonstrate is how
easy it is to import XML into Excel, through the File | Open menu or through Web
queries.

Exporting XML
XML can be exported from Excel as a native format. This means that the entire con-
tents of an Excel spreadsheet can be retained in a fully well-formed Excel file. This
is a major step forward in the evolution of end-user productivity and reporting solu-
tions. As Excel has become so integral to business processes, it has become
increasingly necessary that the data in Excel become more approachable once out-
side of the application itself. A spreadsheet saved in this special format is called an
XML spreadsheet.

The easiest way to export the XML is to save the spreadsheet from the File➪Save
menu. The first part of this XML is shown in Listing 13-4. Notice how the first part of
the XML contains information such as what the Window size should be when the
spreadsheet is opened in the application. Listing 13-5 reveals that the source of the
spreadsheet data was actually an Excel Web query. The Web query will be available
when the spreadsheet is reopened in Excel, and all of its features will be restored.

e538292 ch13.qxd 8/18/03 8:44 AM Page 304

305Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

Listing 13-4: Processing Instruction and Initial Data in
Content Stored As XML Spreadsheet

<?xml version=”1.0”?>
<Workbook xmlns=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:o=”urn:schemas-microsoft-com:office:office”
xmlns:x=”urn:schemas-microsoft-com:office:excel”
xmlns:ss=”urn:schemas-microsoft-com:office:spreadsheet”
xmlns:html=”http://www.w3.org/TR/REC-html40”>
<DocumentProperties xmlns=”urn:schemas-microsoft-
com:office:office”>

<Author>Administrator</Author>
<LastAuthor>Administrator</LastAuthor>
<Created>2003-01-03T10:16:42Z</Created>
<Company>Microsoft Corporation</Company>
<Version>10.2625</Version>
</DocumentProperties>
<OfficeDocumentSettings xmlns=”urn:schemas-microsoft-
com:office:office”>

<DownloadComponents/>
<LocationOfComponents HRef=”file:///C:\OfficeXP\”/>
</OfficeDocumentSettings>
<ExcelWorkbook xmlns=”urn:schemas-microsoft-com:office:excel”>
<WindowHeight>5130</WindowHeight>
<WindowWidth>8475</WindowWidth>
<WindowTopX>120</WindowTopX>
<WindowTopY>75</WindowTopY>
<ProtectStructure>False</ProtectStructure>
<ProtectWindows>False</ProtectWindows>

</ExcelWorkbook>

Listing 13-5: Web Query Information Is Also Saved in the
XML Spreadsheet

<QueryTable xmlns=”urn:schemas-microsoft-com:office:excel”>
<NoPreserveFormatting/>
<Name>nwind?sql=SELECT+*+
FROM+Authors+FOR+XML+AUTO&root=root</Name>
<AutoFormatFont/>
<AutoFormatPattern/>
<QuerySource>
<QueryType>Web</QueryType>
<EnableRedirections/>
<RefreshedInXl9/>

Continued

e538292 ch13.qxd 8/18/03 8:44 AM Page 305

306 Part II ✦ Microsoft Office and XML

Listing 13-5 (continued)

<EntirePage/>
<URLString

x:HRef=”http://dpower26/nwind?
sql=SELECT+*+FROM+Authors+
FOR+XML+AUTO&root=root”/>

<VersionLastEdit>1</VersionLastEdit>
<VersionLastRefresh>1</VersionLastRefresh>
<VersionRefreshableMin>1</VersionRefreshableMin>
</QuerySource>
</QueryTable>

Some of the things that using the XML spreadsheet format will not preserve include
any VBA project code and embedded OLE objects. Keep this in mind as you persist
your XML in this way. Another way to export the XML content of a spreadsheet is to
use the MSXML library and the XML support of Excel to send the XML elsewhere. In
Listing 13-6, you see code that loads the content of a spreadsheet to export it to a
remote source.

Listing 13-6: Sending the Contents of a Range to a Web
Application As XML

Dim str As String
Dim oDoc As DOMDocument40
Dim oDoc2 As DOMDocument40
Dim oNode As MSXML2.IXMLDOMNode
Dim oXSL As MSXML2.DOMDocument40
Dim oRng As Range
Dim osvc As clsws_addauthor1

Set oDoc = New DOMDocument40
Set oDoc2 = New MSXML2.DOMDocument40
Set objRng = ActiveWorkbook.Worksheets(“Authors”) _
.Range(“Author”)
str = objRng.Value(xlRangeValueXMLSpreadsheet)
oDoc.loadXML str
oXSL.Load ActiveWorkbook.Path & “\AuthorTransform.xsl”
oDoc.transformNodeToObject oXSL, oDoc2
Set osvc = New clsws_addauthor1
osvc.wsm_AddAuthor (oDoc.XML)

e538292 ch13.qxd 8/18/03 8:44 AM Page 306

307Chapter 13 ✦ Creating an Excel Spreadsheet from an XML Data Source

This code uses three instances of the DOM to get the job done (two could be used,
but three are used for clarity here). The first DOM is loaded with the content of the
spreadsheet itself. However, it only loads the content of a named range, “Author”,
within the spreadsheet. This spreadsheet is shown in Figure 13-14 with the named
range highlighted to reveal the name. The value of the named range is exported as a
fully well-formed XML string and loaded into a string variable. Then the string is
used as the source for the first instance of the DOM, and another DOM is loaded
with the instructions of an XSL stylesheet. That DOM is used to transform the XML
content to a different structure. The contents of the newly created XML document
are then shipped off to a .NET Web Service that receives the XML and does some
additional processing after loading the XML into an XML document on the server.

Figure 13-14: The Excel spreadsheet content to be exported to a remote system

You can imagine that this technique could be used to augment the kinds of things
that Excel is so good at doing. For example, if Excel is used as a tool for creating
new invoices, the invoice data could be exported to either a database system or a
remote system (like the Web Service used here). The advantage would be that the
XML sent to the remote system need not be cognizant of the way Excel works or
structures XML. The remote system can be generic enough to receive invoice data
from any system, as long as it conforms to the structure it expects. Excel is an
excellent candidate for setting up data interchanges with these types of systems
because of its powerful XML support.

Summary
In this chapter, we have taken a close look at working with XML in Microsoft Excel
2002. Excel is capable of importing and exporting XML natively. This means that no
special instructions or steps need to be taken to begin using any well-formed XML
file with Excel. We saw how Excel can take advantage of XML stylesheets both when

e538292 ch13.qxd 8/18/03 8:44 AM Page 307

308 Part II ✦ Microsoft Office and XML

importing and exporting. We saw that when importing XML programmatically we
have the ability to apply more than one stylesheet when importing, whereas when
using the user interface, only one stylesheet is supported. We also took a good look
at Web queries, a feature in Excel that lets you import browser-parsed content from
any Website. This includes XML. We could see that Web queries could be used to
import and automatically format XML data from files located on a Website. We also
saw how to import XML directly from SQL Server 2000, which has the capability to
export database data as pure XML. We then looked at how to do these types of
things programmatically. We probed the XML export features of Excel and saw how
to work with XML a little more in VBA code. This included a survey of the XML
spreadsheet format, a format used by Excel to persist spreadsheet data as fully
well-formed document data. We finished off by looking at how to export Excel data
to a .NET Web Service using the MSXML DOM object.

✦ ✦ ✦

e538292 ch13.qxd 8/18/03 8:44 AM Page 308

XML Web
Applications
Using J2EE

Part III builds on the basic concepts that were introduced
in Parts I and II, showing readers how to create XML

Web Applications using J2EE. We review sample code line-by-
line, so previous Java/J2EE knowledge is not necessary to
understand and work with the examples. Open source
libraries for working with Java tools are referenced and spe-
cific code examples are provided for working with Xalan and
Xerces. We also provide examples for the XML APIs in the Sun
Java Web services Developer Pack (WSDP), including the Java
API for XML Processing (JAXP), Java Architecture for XML
Binding (JAXB), and Java Server Pages Standard Tag Library
(JSTL) APIs.

✦ ✦ ✦ ✦

In This Part

Chapter 14
XML Tools for J2EE:
IBM, Apache, Sun,
and Others

Chapter 15
Xerces

Chapter 16
Xalan

Chapter 17
XML APIs from Sun

✦ ✦ ✦ ✦

P A R T

IIIIII

f538292 pp03.qxd 8/18/03 8:44 AM Page 309

XML Tools for
J2EE: IBM,
Apache, Sun,
and Others

When you’re working with XML in J2EE applications,
you’re working with code. Unfortunately for J2EE

developers, the core Java classes, methods, and properties
have absolutely nothing to do with XML. Fortunately for J2EE
developers, however, J2EE does support a great deal of func-
tionality when working with text, and XML is, after all, text.
Even more fortunately for J2EE developers, there are several
J2EE tools and code libraries that an XML developer can take
advantage of to help develop and deploy J2EE XML applica-
tions in a timely and efficient manner. In this chapter, I’ll
review the tools and code libraries that turn Java developers
into J2EE code powerhouses. (J2EE code powerhouses? Wow,
I should be writing ad copy! But they really are good tools,
and I’ll show you why later in the chapter.)

Java and J2EE development tools have come a long way since
I tried to develop XML code in Java way back in 1997. I say
tried, because in those days, most Java development was done
using Notepad. Compiling took place by calling batch files
from the command line.

A couple of years later, Symantec Café and a few worthy com-
petitors emerged on the scene. These integrated UI tools
helped developers generate and compile code from GUI tem-
plates. But for those of you who used these tools to any
extent, you probably remember that point in your application
when you had to generate a flawed piece of code in the devel-
oper tool, copy it to Notepad, then debug it and compile it

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

IBM WebSphere
Studio

IBM AlphaWorks
offerings

Eclipse offerings

Sun ONE Studio

The Apache XML
Project: Xalan,
Xerces, and others

The difference
between XML4J,
Xerces, and JAXP

✦ ✦ ✦ ✦

g538292 ch14.qxd 8/18/03 8:44 AM Page 311

312 Part III ✦ XML Web Applications Using J2EE

from the command line, again. And these tools were usually geared toward Java
applets and sometimes applications, but rarely supported new J2EE features such
as servlets.

Fortunately for today’s developers, Java development environments have evolved
into rock-solid code tools that generate and debug J2EE code, compile it, and let
you test it on the J2EE application server of your choice. Unfortunately, prices for
these tools have evolved along with their feature set, and they can be pricey for a
feature set that meets the needs of professional developers. In this chapter I’ll
briefly cover the two most prominent developer tools: the IBM WebSphere Studio
Application Developer and the Sun ONE Studio. I used WebSphere Studio
Application Developer while developing most of the examples in this book.

Help for developing XML has evolved as well. Back in 1998, not only was XML code
developed in Notepad, if you needed something to parse or generate XML docu-
ments, you created the parser or generator yourself. Today there are several excel-
lent J2EE code libraries available for free that support basic functions such as
parsing and transforming XML documents. Some of these come with source code,
and some don’t. In this chapter I’ll review the offerings from IBM, Eclipse, Sun, and
Apache. There are literally hundreds of other offerings that come and go over the
years, but these providers offer consistency and reliability in their offerings, which
are pretty good things if you want to base your applications on them. Many of the
things I list here, and others, are also listed at http://www.xmlsoftware.com/
utilities.html.

In subsequent chapters I’ll show examples of the Xerces and Xalan libraries, the
IBM XML Toolkit, and the XML parts of the Java Web Services Developer Pack
(WSDP), formerly known as the Sun Java XML Pack.

IBM Tools
IBM provides one of the two prominent J2EE development tools, WebSphere Studio
Application Developer. They also provide a lot of J2EE software for free download
from the AlphaWorks Website. In addition to this, Free XML tutorials, articles and
sample code are available from the IBM DeveloperWorks XML Zone.

WebSphere Studio Application
Developer and Workbench

IBM’s J2EE developer environment is based on the Eclipse platform and is called
WebSphere Studio. WebSphere Studio is actually the name that is used to describe
several “product configurations” of the base tool. The last time that I checked the

g538292 ch14.qxd 8/18/03 8:44 AM Page 312

313Chapter 14 ✦ XML Tools for J2EE: IBM, Apache, Sun, and Others

WebSphere Studio Website, there were nine configurations listed, all with similar-
sounding and confusing names, but all starting with the WebSphere Studio prefix.
However, there are really only two configuration options that XML developers need
to focus on: WebSphere Studio Application Developer or WebSphere Studio
Workbench.

The fist choice is WebSphere Studio Application Developer (WSAD), which is a rich
J2EE developer UI combined with tools and wizards to simplify XML and Web devel-
opment tasks. Aside from J2EE, WSAD also supports JavaScript, Dynamic HTML,
and Cascading Style Sheets. It also provides visual layout tools to create dynamic
Websites with Java servlet or JavaServer Pages. WASD also includes a built-in XML
development environment with support for Xerces, Xalan, and other code libraries,
support for Rational ClearCase LT for software configuration management, and
Apache AXIS-based Web service functionality for the creation, deployment, and
publishing of Web services. IBM has even published a very good series of free
online tutorials that cover building XML applications using WebSphere Studio appli-
cation developer, which can be found at http://www7b.software.ibm.com/
wsdd/techjournal/0111_lau/lau.html.

This advanced functionality does not come cheap, however. The good news is that
there is a 60-day trial version that can be downloaded at the IBM DeveloperWorks
WebSphere Studio Zone at http://www7b.software.ibm.com/wsdd/zones/
studio/.

If WebSphere Studio Application Developer is simply too expensive and/or you take
pride in coding your J2EE applications by hand, the second choice is WebSphere
Studio Workbench. IBM has added several plug-ins to the base Eclipse Workbench
platform and re-branded it as WebSphere Studio Workbench, which they offer as a
free download at http://www-3.ibm.com/software/ad/workbench. (A free
registration is required to download the software.) WebSphere Studio Workbench
provides an efficient, if basic, developer UI for J2EE applications. The plug-in archi-
tecture of Eclipse-based products makes the platform easy to upgrade with cus-
tomized tools and interfaces. Based on this architecture, it’s possible to assemble a
reasonable facsimile of WebSphere Studio Application Developer by downloading
code libraries from Apache and SUN and free plug-ins from the Eclipse site. This
approach, however, will take time and patience, and will never be as seamless as
the WebSphere Studio Application Developer. But if you’re a build-it-yourself devel-
oper on a tight budget, WebSphere Studio Workbench may be the way for you to go.

IBM AlphaWorks
IBM AlphaWorks (http://alphaworks.ibm.com) is a very important resource
for anyone who has to code XML applications in J2EE. For those unfamiliar with the
site, it contains a wealth of free tools and utilities that can be downloaded and inte-
grated into an XML and J2EE developer’s arsenal. The AlphaWorks Site also helps
to dispel the notion of free tools as something in which you get what you pay for, or
more specifically, don’t get what you don’t pay for. My experience to date with the

g538292 ch14.qxd 8/18/03 8:44 AM Page 313

314 Part III ✦ XML Web Applications Using J2EE

AlphaWorks tools is that they work well in most cases, and the only thing missing
from comparative paid products are documentation, which is often compensated
for with working examples. I’ve listed some of my favorites below, but there are
many more, organized into XML subsections such as XML-database and XML-DTD.
One caveat: Developers who want to work with these tools should download them
as soon as possible, as the best AlphaWorks technologies are eventually rolled into
commercial products and no longer offered as free downloads. For example, one of
the most popular AlphaWorks downloads was the IBM XML toolkit, which included
a number of great resources and examples for XML developers. Now parts of the
XML Toolkit have been rolled into the WebSphere Studio Application Developer and
the Eclipse Modeling Framework that I cover later in this chapter.

XML Parser for Java (XML4J)
XML Parser for Java is a validating XML parser and processor for parsing and gen-
erating XML data. It’s based on Apache Xerces code, and supports several W3C
XML-related recommendations through Java class methods and properties. These
include the W3C XML Schema Recommendation 1.0, DOM Level 1, 2, and some of
the DOM Level 3 Core and Load/Save Working Drafts. It also supports non-W3C
standards and tools such as SAX 1 and 2, Sun’s Java API for XML Processing (JAXP),
and multilingual error messages. XML4J includes compiled classes and Java
source code.

XML Integrator (XI)
One of the most difficult tasks in developing relation XML applications is providing
a flexible platform for mapping constantly changing relational data structures to
XML elements and attributes. XML Integrator is a tool for converting XML and rela-
tional data formats. It also processes conversions between LDAP data and XML.
Developers can map structured data formats using Document Type Definition with
Source Annotation (DTDSA) or XML Relational Transformation (XRT). DTDSA is a
DTD with additional markup for mapping XML elements to rows and columns in a
relational database. XRT is a scripting language based on XSL that uses SQL syntax
to map elements to rows and columns of data.

The XI engine parses the DTDSA or the XRT and creates run-time objects that are
cached for reuse. The run-time engine is contained in a JAR file and can be inte-
grated with Xerces, Xalan, and JDBC drivers.

XML Security Suite
XML Security Suite Adds W3C-defined security features such as digital signature,
encryption, and access control to XML documents and XML applications. These
features have always been a challenge for XML developers, because they are trans-
porting text over standard protocols that don’t support advanced security features.
The XML Security Suite includes support for the W3C XML-Signature Syntax and
Processing and XML Encryption Syntax and Processing Recommendations. There is

g538292 ch14.qxd 8/18/03 8:44 AM Page 314

315Chapter 14 ✦ XML Tools for J2EE: IBM, Apache, Sun, and Others

also support for XML Access Control functionality, partly supported by the W3C
Canonical XML Version 1.0 Working Draft. The free download includes a .jar file con-
taining supporting classes and a number of examples of the XML Security Suite
code in use. A good introductory article can be found at the IBM DeveloperWorks
XML Zone at http://www-106.ibm.com/developerworks/security/
library/x-xmlsecuritysuite/?dwzone=security.

XML TreeDiff
XML TreeDiff is old technology (last updated in 1999) but is still extremely useful
for comparing two XML documents to check for changes. TreeDiff consists of
Java beans that enable differentiation of XML document DOMs. Differences are
described as changes to nodes and tell you if a specific node has been changed,
deleted, or inserted. XML TreeDiff uses an algorithm that enables a fast tree-
matching procedure. Access to the code is either from the command line, or the
code can be integrated into Java applications. TreeDiff includes tools for checking
XML document differences and updating XML documents. There is also a GUI for
displaying tree differences. TreeDiff also supports a reporting function, which
writes result files in XML format.

Eclipse Tools
The eclipse.org Website (http://www.eclipse.org) is the central product of the
Eclipse consortium. Eclipse is an open-source, freely distributable platform for tool
integration. In essence, it provides a “lowest common denominator” for developers
to integrate functionality into a development UI. IBM provided most of the code for
the startup, and since then other large players have joined in at the board level,
including Borland, MERANT, QNX Software Systems, Rational Software, Red Hat,
SuSE, TogetherSoft, and Webgain2. Several other very large players have also joined
as non-board members, including Sybase, Fujitsu, Hitachi, Oracle, SAP, and the
Object Management Group (OMG).

Eclipse projects are broken down into three groups:

✦ The Eclipse Project is the original open-source software development project
that is developing open-source developer UI platform.

✦ The Eclipse Tools Project was developed to provide services and support to
tools developers who want to integrate their tools into the eclipse platform.

✦ The Eclipse Technology Project provides support for Eclipse project
research, incubators, and education. Research projects explore programming
languages, tools, and development environments applicable to the Eclipse
project. Incubators implement new capabilities on the Eclipse platform and
may or may not be based on research. Education projects develop educa-
tional materials, teaching aids, and courseware.

g538292 ch14.qxd 8/18/03 8:44 AM Page 315

316 Part III ✦ XML Web Applications Using J2EE

The Eclipse Modeling Framework
The tools project is probably the most interesting to XML developers, because this
is where the Eclipse Modeling Framework is located. The Eclipse Modeling
Framework (EMF) is composed of pieces taken from what used to be the IBM XML
toolkit, and a few other places.

EMF is a framework for generating applications based on class models. EMF uses
Java and XML to generate Java code from application models. The intention is to
provide the same sort of functionality that is found in other, more expensive appli-
cation architecture and modeling tools. In addition to a Java code generator, EMF
saves objects as XML documents that can be transformed and adapted for use with
other tools and applications. In addition, an updated model can regenerate the Java
code, and updated Java code can be used to update the model.

Here’s a listing of the EMF framework components:

✦ The EMF framework core includes a set of tools for describing models using
metadata. The metadata starts with an instance of an object, and then
describes all of the features of that object, including properties, methods,
and so on. The framework core is implemented as a plug-in to the Eclipse
platform UI.

✦ The EMF.Edit component contains reusable classes that developers can use to
build of EMF model editors. Classes include support for class content, labels
and source code. Also included is support for display of the classes in the
Eclipse platform UI.

✦ The EMF.Codegen component generates J2EE code from an EMF model.
Classes include support for a developer UI for specifying generation options
and calling generators. Code can be generated for EMF models, implementa-
tion classes for editing and display of the model in the Eclipse Platform UI,
and editors that manage the editing and display of the model in the Eclipse
Platform UI.

Sun Tools
Sun owns the Sun One Studio Developer, which is the biggest competitor to IBM’s
WebSphere Studio Application Developer. Like IBM, Sun also provides a huge
amount of J2EE and XML resources for free download from Sun’s Java site. In addi-
tion, Free XML tutorials, articles, and sample code are available from the Sun
Developer Services Website.

g538292 ch14.qxd 8/18/03 8:44 AM Page 316

317Chapter 14 ✦ XML Tools for J2EE: IBM, Apache, Sun, and Others

Sun ONE
Sun’s open-source, free distribution offering is based on the former Forte Tools for
Java. As with the IBM WebSphere Studio offerings, the plug-in architecture of Sun
ONE-based products makes the platform easy to customize to a developer’s tastes.
Also like the IBM offering, Sun’s developer tools offer a robust but expensive option
and a simpler but free option. The Free Sun ONE Community Edition is the base
platform for the very uncheap Sun ONE Enterprise edition. Like WebSphere Studio
Workbench, Sun ONE Community Edition has some very good, if basic, features that
can be updated for dedicated do-it-yourself types. All Sun One products are based
on the open-source but sun-controlled NetBeans platform. Both flavors of Sun ONE
studio can be downloaded from http://www.sun.com/software/sundev.

The Java Web Services Developer Pack
Sun’s Java Web Services Developer Pack is a great tool for J2EE developers working
with XML and Web service applications. Based on JCP (Java Community Process)
API initiatives for XML, the Java Web Services Developer Pack contains several XML
interface APIs that act as proxies between compliant tools such as parsers and
transformation engines. These APIS are designed to shield developers from having
to recode Java when a new version of a J2EE tool comes out. For example, a J2EE
developer using the Java API for XML Processing (JAXP) API to access a DOM1
parser could theoretically move to a DOM2 or SAX parser with no change to their
Java source code. The updated parser is accessible by changing the pluggable
interface reference from DOM1 to any other JAXP-compliant parser.

The Java Web Services Developer Pack is downloadable from Sun at http://
java.sun.com/xml/.The following sections outline the XML components and
their associated benefits. I’ll cover the Web services components of the Java Web
Services Developer Pack in the Web services part of this book.

Examples of using the XML components of the Java Web Services Developer Pack
(listed below) are covered in Chapter 17. The Web service components are cov-
ered in Chapter 33.

JAXP (Java API for XML Processing)
The Java API for XML Processing (JAXP) supports processing of XML documents
using DOM 1, 2, and some of DOM 3, SAX 1 and 2, and XSLT. JAXP enables applica-
tions to change the processor that is used to parse and transform XML documents
without changing the underlying source code for the application that is doing the
parsing or transformation. JAXP also supports the W3C XML Schema 1.0
Recommendation and an XSLT compiler (XSLTC).

Cross-
Reference

g538292 ch14.qxd 8/18/03 8:44 AM Page 317

318 Part III ✦ XML Web Applications Using J2EE

JAXB (Java Architecture for XML Binding)
JAXB automates mapping between XML documents and Java objects. It makes ele-
ments and attributes classes as well as properties and methods by marshalling and
unmarshalling them in a customized XML document.

JAXM (Java API for XML Messaging)
JAXM provides an Interface for SOAP messages, including SOAP with attachments.
Because JAXM is based on XML, the messaging format can be changed to other
message standards that support XML formats.

JAX-RPC (Java API for XML-Based RPC)
JAX-RPC provides an Interface for XML messages using an RPC transport, including,
but not limited to, SOAP calls over RPC to Web Services.

JAXR (Java API for XML Registries)
JAXR provides an interface for XML registries, supporting UDDI and
OASIS/U.N./CEFACT ebXML Registry and Repository standards, among others.

SAAJ (SOAP with Attachments API for Java)
SAAJ provides support for producing, sending, and receiving SOAP messages
with attachments. Sun’s SAAJ library provides an interface to the features and
capabilities described in the W3C SOAP 1.1 attachment note, which have not
changed much in their current form. The current W3C specification is the W3C
SOAP 1.2 Attachment Feature, currently in the Working Draft stage of the
W3C Recommendation process.

The W3C SOAP 1.2 Attachment Feature Working Draft states that a SOAP message
may include attachments directly in the W3C SOAP body structure. The SOAP body
and header may contain only XML content. Non-XML data must be contained in an
attachment under the SOAP body. This provides facilities for providing binary infor-
mation and non-XML data in a SOAP envelope.

SOAP and SOAP attachments are covered in more detail in Chapters 23 and 24,
respectively.

Apache Tools
The Apache XML Project is part of the Apache Software Foundation, a nonprofit
consortium that provides organizational, legal, and financial support for Apache
open-source software projects. Apache XML Projects are documented at http://
xml.apache.org/. The goal of the Apache XML projects is to provide high-quality
standards-based XML solutions that are developed in an open and cooperative fash-
ion. Apache also provides implementation classes of many W3C specifications,

Cross-
Reference

g538292 ch14.qxd 8/18/03 8:44 AM Page 318

319Chapter 14 ✦ XML Tools for J2EE: IBM, Apache, Sun, and Others

such as Xerces for DOM, Xalan for XSLT, and AXIS for SOAP. Because of this, the
Apache projects and participants are in a unique position to provide feedback to
the W3C XML working group. Feedback usually involves implementation issues
that result from W3C Recommendation implementation attempts. I’m listing the
most relevant XML projects here, and anything that has been updated in the last six
months. For a full list of Apache XML projects, go to http://xml.apache.org/.

Xerces: XML parser in Java and C++, Perl and COM
The Xerces parser is a validating parser that is available in Java and C++.
Apparently, the parser was named after the now extinct Xerces blue butterfly, a
native of the San Francisco peninsula.

Xerces the parser fully supports the W3C XML DOM (Level 1 and 2) standards, the
DOM3 standards when they finally become a W3C recommendation, and SAX ver-
sion 2. Xerces is a validating parser and provides support for XML Document vali-
dation against W3C Schemas and DTDs. The C++ version of the Xerces parser also
includes a Perl wrapper and a COM wrapper that works with the MSXML parser.

Xalan: XSL stylesheet processors in Java & C++
One of the first Java transformation engines was the LotusXSL engine, which IBM
donated to the Apache Software Group, where it became the Xalan Transformation
engine. Since then, Apache has developed Xalan version 2, which implements a
pluggable interface into Xalan 1 and 2, as well as integrated SAX and DOM parsers.
Both of the Java versions of XALAN implement the W3C Recommendations XSLT
and XPath. Xalan is currently available in Java and C++.

FOP: XSL Formatting Object processor in Java
The Apache FOP server is the original and most popular FOP server. The engine can
be run from a command prompt, integrated with J2EE code, or plugged in to one of
several XSL:FO editors on the market, a partial list of which can also be found at
http://www.xmlsoftware.com/xslfo.html. FOP is written in Java 1.2 and is
mainly used for converting XML documents into PDF documents. The source XML
document can be an XML document or a passed DOM document or set of SAX
events.

For an example of a XSL:FO stylesheet that uses the Apache FOP server to convert
an XML document to a PDF, please refer to Chapter 9.

AXIS: The Apache Implementation of the W3C SOAP Recommendation
IBM donated the SOAP4J code library to the Apache XML project, where it became
the Apache SOAP project, with a full implementation of the W3C SOAP 1.1
Recommendation. The latest implementation of the Apache SOAP project has been
renamed AXIS, just to keep us on our toes. AXIS stands for Apache eXtensible
Interaction System, but is still based the W3C SOAP Recommendation, with the

Cross-
Reference

g538292 ch14.qxd 8/18/03 8:44 AM Page 319

320 Part III ✦ XML Web Applications Using J2EE

equally inscrutable acronym of Simple Object Access Protocol. AXIS supports all of
the W3C SOAP 1.1 Recommendation, and most of the SOAP 1.2 Working Draft.

SOAP is covered in more detail in Chapters 23 and 24, respectively.

Xindice: A native XML database
Apache Xindice (pronounced zeen-dee-chay) is a database implemented in XML to
store XML data. The idea is that XML data that is already in XML format doesn’t
need to be converted to another format. But it probably does need to be trans-
formed to another XML structure, or parsed into a destination format. It is an inter-
esting cutting-edge implementation. The Xindice query language is XPath. The
XML:DB API(http://www.xmldb.org/xapi/) is used for record updates and for
Java development. This enables other applications and languages to access Xindice
via XML-RPC.

XML Parsing Code: XML4J, Xerces,
and JAXP: What Is What?

The latest versions of Apache Xerces, IBM XML for Java (XML4J), and Sun’s JAXP
parser are all validating parsers that support almost identical functionality. All of
these downloads also support both the DOM and SAX interfaces for XML document
parsing. So the logical question is, which parser should you use: XML4J, Xerces,
or JAXP?

The answer is, if you’re using one, you’re probably using them all. Java parsers tend
to reuse parts of other Java parsers to implement their functionality. For example,
the parser in XML4J is an implementation of the Xerces parser, which IBM heavily
contributes to, and has subsequently reused for the DOM parser in XML4J.
Consequently, Java developers have to keep a close watch of the version of parser
they are using to ensure compatibility with their current code implementations.
Xerces is usually the most up-to-date parser code, and XML4J usually adopts new
versions of Xerces a month or two after they are issued.

JAXP is another case entirely. JAXP is a “pluggable” interface that provides access
to functionality, but doesn’t technically provide the functionality. JAXP changes the
processor that is used to parse and transform XML documents without changing
the underlying source code for the application that is doing the parsing or
transformation.

Cross-
Reference

g538292 ch14.qxd 8/18/03 8:44 AM Page 320

321Chapter 14 ✦ XML Tools for J2EE: IBM, Apache, Sun, and Others

Summary
In this chapter, you were introduced to XML tools for J2EE developers:

✦ An introduction to IBM WebSphere Studio

✦ IBM AlphaWorks Offerings:

• IBM XML for Java (XML4J)

• XML Integrator (XI)

• IBM XML Security Suite

✦ Eclipse Offering:

• The Eclipse Modeling Framework

✦ Sun ONE Studio

✦ The XML components of the Java Web Services Developer Pack

✦ The Apache XML Project: Xalan, Xerces, and others

✦ The Difference between XML4J, Xerces, and JAXPIBM WebSphere Studio

In the next few chapters, we’ll be putting many of these tools to use in practical
examples. We’ll start with a review of Xerces and parsing XML documents with J2EE
in Chapter 15. Chapter 16 will cover Xalan and transforming XML documents with
J2EE. Chapter 17 will cover the XML components of the Java Web Services
Developer Pack in great detail, with examples and documentation.

✦ ✦ ✦

g538292 ch14.qxd 8/18/03 8:44 AM Page 321

Xerces

As I said in the introduction to Chapter 14, when you’re
working with XML in J2EE applications, you’re working

with text. The Apache Xerces API, along with Xalan, AXIS, and
a few other Apache offerings, ease the burden of J2EE XML
developers by providing “canned” code that can be reused in
J2EE XML applications. In this chapter, I’ll introduce you to
Apache Xerces, what it is, where it came from, and how to
integrate Xerces functionality into your applications.

The Apache XML Project (http://xml.apache.org/) is
part of the Apache Software Foundation, a non-profit consor-
tium that provides organizational, legal, and financial support
for Apache open-source software projects, all of which can be
seen at http://www.apache.org/.

Xerces is a set of Java classes, properties, and methods that
supports XML document parsing. Xerces is also an implemen-
tation and reference code library for the W3C XML DOM
(Level 1 and 2) standards. It also provides classes, properties,
and methods that keep up with the current Working Draft of
the W3C DOM Level 3 standards, in preparation for the day
that DOM Level 3 attains W3C Recommendation status.
Xerces also supports SAX version 2. Xerces parser classes are
available in Java and C++. Xerces is a validating parser, and
provides support for XML document validation against W3C
Schemas and DTDs. The C++ version of the Xerces parser also
includes a Perl wrapper and a COM wrapper.

Xerces ships as a set of compiled classes in a .jar file. There is
an optional source code download as well. The source code
and classes can be reused and rewritten, in the spirit of open
source software and according to the Apache Software
Foundation license, which can be found at
http://xml.apache.org/LICENSE.

This chapter will focus on the code required to make XML
document parsing work. For a full reference on XML docu-
ment parsing fundamentals, including listings of DOM and
SAX documentation, please refer to Chapters 4, 5, and 6.

Cross-
Reference

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Apache Xerces

Downloading and
installing Xerces

Parsing XML
documents in J2EE

Parsing XML
documents with DOM

Parsing XML
documents with SAX

✦ ✦ ✦ ✦

g538292 ch15.qxd 8/18/03 8:44 AM Page 323

324 Part III ✦ XML Web Applications Using J2EE

For those of you working with IBM’s XML for Java classes (XML4J), the parser in
XML4J is an implementation of the Xerces parser, which IBM heavily contributes to,
and has subsequently reused for the DOM parser in XML4J. Xerces is usually the
most up-to-date parser code available, and XML4J usually adopts new versions of
Xerces a month or two after they are issued. Information on the current version of
Xerces that is embedded in XML4J can be found listed at http://alphaworks.
ibm.com/tech/xml4j.

Sun’s Java API for XML Processing (JAXP) API can also be used to access Xerces via
its “pluggable interface” architecture. JAXP provides access to Xerces functionality,
but doesn’t technically provide that functionality. JAXP can change the processor
that is used to parse and transform XML documents without changing the under-
lying source code for the application that is doing the parsing or transformation.

For more information on JAXP, please refer to Chapter 17.

Downloading and Installing Xerces
If your J2EE IDE doesn’t ship with Xerces parser pre-installed (most do), the most
recent Java version can be downloaded from http://xml.apache.org/
xerces2-j/index.html. Xerces is contained in a compressed zip file format
(tar for non-Windows users) and is currently around 5MB in size. You also have an
option of downloading just the .jar files (referred to as the “binaries” download) or
the .jar files and the source code (referred to as the “source” download). Once
downloaded, Xerces can be decompressed and copied to the directory of your
choice. Table 15-1 shows the Xerces component files and default subdirectory loca-
tions for the “binary” download version.

Table 15-1
Xerces Components

Interface Name Description

xercesImpl.jar Contains implementation classes for all of the supported Xerces
parsers. Currently this includes DOM Level 1 and 2, some of the DOM
W3C DOM Level 3 Working Draft specifications, and SAX version 2.

xmlParserAPIs.jar Contains the Core Java API classes.

xercesSamples.jar Sample class files.

data/ Directory containing sample XML data, DTD, and Schema.

Cross-
Reference

g538292 ch15.qxd 8/18/03 8:44 AM Page 324

325Chapter 15 ✦ Xerces

Interface Name Description

docs/ Directory containing Xerces API and implementation class
documentation.

samples/ Directory containing sample source code. Source for samples is
included in the binary and the source distribution.

Once the Xerces distribution file is downloaded, decompressed, and copied to its
destination, the documentation for the distribution can be read by opening the
index.html file in the /docs directory.

Parsing XML Documents in J2EE
As I outlined in Chapters 4, 5, and 6, there are two options for parsing XML docu-
ments, Document Object Model (DOM), and Simple API for XML (SAX). Xerces sup-
ports both methods in J2EE.

DOM builds a representation of the XML document as a node tree in memory. DOM
methods navigate through the XML document, as shown in Chapter 5. Node proper-
ties supply node values. DOM node trees stay resident in memory as long as the
application that created the node tree is in memory, and DOM nodes are available
to an application at any time.

SAX parses documents sequentially, based on events in an XML document. SAX
methods are used to track document events, such as the start and end of an ele-
ment. SAX methods also return values from XML document objects during an event,
which provides XML document values to a calling program. Unlike DOM, SAX
events are only in memory as long as the event is in memory. This means that XML
document values that are returned from events have to be recorded to variables to
be used by an application.

In the examples for this chapter, I’ll show J2EE code for parsing a small and simple
XML document into a DOM node tree. We’ll also show an example of parsing a more
complex XML document using SAX events.

Parsing XML documents with DOM
I’ll be parsing the same very simple XML document for the DOM and SAX examples.
Aside from being easy to follow, the very simple XML document in Listing 15-1 is
also a generalized example of the type of document that is practical for DOM pars-
ing. The document is so small and simple that performance will not be an issue, and
I may want to reuse nodes in the document, a feature that SAX can’t provide.

g538292 ch15.qxd 8/18/03 8:44 AM Page 325

326 Part III ✦ XML Web Applications Using J2EE

The Java source code and the XML document used in this chapter are available for
download from the www.XMLProgrammingBible.com Website.

Listing 15-1: A Very Simple XML Document

<?xml version=”1.0” encoding=”UTF-8”?>
<rootelement>

<firstelement position=”1”>
<level1 children=”0”>This is level 1 of the nested
elements</level1>

</firstelement>
<secondelement position=”2”>

<level1 children=”1”>
<level2>This is level 2 of the nested
elements</level2>

</level1>
</secondelement>

</rootelement>

Listing 15-2 shows us the code used to parse the simple XML document. I’ll show
the code in its entirety, and then break it up to explain the most important parts.
The code reads through an XML document, parses the document into org.w3c.dom
nodes using the org.apache.xerces DOM parser, and prints output to the screen
about the types of nodes and values that are in the source XML document.

Listing 15-2: Code for Parsing the Very Simple XML
Document: SimpleParsingWithDOM.java

import java.io.*;
import org.w3c.dom.*;
import org.apache.xerces.parsers.DOMParser;
import org.xml.sax.SAXException;

public class SimpleParsingWithDOM {

public static void main(String[] args) {
SimpleParsingWithDOM SPWD = new SimpleParsingWithDOM();

}

public SimpleParsingWithDOM() {
String XMLToParse =
“C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/verysimpleXML.xml”;
DOMParser parser = new DOMParser();

g538292 ch15.qxd 8/18/03 8:44 AM Page 326

327Chapter 15 ✦ Xerces

try {
parser.parse(XMLToParse);
Document document = parser.getDocument();
nodeReader(document);

} catch (IOException ie) {
System.err.println(ie);

}
catch (SAXException se) {

System.err.println(se);
}

}

private void nodeReader(Node node) {

if(node.hasChildNodes()) {
NodeList children = node.getChildNodes();
if (children != null) {

for (int i=0; i< children.getLength(); i++) {
Node ThisNode= children.item(i);
String name = children.item(i).getNodeName();
String localName = ThisNode.getLocalName();
String uri = ThisNode.getNamespaceURI();
String prefix = ThisNode.getPrefix();
String value = ThisNode.getNodeValue();
String NodeText=null;
int type = ThisNode.getNodeType();

switch (type) {
case 1: NodeText = “Node type 1: Element Constant:
ELEMENT_NODE \r\n”;break;
case 2: NodeText = “Node type 2: Attribute
Constant: ATTRIBUTE_NODE \r\n”;break;
case 3: NodeText = “Node type 3: Text Constant:
TEXT_NODE \r\n”;break;
case 4: NodeText = “Node type 4: CDATA Section
Constant: CDATA_SECTION_NODE \r\n”;break;
case 5: NodeText = “Node type 5: Entity Reference
Constant: ENTITY_REFERENCE_NODE \r\n”;break;
case 6: NodeText = “Node type 6: Entity Constant:
ENTITY_NODE \r\n”;break;
case 7: NodeText = “Node type 7: Processing
Instruction Constant: PROCESSING_INSTRUCTION_NODE
\r\n”;break;
case 8: NodeText = “Node type 8: Comment Constant:
COMMENT_NODE \r\n”;break;
case 9: NodeText = “Node type 9: Document Constant:
DOCUMENT_NODE \r\n”;break;

Continued

g538292 ch15.qxd 8/18/03 8:44 AM Page 327

328 Part III ✦ XML Web Applications Using J2EE

Listing 15-2 (continued)

case 10: NodeText = “Node type 10: Document Type
Declaration Constant: DOCUMENT_TYPE_NODE
\r\n”;break;
case 11: NodeText = “Node type 11: Document
Fragment Constant: DOCUMENT_FRAGMENT_NODE
\r\n”;break;
case 12: NodeText = “Node type 12: Notation
Constant: NOTATION_NODE \r\n”;break;
//Remove this comment when DOM supports the
XPATH_NAMESPACE_NODE Constant
//case 13: NodeText = “Node type 13: W3C DOm Level
3 XPathNamespace Constant:
XPATH_NAMESPACE_NODE”;break;
default: NodeText = “Not a valid W3C Node type
\r\n”;

}

String nodeString = NodeText;

nodeString += (“Name: “ + name + “\r\n”);
if (localName != null) {

nodeString += (“Local Name: “ + localName +
“\r\n”);
}
if (prefix != null) {

nodeString += (“Prefix: “ + prefix + “\r\n”);
}
if (uri != null) {

nodeString += (“Namespace URI: “ + uri + “\r\n”);
}

if (type == ThisNode.ELEMENT_NODE) {

if (ThisNode.hasAttributes()) {
String Attributes = null;
NamedNodeMap AttributesList =
node.getAttributes();
for(int j = 0; j < AttributesList.getLength();
j++) {
nodeString +=(“Attribute Name: “ +
AttributesList.item(j).getNodeName() +
“\r\nAttribute Value: “ +
AttributesList.item(j).getNodeValue()+”\r\n”);
}

}
}

g538292 ch15.qxd 8/18/03 8:44 AM Page 328

329Chapter 15 ✦ Xerces

if (value != null) {

nodeString += (“Value: “ + value + “\r\n”);
}

System.out.println(nodeString);

if(children.item(i).hasChildNodes()) {
nodeReader(children.item(i));

}
}

}
}

}

}

Let’s break down what the code is doing piece by piece. The first part of the code
imports classes that you need for this Java class to function. java.io classes are
used to write output to the screen. org.w3c.dom classes are used to track nodes
that are produced when parsing takes place. Parsing is facilitated through the
org.apache.xerces.parser classes. It may seem a little odd to use org.xml.sax
classes in a DOM parsing example, but it’s actually very normal. The event-based
SAXException class is used to catch parsing events from all types of parsing in
Xerces.

import java.io.*;
import org.w3c.dom.*;
import org.apache.xerces.parsers.DOMParser;
import org.apache.xerces.dom.*;
import org.xml.sax.SAXException;

Next, the code creates a class, which implements a main method, which calls a con-
structor, which creates a new instance of the SimpleParsingWithDOM class.

public class SimpleParsingWithDOM {

public static void main(String[] args) {
SimpleParsingWithDOM SPWD = new SimpleParsingWithDOM();

}

public SimpleParsingWithDOM() {

g538292 ch15.qxd 8/18/03 8:44 AM Page 329

330 Part III ✦ XML Web Applications Using J2EE

The SimpleParsingWithDOM class identifies a new document to parse. In this
case, the XML document has to be in the same directory as this code, and is named
verysimpleXML.xml. The code parses the XML document into W3C nodes using
the parse method of the org.apache.xerces.parsers.DOMParser.parser
class. Next, the nodeReader class is called, which reads through the nodes and
analyzes them. Note that the code catches an ioException if there are any errors
associated with reading or writing to the output that is produced, and a SAX excep-
tion if there are any parsing errors.

String XMLToParse = “verysimpleXML.xml”;
DOMParser parser = new DOMParser();

try {
parser.parse(XMLToParse);
Document document = parser.getDocument();
nodeReader(document);

} catch (IOException ie) {
System.err.println(ie);

}
catch (SAXException se) {

System.err.println(se);
}

}

The NodeReader class analyzes each node and builds output that is printed to the
screen. The SimpleParsingWithDOM class passes the parsed document to the
NodeReader class as a parameter. The XML document contains a document node,
which is the first node in the DOM node tree. The first thing that the NodeReader
class does is check to see if the document tree has any nodes using the
getChildNodes() method. If there are children, they are put into a Node list.
Next, a loop iterates through each of the child nodes and gathers information about
that node, using Xerces node methods.

private void nodeReader(Node node) {

if(node.hasChildNodes()) {
NodeList children = node.getChildNodes();
if (children != null) {

for (int i=0; i< children.getLength(); i++) {
Node ThisNode= children.item(i);
String name = children.item(i).getNodeName();
String localName = ThisNode.getLocalName();
String uri = ThisNode.getNamespaceURI();
String prefix = ThisNode.getPrefix();
String value = ThisNode.getNodeValue();

g538292 ch15.qxd 8/18/03 8:44 AM Page 330

331Chapter 15 ✦ Xerces

After information about the node has been gathered, values can be assigned to the
node based on node type. The node numbers and constants listed below are part
of the DOM recommendation, and map to the values assigned. I’ve added the
DOM 3 XPathNamespace node type, but commented it out for now. It can be un-
commented when Xerces recognizes it as a valid node type; until then, the
XPathNamespace node type generates a compiler error.

For more information on DOM constants, properties, and methods, please refer to
Chapter 5.

String NodeText=null;
int type = ThisNode.getNodeType();

switch (type) {
case 1: NodeText = “Node type 1: Element Constant:
ELEMENT_NODE \r\n”;break;
case 2: NodeText = “Node type 2: Attribute
Constant: ATTRIBUTE_NODE \r\n”;break;
case 3: NodeText = “Node type 3: Text Constant:
TEXT_NODE \r\n”;break;
case 4: NodeText = “Node type 4: CDATA Section
Constant: CDATA_SECTION_NODE \r\n”;break;
case 5: NodeText = “Node type 5: Entity Reference
Constant: ENTITY_REFERENCE_NODE \r\n”;break;
case 6: NodeText = “Node type 6: Entity Constant:
ENTITY_NODE \r\n”;break;
case 7: NodeText = “Node type 7: Processing
Instruction Constant: PROCESSING_INSTRUCTION_NODE
\r\n”;break;
case 8: NodeText = “Node type 8: Comment Constant:
COMMENT_NODE \r\n”;break;
case 9: NodeText = “Node type 9: Document Constant:
DOCUMENT_NODE \r\n”;break;
case 10: NodeText = “Node type 10: Document Type
Declaration Constant: DOCUMENT_TYPE_NODE
\r\n”;break;
case 11: NodeText = “Node type 11: Document
Fragment Constant: DOCUMENT_FRAGMENT_NODE
\r\n”;break;
case 12: NodeText = “Node type 12: Notation
Constant: NOTATION_NODE \r\n”;break;
//Remove this comment when DOM supports the
XPATH_NAMESPACE_NODE Constant
//case 13: NodeText = “Node type 13: W3C DOm Level
3 XPathNamespace Constant:
XPATH_NAMESPACE_NODE”;break;
default: NodeText = “Not a valid W3C Node type
\r\n”;

}

Cross-
Reference

g538292 ch15.qxd 8/18/03 8:44 AM Page 331

332 Part III ✦ XML Web Applications Using J2EE

Next, optional values are assigned to a string that displays information about the
node in the output. The node name is always part of a node. The node local name,
prefix, and URI are for objects with namespace values.

String nodeString = NodeText;

nodeString += (“Name: “ + name + “\r\n”);
if (localName != null) {

nodeString += (“Local Name: “ + localName +
“\r\n”);
}
if (prefix != null) {

nodeString += (“Prefix: “ + prefix + “\r\n”);
}
if (uri != null) {

nodeString += (“Namespace URI: “ + uri + “\r\n”);
}

Next, the code gathers a little more information if the node is an element type node
and has any associated attributes. The attributes of an element are loaded into a
NamedNodeMap, which is then iterated through to gather attribute names and values.

if (type == ThisNode.ELEMENT_NODE) {

if (ThisNode.hasAttributes()) {
String Attributes = null;
NamedNodeMap AttributesList =
node.getAttributes();
for(int j = 0; j < AttributesList.getLength();
j++) {
nodeString +=(“Attribute Name: “ +
AttributesList.item(j).getNodeName() +
“\r\nAttribute Value: “ +
AttributesList.item(j).getNodeValue()+”\r\n”);
}

}
}

The nodeString is the string that has been gathering text values from the node for
displaying the output. The last thing that is gathered is the node value, if there is
any. The gathered node information is then sent to the screen using System.out.
println.

if (value != null) {

nodeString += (“Value: “ + value + “\r\n”);

g538292 ch15.qxd 8/18/03 8:44 AM Page 332

333Chapter 15 ✦ Xerces

}

System.out.println(nodeString);

The next part of the code checks to see if the current node has any child nodes. If it
does, the nodeReader class calls itself again, and repeats the process to read
nodes as deep as it needs to go in the node level nesting.

if(children.item(i).hasChildNodes()) {
nodeReader(children.item(i));

Listing 15-3 shows the resulting output when the SimpleParsingWithDOM class is
applied to the VerySimpleXML document.

Listing 15-3: The Results of the SimpleParsingWithDOM Class
When Applied to the VerySimpleXML Document

Node type 1: Element Constant: ELEMENT_NODE
Name: rootelement
Local Name: rootelement
Node type 1: Element Constant: ELEMENT_NODE
Name: firstelement
Local Name: firstelement
Node type 1: Element Constant: ELEMENT_NODE
Name: level1
Local Name: level1
Attribute Name: position
Attribute Value: 1
Node type 3: Text Constant: TEXT_NODE
Name: #text
Value: This is level 1 of the nested elements
Node type 1: Element Constant: ELEMENT_NODE
Name: secondelement
Local Name: secondelement
Node type 1: Element Constant: ELEMENT_NODE
Name: level1
Local Name: level1
Attribute Name: position
Attribute Value: 2
Node type 1: Element Constant: ELEMENT_NODE
Name: level2
Local Name: level2
Node type 3: Text Constant: TEXT_NODE
Name: #text
Value: This is level 2 of the nested elements

g538292 ch15.qxd 8/18/03 8:44 AM Page 333

334 Part III ✦ XML Web Applications Using J2EE

Parsing XML documents with SAX
For the SAX example, I’ll use the same source XML document, which is shown in
Listing 15-1. Normally, you would use SAX to parse a more complicated and longer
XML document. The general idea is that larger and more complex documents are
more quickly parsed if SAX is used. Listing 15-4 shows the SAX document parsing
example. I’ll break down the code after the full listing, as I did with the DOM example.

Listing 15-4: Parsing XML Documents with SAX:
SimpleParsingWithSAX.java

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.apache.xerces.parsers.SAXParser;

public class SimpleParsingWithSAX extends DefaultHandler {
String eventString = “”;

public static void main(String[] args) {
SimpleParsingWithSAX SPWS = new SimpleParsingWithSAX();

}

public SimpleParsingWithSAX(){
String XMLToParse =
“C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/verysimpleXML.xml”;

SAXParser parser = new SAXParser();
parser.setContentHandler(this);

try{
parser.parse(XMLToParse);

} catch (SAXException e) {
System.err.println(e);

} catch (IOException e) {
System.err.println(e);

}
}

public void processingInstruction(String target, String instruction){
eventString +=”ProcessingInstruction() Event - Target:” + target +
“ Instruction:” + instruction + “\r\n”;

}

public void startDocument() {
eventString +=”StartDocument() Event \r\n”;

}

g538292 ch15.qxd 8/18/03 8:44 AM Page 334

335Chapter 15 ✦ Xerces

public void startPrefixMapping(String prefix, String uri) {
eventString +=”startPrefixMapping() Event - Prefix:” + prefix + “
URI:” + uri + “\r\n”;

}

public void startElement(String uri, String localname, String qname,
Attributes attributes){

eventString += “startElement() Event: “ + localname + “\r\n”;

for (int i = 0; i < attributes.getLength(); i++) {
eventString += “Attribute Name: “+
attributes.getLocalName(i)+”\r\n”;
eventString += “Attribute Value: “ +
attributes.getValue(i)+”\r\n”;

}
}

public void endPrefixMapping(String prefix) {
eventString += “endPrefixMapping() Event - Prefix:” + prefix +
“\r\n”;

}

public void characters(char[] cdata, int start, int length){
String textvalue = new String(cdata, start, length);
if (!textvalue.trim().equals(“”)){

eventString += “Text: “+ textvalue + “\r\n”;
}

}

public void ignorableWhitespace(char[] cdata, int start, int end) {
eventString += “ignorableWhitespace() Event \r\n”;

}

public void endElement(String uri, String local, String qName){
eventString += “endElement() Event: “ + local + “\r\n”;

}

public void skippedEntity(String name) {
eventString += “skippedEntity() Event(): “ + name;

}

public void endDocument(){
eventString += “endDocument() Event”;
System.out.println(eventString);

}
}

g538292 ch15.qxd 8/18/03 8:44 AM Page 335

336 Part III ✦ XML Web Applications Using J2EE

Let’s break down what the SAX code is doing piece by piece. As in the DOM exam-
ple, the first part of the code imports classes that you need for this Java class to
function. java.io classes are used to write output to the screen. Parsing is facili-
tated through the org.apache.xerces parser classes. org.xml.sax contains
the classes that manage all of the SAX events.

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.apache.xerces.parsers.SAXParser;

The DefaultHandler class is a grab bag of properties and methods in various
SAX 2 interfaces with all having one thing in common: They are all callback meth-
ods. SAX callback methods return something when they are triggered by an event.
The event actions are predefined in the application code using these methods.
When a SAX parser encounters an event, the method is triggered. This invokes an
action in the code. DefaultHandler is very useful for developers who are devel-
oping a bare-bones parsing solution using SAX. DefaultHandler implements
access to the key methods of ContentHandler, DTDHandler, EntityResolver,
and ErrorHandler in one class.

Next, the code creates a class and defines the eventString string. This string is
used to gather event data while the document is being parsed.

The SimpleParsingWithSAX class implements a main method, which calls a con-
structor, which creates a new instance of the SimpleParsingWithSAX class.

public class SimpleParsingWithSAX extends DefaultHandler {
String eventString = “”;

public static void main(String[] args) {
SimpleParsingWithSAX SPWS = new SimpleParsingWithSAX();

}

Next, the document is parsed by calling the setContentHandler method.
ContentHandler is the main interface for a SAX 2 document’s content.
XMLReader uses ContentHandler to track all of the SAX events for an XML docu-
ment. When a document is parsed, ContentHandler tracks all of the events that
are being caught while the document is being parsed. As in the last example, an
ioException catches any errors associated with the output that is produced, and
a SAX exception catches parsing errors.

public SimpleParsingWithSAX(){
String XMLToParse = “verysimpleXML.xml”;

SAXParser parser = new SAXParser();
parser.setContentHandler(this);

g538292 ch15.qxd 8/18/03 8:44 AM Page 336

337Chapter 15 ✦ Xerces

try{
parser.parse(XMLToParse);

} catch (SAXException e) {
System.err.println(e);

} catch (IOException e) {
System.err.println(e);

}
}

Next the events that ContentHandler is watching for are defined. I’ve organized
them in the same approximate order that they would be encountered by a parser in
an XML document. processingInstruction is triggered when the parser
encounters a processing instruction. startDocument is triggered when the root
element is encountered in an XML document. startPrefix explicitly maps a pre-
fix to a URI. This is used with the startElement and endElement events to map a
prefix to a URI at time of parsing. The prefix and/or URI do not need to be in the
original XML document.

processingInstruction is not triggered for XML declarations, which are
technically a processing instruction. It’s only triggered for processing instructions
located between the startDocument() and endDocument() events.

public void processingInstruction(String target, String instruction){
eventString +=”ProcessingInstruction() Event - Target:” + target +
“ Instruction:” + instruction + “\r\n”;

}

public void startDocument() {
eventString +=”StartDocument() Event \r\n”;

}

public void startPrefixMapping(String prefix, String uri) {
eventString +=”startPrefixMapping() Event - Prefix:” + prefix + “
URI:” + uri + “\r\n”;

}

startElement is triggered when the parser encounters the beginning of an ele-
ment. Attributes are part of the startElement event.

There are no startAttribute and endAttribute events in SAX. On first
look at SAX, handling attribute events like other document content events may
seem logical, but attributes are only associated with elements, and there are
enough exceptions when working with groups of attributes to warrant that they
have their own interface. Attributes in SAX are returned by the startElement
event in their own Attributes object, which is manipulated using the attributes
interface, as shown here.

Note

Note

g538292 ch15.qxd 8/18/03 8:44 AM Page 337

338 Part III ✦ XML Web Applications Using J2EE

public void startElement(String uri, String localname, String qname,
Attributes attributes){

eventString += “startElement() Event: “ + localname + “\r\n”;

for (int i = 0; i < attributes.getLength(); i++) {
eventString += “Attribute Name: “+
attributes.getLocalName(i)+”\r\n”;
eventString += “Attribute Value: “ +
attributes.getValue(i)+”\r\n”;

}
}

endPrefixMapping is triggered when the ending of the explicit mapping of a pre-
fix to a URI is encountered. characters is triggered when the parser encounters
text data. ignorableWhitespace is triggered when the parser encounters text
that it considers ignorable. Usually this is spaces, carriage returns, line feeds,
and tabs.

public void endPrefixMapping(String prefix) {
eventString += “endPrefixMapping() Event - Prefix:” + prefix +
“\r\n”;

}

public void characters(char[] cdata, int start, int length){
String textvalue = new String(cdata, start, length);
if (!textvalue.trim().equals(“”)){

eventString += “Text: “+ textvalue + “\r\n”;
}

}

public void ignorableWhitespace(char[] cdata, int start, int end) {
eventString += “ignorableWhitespace() Event \r\n”;

}

endElement is triggered when the end of an element is encountered. skipped
Entity is triggered when the parser encounters a skipped entity. Skipped entities
are entity values that were not resolved by a DTD reference, either because the
parser did not validate against a DTD or resolve entities, or the parser couldn’t
resolve an entity for whatever reason. This condition triggers a skippedEntity
event.

public void endElement(String uri, String local, String qName){
eventString += “endElement() Event: “ + local + “\r\n”;

}

public void skippedEntity(String name) {
eventString += “skippedEntity() Event(): “ + name;

}

g538292 ch15.qxd 8/18/03 8:44 AM Page 338

339Chapter 15 ✦ Xerces

endDocument is always the last event in a SAX parse. In this case, we use this fact
to print the eventString string to the screen. eventString has been collecting
information on events and XML document data using the parse, and now the data is
dumped to the screen. I prefer collecting all output data and sending it to the
screen at once over the regular method, which is printing each line from each event
individually. The first reason for this approach is that if you collect the data in a sin-
gle string, you have the option to pass the string to another class or to a file, as well
as to the screen. Second, the data in the string can be further manipulated before
being displayed. The third reason is that the data does not need to be shown if an
error occurs during event processing. Instead, an error message string can be cre-
ated that incorporates the incomplete SAX output.

public void endDocument(){
eventString += “endDocument() Event”;
System.out.println(eventString);

Once the last event in the XML document is encountered (the endDocument()
event), the collected string is passed to the screen. Listing 15-5 shows the results of
the Sax parsing.

Listing 15-5: Results for the SAX Parsing Example When
Applied to the VerySimpleXML Document

StartDocument() Event
startElement() Event: rootelement
startElement() Event: firstelement
Attribute Name: position
Attribute Value: 1
startElement() Event: level1
Attribute Name: children
Attribute Value: 0
Text: This is level 1 of the nested elements
endElement() Event: level1
endElement() Event: firstelement
startElement() Event: secondelement
Attribute Name: position
Attribute Value: 2
startElement() Event: level1
Attribute Name: children
Attribute Value: 1
startElement() Event: level2
Text: This is level 2 of the nested elements
endElement() Event: level2
endElement() Event: level1
endElement() Event: secondelement
endElement() Event: rootelement
endDocument() Event

g538292 ch15.qxd 8/18/03 8:44 AM Page 339

340 Part III ✦ XML Web Applications Using J2EE

Summary
In this chapter, you were introduced to the Apache Xerces API for XML document
parsing:

✦ An introduction to Apache Xerces

✦ How to download and install Xerces

✦ Parsing XML documents in J2EE

✦ An example of parsing an XML document with DOM

✦ An example of parsing an XML document with SAX

In the next chapter, I cover Xalan and show some examples of transforming XML
documents with J2EE. I’ll be applying the techniques covered in the example XSL
stylesheets that you learned about in Chapters 7 and 8. Chapter 17 will cover the
XML APIs that are included in the Sun Java Web Services Developer Pack (WSDP) in
great detail, with some very detailed transformation code examples, including
examples of using the Java API for XML Processing (JAXP) to switch between DOM
and SAX parsers without changing your underlying application code.

✦ ✦ ✦

g538292 ch15.qxd 8/18/03 8:44 AM Page 340

Xalan

The Apache Xalan API facilitates XSL Transformations in
J2EE applications. The Apache XML Project

(http://xml.apache.org/) is part of the Apache Software
Foundation, a non-profit consortium that provides organiza-
tional, legal, and financial support for Apache open-source
software projects, all of which can be seen at http://
www.apache.org/. Xalan contains Apache’s J2EE implemen-
tation classes for the W3C XSL Transformations (XSLT) Version
1.0 Recommendation (http://www.w3.org/TR/xslt) and
the XML Path Language (XPath) Version 1.0 Recommendation
(http://www.w3.org/TR/xpath). Xalan is currently avail-
able in Java and C++.

This chapter will focus on the J2EE code required to make
XML Transformations work using Apache Xalan. For a full
reference of XSL Transformation stylesheet techniques,
including XSL and XPath documentation and XSL stylesheet
examples, please refer to Chapters 7 and 8.

By default, Xalan uses SAX to parse stylesheets and process
transformations. The SAX 2 XMLReader class parses XML
documents and implements a ContentHandler to track SAX
events during parsing. Xalan handles SAX parsing as part of
the transformation process. Xerces also implements Sun’s
Transformation API for XML (TRAX), which I will cover in the
next chapter. Xalan accepts a stream of SAX or DOM input,
and produces output formatted as a stream, SAX events, or a
DOM node tree. Because of this, transformation output can be
accepted from the results of a DOM or SAX parse and sent to
another SAX or DOM parsing process. Output can also be sent
to another transformation process that accepts stream, SAX
or DOM input.

For more information on SAX parsing, please refer to
Chapter 6. For more information on parsing XML documents
in J2EE using Apache Xerces, please refer to Chapter 15. For
more information on TRAX, please refer to Chapter 17.

Cross-
Reference

Cross-
Reference

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Apache Xalan

Downloading and
installing Xalan

Transforming XML
documents using
J2EE

Xalan and DOM

Xalan and SAX

✦ ✦ ✦ ✦

g538292 ch16.qxd 8/18/03 8:44 AM Page 341

342 Part III ✦ XML Web Applications Using J2EE

Downloading and Installing Xalan
The Xalan download includes part of Xerces, the xercesImpl.jar file. The Xalan core
is contained in the xalan.jar and xml-apis.jar files, which will need to be added to
your workstation classpath.

If your Java IDE doesn’t already include Xalan as part of the installation (most do),
or you want to update to the latest version of Xalan, Xalan-Java can be downloaded
from http://xml.apache.org/xalan-j/downloads.html. Xalan is contained
in a compressed .zip file format (or a tar for non-Windows users) and is currently
around 12MB in size. You also have an option of downloading just the Jar files
(referred to as the “binaries”) or the source and binaries (referred to as the
“source”). Once downloaded, Xalan can be decompressed and copied to the direc-
tory of your choice. The \bin directory is where the .jar files are located. Table 16-1
shows the Xalan component files and subdirectories for the binary download file.

Table 16-1
Xalan Components

Interface Name Description

\bin\xalan.jar Contains the implementation classes for the W3C XSL
Transformations (XSLT) Version 1.0 Recommendation and the XML
Path Language (XPath) Version 1.0 Recommendation.

\bin\xml-apis.jar Contains APIs for SAX, DOM, and JAVAX interfaces.

\bin\xercesImpl.jar Contains implementation classes for all of the supported Xerces
parsers. Currently this includes DOM Level 1 and 2, some of the
DOM W3C DOM Level 3 Working Draft specifications, and SAX
version 2.

\docs Directory containing Xalan API and implementation class
documentation.

\samples Directory containing Sample source code. Source for samples is
included in the binary and the source distribution.

Once the Xalan distribution file is downloaded, decompressed, and copied to its
destination, the documentation for the distribution can be read by opening the
index.html file in the \docs directory.

Tip

g538292 ch16.qxd 8/18/03 8:44 AM Page 342

343Chapter 16 ✦ Xalan

Transforming XML Documents in J2EE
In the examples for this chapter, I’ll show J2EE code for transforming an example
XML document. The same code can be used to transform XML to XML, HTML, or
text. Xalan is not the only transformation engine available for J2EE, but it is the
most widely used and is a good performer. A full list of XML transformation engines
can be found at http://www.xmlsoftware.com/xslt.html.

The sample XML documents and the J2EE code used in this chapter can be
downloaded from the XML Programming Bible Website, at http://www.XML
ProgrammingBible.com.

Using Xalan to transform XML documents
All of the examples in this chapter will use the same source XML file. I’m using the
sample XML document I have used in previous chapters. The example XML docu-
ment starts with a list of selected quotes from William Shakespeare, then goes on
to list three books that contain the quotes that are available for purchase from
Amazon.com, and a Spanish translation of Macbeth, Romeo and Juliet, Hamlet,
and other volumes that are available from http://www.elcorteingles.es.
Amazon.com provides a service that returns XML documents based on a URL
query, and the format nested under the Amazon element is based on this format.
I’ve added the elcorteingles.com book listing format and the quote listing, as well as
other parts of the document to illustrate several features of XML element and
attributes.

Listing 16-1 shows the XML document, named AmazonMacbethSpanish.xml, which I
will refer back to in the next few examples.

Listing 16-1: An Example XML Document for Xalan
Transformations

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<quotedoc>

<quotelist author=”Shakespeare, William” quotes=”4”>
<quote source=”Macbeth” author=”Shakespeare, William”>When the
hurlyburly’s done, / When the battle’s lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Out, damned spot!
out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is murky!-
-Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have
thought the old man to have had so much blood in him?</quote>

Continued

g538292 ch16.qxd 8/18/03 8:44 AM Page 343

344 Part III ✦ XML Web Applications Using J2EE

Listing 16-1 (continued)

<quote source=”Macbeth” author=”Shakespeare, William”>Is this a dagger
which I see before me, the handle toward my hand? Come, let me clutch
thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of
the mind, a false creation, proceeding from the heat-oppressed
brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-morrow, and
to-morrow, and to-morrow, creeps in this petty pace from day to day, to
the last syllable of recorded time; and all our yesterdays have
lighted fools the way to dusty death. Out, out, brief candle! Life’s
but a walking shadow; a poor player, that struts and frets his hour
upon the stage, and then is heard no more: it is a tale told by an
idiot, full of sound and fury, signifying nothing. </quote>
<quote/>

</quotelist>
<catalog items=”4”>

<Amazon items=”3”>
<product>

<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8432040231.01.TZZZZZZZ.jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/8432040231</tagged_url>

</product>
<product>

<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>
<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>

g538292 ch16.qxd 8/18/03 8:44 AM Page 344

345Chapter 16 ✦ Xalan

<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/1583488340</tagged_url>

</product>
<product>

<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/8420617954</tagged_url>

</product>
</Amazon>
<elcorteingles items=”1”>

<product xml:lang=”es”>
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla
domado/El sueño de una noche de verano/ El mercader de
Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicación>6/04/1999</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

</product>
</elcorteingles>

</catalog>
</quotedoc>

Listing 16-2 shows the code used to transform the XML document shown in Listing
16-1. The code reads through an XML document using SAX and transforms the data
using a specified stylesheet.

g538292 ch16.qxd 8/18/03 8:44 AM Page 345

346 Part III ✦ XML Web Applications Using J2EE

Listing 16-2: Code for Transforming an XML Document Using
Xalan - XalanSimpleTransform.java

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransform {

public static void main(String[] args) {
XalanSimpleTransform XST = new XalanSimpleTransform();

}

public XalanSimpleTransform() {
try {

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource =
“C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/
AmazonMacbethSpanish.xml”;
String XSLSource = “C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/
XMLtoQuotes.xsl”;
String ResultOutput = “C:/temp/ResultOutput.XML”;

Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));

transformer.transform(new StreamSource(XMLSource), new
StreamResult(ResultOutput));

System.out.println(“Transform Successful.
Output saved to file: C:/temp/ResultOutput.XML”); }

catch (TransformerException e) {
System.err.println(“Error: “ + e);

}
}

}

This code is relatively short and simple because it’s the stylesheet that does most
of the work. In this case, the stylesheet creates a new XML document that lists
the quotes from the original XML document. Listing 16-3 shows the result of the
transformation.

g538292 ch16.qxd 8/18/03 8:44 AM Page 346

347Chapter 16 ✦ Xalan

Listing 16-3: The ResultOutput.xml Document

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<transformedquotes>

<quote source=”Macbeth” author=”Shakespeare, William”>When the
hurlyburly’s done, / When the battle’s lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Out, damned spot!
out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is murky!--
Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have thought
the old man to have had so much blood in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is this a dagger
which I see before me, the handle toward my hand? Come, let me clutch
thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of the
mind, a false creation, proceeding from the heat-oppressed
brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-morrow, and to-
morrow, and to-morrow, creeps in this petty pace from day to day, to the
last syllable of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle! Life’s but a
walking shadow; a poor player, that struts and frets his hour upon the
stage, and then is heard no more: it is a tale told by an idiot, full of
sound and fury, signifying nothing. </quote>
<quote/>

</transformedquotes>

Let’s break down what the transformation code is doing. The first part of the code
imports classes that you need for transformation and file reading and writing.
Transformation is facilitated through the javax.xml.transform classes. Xalan
accepts javax stream, SAX or DOM input, and produces output to a javax stream,
SAX, or DOM. In this case, javax streams are used for input and for output. The files
are accessed by string reference. The strings represent the XSLSource, XMLSource,
and ResultOutput files on the file system. The files are converted to streams using
the javax.xml.transform.stream class. Next, the code creates a class, which
implements a main method, which calls a constructor, which creates a new instance
of the XalanSimpleTransform class.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransform {

g538292 ch16.qxd 8/18/03 8:44 AM Page 347

348 Part III ✦ XML Web Applications Using J2EE

public static void main(String[] args) {
XalanSimpleTransform XST = new XalanSimpleTransform();

}

public XalanSimpleTransform() {
try {

Next, the code creates an instance of TransformerFactory, and three strings are
defined. An XSL processor needs three things to perform a transformation: an XML
source document, a stylesheet, and a transformation output destination. The
XMLSource string defines the location of the source XML file. The XSLSource
string defines the location of the source XSL file. The ResultOutput defines the
location that the transformation output will be sent to. If there is already a
ResultOutput file at the location specified by the string, the transformer over-
writes the contents of the file with the results of this transformation. The file refer-
ences in the strings are designed on the assumption that the XML and XSL files are
in the same directory as the J2EE code.

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanish.xml”;
String XSLSource = “XMLtoQuotes.xsl”;
String ResultOutput = “C:/temp/ResultOutput.XML”;

Next, a transformer is created. The stylesheet is passed as one of the input parame-
ters. Behind the scenes, the XSL stylesheet is parsed into a template object that is
used to transform the XML source document.

Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));

Next, the transformer uses the transform method to load the XMLSource as a
stream and create an empty ResultOutput stream for XSL processor output.
Inside the method, the code defines two new streams to pass the values to the
transformer. I could have separated out the stream creation into separate lines, but
inline creation of the stream objects was just as easy, and in my opinion it’s a little
easier to follow one compound method with inline stream creation than three sepa-
rate statements. Note that the streams are slightly different. The XML Source docu-
ment is passed in a StreamSource object, while ResultOutput is passed in a
StreamOutput object.

transformer.transform(new StreamSource(XMLSource), new
StreamResult(ResultOutput));

If the transform is successful, a message is displayed in the Java output indicating
where the transformation results can be found. If a transformation error is encoun-
tered, an error message displays instead.

g538292 ch16.qxd 8/18/03 8:44 AM Page 348

349Chapter 16 ✦ Xalan

System.out.println(“Transform Successful.
Output saved to file: C:/temp/ResultOutput.XML”); }

catch (TransformerException e) {
System.err.println(“Error: “ + e);

Sending transformation output to the screen and
using an XML stylesheet reference
The previous Xalan code is a simple example of creating a Java document from a
source file and sending transformation output to another source file. There may be
times when you want to send transformation output directly to the Web or another
interface. There also may be times when you want to use a stylesheet reference in
the source XML document for the XSL transformation stylesheet. Listing 16-4 shows
how to do both. This time I use an XML document that contains a processing
instruction that points to an XSL stylesheet. The code uses the XML document ref-
erence to access the stylesheet this time, instead of explicitly specifying a
stylesheet to use for the transformation. This way the stylesheet reference can be
flexible, based on the XML document, not the code. The stylesheet produces HTML
from the source XML document. Instead of storing the output as a file, the HTML is
sent directly to the screen.

Listing 16-4: Code for Transforming an XML Document Using
Xalan - XalanSImpleTransformToScreen.java

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransformToScreen {

public static void main(String[] args) {
XalanSimpleTransformToScreen XST = new
XalanSimpleTransformToScreen();

}

public XalanSimpleTransformToScreen() {
try {

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanishforxsl.xml”;
Source XSLstylesheet = tFactory.getAssociatedStylesheet(new
StreamSource(XMLSource),null, null, null);

Transformer transformer =
tFactory.newTransformer(XSLstylesheet);

Continued

g538292 ch16.qxd 8/18/03 8:44 AM Page 349

350 Part III ✦ XML Web Applications Using J2EE

Listing 16-4 (continued)

transformer.transform(new StreamSource(XMLSource), new
StreamResult(System.out));

} catch (Exception e) {
System.err.println(“Error: “ + e);

}
}

}

The first part of the code is the same as the previous example. Transformation is
facilitated through the javax.xml.transform classes. Xalan accepts Javax stream,
SAX, or DOM input, and produces output to a Javax stream, SAX, or DOM. In this
case, streams are used for input and for output. The files are located by the strings
that represent the XSLSource, XMLSource, and ResultOutput files on the file sys-
tem. The files are converted to streams using the javax.xml.transform.stream
class. Next, the code creates a class, which implements a main method, which calls
a constructor, which creates a new instance of the
XalanSimpleTransformToScreen class.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;
public class XalanSimpleTransformToScreen {

public static void main(String[] args) {
XalanSimpleTransformToScreen XST = new
XalanSimpleTransformToScreen();

}

public XalanSimpleTransformToScreen() {
try {

Next, the code creates an instance of TransformerFactory, and a string is
defined. The XMLSource string defines the location of the source XML file. The
XSLSource string defines the location of the source XSL file. The file references
this string on the assumption that the AmazonMacbethSpanishforxsl.xml file is
in the same directory as the J2EE code.

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanishforxsl.xml”;

Instead of specifying a string for the stylesheet as I did in the last example, this time
I use the getAssociatedStylesheet method of the TransformerFactory
class to retrieve the stylesheet reference from the XML document. XML documents

g538292 ch16.qxd 8/18/03 8:44 AM Page 350

351Chapter 16 ✦ Xalan

can contain a reference to a stylesheet in a processing instruction reference that
looks like this:

<?xml-stylesheet type=”text/xsl” href=”XMLtoHTML.xslt”?>

This is a stylesheet reference that is contained in the
AmazonMacbethSpanishforxsl.xml file. It tells the XSL processor that the
stylesheet is called XMLtoHTML.xslt and is located in the same directory as the
source XML document. The getAssociatedStylesheet method returns a stream
containing a stylesheet. The three null parameters are for attributes that can be
included in the stylesheet processing instruction. The attribute names are media,
title, and charset. The getAssociatedStylesheet method uses these optional
attributes to match specific attributes in a stylesheet to qualify that it is the correct
stylesheet to use for a transformation. In this case, I’m not picky about the content
of these attributes, and set them all to null.

Source XSLstylesheet = tFactory.getAssociatedStylesheet(new
StreamSource(XMLSource),null, null, null);

Next, the code processes the transformation. In the previous example, a
StreamResult was defined to pass transformation output to a file on the file sys-
tem. In this case, I just want to redirect the HTML output directly to the screen, so
I simply use System.out to do that. If there is any kind of error in this class, it is
passed to the screen instead of the output.

Transformer transformer =
tFactory.newTransformer(XSLstylesheet);
transformer.transform(new StreamSource(XMLSource), new
StreamResult(System.out));

} catch (Exception e) {
System.err.println(“Error: “ + e);

Figure 16-1 shows the HTML output that was generated by the transformation.

Passing transformation output to DOM and SAX
As I’ve mentioned a couple of times so far in this chapter, Xalan accepts Javax
stream, SAX, or DOM input, and produces output to a Javax stream, SAX, or DOM
object. So far I’ve show the stream interface in this chapter’s examples, which is the
most common type of XSL processing input and output.

There may be times when you want to process a transformation that comes from a
SAX or DOM object and/or pass the results to another SAX or DOM object.

g538292 ch16.qxd 8/18/03 8:44 AM Page 351

352 Part III ✦ XML Web Applications Using J2EE

Figure 16-1: HTML output that was generated by the transformation from
Listing 16-4

Transforming XSL output to DOM
The example code in Listing 16-5 transforms the source XML document into a DOM
object, and then passes it to a parser class to display the parsed DOM document
nodes.

For more information on parsing XML documents with DOM in J2EE applications,
please refer to Chapter 15 (Xerces).

Listing 16-5: Code for Transforming an XML Document to DOM
Using Xalan - XalanSimpleTransformToDOM.java

import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.transform.dom.DOMResult;

public class XalanSimpleTransformToDOM {

Cross-
Reference

g538292 ch16.qxd 8/18/03 8:44 AM Page 352

353Chapter 16 ✦ Xalan

public static void main(String[] args) {
XalanSimpleTransformToDOM XSTTD = new XalanSimpleTransformToDOM();

}

public XalanSimpleTransformToDOM() {
try {

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = AmazonMacbethSpanish.xml”;
String XSLSource = XMLtoQuotes.xsl”;
DOMResult domResult = new DOMResult();

Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));

transformer.transform(new StreamSource(XMLSource), domResult);

nodeReader(domResult.getNode());
} catch (TransformerException e) {

System.err.println(“Error: “ + e);
}

}

private void nodeReader(Node node) {

if(node.hasChildNodes()) {
NodeList children = node.getChildNodes();
if (children != null) {

for (int i=0; i< children.getLength(); i++) {
Node ThisNode= children.item(i);
String name = children.item(i).getNodeName();
String localName = ThisNode.getLocalName();
String uri = ThisNode.getNamespaceURI();
String prefix = ThisNode.getPrefix();
String value = ThisNode.getNodeValue();
String NodeText=null;
int type = ThisNode.getNodeType();

switch (type) {
case 1: NodeText = “Node type 1: Element Constant:
ELEMENT_NODE \r\n”;break;
case 2: NodeText = “Node type 2: Attribute
Constant: ATTRIBUTE_NODE \r\n”;break;
case 3: NodeText = “Node type 3: Text Constant:
TEXT_NODE \r\n”;break;
case 4: NodeText = “Node type 4: CDATA Section
Constant: CDATA_SECTION_NODE \r\n”;break;
case 5: NodeText = “Node type 5: Entity Reference
Constant: ENTITY_REFERENCE_NODE \r\n”;break;

Continued

g538292 ch16.qxd 8/18/03 8:44 AM Page 353

354 Part III ✦ XML Web Applications Using J2EE

Listing 16-5 (continued)

case 6: NodeText = “Node type 6: Entity Constant:
ENTITY_NODE \r\n”;break;
case 7: NodeText = “Node type 7: Processing
Instruction Constant: PROCESSING_INSTRUCTION_NODE
\r\n”;break;
case 8: NodeText = “Node type 8: Comment Constant:
COMMENT_NODE \r\n”;break;
case 9: NodeText = “Node type 9: Document Constant:
DOCUMENT_NODE \r\n”;break;
case 10: NodeText = “Node type 10: Document Type
Declaration Constant: DOCUMENT_TYPE_NODE
\r\n”;break;
case 11: NodeText = “Node type 11: Document
Fragment Constant: DOCUMENT_FRAGMENT_NODE
\r\n”;break;
case 12: NodeText = “Node type 12: Notation
Constant: NOTATION_NODE \r\n”;break;
//Remove this comment when DOM supports the
XPATH_NAMESPACE_NODE Constant
//case 13: NodeText = “Node type 13: W3C DOm Level
3 XPathNamespace Constant:
XPATH_NAMESPACE_NODE”;break;
default: NodeText = “Not a valid W3C Node type
\r\n”;

}

String nodeString = NodeText;

nodeString += (“Name: “ + name + “\r\n”);
if (localName != null) {

nodeString += (“Local Name: “ + localName +
“\r\n”);
}
if (prefix != null) {

nodeString += (“Prefix: “ + prefix + “\r\n”);
}
if (uri != null) {

nodeString += (“Namespace URI: “ + uri + “\r\n”);
}

if (type == ThisNode.ELEMENT_NODE) {

if (ThisNode.hasAttributes()) {
String Attributes = null;
NamedNodeMap AttributesList =
node.getAttributes();

g538292 ch16.qxd 8/18/03 8:44 AM Page 354

355Chapter 16 ✦ Xalan

for(int j = 0; j < AttributesList.getLength();
j++) {
nodeString +=(“Attribute Name: “ +
AttributesList.item(j).getNodeName() +
“\r\nAttribute Value: “ +
AttributesList.item(j).getNodeValue()+”\r\n”);
}

}
}

if (value != null) {

nodeString += (“Value: “ + value + “\r\n”);
}

System.out.println(nodeString);

if(children.item(i).hasChildNodes()) {
nodeReader(children.item(i));

}
}

}
}

}
}

The code in this example is almost identical to the code in the XalanSimpleTransform.
java example shown in Listing 16-2. I’ve added a class from the example in Listing 15-2
in Chapter 15 to the end. In the interest of brevity, I’ll just point out the code that has
changed.

The sample XML documents and the J2EE code used in this chapter, including a
full listing of this code, can be downloaded from the XML Programming Bible
Website, at http://www.XMLProgrammingBible.com.

A new instance of TransformerFactory is created. This time, however, the
parameters for the transform method have changed. Instead of a StreamResult
object, I define a DOMResult object. The DOMResult object is used to contain the
transformation output instead of a Javax stream. Next, I pass the results of the
transformation in the DOMResult object via the getNode method to the
nodeReader class (from the example in Chapter 15). The nodeReader class prints
out all of the nodes in a node tree to the screen.

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = AmazonMacbethSpanish.xml”;
String XSLSource = XMLtoQuotes.xsl”;

g538292 ch16.qxd 8/18/03 8:44 AM Page 355

356 Part III ✦ XML Web Applications Using J2EE

DOMResult domResult = new DOMResult();

Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));

transformer.transform(new StreamSource(XMLSource), domResult);

nodeReader(domResult.getNode());

Transforming XSL output to SAX
As with the previous XSL to DOM example, the code in the example in Listing 16-6 is
almost identical to the code in the XalanSimpleTransform.java example shown in
Listing 16-2, with a class from the example in Listing 15-3 in Chapter 15 tacked on to
the end. After the full listing, I’ll point out the code that has changed.

Listing 16-6: Code for Transforming an XML Document to SAX
Using Xalan - XalanSimpleTransformToSAX.java

import org.xml.sax.*;
import javax.xml.transform.*;
import javax.xml.transform.sax.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransformToSAX {
String eventString = “”;

public static void main(String[] args) {
XalanSimpleTransformToSAX XSTTS = new XalanSimpleTransformToSAX();

}

public XalanSimpleTransformToSAX() {
try {

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanish.xml”;
String XSLSource = “XMLtoQuotes.xsl”;

SAXTransformerFactory saxTFactory = ((SAXTransformerFactory)
tFactory);
TransformerHandler tHandler =
saxTFactory.newTransformerHandler(new
StreamSource(“XMLtoQuotes.xsl”));
SAXResult saxResult = new SAXResult(tHandler);
Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));
transformer.transform(new StreamSource(XMLSource), saxResult);

g538292 ch16.qxd 8/18/03 8:44 AM Page 356

357Chapter 16 ✦ Xalan

} catch (TransformerException e) {
System.err.println(“Error: “ + e);

}
}

public void processingInstruction(String target, String
instruction){
eventString +=”ProcessingInstruction() Event - Target:” + target +
“ Instruction:” + instruction + “\r\n”;

}

public void startDocument() {
eventString +=”StartDocument() Event \r\n”;

}

public void startPrefixMapping(String prefix, String uri) {
eventString +=”startPrefixMapping() Event - Prefix:” + prefix + “
URI:” + uri + “\r\n”;

}

public void startElement(String uri, String localname, String qname,
Attributes attributes){

eventString += “startElement() Event: “ + localname + “\r\n”;

for (int i = 0; i < attributes.getLength(); i++) {
eventString += “Attribute Name: “+
attributes.getLocalName(i)+”\r\n”;
eventString += “Attribute Value: “ +
attributes.getValue(i)+”\r\n”;

}
}

public void endPrefixMapping(String prefix) {
eventString += “endPrefixMapping() Event - Prefix:” + prefix +
“\r\n”;

}

public void characters(char[] cdata, int start, int length){
String textvalue = new String(cdata, start, length);
if (!textvalue.trim().equals(“”)){

eventString += “Text: “+ textvalue + “\r\n”;
}

}

public void ignorableWhitespace(char[] cdata, int start, int end) {
eventString += “ignorableWhitespace() Event \r\n”;

}

public void endElement(String uri, String local, String qName){
eventString += “endElement() Event: “ + local + “\r\n”;

}

Continued

g538292 ch16.qxd 8/18/03 8:44 AM Page 357

358 Part III ✦ XML Web Applications Using J2EE

Listing 16-6 (continued)

public void skippedEntity(String name) {
eventString += “skippedEntity() Event(): “ + name;

}

public void endDocument(){
eventString += “endDocument() Event”;
System.out.println(eventString);

}

}

For the SAX example, a new instance of TransformerFactory is created. Because
the transformation code is dealing with SAX for this example, it needs to contain a
ContentHandler, which will catch SAX events. To do this, the code explicitly
casts the TransformerFactory to an instance of SAXTransformerFactory. The
ContentHandler that is defined in the SAXResult cannot be null, so the
TransformerHandler lets us create a ContentHandler that the SAXResult can
use in the transformation. Next, the transformation is processed, passing data to
the SAXResult. The ContentHandler that is contained in the SAXResult object
reacts to the transformation just as it would an XMLReader class, and passes
through the document, catching events as it encounters them in the SAXResult
object.

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanish.xml”;
String XSLSource = “XMLtoQuotes.xsl”;

SAXTransformerFactory saxTFactory = ((SAXTransformerFactory)
tFactory);
TransformerHandler tHandler =
saxTFactory.newTransformerHandler(new
StreamSource(“XMLtoQuotes.xsl”));
SAXResult saxResult = new SAXResult(tHandler);
Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));
transformer.transform(new StreamSource(XMLSource), saxResult);

The rest of the classes that gather information about SAX events are the same as
the classes that were reviewed in Listing 15-3 in Chapter 15.

g538292 ch16.qxd 8/18/03 8:44 AM Page 358

359Chapter 16 ✦ Xalan

Summary
In this chapter, you were introduced to Xalan:

✦ An introduction to Apache Xalan

✦ How to download and install Xalan

✦ Transforming XML documents in J2EE

✦ Passing transformed data to the screen

✦ Passing transformed data to the file system

✦ Using the stylesheet reference in XML documents for transformation

✦ Transforming XML documents to DOM objects

✦ Transforming XML documents to SAX objects

In the next chapter, I get into the XML APIs that are included as part of the Sun Java
Web Services Developer Pack (WSDP). I’ve actually included Java API for XML
Processing (JAXP) code in this chapter, but haven’t called your attention to it
because I wanted to focus on Xalan. Sun’s Java Web Services Developer Pack forms
the basis of many tools and code libraries, and I’ll explain each component and
illustrate the highlights with examples.

✦ ✦ ✦

g538292 ch16.qxd 8/18/03 8:44 AM Page 359

XML APIs
from Sun

Sun’s Java Web Services Developer Pack (Java WSDP) is a
great tool for J2EE developers working with any XML

applications, not just Web services. Most of the APIs in the
Web Services Developer Pack started as XML JCP (Java
Community Process) API initiatives. JCPS are projects created
by Sun to standardize popular and often used interfaces for
common tasks in J2EE. The APIs that were developed as a
result of the XML JCPS were originally rolled into the Sun Java
XML Pack. The XML Pack has not been updated since summer
2002, but it can still be downloaded from
http://java.sun.com/xml/downloads/javaxmlpack.
html. The APIs in the Java XML Pack were then rolled into the
Java Web Services Developer Pack in the fall of 2002. The Java
Web Services Developer Pack contains several interface APIs
for XML functionality from the Java XML Pack, and some new
APIs specifically for Web Service Functions. In this chapter
we’ll show examples of the Java API for XML Processing
(JAXP), Java Architecture for XML Binding (JAXB), and the
Java Server Pages Standard Tag Library (JSTL). We’ll dive into
the details of each API and provide Java code examples (and
JSP page examples for the JSTL). In addition, we’ll be using
these APIs in examples in the rest of the J2EE XML parts of
this book.

We’ll also introduce you to the Web Service APIs in the Java
Web Services Developer Pack. These are the Java API for XML
Messaging (JAXM), the Java API for XML Registries (JAXR),
Java WSDP Registry Server, Java API for XML-Based RPC (JAX-
RPC), and the SOAP with Attachments API for Java (SAAJ). We
cover the Web Service APIs in more detail and provide Web
Service API code examples in Chapter 33.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Sun’s Java Web
Services Developer
Pack (WSDP)

Developing with the
Java API for XML
Processing (JAXP)

Java Architecture for
XML Binding (JAXB)

Java Server Pages
Standard Tag Library
(JSTL)

Examples using JAXP,
JAXB, and JSTL

✦ ✦ ✦ ✦

g538292 ch17.qxd 8/18/03 8:44 AM Page 361

362 Part III ✦ XML Web Applications Using J2EE

About the Java Community Process
The Java Community Process (JCP) is where all of Sun’s non-core Java specifica-
tions are developed. The JCP process develops Java language specifications based
on public input. The specification development process is very similar to the W3C
process, with the exception that W3C Recommendations are language-neutral and
JCP specifications are specific to Java. JCP Specifications begin life as Java
Specification Requests (JSRs). JSRs are descriptions of proposed new and changed
features that evolve into final specifications. More information on JSP proposals and
JCP involvement can be found at http://www.jcp.org/en/participation/
overview.

There are five development stages and one maintenance stage that a JSR goes
through in its lifetime:

✦ Review: After a new JSR is submitted, it is posted on the Web. The first stage
is a brief period when anyone can review and comment on a new JSR Web
posting. The result of this process is a draft specification.

✦ Community Review: After the initial review is complete, members review
and comment on the draft specification. A Java Community Process Member
is a company, organization, or individual that has signed the Java
Specification Participation Agreement (JSPA), an agreement between Sun
Microsystems and the company, organization or individual under which par-
ticipation in the Java Community Process is permitted.

✦ Public Review: After the Community review, the public can review and com-
ment on the draft Specification.

✦ Final Draft Proposal: The Review, Community Review and Public Review pro-
duce a draft Specification that is used to build a Reference Implementation
(RI) and a Technology Compatibility Kit (TCK). A Reference Implementation is
a “proof of concept” implementation of a Specification in Java, and a
Technology Compatibility Kit contains development tools, documentation,
and implementation tests to ensure compatibility with a specification.

✦ Final Release: Final Draft Proposals are approved by an Executive Committee
(EC) EC members are nominated and elected by JCP members. A current
listing of EC members can be found at http://www.jcp.org/en/
participation/committee.

✦ Maintenance Review: At the time that a Specification is approved, a
Maintenance Lead is appointed to oversee ongoing maintenance of a specifi-
cation. An e-mail address is published with the specification that JCP mem-
bers and the public can send information about errata and request
clarification, interpretation, and enhancements to the Specification. It’s up to
the maintenance lead to decide if any further information or development
requires a new version of the specification as part of the Maintenance Review
process.

g538292 ch17.qxd 8/18/03 8:44 AM Page 362

363Chapter 17 ✦ XML APIs from Sun

There are hundreds of JSRs currently at various stages of completion. A listing of
JSRs by development stage can be found at http://www.jcp.org/en/jsr/
overview. Each JSR includes a reference implementation. In the Case of the Java
Web Services Developer Pack, the Java APIs that have been developed as compo-
nents in the pack are a result of the reference implementation.

Some of the JSRs have their own specific and unique functionality. Other JSRs such
as the Java API for XML Processing (JAXP) specification act as proxies between sup-
ported tools such as parsers and transformation engines and are designed to shield
developers from having to recode Java when a new version of a J2EE tool comes
out. For example, a J2EE developer that has written a parsing interface to a DOM 1
parser could theoretically move to a DOM 2 or SAX parser with no change to their
Java source code, changing the JAXP pluggable reference from DOM1 to any other
JAXP-compliant parser could facilitate the move.

Introduction to the Sun Java
Web Services Developer Pack

The Java Web Service Developer Pack (WSDP) is downloadable from Sun at
http://java.sun.com/webservices/webservicespack.html. The current
version of the WSDP is compatible with JDK 1.3.1 and higher. It is has been tested
on Solaris 8 and 9, Windows 2000 Professional, Windows XP Professional, and
RedHat Linux 7.2. Check the readme file for issues regarding configuration, compati-
bility, and enhancements to your existing JDK environment. Outlined below are
WSDP, the APIs, and their associated benefits.

JAXP (Java API for XML Processing)
The Java API for XML Processing (JAXP) supports processing of XML documents
using DOM 1, 2, and some of DOM 3, SAX 1 and 2, and XSLT. JAXP enables applica-
tions to change the processor that is used to parse and transform XML documents
without changing the underlying source code for the application that is doing the
parsing or transformation. JAXP also supports the W3C XML Schema 1.0
Recommendation and an XSLT compiler (XSLTC).

JAXB (Java Architecture for XML Binding)
JAXB automates mapping between XML documents and Java objects, making ele-
ments and attributes classes, properties and methods by marshalling and unmar-
shalling them in a customized XML document.

g538292 ch17.qxd 8/18/03 8:44 AM Page 363

364 Part III ✦ XML Web Applications Using J2EE

JAXM (Java API for XML Messaging)
JAXM provides an Interface for SOAP messages, including SOAP with attachments.
Because JAXM is based on XML, the messaging format can be changed to other
message standards that support XML formats.

JSTL (Java Server Pages Standard Tag Library)
JSTL consists of four custom Java Server Page (JSP) tag libraries called the core,
XML, I18N & Formatting and database access libraries. All are based on the JSP 1.2
API. The core JSP library supports basic HTM page generation features. The XML
library contains support for XML functionality, such as transformations and pars-
ing. The database access library contains support for database access functions,
and the I18N & Formatting library contains functionality for internationalization and
formatting of Web pages.

JAX-RPC (Java API for XML-Based RPC)
JAX-RPC provides an Interface for XML messages using an RPC transport, including,
but not limited to, SOAP calls over RPC to Web Services.

JAXR (Java API for XML Registries)
JAXR provides an interface for XML registries, supporting UDDI and OASIS/U.N./
CEFACT ebXML Registry and Repository standards, among others.

Java WSDP Registry Server
The Java WSDP Registry Server implements Version 2 of the UDDI (Universal
Description, Discovery and Integration) specification. It provides a registry that is
compatible with JAXR (Java API for XML Registries). The Java WSDP Registry
Server can be used as a standalone UDDI server and also as a testing tool for JAXR
applications.

SAAJ (SOAP with Attachments API for Java)
SAAJ provides support for producing, sending, and receiving SOAP messages
with attachments. Sun’s SAAJ library provides an interface to the features and capa-
bilities described in the W3C SOAP 1.1 attachment note, which have not changed

g538292 ch17.qxd 8/18/03 8:44 AM Page 364

365Chapter 17 ✦ XML APIs from Sun

much in their current form. The current W3C specification is the W3C SOAP 1.2
Attachment Feature, currently in the Working Draft stage of the W3C Recommen-
dation process. The W3C SOAP 1.2 Attachment Feature Working Draft states that a
SOAP message may include attachments directly in the W3C SOAP body structure.
The SOAP body and header may contain only XML content. Non-XML data must be
contained in an attachment under the SOAP body. This provides facilities for pro-
viding binary information and non-XML data in a SOAP envelope.

SOAP and SOAP attachments are covered in more detail in Chapter 23, “Web
Service Concepts,” and Chapter 24, “SOAP.”

Developing with JAXP (Java API for
XML Processing)

As mentioned in the introduction, the Java API for XML Processing (JAXP) supports
processing of XML documents using DOM 1, 2, and some of DOM 3, SAX 1 and 2,
and XSLT.

If you’re using JDK 1.4 or higher, JAXP is included in the distribution of the JDK, and
may be older than the Web Services Developer Pack (WSDP) version. To overwrite
the JDK version of JAXP with the WSDP version of JAXP, copy the files in C:\<jwsdp
install drive>\jaxp-1.2.2\lib\endorsed to <JAVA_HOME>\jre\lib\endorsed. To change
the reference in the JDK to the WSDP version without overwriting the JDK JAXP distri-
bution files, set the java.endorsed.dirs system property to C:\<jwsdp install
drive>\jaxp-1.2.2\lib\endorsed.

JAXP enables applications to change the processor that is used to parse and trans-
form XML documents without changing the underlying source code for the applica-
tion that is doing the parsing or transformation.

To show you how this actually happens, let’s refer back to the first Xalan example
in Chapter 16. I actually used JAXP code, which Xalan supports, to process the
transformation. Listing 17-1 shows the code used to extract a subset of the XML
document shown in Listing 16-1 using XSL transformation. The code reads through
an XML document using SAX behind the scenes and transforms the data using the
specified stylesheet. The code also instantiates TransformerFactory for the
transformation, which is a JAXP class for integration with a transformation engine.
By default in Xalan, the JAXP “pluggable” interface connects to the Xalan transfor-
mation engine, and the Xerxes SAX parser to facilitate Xalan transformations.

Note

Cross-
Reference

g538292 ch17.qxd 8/18/03 8:44 AM Page 365

366 Part III ✦ XML Web Applications Using J2EE

Listing 17-1: Code for Transforming an XML Document Using
Xalan - XalanSimpleTransform.java

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransform {

public static void main(String[] args) {
XalanSimpleTransform XST = new XalanSimpleTransform();

}

public XalanSimpleTransform() {
try {

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource =
“C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/
AmazonMacbethSpanish.xml”;
String XSLSource = “C:/jdk1.3.1_01/bin/XMLBookSource/XMLDocs/
XMLtoQuotes.xsl”;
String ResultOutput = “C:/temp/ResultOutput.XML”;

Transformer transformer = tFactory.newTransformer(new
StreamSource(XSLSource));

transformer.transform(new StreamSource(XMLSource), new
StreamResult(ResultOutput));

System.out.println(“Transform Successful.
Output saved to file: C:/temp/ResultOutput.XML”); }

catch (TransformerException e) {
System.err.println(“Error: “ + e);

}
}

}

We first reviewed this code in Chapter 16 from a Xalan and XSLT perspective. This
time we’ll review the same code from a JAXP perspective. The first part of the code
imports classes that you need for this Java class to function. Transformation is
facilitated through the JAXP javax.xml.transform class. The files are located
by the strings that represent the XSLSource, XMLSource, and ResultOutput
files on the file system. The files are converted to streams using the javax.xml.
transform.stream class. Next, the code creates a class, which implements a
main method, which calls a constructor, which creates a new instance of a class
that creates a new JAXP TransformerFactory object, which is the JAXP interface to
the Xalan transformation engine.

g538292 ch17.qxd 8/18/03 8:44 AM Page 366

367Chapter 17 ✦ XML APIs from Sun

JAXP by itself is not a XSLT processor or a XML parser. The default implementation
of JAXP uses Xalan as the XSLT processor and the Xerces SAX parser as the default
parser.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

public class XalanSimpleTransform {

public static void main(String[] args) {
XalanSimpleTransform XST = new XalanSimpleTransform();

}

public XalanSimpleTransform() {
try {

The new instance of TransformerFactory is defined along with three strings;
XMLSource, XSLSource and ResultOutput. A JAXP Transformer created with
TransformerFactory needs the objects represented by these three strings to per-
form a transformation. The XMLSource string defines the location of the source
XML file. The XSLSource string defines the location of the source XSL file, and is
used to create the new instance of the transformer. The file represented by the
XSLSource string becomes the template object when an instance of the transformer
is created. The ResultOutput defines the location that the transformation output
will be sent to, in this case c:\temp\ResultOutput on the file system. The file refer-
ences for the source XML and XSL files do not contain path information because the
files should be located in the same directory as this J2EE code.

TransformerFactory tFactory = TransformerFactory.newInstance();
String XMLSource = “AmazonMacbethSpanish.xml”;
String XSLSource = “XMLtoQuotes.xsl”;
String ResultOutput = “C:/temp/ResultOutput.XML”;

Swapping processors and parsers with JAXP
From a JAXP perspective, it’s interesting to note what’s going on behind the scenes
when a new instance of the TransformerFactory is created. JAXP contains facilities
for one XSLT processor to be swapped out for another XSLT processor, without
changing this code. The parser that is used to parse the XSL stylesheet into a tem-
plate object and the XML source document into something that the XSLT processor
can digest (usually a DOM node tree or a set of SAX events) can also be substituted.

The JAXP specification details how to swap one XSTP processor and/or parser
for another. The full JAXP specification and all other XML JCP specifications can
be found on the JCP Website at http://jcp.org/en/jsr/tech?listBy=
1&listByType=tech. we’ll summarize them for you here and show examples of
how to make the swaps.

Note

g538292 ch17.qxd 8/18/03 8:44 AM Page 367

368 Part III ✦ XML Web Applications Using J2EE

Always check for more than one JCP listing if you’re looking for a specification at
jcp.org. The jcp.org Website can be a little difficult to navigate to the latest release
of a specification. Instead of reusing the original specification number and docu-
ment when publishing updates, new versions of a JCP specification use new num-
bers in separate documents, unless they are a maintenance release. Compounding
the problem, JSRs that represent different versions of the same specification are
often located in different sections of the site. For example, JAXP 1.0 was JSR 5, and
JAXP 1.1 was JSR 63. JAXP 1.2 is a maintenance release of JAXP 1.1 and has the
same number (63). JAXP 1.3 is JSR 206.

JAXP system properties
JAXP identifies the parser and the XSL processor to be used in the Transformer
Factory in system properties. The system property for the XSLT processor is
javax.xml.transform.TransformerFactory and the default setting is
org.apache.xalan.processor.TransformerFactoryImpl.

There are two settings for JAXP parser functionality, depending on whether you
are using SAX or DOM parsing. The javax.xml.parsers.SAXParserFactory
system property tells JAXP which SAX parser to use. The default setting is
org.apache.xerces.jaxp.SAXParserFactoryImpl. This represents the
Xerces SAX parser that is downloaded with JAXP. If you want to use a specific DOM
parser in your code, the javax.xml.parsers.DocumentBuilderFactory sys-
tem property defines the DocumentBuilder that is used for DOM parsing. The
default setting is org.apache.xerces.jaxp.DocumentBuilderFactoryImpl.
This represents the Xerces DOM parser that is downloaded with JAXP.

How JAXP swaps XSL processors and parsers
JAXP JSRs describe three checks that a new instance of TransformerFactory
needs to perform before creating a new transformer:

1. Check for a hard-coded system property reference. This is set by passing the
system property from the command line when calling the class.

2. Check for a system property in {JAVA_HOME}/lib/ jaxp.properties.
JAVA_HOME is an environment variable that designates the location of the
root of the JDK jaxp.properties is the name of the file containing the XSLT pro-
cessor and/or parser settings.

3. Check the system property entry in {JAXP Xalan Source Directory}/src/META-
INF/services/(xalan.jar or xercesImpl.jar).

If none of these settings exist and/or have been updated from their defaults, the
default Xalan XSLT processor and Xerces SAX parser are used to form the function-
ality of the JAXP transformer object.

Tip

g538292 ch17.qxd 8/18/03 8:44 AM Page 368

369Chapter 17 ✦ XML APIs from Sun

Passing a hard-coded system property reference
Passing the system property from the command line is the most flexible way to sub-
stitute a parser. It’s good for testing because of the command-line flexibility, but not
practical if you’re calling JAXP from another class. Using the command-line specifi-
cation for a system property takes precedence over system properties specified in
a jaxp.properties file or a META-INf/services file. Here’s an example of passing a
command-line transformation property with a class from a DOS command line:

java -Djavax.xml.transform.TransformerFactory=<name and location of your
JAXP compatible XSLT processor >
-D javax.xml.parsers.DocumentBuilderFactory=<name and location of your JAXP
compatible DOM parser >
-Djavax.xml.parsers.SAXParserFactory=<name and location of your JAXP
compatible SAX parser > XalanSimpleTransform

This command tells Java to run the XalanSimpleTransform class in Listing 17-1.
The -D tells JAXP to use the value pair to override a system property value when a
new instance of TransformerFactory is created. The -Djavax.xml.transform.
TransformerFactory= system property setting tells TransformerFactory to
use the JAXP compatible implementation class listed in the reference value as the
XSLT processor. The -D javax.xml.parsers.DocumentBuilderFactory sys-
tem property setting tells TransformerFactory to use the JAXP compatible
implementation class listed in the reference value as the DOM parser. The -Djavax.
xml.parsers.SAXParserFactory= system property setting tells Transformer
Factory to use the JAXP compatible implementation class listed in the reference
value as the SAX parser.

Changing the system properties in {JAVA_HOME}/lib/ jaxp.properties
Global changes of the JAXP system properties can also be specified in the JAVA_
HOME}/lib/ jaxp.properties file. JAVA_HOME is a system environment variable that
designates the location of the root of the JDK that you are using on the system.
jaxp.properties is the name of the file containing the XSLT processor and/or
parser settings. The file is not created by default when JAXP is installed. If
jaxp.properties does not exist, the JAXP TransformerFactory uses the default
values. The jaxp.properties file can be created manually when global JAXP parsers
and an XSLT processor need to be specified. The downside of using the jaxp.proper-
ties file is that all JAXP parsing and transformation processes will have to use the
processor and parsers specified. Using the command-line specification for a system
property takes precedence over the settings in a jaxp.properties file. The values in
a jaxp.properties file take precedence over system properties specified in a META-
INf/services file. Here are the contents of a sample jaxp.properties file, with default
values.

Unlike the command-line references, the jaxp.properties references do not need
an = to specify the value of the system properties.

Note

g538292 ch17.qxd 8/18/03 8:44 AM Page 369

370 Part III ✦ XML Web Applications Using J2EE

javax.xml.transform.TransformerFactory
org.apache.xalan.processor.TransformerFactoryImpl
javax.xml.parsers.DocumentBuilderFactory
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
javax.xml.parsers.SAXParserFactory
org.apache.xerces.jaxp.SAXParserFactoryImpl

Changing the system property entry in {JAXP Source
Directory}/src/META-INF/services
The last option can be the most flexible of the three options, but it requires a lot
more work. You have to download the JAXP source code distribution, and the ANT
builder tool. Both of these are part of the full download of the Web Services
Developer Pack. If a command-line system property is not used, and a JAR file speci-
fication includes a way to locate a subclass of TransformerFactory, which is located
in the META-INF/services subdirectory of the jaxp-api.jar file. The compiled file for
the XSLT processor is located in javax/xml/transform/TransformerFactory.class. The
compiled DOM parser is in javax.xml/parsers/DocumentBuilderFactory.class. The
compiled SAX parser is in javax.xml/parsers/SaxParserFactory.class. You can rewrite
the code to suit your needs, or specify another class to be used in substitution for
your XSLT processor and/or your SAX and DOM parsers. At runtime, the command
line specification of a system property takes precedence over the settings in a
jaxp.properties file and the class located in a META-INF/services file.

Working with JAXP and Xalan JAXP examples
We won’t get into any more of the JAXP details in this chapter, because the JAXP
download contains complete and very easy to understand documentation and
some very good sample files. The documentation is located in the \docs subdirec-
tory of your JAXP install directory. The samples are located in the \samples subdi-
rectory of your JAXP install directory. We also use JAXP in several working
examples later in the book.

In addition, if you’re looking for examples of swapping parsers for use with the
Xalan XSLT processor, or using DOM and SAX objects for sources and output,
the Xalan sample files and related documentation have complete examples. All
of the Xalan examples use JAXP to access the Xalan XSLT processor and parsers.
The samples are located in the \samples subdirectory of your Xalan install direc-
tory.

For more information about Xalan, including download and installation instruc-
tions, please refer to Chapter 16.

Cross-
Reference

g538292 ch17.qxd 8/18/03 8:44 AM Page 370

371Chapter 17 ✦ XML APIs from Sun

Developing with JAXB (Java Architecture
for XML Binding)
JAXB automates mapping between XML documents and Java objects. JAXB mar-
shalling generates an XML document from a Java object that represents an XML
document. JAXB unmarshalling turns an XML document into a Java object. JAXB
relies on Schemas to specify marshalling and unmarshalling formats for XML
documents.

You may be wondering what the difference is between JAXB unmarshalling and XML
parsing. Both render objects that can be used by Java code to access specific parts
of an XML document. Both JAXB unmarshalling and XML parsing (using a validating
parser) use Schemas to parse documents. However, the difference between parsing
and unmarshalling is that while validating parsers use schemas to enforce a struc-
ture of an XML document, JAXB can use the same schema as a set of instructions
for converting Java objects to an XML document and an XML document to Java
objects. JAXB allows easier access to Java objects than either SAX or DOM parsing
can provide. It also allows Java objects that represent XML document objects to be
validated before they become XML document objects.

The flexibility of JAXB does come at a price. It would be great if you could feed a
schema to JAXB at runtime and have it build XML document object classes on the
fly, but that’s not the way that JAXB works (for now, anyway). There are two steps
to enabling XML document data binding with JAXB. The first step is to generate a
set of classes that are used to handle XML document objects. A Java class is cre-
ated for each object in a schema. The object classes are generated by JAXB pro-
cesses and are based on a W3C schema that you provide. The second step uses the
generated classes to handle marshalling, manipulation, and unmarshalling of XML
documents, with optional schema validation.

Practical applications for JAXB
Despite the two-step process, JAXB can be very useful for many applications. The
most practical implementation of a JAXB solution is to provide a set of classes for
XML document development in a team development environment. One team mem-
ber can develop the XML document structure and use JAXB to create a Java .jar file
containing handler classes for the XML document. The .jar file can be passed to a
Java development team and used for generating XML documents that have a rea-
sonable expectation of being valid.

One pleasant side-effect of JAXB is that after the XML schema document structure
has been broken down into a set of Java classes, the javadoc API can be used to
provide documentation of the schema to Java developers. This comes in very
handy for a development team who may not know anything about the XML docu-
ment structure. It’s also a fast way for an XML schema developer to create an easy-
to-follow record of the schema structure for future reference. We’ll show you an
example of the generated Java docs for a sample schema later in this chapter.

g538292 ch17.qxd 8/18/03 8:44 AM Page 371

372 Part III ✦ XML Web Applications Using J2EE

Setting up JAXB
The first step to setting up JAXB is downloading the JAXB files. If you haven’t
already done so, we recommend downloading the full Web Services Developer Pack
(WSDP) from http://java.sun.com/xml. If for some reason you don’t want to
download the entire WSDP, you can download just the JAXB code from the same
page, which includes a couple of necessary files from the JAXP and WSDP packages
as well. The JAXP and WSDP packages are only needed for the schema binding and
class generation process. Once the classes are generated, you only need the JAXB
packages to marshal and unmarshal XML documents.

Next, you have a few options for setting up a CLASSPATH that will be used by the
binding process and run-time XML document manipulation. It would be great if the
WSDP InstallShield process created the necessary environment variables for CLASS-
PATH and path settings, but it doesn’t.

The JAXB documentation provides elaborate and well-documented instructions on
how to set up environment variable references to base directories like
JAXB_HOME, JAXB_LIBS, JWSDP_HOME, etc., and then refer to these directories in
other environment variables such as CLASSPATHS. Personally, I find this too easy
to mess up when the references are added manually, and the nested references
are hard to follow when you’re trying to find a problem. On top of this, not all sys-
tem administrators will let developers have access to servers to update environ-
ment variables. The idea behind the environment variable references accessing
other environment variable references is to point to different versions of a package
from a central point. This is because the package version number is usually part of
the base directory for the packages.

We have a different approach that I find easier to follow, and you might too. We
usually download the package into its default directory, and then create a new ref-
erence without the version numbers in the directory name. This way we have a
copy of the old version and the new version if we need it. We also know without a
doubt that the version we are using now is the one in our non-versioned directory
for those packages. This makes it much easier for us to trace package reference
issues.

For example, we downloaded the Web Service Developer Pack to its default direc-
tory (jwsdp-1.1), then made a copy of it to a non-versioned directory (jwsdp). We
edited all subdirectories for JAXP, JAXB, etc., in a similar way. Our environment vari-
able reference points to the jwsdp directory. This environment variable only has to
be created once, and never edited. When we download the next WSDP version,
we will copy the new files into the jwsdp directory, where they are immediately
accessible to our programs without having to update any environment variables.

You’ll need to manually add references to your system CLASSPATH or your Java IDE
CLASSPATH before you can use JAXB. Below is a sample of the package references
you need in your CLASSPATH, based on a WSDP installation directory of C:\jwsdp,
and a standard WSDP installation.

Tip

g538292 ch17.qxd 8/18/03 8:44 AM Page 372

373Chapter 17 ✦ XML APIs from Sun

C:\jwsdp\jaxb\lib\jaxb-api.jar;
C:\jwsdp\jaxb\lib\jaxb-ri.jar;
C:\jwsdp\jaxb\lib\jaxb-xjc.jar;
C:\jwsdp\jaxb\lib\jaxb-libs.jar;
C:\jwsdp\jaxp\lib\endorsed\dom.jar;
C:\jwsdp\jaxp\lib\endorsed\sax.jar;
C:\jwsdp\jaxp\lib\endorsed\xalan.jar;
C:\jwsdp\jaxp\lib\endorsed\xercesimpl.jar;
C:\jwsdp\jaxp\lib\endorsed\xsltc.jar;
C:\jwsdp\jwsdp-shared\lib\jax-qname.jar;
C:\jwsdp\jwsdp-shared\lib\namespace.jar

Creating JAXB classes from a Schema
Once the CLASSPATH settings are set up correctly, you are ready for Step 1 of the
JAXB process. Step 1 generates Java classes into a package that can be used for
marshalling, unmarshalling, XML document object manipulation and validation. You
need the JAXB packages installed on your system, your system environment set up
as shown above, and the Schema and batch file that is part of the downloads for
this chapter.

Listing 17-2 shows the W3C Schema for the sample XML document used in this
chapter. The schema and XML document are similar to examples that we have
shown in previous chapters. The only difference is that schema and XML document
references that used an xml: namespace prefix have been removed.

JAXB 1.0 appears not to recognize xml: prefixes on attribute names such as
xml:lang and others, even though they are well-formed and valid XML with correct
namespace references. Hopefully this is a JAXB 1.0 issue and will be fixed in future
versions. You will need to remove any schema references and XML document
objects with an xml: prefix of you get the following message when JAXB generates
classes:

“The prefix “xml” cannot be bound to any namespace other than its usual names-
pace; neither can the namespace for “xml” be bound to any prefix other than
“xml”.”

Listing 17-2: The JAXB Example W3C Schema -
AmazonMacbethSpanish.xsd

<?xml version=”1.0” encoding=”UTF-8”?>
<!--W3C Schema generated by XMLSPY v5 rel. 2 U (http://www.xmlspy.com)-->
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:element name=”Encuadernación” type=”xs:string”/>
<xs:complexType name=”amazonType”>

<xs:sequence>

Continued

Tip

g538292 ch17.qxd 8/18/03 8:44 AM Page 373

374 Part III ✦ XML Web Applications Using J2EE

Listing 17-2 (continued)

<xs:element name=”product” type=”productType” maxOccurs=”unbounded”/>
</xs:sequence>
<xs:attribute name=”items” type=”xs:string” use=”required”/>

</xs:complexType>
<xs:element name=”asin” type=”xs:string”/>
<xs:element name=”author” type=”xs:string”/>
<xs:element name=”autor” type=”xs:string”/>
<xs:element name=”availability” type=”xs:string”/>
<xs:element name=”binding” type=”xs:string”/>
<xs:complexType name=”catalogType”>

<xs:sequence>
<xs:element name=”amazon” type=”amazonType”/>
<xs:element name=”elcorteingles” type=”elcorteinglesType”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string” use=”required”/>

</xs:complexType>
<xs:complexType name=”elcorteinglesType”>

<xs:sequence>
<xs:element name=”product” type=”productType”/>

</xs:sequence>
<xs:attribute name=”items” type=”xs:string” use=”required”/>

</xs:complexType>
<xs:element name=”fecha_de_publicación” type=”xs:string”/>
<xs:element name=”image” type=”xs:string”/>
<xs:element name=”imagen” type=”xs:string”/>
<xs:element name=”isbn” type=”xs:string”/>
<xs:element name=”librourl” type=”xs:string”/>
<xs:element name=”list_price” type=”xs:string”/>
<xs:element name=”precio” type=”xs:string”/>
<xs:complexType name=”productType”>

<xs:sequence>
<xs:element ref=”ranking” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”title”/>
<xs:element ref=”titulo”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”asin”/>
<xs:element ref=”isbn”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”author”/>
<xs:element ref=”autor”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”image”/>
<xs:element ref=”imagen”/>

</xs:choice>

g538292 ch17.qxd 8/18/03 8:44 AM Page 374

375Chapter 17 ✦ XML APIs from Sun

<xs:element ref=”small_image” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”list_price”/>
<xs:element ref=”precio”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”release_date”/>
<xs:element ref=”fecha_de_publicación”/>

</xs:choice>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”binding”/>
<xs:element ref=”Encuadernación”/>

</xs:choice>
<xs:element ref=”availability” minOccurs=”0”/>
<xs:choice maxOccurs=”unbounded”>

<xs:element ref=”tagged_url”/>
<xs:element ref=”librourl”/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<xs:complexType name=”quoteType”>

<xs:simpleContent>
<xs:extension base=”xs:string”>

<xs:attribute name=”source” type=”xs:string”/>
<xs:attribute name=”author” type=”xs:string”/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
<xs:element name=”quotedoc”>

<xs:complexType>
<xs:sequence>

<xs:element name=”quotelist” type=”quotelistType”/>
<xs:element name=”catalog” type=”catalogType”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=”quotelistType”>

<xs:sequence>
<xs:element name=”quote” type=”quoteType” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”author” type=”xs:string” use=”required”/>
<xs:attribute name=”quotes” type=”xs:string” use=”required”/>

</xs:complexType>
<xs:element name=”ranking” type=”xs:string”/>
<xs:element name=”release_date” type=”xs:string”/>
<xs:element name=”small_image” type=”xs:string”/>
<xs:element name=”tagged_url” type=”xs:string”/>
<xs:element name=”title” type=”xs:string”/>
<xs:element name=”titulo” type=”xs:string”/>

</xs:schema>

g538292 ch17.qxd 8/18/03 8:44 AM Page 375

376 Part III ✦ XML Web Applications Using J2EE

Generating JAXB classes from a W3C Schema
As you can see, this is a fairly complex schema. There are several complex types,
and valid XML documents are broken down into several segments under the root
element. JAXB uses this schema to generate several Java classes, one representing
each object in the schema. The JAXB documentation has very good, elaborate, and
detailed instructions on how to do the same thing with the Ant build tool. The Ant
build tool ships with the WSDP, and example Ant xml configuration files are
included with the JAXB examples if you prefer to use that method. We use a simpler
method, which is a batch file to generate JAXB code from the command line. We call
the jaxb-xjc.jar directory, and pass it two parameters:

java -jar C:\jwsdp\jaxb\lib\jaxb-xjc.jar AmazonMacbethSpanish.xsd
-p jaxbexample1

The jaxb-xjc.jar contains the classes that generate the XML document classes.
The first parameter is the name of the schema on which to base class generation on
(AmazonMacbethSpanish.xsd). The second parameter is the name of the package
that the classes will be created under (jaxbexample1). Both parameters assume that
the schema and the output directory are in the same directory as the batch files.
You can also optionally include a CLASSPATH reference from the command line:

-classpath C:\jwsdp\jaxb\lib\jaxb-api.jar;C:\jwsdp\jaxb\lib\jaxb-
ri.jar;C:\jwsdp\jaxb\lib\jaxb-xjc.jar;C:\jwsdp\jaxb-1.0\lib\jaxb-
libs.jar;C:\jwsdp\jaxp\lib\endorsed\dom.jar;C:\jwsdp\jaxp\lib\endorsed\sax.
jar;C:\jwsdp\jaxp\lib\endorsed\xalan.jar;C:\jwsdp\jaxp\lib\endorsed\xercesi
mpl.jar;C:\jwsdp\jaxp\lib\endorsed\xsltc.jar;C:\jwsdp\jwsdp-shared\lib\jax-
qname.jar;C:\jwsdp\jwsdp-shared\lib\namespace.jar

JAXB uses this batch file to generate a single class of each XML document object
described in the schema. These classes are used to marshal and unmarshal XML
documents. They are also used to access specific objects in an XML document that
adheres to the schema, or to create a document from scratch using Java code, then
marshal that document into XML.

Compiling JAXB classes
Once the JAXB classes have been generated, they need to be compiled. I use
another batch file from the command line for this:

javac jaxbexample1*.java jaxbexample1\impl*.java

This code compiles all of the files in the jaxbexample1 and jaxbexample1\impl
directories. The same optional -classpath value that was used in the generation
batch file can be passed in the batch file to compile the code as well.

g538292 ch17.qxd 8/18/03 8:44 AM Page 376

377Chapter 17 ✦ XML APIs from Sun

Figure 17-1 shows generated and compiled classes in the jaxbexample1 directory.
Each class matches an XML document object. The classes and their XML document
objects are listed in Table 17-1.

Figure 17-1: Generated and compiled XML document object classes in the
jaxbexample1 directory

Generating documentation for JAXB classes
As we mentioned earlier in this chapter, you can also easily generate javadoc docu-
mentation for the generated JAXB classes. Not only does this provide documenta-
tion for Java developers to use when writing Java code that will create valid XML
documents, but it also generates fairly good documentation of the original schema
for the future reference of the schema developer. Here’s the command that is used
to generate Java documentation using the javadoc API from the command prompt.
The javadoc API is part of the JDK.

javadoc -package jaxbexample1 -d javadoc

This tells the javadoc API to generate Java documentation for the jaxbexample1
package, and put the documentation in the javadoc subdirectory of the current
directory.

Figure 17-2 shows the index for the javadocs that were generated by the preceding
command.

g538292 ch17.qxd 8/18/03 8:44 AM Page 377

378 Part III ✦ XML Web Applications Using J2EE

Figure 17-2: Class listing and Interface summary for the jaxbexample1 class files

In the javadoc HTML interface that is shown in Figure 17-2, the class names link to
more detailed explanations of each object. For example, Figure 17-3 shows the gen-
erated Javadoc for the AmazonType interface.

The Generated JAXB classes
Table 17-1 shows the interfaces generated and their javadoc descriptions. JAXB
generated 27 interfaces and a handler class based on my example schema. The
interfaces provide access to XML document objects directly from Java code. The
JAXB ObjectFactory handler class provides facilities for creating new instances of
each interface, which become new XML document objects when the JAXB docu-
ment representation is marshalled into an XML document. As you can see from this
table, the class names are a little easier to follow than their counterparts in the
schema.

g538292 ch17.qxd 8/18/03 8:44 AM Page 378

379Chapter 17 ✦ XML APIs from Sun

Figure 17-3: Javadoc documentation for the AmazonType Interface

Table 17-1
Classes Generated by AmazonMacbethSpanish.xsd

Name Description

ObjectFactory This object contains factory methods for each Java content
interface and Java element interface generated in the
jaxbexample1 package.

AmazonType Java content class for amazonType complex type.

Asin Java content class for asin element declaration.

Author Java content class for author element declaration.

Autor Java content class for autor element declaration.

Availability Java content class for availability element declaration.

Binding Java content class for binding element declaration.

CatalogType Java content class for catalogType complex type.

ElcorteinglesType Java content class for elcorteinglesType complex type.

Continued

g538292 ch17.qxd 8/18/03 8:44 AM Page 379

380 Part III ✦ XML Web Applications Using J2EE

Table 17-1 (continued)

Name Description

Encuadernación Java content class for Encuadernación element declaration.

FechaDePublicación Java content class for fecha_de_publicación element declaration.

Image Java content class for image element declaration.

Imagen Java content class for imagen element declaration.

Isbn Java content class for isbn element declaration.

Librourl Java content class for librourl element declaration.

ListPrice Java content class for list_price element declaration.

Precio Java content class for precio element declaration.

ProductType Java content class for productType complex type.

Quotedoc Java content class for quotedoc element declaration.

QuotedocType Java content class for anonymous complex type.

QuotelistType Java content class for quotelistType complex type.

QuoteType Java content class for quoteType complex type.

Ranking Java content class for ranking element declaration.

ReleaseDate Java content class for release_date element declaration.

SmallImage Java content class for small_image element declaration.

TaggedUrl Java content class for tagged_url element declaration.

Title Java content class for title element declaration.

Titulo Java content class for titulo element declaration.

Working with the created JAXB classes
Once the JAXB classes are generated and documented, you can start working with
the classes in your Java code. Listing 17-3 shows an example XML that validated to
the schema in Listing 17-2.

Listing 17-3: The Example XML Document -
AmazonMacbethSpanish.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<quotedoc>

<quotelist author=”Shakespeare, William” quotes=”4”>
<quote source=”Macbeth” author=”Shakespeare, William”>When the
hurlyburly’s done, / When the battle’s lost and won.</quote>

g538292 ch17.qxd 8/18/03 8:44 AM Page 380

381Chapter 17 ✦ XML APIs from Sun

<quote source=”Macbeth” author=”Shakespeare, William”>Out, damned spot!
out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is murky!-
-Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have
thought the old man to have had so much blood in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is this a dagger
which I see before me, the handle toward my hand? Come, let me clutch
thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of
the mind, a false creation, proceeding from the heat-oppressed
brain?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>To-morrow, and
to-morrow, and to-morrow, creeps in this petty pace from day to day, to
the last syllable of recorded time; and all our yesterdays have
lighted fools the way to dusty death. Out, out, brief candle! Life’s
but a walking shadow; a poor player, that struts and frets his hour
upon the stage, and then is heard no more: it is a tale told by an
idiot, full of sound and fury, signifying nothing. </quote>
<quote/>

</quotelist>
<catalog items=”4”>

<Amazon items=”3”>
<product>

<ranking>1</ranking>
<title>Hamlet/MacBeth</title>
<asin>8432040231</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8432040231.01.TZZZZZZZ.jpg</small_image>
<list_price>$7.95</list_price>
<release_date>19910600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/8432040231</tagged_url>

</product>
<product>

<ranking>2</ranking>
<title>MacBeth</title>
<asin>1583488340</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
1583488340.01.TZZZZZZZ.jpg</small_image>
<list_price>$8.95</list_price>
<release_date>19991200</release_date>
<binding>Paperback</binding>
<availability/>

Continued

g538292 ch17.qxd 8/18/03 8:44 AM Page 381

382 Part III ✦ XML Web Applications Using J2EE

Listing 17-3 (continued)

<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/1583488340</tagged_url>

</product>
<product>

<ranking>3</ranking>
<title>William Shakespeare: MacBeth</title>
<asin>8420617954</asin>
<author>Shakespeare, William</author>

<small_image>http://images.Amazon.com/images/P/
8420617954.01.TZZZZZZZ.jpg</small_image>
<list_price>$4.75</list_price>
<release_date>19810600</release_date>
<binding>Paperback</binding>
<availability/>
<tagged_url>http://www.Amazon.com:80/exec/obidos/redirect?tag=
associateid&benztechnologies=9441&camp=1793&link_code=
xml&path=ASIN/8420617954</tagged_url>

</product>
</Amazon>

<elcorteingles items=”1”>
<product>

<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/La fierecilla
domado/El sueño de una noche de verano/ El mercader de
Venecia</titulo>
<isbn>8484036324</isbn>
<autor>Shakespeare, William</autor>
<imagen>http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639</imagen>
<precio>7,59 €</precio>
<fecha_de_publicación>6/04/1999</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

</product>
</elcorteingles>

</catalog>
</quotedoc>

Because we created both the XML document and the schema as examples for this
book, we know that this XML document validates against the schema. However, in
the real world, it’s seldom the case that you would know this up front. You could

g538292 ch17.qxd 8/18/03 8:44 AM Page 382

383Chapter 17 ✦ XML APIs from Sun

use a validating parser to check for validation. But this section of the chapter is
about JAXB, so we’re going to use JAXB to check the document for validity by
unmarshalling it into a set of JAXB objects. We also add a new quote to the quote
list, and then check the new quote to see if it’s valid, based on the schema. Once
that’s done, we marshal the new document. Listing 17-4 shows the code in its
entirety, and then we break it down after the listing.

Listing 17-4: Code for Working with the Generated JAXB
Classes - JAXBExample.java

import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import jaxbexample1.*;

public class JAXBExample {

public static void main(String[] args) {
JAXBExample JBE = new JAXBExample();

}

public JAXBExample() {

try {
JAXBContext JBC = JAXBContext.newInstance(“jaxbexample1”);
Unmarshaller u = JBC.createUnmarshaller();
u.setValidating(true);

Quotedoc QD = (Quotedoc)u.unmarshal(new FileInputStream(“
AmazonMacbethSpanish.xml”));
QuotelistType QuoteList = QD.getQuotelist();
List Qlist = QuoteList.getQuote();

System.out.println(“Original List of Quotes in QuoteDoc:”);
for(Iterator i = Qlist.iterator(); i.hasNext();) {

QuoteType Qitem = (QuoteType)i.next();
System.out.println(“Author: “ + Qitem.getAuthor() +”\n” +
“Source: “ + Qitem.getSource() +”\n” +
Qitem.getValue());

}

ObjectFactory OF = new jaxbexample1.ObjectFactory();
QuoteType newQuote = OF.createQuoteType();
newQuote.setAuthor(“Shakespeare, William”);
newQuote.setSource(“Macbeth”);
newQuote.setValue(“Sleep shall neither night nor day Hang upon
his penthouse lid; He shall live a man forbid: Weary . . .”);

Continued

g538292 ch17.qxd 8/18/03 8:44 AM Page 383

384 Part III ✦ XML Web Applications Using J2EE

Listing 17-4 (continued)

Validator val = JBC.createValidator();
boolean validQuote = val.validate(newQuote);
if (validQuote=true) {

System.out.println(“New Quote is Valid”+”\n”);
}

Qlist.add(newQuote);

QuoteList = QD.getQuotelist();
Qlist = QuoteList.getQuote();

System.out.println(“New List of Quotes in QuoteDoc:”);
for(Iterator i = Qlist.iterator(); i.hasNext();) {

QuoteType Qitem = (QuoteType)i.next();
System.out.println(“Author: “ + Qitem.getAuthor() +”\n” +
“Source: “ + Qitem.getSource() +”\n” +
Qitem.getValue());

}

Marshaller m = JBC.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE
);
OutputStream OS = new FileOutputStream(
“ AmazonMacbethSpanish1.xml”);
m.marshal(QD, OS);

}
catch(JAXBException je) {

je.printStackTrace();
}
catch(IOException ioe) {

ioe.printStackTrace();
}

}

}

The first piece of code is the imports. java.io.* and java.util.* provide us
with a way to read and write XML documents and work with lists. javax.xml.
bind.* provides access to JAXB functionality. jaxbexample1.* pulls in all of the
custom JAXB classes that were generated earlier in this chapter. The classes in the
jaxbexample1 package could be compressed into a .jar file for easier distribution,

g538292 ch17.qxd 8/18/03 8:44 AM Page 384

385Chapter 17 ✦ XML APIs from Sun

but since this is an example, we’ve left them uncompressed so they are easier to
access and review. Next, the code creates a class, which implements a main method,
which calls a constructor, which creates a new instance of the JAXBExample class.

import java.io.*;
import java.util.*;
import javax.xml.bind.*;
import jaxbexample1.*;

public class JAXBExample {

public static void main(String[] args) {
JAXBExample JBE = new JAXBExample();

}

public JAXBExample() {

try {

A new instance of JAXBContext is created, which provides access to the JAXB
classes. Next, a new unmarshaller is created, which is used to unmarshal the XML
document. When the XML document is unmarshalled, it will be validated, because
the setValidating property of the unmarshaller is set to true. If there is a valida-
tion error, the code will stop execution and a JAXB error will be returned via the
catch below.

JAXBContext JBC = JAXBContext.newInstance(“jaxbexample1”);
Unmarshaller u = JBC.createUnmarshaller();
u.setValidating(true);

Next, a FileInputStream is used to get the XML document from the file system.
The XML document is assumed to be in the same directory as this class. Quotedoc
represents the root element in the XML document. A QuotelistType object is cre-
ated using one of the generated JAXB classes. QuotelistType is a class that repre-
sents the QuotelistType complex type from the schema. The QuotelistType
contains one or more QuoteTypes, which represent quoteType complex types
from the schema. A list is used to contain the quotes. Quotes are loaded into the
list by extracting them from the QuotelistType using the getQuote method.

Quotedoc QD = (Quotedoc)u.unmarshal(new FileInputStream
(“AmazonMacbethSpanish.xml”));
QuotelistType QuoteList = QD.getQuotelist();
List Qlist = QuoteList.getQuote();

Now that the quotes are in a list, they can be traversed with an Iterator. We use an
Iterator to display the current list of quotes to System.out. The getAuthor,
getSource, and getValue methods are used to return the Quote author, source,
and the quote, which is represented by the text value associated with the quote
element.

g538292 ch17.qxd 8/18/03 8:44 AM Page 385

386 Part III ✦ XML Web Applications Using J2EE

System.out.println(“Original List of Quotes in QuoteDoc:”);
for(Iterator i = Qlist.iterator(); i.hasNext();) {

QuoteType Qitem = (QuoteType)i.next();
System.out.println(“Author: “ + Qitem.getAuthor() +”\n” +
“Source: “ + Qitem.getSource() +”\n” +
Qitem.getValue());

}

So far so good — the code is still running at this point, which confirms that the docu-
ment has been successfully unmarshalled and validated, and access to objects is
working. The next piece of code writes to the XML document using a new instance of
ObjectFactory. The createQuoteType method of ObjectFactory creates a
new empty quote object. The setAuthor, setSource, and setValue methods of
QuoteType fills in the quote object with string values.

ObjectFactory OF = new jaxbexample1.ObjectFactory();
QuoteType newQuote = OF.createQuoteType();
newQuote.setAuthor(“Shakespeare, William”);
newQuote.setSource(“Macbeth”);
newQuote.setValue(“Sleep shall neither night nor day Hang upon
his penthouse lid; He shall live a man forbid: Weary . . .”);

The quote object is now populated with new values, but is not part of the XML docu-
ment object yet. Before it is made a part of the XML document, the JAXB Validator
class can be used to validate the QuoteType object. This is a handy and quick way
to validate an object without having to validate the entire XML document, which was
already validated when the XML document was unmarshalled.

The if (validQuote=true) statement is added for clarity, but is not neces-
sary. If the Validator encounters a validation error, the code stops and a JAXB
exception is thrown. Therefore, we could have left the if statement out — if the
code is still running after validation, then the validation is a success.

Validator val = JBC.createValidator();
boolean validQuote = val.validate(newQuote);
if (validQuote=true) {

System.out.println(“New Quote is Valid”+”\n”);
}

If the new object is valid according to the schema, the Java List add method is used
to add the new quote to the end of the quote list. Next, the quote listing is dis-
played to the System.out again to confirm that the new quote is added. This code
is the same as the previous code for iteration of the list and display to
System.out. Normally, we would write redundant code like this to a separate sub-
class, but that messes up the flow of examples, so we’ve repeated the code here.

Qlist.add(newQuote);
QuoteList = QD.getQuotelist();
Qlist = QuoteList.getQuote();

Note

g538292 ch17.qxd 8/18/03 8:44 AM Page 386

387Chapter 17 ✦ XML APIs from Sun

System.out.println(“New List of Quotes in QuoteDoc:”);
for(Iterator i = Qlist.iterator(); i.hasNext();) {

QuoteType Qitem = (QuoteType)i.next();
System.out.println(“Author: “ + Qitem.getAuthor() +”\n” +
“Source: “ + Qitem.getSource() +”\n” +
Qitem.getValue());

}

Next, the code saves a new XML document with the added quote to the file system
using a new instance of the JAXBContext Marshaller. The
JAXB_FORMATTED_OUTPUT property tells the Marshaller to format the output
with indents and line feeds. Other Marshaller properties set the encoding and a
schema reference. These are left at their default values. The new document is mar-
shalled to a FileOutputStream, which saves the new XML document as
AmazonMacbethSpanish1.xml. QD refers to the original Quotedoc that was cre-
ated when the original XML document was unmarshalled.

Marshaller m = JBC.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE
);
OutputStream OS = new FileOutputStream(
“ AmazonMacbethSpanish1.xml”);
m.marshal(QD, OS);

If the class encounters any marshalling or validation errors, JAXBException is
caught. IOException catches and file read and/or write errors.

}
catch(JAXBException je) {

je.printStackTrace();
}
catch(IOException ioe) {

ioe.printStackTrace();
}

There are two results from this class, a new XML document called
AmazonMacbethSpanish1.xml, and status output written to System.out. Listing
17-5 shows the output that is written to System.out.

Listing 17-5: Output from JAXBExample,java

Original List of Quotes in QuoteDoc:
Author: Shakespeare, William
Source: Macbeth
When the hurlyburly’s done, / When the battle’s lost and won.
Author: Shakespeare, William
Source: Macbeth

Continued

g538292 ch17.qxd 8/18/03 8:44 AM Page 387

388 Part III ✦ XML Web Applications Using J2EE

Listing 17-5 (continued)

Out, damned spot! out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is
murky!--Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have thought the old
man to have had so much blood in him?
Author: Shakespeare, William
Source: Macbeth
Is this a dagger which I see before me, the handle toward my hand? Come, let me
clutch thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of the mind, a
false creation, proceeding from the heat-oppressed brain?
Author: Shakespeare, William
Source: Macbeth
To-morrow, and to-morrow, and to-morrow, creeps in this petty pace from day to
day, to the last syllable of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle! Life’s but a walking
shadow; a poor player, that struts and frets his hour upon the stage, and then
is heard no more: it is a tale told by an idiot, full of sound and fury,
signifying nothing.

New Quote is Valid

New List of Quotes in QuoteDoc:
Author: Shakespeare, William
Source: Macbeth
When the hurlyburly’s done, / When the battle’s lost and won.
Author: Shakespeare, William
Source: Macbeth
Out, damned spot! out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is
murky!--Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have thought the old
man to have had so much blood in him?
Author: Shakespeare, William
Source: Macbeth
Is this a dagger which I see before me, the handle toward my hand? Come, let me
clutch thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of the mind, a
false creation, proceeding from the heat-oppressed brain?
Author: Shakespeare, William
Source: Macbeth
To-morrow, and to-morrow, and to-morrow,creeps in this petty pace from day to
day, to the last syllable of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle! Life’s but a walking
shadow; a poor player, that struts and frets his hour upon the stage, and then
is heard no more: it is a tale told by an idiot, full of sound and fury,
signifying nothing.

g538292 ch17.qxd 8/18/03 8:44 AM Page 388

389Chapter 17 ✦ XML APIs from Sun

Author: Shakespeare, William
Source: Macbeth
Sleep shall neither night nor day Hang upon his penthouse lid; He shall live a
man forbid: Weary . . .

Developing with JSTL (JavaServer Pages
Standard Tag Library)
The JavaServer Pages Standard Tag Library (JSTL) lets Web developers generate
servlet code using Java objects without having to code, compile, and deploy
servlets, and with very little knowledge of the Java classes that are being used. In
this way the design of Web pages can be somewhat separated from Web content
and Web applications. JSTL documents are a lot easier to create and edit than
servlets that produce the same content.

Introduction to JSPs
Java Server Pages (JSPs) are a way of integrating server-side functionality with
HTML element tags to create dynamic content for the Web while separating content
from display in a J2EE world. Most developers know by now that HTML pages are
static files that can be edited and saved on a server’s file system. JSPs are a way of
generating servlets on the fly. JSPs are calculated HTML pages that are generated at
runtime by a servlet, which is in turn generated by a JSP. JSP tags are formatted
much like HTML tags, but are actually references to servlet functionality that gener-
ates an HTML page at runtime, before it is sent to a browser.

JSPs can therefore be described as a meta-language for developing servlets without
having to code, debug, and compile Java source code then deploy servlet class
files. All a developer needs is an HTML editor tool and a reference describing any
necessary JSP tag’s syntax. Instead of saving the HTML page as an .htm page, a
developer saves the page as a .jsp page, and deploys the page to a JSP-compatible
Web server. The Web server creates and compiles a servlet based on tags in the .jsp
page. When the .jsp page is called on the Web server, the servlet runs. The servlet
output usually generates a static HTML page containing dynamic content that was
added to the page at runtime.

JSP Tag Syntax: Declarations, directives, expressions, and scriptlets
It’s important to understand different types of tags and how they affect JSP output.
Table 17-2 describes directives and three other standard JSP scripting elements
that JSP developers need to know about.

g538292 ch17.qxd 8/18/03 8:44 AM Page 389

390 Part III ✦ XML Web Applications Using J2EE

Table 17-2
JSP Tag Syntax: Declarations, Directives,

Expressions, and Scriptlets

Scripting Element Description

Expressions Expressions are included as part of a generated servlet’s response.

Declarations Declarations are inserted into the servlet outside of method calls.

Directives Directives come in three flavors: Include, page and taglib. Include
inserts a file from the file system when a servlet is generated by a
JSP. Page defines attributes for a page, including imports, output
encoding, error handling, session support, and packages to import.
The taglib directive is used to define custom tag libraries. The JSTL
uses taglib directives to include JSTL tags in JSP pages. I’ll show
examples of this later in the chapter.

Scriptlets Actual pieces of Java code to be inserted in the generated Servlet.
Scriptlets are inserted into a special methods created for JSP servlets called _jspService

Expressions, declarations, directives, and scriptlets can be formatted as JSP tags or
as XML tags. Table 17-3 shows the standard JSP and XML formats.

Table 17-3
JSP and XML Tag Formats

Standard Tag Format XML Format

Expressions : <jsp:expression>
<%=expression%> tag expression

</jsp:expression>

Declarations: <jsp:declaration>
<%!declaration%> tag declaration

</jsp:declaration>

Directives: <jsp:directive.(include | page | taglib) attr1=value1
<%@ directive attr2=value2 />
attr1=”value1”
attr2=”value2”%>

Scriptlets: <jsp:scriptlet>
<%scriptlet%> scriptlet code

</jsp:scriptlet>

g538292 ch17.qxd 8/18/03 8:44 AM Page 390

391Chapter 17 ✦ XML APIs from Sun

JSP predefined variables
JSP pages can use several predefined variables that are outside the scope of the
JSTL, so a brief introduction is in order. The list of variables also provides a good
overview of the objects that can be accessed and manipulated by a JSP page. Table
17-4 shows the eight predefined JSP variables.

Table 17-4
Predefined Variables

Variable Description

application application provides access to variables stored in a ServletContext
object. Variables that are stored in the ServletContext object can be
shared between servlets that are part of the same application.

config config represents a ServletConfig object for a JSP page. ServletConfig
objects contain initialization parameters via a jspInit method.
Initialization parameters are parameters that are passed from a JSP
server instance to a JSP page at page initialization. Initialization
parameters are defined in the WEB-INF/web.xml page for a JSP server
instance.

out out is a buffered PrintWriter called JspWriter. JSP page buffering is
controlled by setting a buffer size attribute using a JSP page directive.
Buffering is enabled by default, and the default page buffer is 8kb. Out
is not needed for JSP expressions, because they are automatically sent
to the JspWriter. Scriptlets (Java Code embedded on a JSP page) and
other objects can explicitly refer to the out variable to pass output to
the JspWriter.

page page provides a placeholder for a page object. Intended for use with
non-scripting languages, so not commonly used with standard JSP
pages.

pageContext pageContext contains JSP page-specific objects and functionality, such
as JspWriter. pageContext provides access to all page-related classes in
this table through a single interface.

request request represents a JSP page request. It provides access to parameters,
HTTP header information, cookies, and initialization parameters.

response response represents the HTTP response to a JSP page request. HTTP
status codes and header information can be manipulated using
response, unless buffering has been disabled. JSP page buffering is
controlled by setting a buffer size attribute using a JSP page directive.
Buffering is enabled by default, and the default page buffer is 8kb.

session session represents an HTTP session object associated with a JSP page
request. Sessions are enabled by default on JSP pages. JSP sessions can
be disabled by using a JSP page directive to set session=”false”.

g538292 ch17.qxd 8/18/03 8:44 AM Page 391

392 Part III ✦ XML Web Applications Using J2EE

Tag library descriptors (TLDs) and JSTL
JSP tags are described in XML format in a Tag Library Descriptor file (TLD). TLDs
are very useful for storing and sharing JSP tags in a portable format and are part of
the JSP specification. Tags defined in the TLDs access Java classes in accompanying
.jar files when creating servlets from JSP pages.

JSP tag libraries are contained in tag library descriptor (TLD) files. TLDs describe a
tag library by providing documentation on a library and its tags, actions that each
tag represents, and compatibility information for JSP servers based on the tag ver-
sion number. TLDs are well-formed XML documents, and can be viewed as such.

The JavaServer Pages Standard Tag Library (JSTL) ships with eight TLD files and
four .jar files. The eight TLD files support two types of tag structures: Request Time
Expression Values (RT) and Expression Language Values (EL). JSP specifications are
published and maintained by Sun via the JCP process. Request Time Expression
(RT) is part of the JSP 1.2 specification. Expression Language (EL) is part of the JSP
1.3 Specification, and is designed to supplant the Java-based RT tag format in future
specifications. We’ll explain the Expression Language in more detail later in this
chapter. For now, you just need to know that both the legacy RT tags and newer EL
tags ship with the JSTL, and tag formats can be mixed on a page, but it is not rec-
ommended. The RT tags maintain backward compatibility with older JSP pages, but
we don’t recommend using them for new development. Future JSP versions may
drop the RT tags in favor of EL tags exclusively. Full documentation of current JSP
specifications can be found at
http://java.sun.com/products/jsp/docs.html. The version that we are
working with for this chapter is JSTL 1.0.3, which is part of the WSDP 1.1. Currently,
JSP 2.0 is in the works, having just reached the second working draft as we write
this.

Table 17-5 shows the four JSTL tag libraries, represented by eight TLD files.

Table 17-5
JSTL Libraries, TLD Files, Prefixes, and URIs.

Library Name TLD File Prefix URI

Core c.tld c http://java.sun.com/jstl/core
c-rt.tld c_rt http://java.sun.com/jstl/core_rt

SQL Database access sql.tld sql http://java.sun.com/jstl/sql
sql-rt.tld sql_rt http://java.sun.com/jstl/sql_rt

Internationalization with Fmt.tld fmt http://java.sun.com/jstl/fmt
I18N formatting fmt-rt.tld fmt_rt http://java.sun.com/jstl/fmt_rt

XML processing x.tld x http://java.sun.com/jstl/xml
x-rt.tld x_rt http://java.sun.com/jstl/xml_rt

g538292 ch17.qxd 8/18/03 8:44 AM Page 392

393Chapter 17 ✦ XML APIs from Sun

The core JSTL library contains support for common servlet tasks such as iteration,
conditional expressions such as if and choose, and many others. The SQL library
supports SQL access to databases via JDBC 2.0. The Internationalization library
supports tags for JSTL internationalization functions, including text encoding and
locale-sensitive formatting. The XML library supports several functions for XML
document processing. The tags and their associated attributes are covered in great
detail in the JSTL documentation, which can be downloaded from
http://java.sun.com/products/jsp/jstl/. I will cover the XML tag library
in detail later in this chapter.

Table 17-6 shows the four .jar files that represented by eight TLD files. The classes
in the .jar files do not directly correspond to a single tag library. The .tld file for
each library points to one or more of the .jar files for Java reference classes. Parsing
is a big part of JSP pages, because JSP tags are parsed before they are converted to
servlets on a JSP server.

Table 17-6
JSTL Libraries, TLD Files, Prefixes, and URIs.

Library Name Description

Jaxen Evaluates Xpath expressions.
jaxen-full.jar

JSTL Contains the JSTL API classes.
jstl.jar

JSTL implementation classes Contains the JSTL implementation classes.
standard.jar

Saxpath Provides support for Xpath expressions with SAX
saxpath.jar parsing.

Using the JSP Expression Language (EL) with JSTL
EL is developed on a base of ECMAScript and Xpath, so developers with basic
understanding of Script Languages and XPath will probably be comfortable with the
basic syntax of Expression Language (EL) expressions. EL expressions start with ${
and end with }. For example, a property of an object is accessed with
${object.property}. Here’s a simple transform tag that we use in a JSP later in
this chapter. It contains two EL variable references:

<x:transform xml=”${xmlSource}” xslt=”${xsltSource}” />

g538292 ch17.qxd 8/18/03 8:44 AM Page 393

394 Part III ✦ XML Web Applications Using J2EE

The x:transform tag performs an XSLT transformation on a source document
defined by the EL reference xml=”${xmlSource}” using a stylesheet defined by
the EL reference xslt=”${xsltSource}. Both the xmlSource and the
xsltSource variables reference XML documents. The XML documents are
imported earlier in the page and passed to the transform tag as XML document
objects.

EL supports five literal object types: Boolean, floating point, integer, null, and
string. Variables can be tested and manipulated with standard mathematical opera-
tors +, -, /, %, <, <=, >, and >=. EL also supports other operators that are similar to
JavaScript syntax, shown in Table 17-7.

Table 17-7
JSP Expression Language Operators

Operator Description

[“element”] or Get an element of an array, map or list, or the property of an
[elementVariable] or object by property name. Literal element or property
[“property”] or references can be in single or double quotes. Quotes within
[propertyVariable] quotes have to be single quotes nested in double quotes,

double quotes nested in single quotes, or escaped as part of
the text value (\’ or \”).

. Get a property of an object.

= Variable assignment

(== or eq) Equal

(!= or ne) Not equal

() Expression Grouping

(&& or and) Logical AND

(|| or or) Logical OR

(! or not) boolean Reverse Boolean reference

empty Null value, empty string, or empty collection

The Expression Language also makes several predefined variables available for pro-
cessing. The predefined variables are referred to as implicit objects, because they
map to objects that can be present on a page, and are retrieved as Java objects
instead of text-based attribute values. JSP objects that contain one or more value
usually take the form of java.util.lists, or java.util.arrays, or java.
util.maps. Maps, lists, and arrays contain one or more Java objects, called ele-
ments. Maps contain a grouping of keys and values in each element. Map values can

g538292 ch17.qxd 8/18/03 8:44 AM Page 394

395Chapter 17 ✦ XML APIs from Sun

be duplicated but map keys have to be unique. Lists contain multiple single-
dimension elements that are accessible by an index number, based on the order of
the list. Lists can have duplicate elements. Arrays are like lists, but can be multi-
dimensional. Except for pageContext, implicit objects take the form of java.util.maps.
For more information on maps, lists, and arrays, start with the JDK 1.4 API
Collections interface documentation at http://java.sun.com/j2se/1.4/
docs/api/java/util/Collection.html.

The first six implicit objects are associated with page requests. A JSP page request
can have associated cookies, headers, URL parameter values, and initialization
parameters. For example, if a JSP page is accessed with the URL http://www.
JSPHost.com/ExamplePage.jsp?ParameterName=ParameterValue and
includes a cookie as part of the page request, then parameter, cookie, and header
information is available to be processed by the JSP page. The parameter repre-
sented by ParameterName is available to the param and paramValues implicit
objects. HTTP Header information is available via the header and headerValues
objects. Cookie information is available from the cookie object.

Initialization parameters are parameters that are passed from a JSP server instance
to a JSP page at page initialization. Initialization parameters are defined in the WEB-
INF/web.xml page for a JSP server instance, and look like this for JSPs:

<init-param>
<param-name>name</param-name>
<param-value>value</param-value>
</init-param>

Table 17-8 shows the five implicit objects for page requests, and one object for ini-
tialization parameters:

Table 17-8
JSP Expression Language Page Request Variables

Implicit Object Description

cookie A java.util.map of JSP page request cookies. Each cookie
value=”${cookie.name}” element has a key representing the name of the cookie

and returns a javax.servlet.http.Cookie object for a
corresponding cookie name.

header A java.util.map of HTTP request header values. Each header
value=”${header.name}” element has a key representing the name of the header

element and a string value. If a header element value has
multiple values, it is returned as a single string.

Continued

g538292 ch17.qxd 8/18/03 8:44 AM Page 395

396 Part III ✦ XML Web Applications Using J2EE

Table 17-8 (continued)

Implicit Object Description

headerValues A java.util.map of JSP page request header values. Similar
value=”${headerValues.name}” to header, but designed for multiple value headers. Each

header element has a key representing the name of the
header element, and a value in a string array. Header
values are returned as string arrays.

initParam A java.util.map of JSP page initialization parameters. Each
value=”${initParam.name}” initialization parameter element has a key representing

the name of the parameter and a string value. If an
initialization parameter has multiple values, it is returned
as a single string.

param A java.util.map of JSP page request parameters. Each
value=”${param.name}” parameter element has a key representing the name of the

parameter and a string value. If a parameter has multiple
values, it is returned as a single string.

paramValues A java.util.map of JSP page request parameters. Similar to
value=”${paramValues.name}” param, but designed for multiple value parameters. Each

parameter element has a key representing the name of the
parameter, and a value in a string array. Parameters are
returned as string arrays.

Table 17-9 shows the remaining implicit objects that are used for a pageContext
object and several scoped objects. A scope defines a level at which an object or
variable will be available for processing. These are translated into specific locations
in a servlet when the servlet is generated from the JSP page. When a new object is
created on a JSP page, the object must specify a page, request, session, or applica-
tion scope that the object belongs to. Page-scoped objects are stored in the
PageContext object of a servlet. Request-scoped objects are stored in a servlet’s
ServletRequest object. A session-scoped object becomes part of the HttpSession
object in a servlet. An application-scoped object becomes part of a servlet’s
ServletContext object, and is available to all JSP pages that are defined as part of
the same application.

g538292 ch17.qxd 8/18/03 8:44 AM Page 396

397Chapter 17 ✦ XML APIs from Sun

Table 17-9
JSP Expression Language Page Request Variables

Implicit Object Description

pageContext pageContext provides access to all page-related classes in the JSTL
through a single interface, including application, config, out, request,
response, and session objects.

pageScope A java.util.map of JSP objects associated with a JSP page.
Represented by the PageContext object in a servlet.

requestScope A java.util.map of JSP objects associated with a JSP page Request.
Represented by the ServletRequest object in a servlet.

sessionScope A java.util.map of JSP objects associated with a JSP session.
Represented by the HttpSession object in a servlet.

applicationScope A java.util.map of JSP objects associated with a JSP application.
Represented by the ServletContext object in a servlet. ServletContext
is available to all JSP pages defined as part of an application.

Downloading and installing the JSTL
Earlier in this chapter we introduced you to the eight Tag Library Descriptor files
(TLDs) and the four .jar files that are used in the JSTL. Each of the tags in the TLD
files links to a class in a .jar file. JSP pages are parsed and servlets are generated on
a server that supports a JSP container. JSP containers are part of most J2EE Web
applications servers, such as IBM’s WebSphere application server, Bea WebLogic
Application Server, Sun One Application Server, and Apache Tomcat. You’ll need
one of these servers to use JSP functionality and the JSTL. Many J2EE IDEs come
with an integrated J2EE Web application server that is pre-configured with a JSP
container. These implementations are usually fine for JSP development and testing,
before the JSP is deployed to an application server. J2EE IDES that support JSPs
include IBM’s WebSphere Studio Application Developer, and the Sun ONE Studio.
Check your IDE documentation to see if it provides JSP support.

The JSP container that you are using for JSTL-based JSP pages must support
JSP 1.2 or higher. Check the application server and/or IDE documentation for
supported versions.

Note

g538292 ch17.qxd 8/18/03 8:44 AM Page 397

398 Part III ✦ XML Web Applications Using J2EE

The first step to setting up JSTL is downloading the JSTL files. If you haven’t
already done so, we recommend downloading the full Web Services Developer Pack
(WSDP) from http://java.sun.com/xml. If for some reason you don’t want to
download the entire WSDP, you can download just the JSTL code from the same
page, which includes all necessary .jar and .tld files, very brief documentation, and
several samples.

The CLASSPATH for the JSP workstation or the IDE environment must include refer-
ences to the following .jar files, with the addition of path information based on your
JSTL installation configuration:

jaxen-full.jar, jstl.jar, standard.jar, saxpath.jar

Customizing a J2EE server instance to support JSTL
J2EE servers can have more than one instance of a server running at a time. Each
instance of the server is supported by a WEB-INF directory, which contains all of
the files that are used to run that instance, including .jar files, .tld files, .class files,
and .jsp files.

Many application servers and IDEs have automatic processes to import tag
libraries by importing .jar files and .tld files and updating the web.xml file to sup-
port the tags. Check your documentation to see if these features are supported.
Others just have an integrated process for checking the well-formedness and
validity of a web.xml file. In any case, it’s good to know about the manual process
in case there is a configuration problem with a J2EE server instance. We find server
JSP support configuration to be at least 50 percent of the headaches when devel-
oping JSP pages.

The .jar and .tld files must be placed in the WEB-INF directory or a subdirectory.
Typically, the .jar files are installed into WEB-INF/classes. .tld files are usually
installed directly into WEB-INF. For the purposes of this example, we’ve followed
that convention, but when we set up a server, we usually like to install the .jar and
.tld files in their own unique subdirectory on the server. That way the files associ-
ated with a specific tag library installation and version are easily identifiable. Also,
the possibility of confusion over two .tld files or .jar files with the same name is
eliminated if every installation is in its own directory.

Next, the web.xml file for the JTSL instance of the J2EE server must be edited. The
web.xml file contains support and configuration information for servlets, jsps, ini-
tialization variables, and customized functionality for a J2EE server instance.
References to a JSP implementation and its associated files can be changed by edit-
ing the CLASSPATH and the web.xml files for a J2EE server instance. The order of
placement of tags in the web.xml file can often be important. In general, they should
be placed at the end of the file, just above the </web-app> closing tag. Listing 17-6
shows references to the JSTL .tld files must be added to web.xml. The example
includes the complete reference to the RT and the EL tag libraries. If you don’t need
one or the other, the references can be omitted.

Note

g538292 ch17.qxd 8/18/03 8:44 AM Page 398

399Chapter 17 ✦ XML APIs from Sun

Listing 17-6: taglib References for the web.xml File

<taglib>
<taglib-uri>http://java.sun.com/jstl/fmt</taglib-uri>
<taglib-location>/WEB-INF/fmt.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>http://java.sun.com/jstl/fmt_rt</taglib-uri>
<taglib-location>/WEB-INF/fmt-rt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>http://java.sun.com/jstl/core_rt</taglib-uri>
<taglib-location>/WEB-INF/c-rt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/sql</taglib-uri>
<taglib-location>/WEB-INF/sql.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>http://java.sun.com/jstl/sql_rt</taglib-uri>
<taglib-location>/WEB-INF/sql-rt.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>http://java.sun.com/jstl/x</taglib-uri>
<taglib-location>/WEB-INF/x.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>http://java.sun.com/jstl/x_rt</taglib-uri>
<taglib-location>/WEB-INF/x-rt.tld</taglib-location>

</taglib>

Referencing JSTL tag libraries in JSP pages using the taglib Directive
Once a server or IDE environment is set up and configured to support JSTL, you
access JSTL functionality by including taglib directives in your JSP pages. Taglib
directives reference the .tld files that are specified in the uri attribute. Once a tag
library is referenced using a directive, the prefix specified in the prefix attribute of
the directive is used to refer to the tag library. Listing 17-7 shows a complete list of
JSTL tag library references to the RT and the EL tag libraries. If you don’t need one
or the other, the references can be omitted. Technically, the prefixes defined in the
taglib directives can be anything you want them to be, but the prefixes show here
are the recommended prefixes for JSTL taglib references.

g538292 ch17.qxd 8/18/03 8:44 AM Page 399

400 Part III ✦ XML Web Applications Using J2EE

Listing 17-7: Complete RT and EL JSP Page References for
JSTL Libraries

<%-- JSTL Core --%>
<%@ taglib uri=”/WEB-INF/tld/c.tld” prefix=”c” %>
<%@ taglib uri=”/WEB-INF/tld/c-rt.tld” prefix=”c_rt” %>
<%-- JSTL Internationalization (I18N Formatting) --%>
<%@ taglib uri=”/WEB-INF/tld/fmt.tld” prefix=”fmt” %>
<%@ taglib uri=”/WEB-INF/tld/fmt-rt.tld” prefix=”fmt_rt” %>
<%-- JSTL SQL --%>
<%@ taglib uri=”/WEB-INF/tld/sql.tld” prefix=”sql” %>
<%@ taglib uri=”/WEB-INF/tld/sql-rt.tld” prefix=”sql_rt” %>
<%-- JSTL XML --%>
<%@ taglib uri=”/WEB-INF/tld/x.tld” prefix=”x” %>
<%@ taglib uri=”/WEB-INF/tld/x-rt.tld” prefix=”x_rt” %>

Working with the JSTL XML Processing Library
Because this is, after all, an XML book, we’ll focus on the JSTL tag library for XML.
By way of introduction to the JSTL XML tag library, we’ll take you through the x.tld
file line by line. Examining the TLD for the XML tag library provides detail on the
xml tag library tags and attributes, as well as a good overview of how .tld files are
structured, in case you ever want to develop your own tag library. We’ll also show
some examples later in this chapter that showa few core library tags and XML tags
in action. For the latest detailed documentation of the core, I18N, and SQL libraries,
the bet place to look is Sun’s JSTL page at http://java.sun.com/products/
jsp/jstl.

The XML Tag Library Header
The first item in the tag library is an XML declaration, which indicates that this tag
library document is a well-formed XML document. Next, the Document Type
Declaration (DOCTYPE) indicates that this document must not only be well formed,
but valid when tested against the DTD at java.sun.com/dtd/web-jsp-
taglibrary_1_2.dtd. This DTD makes sure that the tag library conforms to the
JSP 1.2 specification. Next, the tlib-version tag is an indicator of the version of
this tag library, which is part of JSTL 1.0. The jsp-version tag is an indicator of
the JSP version that this tag library supports. The short-name and uri tags are
used by IDES to designate a default prefix and uri for the tag library. Short-name
and uri are used to programmatically update a web.xml file and JSP page taglib
directive auto-complete and syntax checking (for IDES that support automatic
installation of a tag library).

g538292 ch17.qxd 8/18/03 8:44 AM Page 400

401Chapter 17 ✦ XML APIs from Sun

Short-name and uri can be overridden when developing a JSP page by manu-
ally including a taglib directive with a custom uri and prefix. Most of the time,
however, it’s recommended to go with the default specified in the .tld file, unless
you have a very good reason to change it.

The display-name tag is another IDE setting, which can be used to name the tag
library in the IDE. The description tag is used to include brief documentation of
the tag library.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!DOCTYPE taglib PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”

“http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”>
<taglib>

<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>x</short-name>
<uri>http://java.sun.com/jstl/xml</uri>
<display-name>JSTL XML</display-name>
<description>JSTL 1.0 XML library</description>

The validator tag can be used to specify a validation class. Validation classes are
extensions of the javax.servlet.jsp.tagext.TagLibraryValidator class,
and are used to test specific tags on a JSP page for validity before a JSP page gener-
ates a servlet. In this case, the validator-class element specifies the class that
is used to validate the .tld file. The init-param specifies initialization parameters
that are part of the validator. The tags and attributes in the init-param list are
checked for validity before the servlet is generated.

<validator>
<validator-class>
org.apache.taglibs.standard.tlv.JstlXmlTLV
</validator-class>
<init-param>

<param-name>expressionAttributes</param-name>
<param-value>
out:escapeXml
parse:xml
parse:systemId
parse:filter
transform:xml
transform:xmlSystemId
transform:xslt
transform:xsltSystemId
transform:result
</param-value>
<description>
Whitespace-separated list of colon-separated token pairs
describing tag:attribute combinations that accept expressions.
The validator uses this information to determine which

Tip

g538292 ch17.qxd 8/18/03 8:44 AM Page 401

402 Part III ✦ XML Web Applications Using J2EE

attributes need their syntax validated.
</description>

</init-param>
</validator>

The XML Tag Library Tags
At this point in the JSP the tag library has finished housekeeping, and moves on to
the actual tags that will do things on the page. Each tag specifies a name and an
associated tag-class, which maps to a class in a JSTL .jar file. Some tags also
have references to a tei-class. This is a tag reference containing classes that can
be shared among several tags. These classes contain common processing classes
that supplement the main tag-class.

The body-content tag specifies if the body is empty or not. For example, a JSP
declaration in XML format has a body-content value of “JSP” because it contains
text associated with the declaration, and a separate closing tag:

<jsp:declaration>tag declaration</jsp:declaration>

However, a JSP declaration in XML has a body-content value of “empty” because the
tag is a container for attributes and has no separate closing tag:

<jsp:directive.page attr1=”value1” attr2=”value2” />

The description tag provides brief documentation for each tag in the JSTL XML tag
library. Optional attribute tags define attributes that are associated with a tag.

x:choose
The first tag is the choose tag, which provides functionality for a choose/when/
otherwise conditional expression. Contents of a nested when tag are processed if a
when expression evaluates to true. Contents of a nested otherwise tag are pro-
cessed if no when expressions are satisfied. The when tag and otherwise tag are
defined later in this TLD.

<tag>
<name>choose</name>
<tag-class>
org.apache.taglibs.standard.tag.common.core.ChooseTag
</tag-class>
<body-content>JSP</body-content>
<description>

Simple conditional tag that establishes a context for
mutually exclusive conditional operations, marked by
<when> and <otherwise>

</description>
</tag>

g538292 ch17.qxd 8/18/03 8:44 AM Page 402

403Chapter 17 ✦ XML APIs from Sun

x.out
The out tag passes the result of an expression to the JspWriter object. Most JSP
page output passes directly to the JspWriter implicitly. The out tag is used to
explicitly pass Xpath expression results to the JspWriter. All output passed to the
JspWriter using the out tag is passed as a string. The select attribute contains
the Xpath expression to evaluate. The escapeXml attribute contains a Boolean
value that tells out to convert illegal XML characters such as > and < to entity refer-
ence values such as > and <.

<tag>
<name>out</name>
<tag-class>org.apache.taglibs.standard.tag.el.xml.ExprTag</tag-class>
<body-content>empty</body-content>
<description>
Like <%= ... >, but for XPath expressions.
</description>
<attribute>

<name>select</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>escapeXml</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:if
The if tag is used to evaluate a conditional expression. If the expression in the
statement evaluates to a Boolean true, the contents of the tag are processed. The
select attribute contains an optional Xpath expression. The var attribute pro-
vides the option of defining a variable name and value destination for the expres-
sion output. The scope attribute specifies in which scope the new variable will be
available: application, page, request, or session.

<tag>
<name>if</name>
<tag-class>org.apache.taglibs.standard.tag.common.xml.IfTag</tag-class>
<body-content>JSP</body-content>
<description>

XML conditional tag, which evaluates its body if the
supplied XPath expression evaluates to ‘true’ as a boolean

</description>
<attribute>

<name>select</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

g538292 ch17.qxd 8/18/03 8:44 AM Page 403

404 Part III ✦ XML Web Applications Using J2EE

</attribute>
<attribute>

<name>var</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>scope</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:forEach
The forEach tag is used to loop through the nodes of a result of an Xpath expres-
sion. The body text of a forEach tag is processed for each node in the result. The
select attribute contains the Xpath expression. The var attribute provides the
option of defining a variable for the results.

<tag>
<name>forEach</name>
<tag-class>
org.apache.taglibs.standard.tag.common.xml.ForEachTag
</tag-class>
<body-content>JSP</body-content>
<description>
XML iteration tag.
</description>
<attribute>

<name>var</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>select</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:otherwise
The otherwise tag is always nested under the choose tag, which provides func-
tionality for a choose/when/otherwise conditional expression. Contents of a nested
when tag are processed if a when expression evaluates to true. Contents of a nested
otherwise tag are processed if no when expressions are satisfied. The when tag is
defined later in this TLD.

<tag>
<name>otherwise</name>
<tag-class>

org.apache.taglibs.standard.tag.common.core.OtherwiseTag</tag-class>

g538292 ch17.qxd 8/18/03 8:44 AM Page 404

405Chapter 17 ✦ XML APIs from Sun

<body-content>JSP</body-content>
<description>

Subtag of <choose> that follows <when> tags
and runs only if all of the prior conditions evaluated to
‘false’

</description>
</tag>

x:param
The param tag passes a parameter value to an XSL stylesheet. It is used as part
of the transform tag, defined later in the TLD. The name and value attributes define
the name and value of the parameter.

<tag>
<name>param</name>
<tag-class>org.apache.taglibs.standard.tag.el.xml.ParamTag</tag-class>
<body-content>JSP</body-content>
<description>

Adds a parameter to a containing ‘transform’ tag’s Transformer
</description>
<attribute>

<name>name</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:parse
The parse tag parses an XML document. By default, parse renders the output as a
org.w3c.dom.Document object. The var attribute is the variable name to assign to
the resulting parsed DOM document. The varDom attribute is the variable name to
assign to the resulting parsed DOM object. The scope attribute sets the scope of
the parsed DOM document. The scopeDom attribute sets the scope of the parsed
DOM object. The xml attribute contains the XML document object to be parsed.
The XML document must be defined as a string or a Reader object. The optional
systemId attribute is used to define a uri that can be referenced for entity resolu-
tion. The filter attribute applies a SAX filter to the XML document before it is
parsed. We show an example of parsing later in this chapter.

<tag>
<name>parse</name>
<tag-class>org.apache.taglibs.standard.tag.el.xml.ParseTag</tag-class>
<tei-class>org.apache.taglibs.standard.tei.XmlParseTEI</tei-class>
<body-content>JSP</body-content>
<description>
Parses XML content from ‘source’ attribute or ‘body’

g538292 ch17.qxd 8/18/03 8:44 AM Page 405

406 Part III ✦ XML Web Applications Using J2EE

</description>
<attribute>

<name>var</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>varDom</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>scope</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>scopeDom</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>xml</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>systemId</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>filter</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:set
The set tag assigns a variable to an expression result. The select attribute con-
tains an Xpath expression. The var attribute defines the name of the variable. The
scope attribute specifies in which scope the new variable will be available: applica-
tion, page, request, or session.

<tag>
<name>set</name>
<tag-class>org.apache.taglibs.standard.tag.common.xml.SetTag</tag-class>
<body-content>empty</body-content>
<description>

Saves the result of an XPath expression evaluation in a ‘scope’
</description>
<attribute>

g538292 ch17.qxd 8/18/03 8:44 AM Page 406

407Chapter 17 ✦ XML APIs from Sun

<name>var</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>select</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>scope</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:transform
The transform tag uses an XSLT stylesheet to transform an XML source document.
By default, transformation results are sent to the JspWriter. The transformation out-
put can also be sent to a variable using the var attribute. The scope attribute sets
the scope of the new variable. Transformation output can also be sent to a javax.
xml.transform.Result object by specifying a result attribute. The xml
attribute specifies a source XML document for the transformation. The optional
xmlSystemId attribute specifies the uri for the XML document. The xslt attribute
specifies a stylesheet for the transformation. The optional xsltSystemId attribute
specifies the uri of the XSLT stylesheet. We show an example of transformation later
in this chapter.

<tag>
<name>transform</name>
<tag-class>
org.apache.taglibs.standard.tag.el.xml.TransformTag
</tag-class>
<tei-class>org.apache.taglibs.standard.tei.XmlTransformTEI</tei-class>
<body-content>JSP</body-content>
<description>
Conducts a transformation given a source XML document
and an XSLT stylesheet
</description>
<attribute>

<name>var</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>scope</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>result</name>

g538292 ch17.qxd 8/18/03 8:44 AM Page 407

408 Part III ✦ XML Web Applications Using J2EE

<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>xml</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>xmlSystemId</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>xslt</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
<attribute>

<name>xsltSystemId</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

x:when
The when tag is always nested under the choose tag, which provides functionality
for a choose/when/otherwise conditional expression. Contents of a nested when
tag are processed if a when expression evaluates to true. Contents of a nested
otherwise tag are processed if no when expressions are satisfied. The choose
and otherwise tags are defined earlier in this TLD.

<tag>
<name>when</name>
<tag-class>
org.apache.taglibs.standard.tag.common.xml.WhenTag
</tag-class>
<body-content>JSP</body-content>
<description>

Subtag of <choose> that includes its body if its
expression evalutes to ‘true’

</description>
<attribute>

<name>select</name>
<required>true</required>
<rtexprvalue>false</rtexprvalue>

</attribute>
</tag>

</taglib>

g538292 ch17.qxd 8/18/03 8:44 AM Page 408

409Chapter 17 ✦ XML APIs from Sun

Example 1: A simple XML transformation using JSTL
In this simple example, an XML document called AmazonMacbethSpanish.xml is
transformed using a stylesheet called XMLtoQuotes.xsl. The XML document is the
same one that was used for the JAXB example earlier in this chapter, and several
other examples in the book. The XSL stylesheet was used as an example in
Chapter 8 — “XSL Transformations.”

In this chapter we focus on JSP pages and the JSTL XML tag library, so we won’t get
into the details of how an XSL transformation works. For more information on XSLT
and XSL stylesheets, please refer to Chapter 8.

The JSP in Listing 17-8 starts with a page directive that sets the page output format
to text/html. Next, the JSTL core and JSTL XML libraries are defined using two
taglib directives, each of which defines a uri and a prefix. The c prefix is used for
core library actions such as c:import. The x prefix is used for XML library actions
such as x:transform. Next, an HTML page is created and a simple HTML page
head with a page title is defined. Next, the HTML body of the page begins with the
import of an XML document. The XML document is assigned a variable name of
xmlSource. The XSL Stylesheet is imported next, and assigned a variable name of
xsltSource. The XSL transformation takes place using the transform tag. The two
required attributes for the transform tag are xml for the xml source document, and
xslt for the XSL stylesheet. Each attribute value is passed as an object to the trans-
form tag using expression language references. Lastly, the body and the html tags
are closed. Transformation output is automatically sent to a JspWriter, so there is
no need to specify an output for the transformation. When the JSP is called the
transformation output is automatically sent to a browser screen.

Listing 17-8: A JSP Page for XML Transformation

<%@page contentType=”text/html”%>
<%@ taglib uri=”http://java.sun.com/jstl/core” prefix=”c” %>
<%@ taglib uri=”http://java.sun.com/jstl/xml” prefix=”x” %>

<html>
<head><title>JSP PageTransformation Example</title></head>
<body>

<c:import var=”xmlSource” url=”AmazonMacbethSpanish.xml” />
<c:import var=”xsltSource” url=”XMLtoQuotes.xsl” />
<x:transform xml=”${xmlSource}” xslt=”${xsltSource}” />

</body>
</html>

Cross-
Reference

g538292 ch17.qxd 8/18/03 8:44 AM Page 409

410 Part III ✦ XML Web Applications Using J2EE

This relatively simple JSP page generates a much larger servlet when loaded on a
JSP server. Going though the generated servlet is a good way to become intimately
acquainted with how all JSPs work, stating with the imports. The imports are
noticeably different in a JSP servlet vs. a regular servlet, because of the import of
the org.apache.jsp classes as well as the jasper run-time classes. The Apache
Foundation provides the implementation classes for the JSTL specification, includ-
ing org.apache.jsp and the org.apache.jasper classes. The org.apache.jsp class is
used to extend HttpJspBase, which is an extension of javax.servlet.http.HttpServlet.

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;

public class JSPExample1$jsp extends HttpJspBase {

static {
}
public JSPExample1$jsp() {
}

private static boolean _jspx_inited = false;

_jspx_init is where any initialization parameters are defined in the servlet. In
this simple example there was no need for initialization parameters, so this section
is blank.

public final void _jspx_init() throws
org.apache.jasper.runtime.JspException {
}

_jspService includes basic object setup for a servlet created by a JSP. Most of
the classes and methods in a JSP servlet are JSP-specific extensions of javax.servlet
classes and methods, just in case the servlet classes are already being used in
Scriptlets or other code passed from the JSP. The JspFactory helps set up page
context. The PageContext is an extension of javax.servlet.ServletRequest.
HttpSession track sessions for a page, if there are any. ServletContext is an
extension of javax.servlet.ServletContext. ServletConfig handles initial-
ization parameters. JspWriter is the class for the browser output.

public void _jspService(HttpServletRequest request, HttpServletResponse
response)

throws java.io.IOException, ServletException {

g538292 ch17.qxd 8/18/03 8:44 AM Page 410

411Chapter 17 ✦ XML APIs from Sun

JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
String _value = null;
try {

The _jspx_inited variable tracks threads in the servlet. The conditional state-
ment opens a new thread if no thread is open so far. Servlets have to have at least
one explicitly opened thread to function.

if (_jspx_inited == false) {
synchronized (this) {

if (_jspx_inited == false) {
_jspx_init();
_jspx_inited = true;

}
}

}

This segment sets the output type for the JspWriter and gets the current JSP
page. After the request and response definitions, the first true parameter defines a
session, 8192 is a default buffer size for reading the JSP page, and the second true
parameter automatically unloads the page when finished.

_jspxFactory = JspFactory.getDefaultFactory();
response.setContentType(“text/html”);
pageContext = _jspxFactory.getPageContext(this, request,
response,“”, true, 8192, true);

Next, objects are pulled from the pageContext and the servletConfig. Once
the servlet context is defined, and a session and an output method is created, the
servlet can start writing output to the browser screen.

application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();

The comments in this code are generated by an Apache TomCat 4.04 application
server while generating the servlet. Other application servers and versions may dif-
fer in the way the code is generated, but all have to conform to JSP specifications,
so most of the pieces are in very similar places. The comments refer to the original
lines that the original JSP tags were in the JSP page. The first number is the line
number, and the second number is the characters from the left, starting at 0. The

g538292 ch17.qxd 8/18/03 8:44 AM Page 411

412 Part III ✦ XML Web Applications Using J2EE

Java code generated for each line or line segment is just below the commented JSP
page reference. The first few lines are direct copies of the HTML tags to create the
HTML head and define the HTML body.

// HTML // begin [file=”/JSPExample1.jsp”;from=(0,33);to=(1,0)]
out.write(“\r\n”);
out.write(“”);

// end
// HTML // begin [file=”/JSPExample1.jsp”;from=(1,60);to=(2,0)]

out.write(“\r\n”);
out.write(“”);

// end
// HTML // begin [file=”/JSPExample1.jsp”;from=(2,59);to=(8,0)]

out.write(“\r\n”);
out.write(“\r\n”);
out.write(“<html>\r\n”);
out.write(“<head><title>JSP PageTransformation
Example</title></head>\r\n”);
out.write(“<body>\r\n”);
out.write(“\r\n”);
out.write(“”);

// end

This is where the code imports the XML source document using the org.apache.
taglibs.standard.tag.el.core.ImportTag class. The ImportTag.setVar
method sets the variable name and the ImportTag.setUrl method defines the
location of the XML document.

// begin [file=”/JSPExample1.jsp”;from=(8,0);to=(8,59)]
/* ---- c:import ---- */
org.apache.taglibs.standard.tag.el.core.ImportTag
_jspx_th_c_import_0 = new
org.apache.taglibs.standard.tag.el.core.ImportTag();
_jspx_th_c_import_0.setPageContext(pageContext);
_jspx_th_c_import_0.setParent(null);
_jspx_th_c_import_0.setVar(“xmlSource”);
_jspx_th_c_import_0.setUrl(“AmazonMacbethSpanish.xml”);
try {

The doStartTag() method imports the XML document as a string.

int _jspx_eval_c_import_0 =
_jspx_th_c_import_0.doStartTag();

The rest of the code does the work of evaluating the JSP tag and converting the
content in the XML document to a string. All of the methods here are accessed
through the BodyContent interface, which implements methods for converting tag
contents into a String. The BodyContent interface is a subclass of JspWriter.

g538292 ch17.qxd 8/18/03 8:44 AM Page 412

413Chapter 17 ✦ XML APIs from Sun

if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

try {
if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)
{

The pushBody() method of the page context loads the tag for evaluation and
reading.

out = pageContext.pushBody();
_jspx_th_c_import_0.setBodyContent(
(javax.servlet.jsp.tagext.BodyContent) out);

}
_jspx_th_c_import_0.doInitBody();
do {
// end
// begin
[file=”/JSPExample1.jsp”;from=(8,0);to=(8,59)]
} while (_jspx_th_c_import_0.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

} finally {
if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

The popBody() method of the page context unloads the tag for evaluation and
reading.

out = pageContext.popBody();
}

}
if (_jspx_th_c_import_0.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} catch (Throwable _jspx_exception) {

_jspx_th_c_import_0.doCatch(_jspx_exception);
} finally {

_jspx_th_c_import_0.doFinally();
_jspx_th_c_import_0.release();

}
// end
// HTML // begin [file=”/JSPExample1.jsp”;from=(8,59);to=(9,0)]

out.write(“\r\n”);
out.write(“”);

// end

This code imports the XSL Stylesheet document using the same org.apache.
taglibs.standard.tag.el.core.ImportTag class as the XML document
import. The ImportTag.setVar method sets the variable name and the

g538292 ch17.qxd 8/18/03 8:44 AM Page 413

414 Part III ✦ XML Web Applications Using J2EE

ImportTag.setUrl method defines the location of the XML document. The rest of
the process is identical to the previous XML document import, with the exception
of the variable name and the URL of the file to import.

// begin [file=”/JSPExample1.jsp”;from=(9,0);to=(9,51)]
/* ---- c:import ---- */
org.apache.taglibs.standard.tag.el.core.ImportTag
_jspx_th_c_import_1 = new
org.apache.taglibs.standard.tag.el.core.ImportTag();
_jspx_th_c_import_1.setPageContext(pageContext);
_jspx_th_c_import_1.setParent(null);
_jspx_th_c_import_1.setVar(“xsltSource”);
_jspx_th_c_import_1.setUrl(“XMLtoQuotes.xsl”);
try {

int _jspx_eval_c_import_1 =
_jspx_th_c_import_1.doStartTag();
if (_jspx_eval_c_import_1 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

try {
if (_jspx_eval_c_import_1 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE) {

out = pageContext.pushBody();
_jspx_th_c_import_1.setBodyContent(
(javax.servlet.jsp.tagext.BodyContent) out);

}
_jspx_th_c_import_1.doInitBody();
do {
// end
// begin
[file=”/JSPExample1.jsp”;from=(9,0);to=(9,51)]
} while (_jspx_th_c_import_1.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

} finally {
if (_jspx_eval_c_import_1 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

out = pageContext.popBody();
}

}
if (_jspx_th_c_import_1.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} catch (Throwable _jspx_exception) {

_jspx_th_c_import_1.doCatch(_jspx_exception);
} finally {

_jspx_th_c_import_1.doFinally();
_jspx_th_c_import_1.release();

}
// end
// HTML // begin [file=”/JSPExample1.jsp”;from=(9,51);to=(10,0)]

out.write(“\r\n”);
out.write(“”);

// end

g538292 ch17.qxd 8/18/03 8:44 AM Page 414

415Chapter 17 ✦ XML APIs from Sun

This code handles the XSL transformation using the org.apache.taglibs.
standard.tag.el.xml.TransformTag class. The TransformTag.
setXml method sets the XML Source document for the transformation. The
TransformTag.setXxslt method defines the XSL stylesheet. The EL values for
the XML document and the stylesheet are passed directly to the TransformTag
class, which performs the transformation. The rest of the code is the same tag eval-
uation code that was used in the XML document and XSL stylesheet imports, to
load, evaluate, and unload the tag.

// begin [file=”/JSPExample1.jsp”;from=(10,0);to=(10,55)]
/* ---- x:transform ---- */
org.apache.taglibs.standard.tag.el.xml.TransformTag
_jspx_th_x_transform_0 = new
org.apache.taglibs.standard.tag.el.xml.TransformTag();
_jspx_th_x_transform_0.setPageContext(pageContext);
_jspx_th_x_transform_0.setParent(null);
_jspx_th_x_transform_0.setXml(“${xmlSource}”);
_jspx_th_x_transform_0.setXslt(“${xsltSource}”);
try {

int _jspx_eval_x_transform_0 =
_jspx_th_x_transform_0.doStartTag();
if (_jspx_eval_x_transform_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

try {
if (_jspx_eval_x_transform_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE) {

out = pageContext.pushBody();
_jspx_th_x_transform_0.setBodyContent(
(javax.servlet.jsp.tagext.BodyContent) out);

}
_jspx_th_x_transform_0.doInitBody();
do {
// end
// begin
[file=”/JSPExample1.jsp”;from=(10,0);to=(10,55)]
} while (_jspx_th_x_transform_0.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

} finally {
if (_jspx_eval_x_transform_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

out = pageContext.popBody();
}

}
if (_jspx_th_x_transform_0.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} finally {

_jspx_th_x_transform_0.release();
}

// end

g538292 ch17.qxd 8/18/03 8:44 AM Page 415

416 Part III ✦ XML Web Applications Using J2EE

// HTML // begin [file=”/JSPExample1.jsp”;from=(10,55);to=(14,0)]
out.write(“\r\n”);
out.write(“\r\n”);
out.write(“</body>\r\n”);
out.write(“</html>\r\n”);
out.write(“”);

// end

The balance of the code is standard error catching, and a command to release the
pageContext, which flushes the JSP page from memory, based on the previously
defined getPageContext method.

} catch (Throwable t) {
if (out != null && out.getBufferSize() != 0)

out.clearBuffer();
if (pageContext != null) pageContext.handlePageException(t);

} finally {
if (_jspxFactory != null)
_jspxFactory.releasePageContext(pageContext);

}
}

}

The output from the JSP produces an html 4.01-compliant document. Listing 17-9
shows what the source of that html document looks like.

Listing 17-9: The HTML Document Output from the JSP Page

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<transformedquotes>

<quote source=”Macbeth” author=”Shakespeare, William”>When the
hurlyburly’s done, / When the battle’s lost and won.</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Out, damned spot!
out, I say!-- One; two; why, then ‘tis time to do’t ;--Hell is murky!--
Fie, my lord, fie! a soldier, and afeard? What need we fear who knows
it, when none can call our power to account?--Yet who would have thought
the old man to have had so much blood in him?</quote>
<quote source=”Macbeth” author=”Shakespeare, William”>Is this a dagger
which I see before me, the handle toward my hand? Come, let me clutch
thee: I have thee not, and yet I see thee still. Art thou not, fatal
vision, sensible to feeling as to sight? or art thou but a dagger of the
mind, a false creation, proceeding from the heat-oppressed
brain?</quote>

g538292 ch17.qxd 8/18/03 8:44 AM Page 416

417Chapter 17 ✦ XML APIs from Sun

<quote source=”Macbeth” author=”Shakespeare, William”>To-morrow, and to-
morrow, and to-morrow, creeps in this petty pace from day to day, to the
last syllable of recorded time; and all our yesterdays have lighted
fools the way to dusty death. Out, out, brief candle! Life’s but a
walking shadow; a poor player, that struts and frets his hour upon the
stage, and then is heard no more: it is a tale told by an idiot, full of
sound and fury, signifying nothing. </quote>
<quote/>

</transformedquotes>

Example 2: Parsing an XML document using JSTL
In this example, the same AmazonMacbethSpanish.xml document is parsed, and a
segment of the document that contains quotations is selected. A forEach tag is used
to loop through each instance of a quote and display the results in a table on an
HTML page. If you followed along through the previous example, much of the
startup code is repeated. Because the servlet is generated and not hand-coded, the
patterns in the code are largely the same, with core code towards the end of the
servlet making the JSP unique. If you were comfortable with the setup code from
the previous servlet example, you can skip down to the part of the code that
defines the org.apache.taglibs.standard.tag.el.xml.ParseTag and
begins parsing the document.

The JSP in Listing 17-10 starts with two taglib directives that define the JSTL core
and JSTL XML libraries. Each taglib directive defines a uri and a prefix. As in the
previous example, the c prefix is used for core library actions such as c:import.
The x prefix is used for the XML library x:parse action. Next, an HTML page is cre-
ated and a simple HTML page head with a page title is defined. Next, the HTML
body of the page begins with the import of an XML document. The XML document
is assigned a variable name of xmlToParse. Parsing the XML document is facili-
tated through the parse tag, and the parsed org.w3c.dom.Document object is
assigned to a variable named parsedXML. Next, an HTML table is defined and
Author, Source, and Quotation headings are defined in the table.

The forEach tag uses an EL expression to pass the org.w3c.dom.Document
object into the select attribute. The rest of the select attribute retrieves all of
the nested elements under the /quotedoc/quotelist/* XPath expression. The
results of a select are not implicitly sent to the JspWriter, which is actually a
good thing, because we only want to send some of the select statement results
out to the browser screen. The Author attribute, Source attribute (Defined by the
@ XPath Expression), and the contents of the text associated with each element
(defined by the . XPath expression) are sent to the JspWriter using the out tag.

g538292 ch17.qxd 8/18/03 8:44 AM Page 417

418 Part III ✦ XML Web Applications Using J2EE

Listing 17-10: A JSP Page for XML Parsing

<<%@ taglib prefix=”c” uri=”http://java.sun.com/jstl/core” %>
<%@ taglib prefix=”x” uri=”http://java.sun.com/jstl/xml” %>

<html>
<head>

<title>JSP Page Parsing Example</title>
</head>

<c:import var=”xmlToParse” url=”AmazonMacbethSpanish.xml” />
<x:parse var=”parsedXML” xml=”${xmlToParse}” />

<table border=”1” width=”100%”>
<tr>
<th>Author</th>
<th>Source</th>
<th>Quotation</th>
</tr>
<tr>

<x:forEach select=”${parsedXML}/quotedoc/quotelist/*” var=”quotes”>
<td><x:out select=”@Author”/></td>
<td><x:out select=”@Source”/></td>
<td><x:out select=”.”/></td></tr>

</x:forEach>
</table>

</body>
</html>

As we did with the previous example, we’ll run through the servlet generated by the
JSP page to show how JSPs work behind the scenes. The imports start with the
import of the org.apache.jsp classes as well as the jasper run-time classes. The
Apache Foundation provides the implementation classes for the JSTL specification,
including org.apache.jsp and the org.apache.jasper classes. The org.apache.jsp
class is used to extend HttpJspBase, which is an extension of
javax.servlet.http.HttpServlet.

package org.apache.jsp;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;

g538292 ch17.qxd 8/18/03 8:44 AM Page 418

419Chapter 17 ✦ XML APIs from Sun

public class JSPExample2$jsp extends HttpJspBase {

static {
}
public JSPExample2$jsp() {
}

private static boolean _jspx_inited = false;

_jspx_init is where any initialization parameters are defined in the servlet. In
this simple example there was no need for initialization parameters, so this section
is blank.

public final void _jspx_init() throws
org.apache.jasper.runtime.JspException {

}

_jspService includes basic object setup for a servlet created by a JSP. Most of
the classes and methods in a JSP servlet are JSP-specific extensions of javax.
servlet classes and methods, just in case the servlet classes are already being
used in Scriptlets or other code passed from the JSP. The JspFactory helps set
up page context. The PageContext is actually an extension of javax.servlet.
ServletRequest. HttpSession tracks sessions for a page, if there are any.
ServletContext is an extension of javax.servlet.ServletContext.
ServletConfig handles initialization parameters. JspWriter is the class
for the browser output.

public void _jspService(HttpServletRequest request, HttpServletResponse
response) throws java.io.IOException, ServletException {

JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
String _value = null;
try {

The _jspx_inited variable tracks threads in the servlet. The conditional state-
ment opens a new thread if no thread is open so far. Servlets have to have at least
one explicitly opened thread to function.

if (_jspx_inited == false) {
synchronized (this) {

if (_jspx_inited == false) {

g538292 ch17.qxd 8/18/03 8:44 AM Page 419

420 Part III ✦ XML Web Applications Using J2EE

_jspx_init();
_jspx_inited = true;

}
}

}

This segment sets the output type for the JspWriter and gets the current JSP
page. After the request and response definitions, the first true parameter defines a
session, 8192 is a default buffer size for reading the JSP page, and the second true
parameter automatically unloads the page when finished. Next, objects are pulled
from the pageContext and the servletConfig. Once the servlet context is
defined, and a session and an output method are created, the servlet can start writ-
ing output to the browser screen.

_jspxFactory = JspFactory.getDefaultFactory();
response.setContentType(“text/html;charset=ISO-8859-1”);
pageContext = _jspxFactory.getPageContext(this, request,
response, “”, true, 8192, true);
application = pageContext.getServletContext();
config = pageContext.getServletConfig();
session = pageContext.getSession();
out = pageContext.getOut();

The comments in this code are generated by an Apache TomCat 4.04 application
server while generating the servlet. The comments refer to the original lines that
the original JSP tags were in the JSP page. The first number is the line number and
the second number is the characters from the left, starting at 0. The Java code gen-
erated for each line or line segment is just below the commented JSP page refer-
ence. The first few lines are direct copies of the HTML tags to create the HTML
head and define the HTML body.

// HTML // begin [file=”/JSPExample2.jsp”;from=(0,0);to=(0,1)]
out.write(“<”);

// end
// HTML // begin [file=”/JSPExample2.jsp”;from=(0,61);to=(1,0)]

out.write(“\r\n”);
out.write(“”);

// end
// HTML // begin [file=”/JSPExample2.jsp”;from=(1,59);to=(8,0)]

out.write(“\r\n”);
out.write(“\r\n”);
out.write(“<html>\r\n”);
out.write(“<head>\r\n”);
out.write(“ <title>JSP Page Parsing Example</title>\r\n”);
out.write(“</head>\r\n”);
out.write(“\r\n”);
out.write(“”);

// end

g538292 ch17.qxd 8/18/03 8:44 AM Page 420

421Chapter 17 ✦ XML APIs from Sun

This is where the code imports the XML source document using the org.apache.
taglibs.standard.tag.el.core.ImportTag class. The ImportTag.setVar
method sets the variable name and the ImportTag.setUrl method defines the
location of the XML document.

// begin [file=”/JSPExample2.jsp”;from=(8,0);to=(8,60)]
/* ---- c:import ---- */
org.apache.taglibs.standard.tag.el.core.ImportTag
_jspx_th_c_import_0 = new
org.apache.taglibs.standard.tag.el.core.ImportTag();
_jspx_th_c_import_0.setPageContext(pageContext);
_jspx_th_c_import_0.setParent(null);
_jspx_th_c_import_0.setVar(“xmlToParse”);
_jspx_th_c_import_0.setUrl(“AmazonMacbethSpanish.xml”);
try {

The doStartTag() method imports the XML document as a string.

int _jspx_eval_c_import_0 =
_jspx_th_c_import_0.doStartTag();
if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

try {

The rest of the code does the work of evaluating the JSP tag and converting the
content in the XML document to a string. All of the methods here are accessed
through the BodyContent interface, which implements methods for converting tag
contents into a String. The BodyContent interface is a subclass of JspWriter.

if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE) {

The pushBody() method of the page context loads the tag for evaluation and
reading.

out = pageContext.pushBody();
_jspx_th_c_import_0.setBodyContent(
(javax.servlet.jsp.tagext.BodyContent) out);
}
_jspx_th_c_import_0.doInitBody();
do {
// end
// begin [file=”/JSPExample2.jsp”;
from=(8,0);to=(8,60)]
} while (_jspx_th_c_import_0.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

g538292 ch17.qxd 8/18/03 8:44 AM Page 421

422 Part III ✦ XML Web Applications Using J2EE

The popBody() method of the page context unloads the tag for evaluation and
reading.

} finally {
if (_jspx_eval_c_import_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

out = pageContext.popBody();
}

}
if (_jspx_th_c_import_0.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} catch (Throwable _jspx_exception) {

_jspx_th_c_import_0.doCatch(_jspx_exception);
} finally {

_jspx_th_c_import_0.doFinally();
_jspx_th_c_import_0.release();

}
// end
// HTML // begin [file=”/JSPExample2.jsp”;from=(8,60);to=(9,0)]

out.write(“\r\n”);
out.write(“”);

// end

This code handles the XML document parsing using the org.apache.taglibs.
standard.tag.el.xml.ParseTag class. The ParseTag.setXml method sets
the XML Source document for parsing. The ParseTag.setVar method sets a vari-
able name that the org.w3c.dom.Document object resulting from the parse is
sent to. The EL value for the XML document is passed directly to the ParseTag
class, which performs the parsing. The rest of the code is the same tag evaluation
code that was used in the XML document import, to load, evaluate, and unload
the tag.

// begin [file=”/JSPExample2.jsp”;from=(9,0);to=(9,48)]
/* ---- x:parse ---- */
org.apache.taglibs.standard.tag.el.xml.ParseTag
_jspx_th_x_parse_0 = new
org.apache.taglibs.standard.tag.el.xml.ParseTag();
_jspx_th_x_parse_0.setPageContext(pageContext);
_jspx_th_x_parse_0.setParent(null);
_jspx_th_x_parse_0.setVar(“parsedXML”);
_jspx_th_x_parse_0.setXml(“${xmlToParse}”);
try {

int _jspx_eval_x_parse_0 =
_jspx_th_x_parse_0.doStartTag();
if (_jspx_eval_x_parse_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

try {

g538292 ch17.qxd 8/18/03 8:44 AM Page 422

423Chapter 17 ✦ XML APIs from Sun

if (_jspx_eval_x_parse_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE) {

out = pageContext.pushBody();
_jspx_th_x_parse_0.setBodyContent(
(javax.servlet.jsp.tagext.BodyContent) out);

}
_jspx_th_x_parse_0.doInitBody();
do {
// end
// begin [file=”/JSPExample2.jsp”;
from=(9,0);to=(9,48)]
} while (_jspx_th_x_parse_0.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

} finally {
if (_jspx_eval_x_parse_0 !=
javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

out = pageContext.popBody();
}

}
if (_jspx_th_x_parse_0.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} finally {

_jspx_th_x_parse_0.release();
}

// end

Next, the HTML table is defined and headings in the table are set up, using HTML
code passed directly from the JSP to the JspWriter object of the servlet.

// HTML // begin [file=”/JSPExample2.jsp”;from=(9,48);to=(20,0)]
out.write(“\r\n”);
out.write(“\r\n”);
out.write(“\r\n”);
out.write(“<table border=\”1\” width=\”100%\”>\r\n”);
out.write(“ <tr>\r\n”);
out.write(“ <th>Author</th>\r\n”);
out.write(“ <th>Source</th>\r\n”);
out.write(“ <th>Quotation</th>\r\n”);
out.write(“ </tr>\r\n”);
out.write(“ <tr>\r\n”);
out.write(“\r\n”);
out.write(“”);

// end

The forEach starts by using the org.apache.taglibs.standard.tag.
common.xml.ForEachTag class. The ForEachTag.setSelect method is used
to create a select statement from the JSP page select attribute. The ForEachTag.
setVar class is used to define a variable that contains the select results. The

g538292 ch17.qxd 8/18/03 8:44 AM Page 423

424 Part III ✦ XML Web Applications Using J2EE

rest of the code is the same tag evaluation code that was used in the XML docu-
ment import, to load, evaluate, and unload the tag.

// begin [file=”/JSPExample2.jsp”;from=(20,0);to=(20,67)]
/* ---- x:forEach ---- */
org.apache.taglibs.standard.tag.common.xml.ForEachTag
_jspx_th_x_forEach_0 = new
org.apache.taglibs.standard.tag.common.xml.ForEachTag();
_jspx_th_x_forEach_0.setPageContext(pageContext);
_jspx_th_x_forEach_0.setParent(null);
_jspx_th_x_forEach_0.setSelect(
“${parsedXML}/quotedoc/quotelist/*”);
_jspx_th_x_forEach_0.setVar(“quotes”);
try {

int _jspx_eval_x_forEach_0 =
_jspx_th_x_forEach_0.doStartTag();
if (_jspx_eval_x_forEach_0 ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)
throw new JspTagException(“Since tag handler class
org.apache.taglibs.standard.tag.common.xml.ForEachTag
does not implement BodyTag, it can’t return
BodyTag.EVAL_BODY_TAG”);
if (_jspx_eval_x_forEach_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

do {
// end
// HTML // begin
[file=”/JSPExample2.jsp”;from=(20,67);to=(21,6)]

out.write(“\r\n”);
out.write(“ <td>”);

// end
// begin
[file=”/JSPExample2.jsp”;from=(21,6);to=(21,31)]

The next code segment represents the first line in the forEach statement, which
retrieves the Author attribute from the result of the forEach select XPath expres-
sion. The org.apache.taglibs.standard.tag.el.xml.ExprTag class is used
for this line. The ExprTag class writes results of the expression directly to the
JspWriter. The parent is set to the forEach object, _jspx_th_x_forEach_0,
using the ExprTag .setParent() method. The select is set to the Author
attribute (@Author) for the current DOM node using the ExprTag.setSelect.
The rest of the code is the same tag evaluation code that was used in the other
lines of this servlet to load, evaluate, and unload the tag.

/* ---- x:out ---- */
org.apache.taglibs.standard.tag.el.xml.ExprTag
_jspx_th_x_out_0 = new
org.apache.taglibs.standard.tag.el.xml.ExprTag();
_jspx_th_x_out_0.setPageContext(pageContext);

g538292 ch17.qxd 8/18/03 8:44 AM Page 424

425Chapter 17 ✦ XML APIs from Sun

_jspx_th_x_out_0.setParent(_jspx_th_x_forEach_0);
_jspx_th_x_out_0.setSelect(“@Author”);
try {

int _jspx_eval_x_out_0 =
_jspx_th_x_out_0.doStartTag();
if (_jspx_eval_x_out_0 ==
javax.servlet.jsp.tagext.BodyTag.
EVAL_BODY_BUFFERED)
throw new JspTagException(“Since tag handler
class org.apache.taglibs.standard.tag.el
.xml.ExprTag does not implement BodyTag, it
can’t return BodyTag.EVAL_BODY_TAG”);

if (_jspx_eval_x_out_0 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

do {
// end
// begin
[file=”/JSPExample2.jsp”;from=(21,6);to=(21,31)]
} while (_jspx_th_x_out_0.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

}
if (_jspx_th_x_out_0.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)
return;

} finally {
_jspx_th_x_out_0.release();

}
// end
// HTML // begin
[file=”/JSPExample2.jsp”;from=(21,31);to=(22,6)]

out.write(“</td>\r\n”);
out.write(“ <td>”);

// end
// begin [file=”/JSPExample2.jsp”;from=(22,6);to=(22,31)]

The next code segment represents the second line in the forEach statement,
which is almost identical to the first line. This line retrieves the Source attribute
from the result of the forEach select XPath expression. The org.apache.
taglibs.standard.tag.el.xml.ExprTag class is used for this line. The
ExprTag class writes results of the expression directly to the JspWriter.
The parent is set to the forEach object, _jspx_th_x_forEach_0, using the
ExprTag.setParent() method. The select is set to the Source attribute
(@Source) for the current DOM node using the ExprTag.setSelect. The rest of
the code is the same tag evaluation code that was used in the other lines in this
servlet to load, evaluate, and unload the tag.

/* ---- x:out ---- */
org.apache.taglibs.standard.tag.el.xml.ExprTag
_jspx_th_x_out_1 = new
org.apache.taglibs.standard.tag.el.xml.ExprTag();

g538292 ch17.qxd 8/18/03 8:44 AM Page 425

426 Part III ✦ XML Web Applications Using J2EE

_jspx_th_x_out_1.setPageContext(pageContext);
_jspx_th_x_out_1.setParent(_jspx_th_x_forEach_0);
_jspx_th_x_out_1.setSelect(“@Source”);
try {

int _jspx_eval_x_out_1 =
_jspx_th_x_out_1.doStartTag();
if (_jspx_eval_x_out_1 ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)

throw new JspTagException(“Since tag handler
class org.apache.taglibs.standard.tag.el.xml.
ExprTag does not implement BodyTag, it can’t
return BodyTag.EVAL_BODY_TAG”);

if (_jspx_eval_x_out_1 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

do {
// end
// begin
[file=”/JSPExample2.jsp”;from=(22,6);to=(22,31)]
} while (_jspx_th_x_out_1.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

}
if (_jspx_th_x_out_1.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} finally {

_jspx_th_x_out_1.release();
}

// end
// HTML // begin

[file=”/JSPExample2.jsp”;from=(22,31);to=(23,6)]
out.write(“</td>\r\n”);
out.write(“ <td>”);

// end
// begin [file=”/JSPExample2.jsp”;from=(23,6);to=(23,25)]

The next code segment represents the third line in the forEach statement, which is
almost identical to the first and second lines. This line retrieves the text data asso-
ciated with the current DOM node from the result of the forEach select XPath
expression. The org.apache.taglibs.standard.tag.el.xml.ExprTag class
is used for this line. The ExprTag class writes results of the expression directly
to the JspWriter. The parent is set to the forEach object, _jspx_th_x_
forEach_0, using the ExprTag.setParent() method. The select is set to the
text data using the XPath context expression (.) for the current DOM node. The
rest of the code is the same tag evaluation code that was used in the other lines in
this servlet to load, evaluate, and unload the tag.

/* ---- x:out ---- */
org.apache.taglibs.standard.tag.el.xml.ExprTag
_jspx_th_x_out_2 = new
org.apache.taglibs.standard.tag.el.xml.ExprTag();

g538292 ch17.qxd 8/18/03 8:44 AM Page 426

427Chapter 17 ✦ XML APIs from Sun

_jspx_th_x_out_2.setPageContext(pageContext);
_jspx_th_x_out_2.setParent(_jspx_th_x_forEach_0);
_jspx_th_x_out_2.setSelect(“.”);
try {

int _jspx_eval_x_out_2 =
_jspx_th_x_out_2.doStartTag();
if (_jspx_eval_x_out_2 ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)
throw new JspTagException(“Since tag handler class
org.apache.taglibs.standard.tag.el.xml.ExprTag does
not implement BodyTag, it can’t return
BodyTag.EVAL_BODY_TAG”);
if (_jspx_eval_x_out_2 !=
javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

do {
// end
// begin
[file=”/JSPExample2.jsp”;from=(23,6);to=(23,25)]
} while (_jspx_th_x_out_2.doAfterBody() ==
javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

}
if (_jspx_th_x_out_2.doEndTag() ==
javax.servlet.jsp.tagext.Tag.SKIP_PAGE)

return;
} finally {

_jspx_th_x_out_2.release();
}

// end
// HTML // begin
[file=”/JSPExample2.jsp”;from=(23,25);to=(24,0)]

out.write(“</td></tr>\r\n”);
out.write(“”);

// end
// begin [file=”/JSPExample2.jsp”;from=(24,0);to=(24,12)]
} while (_jspx_th_x_forEach_0.doAfterBody() ==

javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);
}
if (_jspx_th_x_forEach_0.doEndTag() ==

javax.servlet.jsp.tagext.Tag.SKIP_PAGE)
return;

} catch (Throwable _jspx_exception) {
_jspx_th_x_forEach_0.doCatch(_jspx_exception);

} finally {
_jspx_th_x_forEach_0.doFinally();
_jspx_th_x_forEach_0.release();

}
// end
// HTML // begin [file=”/JSPExample2.jsp”;from=(24,12);to=(30,0)]

out.write(“\r\n”);
out.write(“</table>\r\n”);
out.write(“\r\n”);

g538292 ch17.qxd 8/18/03 8:44 AM Page 427

428 Part III ✦ XML Web Applications Using J2EE

out.write(“</body>\r\n”);
out.write(“</html>\r\n”);
out.write(“\r\n”);
out.write(“”);

// end

The balance of the code is standard error catching, and a command to release the
pageContext, which flushes the JSP page from memory, based on the previously
defined getPageContext method.

} catch (Throwable t) {
if (out != null && out.getBufferSize() != 0)

out.clearBuffer();
if (pageContext != null) pageContext.handlePageException(t);

} finally {
if (_jspxFactory != null) _jspxFactory.releasePageContext(pageContext);

}
}

}

Summary
In this chapter, you were introduced to the XML tools included in the Sun Web
Services Developer Pack (WSDP):

✦ Sun’s Java Web Services Developer Pack

✦ The Java API for XML Messaging (JAXM), the Java API for XML Registries
(JAXR) and the Java WSDP Registry Server, the Java API for XML-Based RPC
(JAX-RPC), and the SOAP with Attachments API for Java (SAAJ)

✦ Documentation and examples of developing with the Java API for XML
Processing (JAXP)

✦ Documentation and examples of developing with the Java Architecture for
XML Binding Examples for the (JAXB)

✦ Documentation and examples of developing with the Java Server Pages
Standard Tag Library (JSTL)

In the next few chapters, we’ll show you how to put many of these tools to use in
practical examples. We’ll cover extraction of data from SQL Server, Oracle, and DB2
to XML and vice versa. We’ll also show you how to create Web and J2EE applica-
tions that facilitate XML extraction from relation databases. After that, we’ll show
you a few tips on transforming native and custom relation data from one XML for-
mat to another.

✦ ✦ ✦

g538292 ch17.qxd 8/18/03 8:44 AM Page 428

Relational Data
and XML

Part IV provides examples of Web applications that use
relational XML data. There are many relational XML for-

mats, but most developers work with either SQL Server, DB2,
or Oracle, each of which have their own XML output and
interactive XML features. We provide an overview of each
RDBMS XML access methods, output options, associated
unique features and quirks. After we explain each format, we
provide working examples for transforming data from one
RDBMS XML format to another.

✦ ✦ ✦ ✦

In This Part

Chapter 18
Accessing and
Formatting XML from
SQL Server Data

Chapter 19
Accessing and
Formatting XML from
Oracle Data

Chapter 20
Accessing and
Formatting XML
from DB2

Chapter 21
Building XML-Based
Web Applications
with JDBC

Chapter 22
Transforming
Relational XML
Output into Other
Formats

✦ ✦ ✦ ✦

P A R T

IVIV

h538292 pp04.qxd 8/18/03 8:44 AM Page 429

Accessing and
Formatting
XML from
SQL Server Data

SQL Server support for XML started in 2000 with SQL
Server 7. Microsoft provided a separate download called

the Microsoft SQL Server XML Technology Preview. Microsoft
Internet Information Server (IIS) had to be loaded on the tar-
get machine, and queries were passed to the server via URL
with a FOR XML extension tacked onto the end of an SQL
statement. Results were returned to the browser as an XML
document. The XML Technology Preview used an IIS ISAPI
extension via a dynamic-link library (DLL) to provide HTTP
access to SQL Server and support for XML data formatting
and updating capabilities. It shipped with fairly complete
documentation and samples.

XML support on SQL Server 2000 is facilitated via
Downloadable SQLXML (XML for SQL Server) add-ons.

MS SQL Server’s proprietary SQLXML functionality should
not be confused with SQL/XML functions that Oracle, IBM,
and other RDBMS vendors use (we cover SQL/XML func-
tions for DB2 and Oracle in Chapters 18 and 19). SQL/XML
functions are based on the SQL/XML standard, which is a
combination of XML and SQL functionality. The SQL/XML
standard is maintained by the International Committee
for Information Technology Standards (INCITS). Microsoft’s
SQLXML functionality, while very good, has nothing to do
with this standard.

Note

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XML features in MS
SQL Server

Setting up SQLXML

Accessing SQL
Server data from a
Web browser

Extracting XML from
relational data using
FOR XML, Templates,
and XPath
Expressions

Getting XML into
SQL Server tables

Inserting and
updating SQL Server
Data with OPENXML

✦ ✦ ✦ ✦

i538292 ch18.qxd 8/18/03 8:44 AM Page 431

432 Part IV ✦ Relational Data and XML

Support for XML queries and results are extended to the Enterprise Manager and to
the Query Analyzer. XML access via HTTP is still supported, via the same FOR XML
clause, and a few other ways. OPENXML is a feature that permits developers to
update a SQL Server with XML documents. This permits SQL Server and related
applications to access XML documents like any other type of SQL Server data. XML
documents can also be used to process queries. Schema-based XPath expressions
can also be used to query data. XML Updategrams permit updating and insertion of
XML document data into SQL Server tables. XML bulk-load facilities batch-type
insertion of a large volume of XML data. A SQLXMLOLEDB data-access component
supports client-side and server-side XML formatting against query results using
XPath or SQL, to provide client-side OPENXML functionality. For .NET developers,
SQLXML managed classes use the Microsoft .NET Framework class libraries to
access .NET Framework classes. These classes can be used to insert XML data and
retrieve XML results, including XPath queries and XML templates. I’ll cover XML
Templates later in this chapter. DiffGrams can also be used from the SQLXML man-
aged classes. These use the DataSet class of the .NET Framework object model. The
latest version of SQLXML also supports Web Services via SOAP HTTP requests that
can execute stored procedures, user-defined functions (UDFs), and XML templates.

A trial version of SQL server can be downloaded at http://www.microsoft.
com/sql/evaluation/trial/.

As you can see from this list of features, there are almost too many options for
manipulating SQL Server data with XML. The most important options, and the ones
that we will be covering in detail in this chapter, are the FOR XML T-SQL extension,
adding XML documents to a database, handling the data from the document as rela-
tional data set using OPENXML, and using XPath expressions to retrieve that data
as XML documents.

The XML Programming Bible Example Tables
All of the tables in this chapter and this part of the book use the same data struc-
ture. For SQL Server, the data is structured into five tables (Tables 18-1, 18-2, 18-3,
18-4, and 18-5, respectively). All five tables are contained in a database called
XMLProgrammingBible. Table 18-1 lists the structure of the AmazonListings table.
This is the table that contains all of the Amazon book listings for our relational data
examples and applications.

We’ve included SQL code that creates these tables and inserts sample data as part
of the downloads for this chapter. Downloads for the XML Programming Bible can
be retrieved from http://www.XMLProgrammingBIble.com, in the down-
loads section.

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 432

433Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Table 18-1
Structure of the AmazonListings Table

Table Column Data Type Maximum Size

ProductID int
(Primary Key)

Ranking int

Title char 200

ASIN char 10

AuthorID int
(Foreign Key - Authors)

Image char 100

Small_Image char 100

List_price money

Release_date datetime

Binding char 50

Availability char 10

Tagged_URL char 200

Table 18-2 lists the structure of the Authors table. This is the table that contains
information about the book and quotation authors. It is related to the AuthorID field
in the AmazonListings, ElcorteinglesListings, and the Quotations tables.

Table 18-2
Structure of the Authors Table

Table Column Data Type Maximum Size

AuthorID Int
(Primary Key)

AuthorName Char 50

Table 18-3 lists the structure of the ElcorteinglesListings table. This is the table that
contains all of the Spanish Language Elcorteingles Website book listings for our
relational data examples and applications.

i538292 ch18.qxd 8/18/03 8:44 AM Page 433

434 Part IV ✦ Relational Data and XML

Table 18-3
Structure of the ElcorteinglesListings Table

Table Column Data Type Maximum Size

ProductID int
(Primary Key)

titulo char 200

ISBN char 20

AuthorID int
(Foreign Key - Authors)

Imagen char 100

Precio money

fecha_de_publicación datetime

Encuadernación char 50

librourl char 200

Table 18-4 lists the structure of the Quotations table. This is the table that contains
all of the Quotations related to books, authors, and sources in the relational data
examples and applications.

Table 18-4
Structure of the Quotations Table

Table Column Data Type Maximum Size

QuotationID int
(Primary Key)

SourceID int
(Foreign Key - Sources)

AuthorID int
(Foreign Key - Authors)

Quotation char 300

Table 18-5 lists the structure of the Sources table. This is the table that contains
information about the book and quotation authors. It is related to the AuthorID field
in the AmazonListings and Quotations tables.

i538292 ch18.qxd 8/18/03 8:44 AM Page 434

435Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Table 18-5
Structure of the Sources Table

Table Column Data Type Maximum Size

SourceID Int
(Primary Key)

SourceName Char 50

Installing and Configuring SQLXML
You can download the latest version of SQLXML from http://www.microsoft.
com/sql/techinfo/xml/default.asp. You will need at least version 3.0 SP1 for
the examples in this chapter. Once the file is downloaded and installed via a simple
InstallShield process, XML functionality is available via the Enterprise Manager and
the Query Analyzer. You can also set up optional HTTP support for SQL Server XML
queries by setting up Using IIS Virtual Directory Management. HTTP server access
to SQL Server requires that Microsoft Internet Information Server (IIS) be running
on the same machine as the SQL Server and the SQLXML installation. Developers
that don’t want to configure IIS for their development workstation can still work
with SQLXML features via the Enterprise Manager and the Query Manager. You will,
however, need to configure your Query Analyzer client to handle display and for-
mat of XML documents, as we outline in the next section.

Installing a new version of SQLXML does not remove the DLLs installed from pre-
vious versions (SQLXML 1.0 or SQLXML 2.0). This means that each version can be
run independently on the same machine if needed, and is handy for rollback if
there are any problems.

Viewing XML Results in Query Analyzer
When a FOR XML query is executed on SQL Server 2000, results returned contain a
single text column and one or more rows. The text column contains a Unique ID
that the SQL Server recognizes as a stream of XML data. When output is sent to an
application or a Web browser, the unique ID is used to identify the output request
and XML is assembled one row at a time. This means that the display of XML is
organized into rows of data formatted by the stream as a single column.

Tip

i538292 ch18.qxd 8/18/03 8:44 AM Page 435

436 Part IV ✦ Relational Data and XML

Query Analyzer uses ODBC for query results instead of the streaming interface. The
ODBC driver has a default Maximum Characters per Column of 256 characters,
which is much shorter than most XML document’s output. For example, a basic
FOR XML AUTO query like this:

SELECT * FROM [XMLProgrammingBible].[dbo].[AmazonListings] FOR XML AUTO

Results in a very incomplete XML document like this in Query Analyzer and
Enterprise Manager:

<XMLProgrammingBible.dbo.AmazonListings ProductID=”1001” Ranking=”1”
Title=”Hamlet/MacBeth

To fix this, update the Maximum Characters per Column setting via the Tools ➪
Options ➪ Results option in the main menu of Query Analyzer. I set mine to 5000
characters, which is usually enough to display a full XML document in the results.

There is also an undocumented “pretty print” XML feature in Query Analyzer that
can help you to review XML results. Set trace tag 257 on with this statement before
the SELECT:

DBCC traceon(257)
SELECT * FROM [XMLProgrammingBible].[dbo].[AmazonListings] FOR XML AUTO

This produces indentation and line-end formatting of XML Document output, which
makes it much more readable.

Accessing SQL Server Using HTTP
Before you can create SQL Server queries via HTTP, you have to set up a virtual
root for Web access using the IIS Virtual Directory Management for SQL Server util-
ity. If you already are running SQLXML via HTTP older than version 3.0, you may
also have to update your SQL virtual directories to the latest version. The Microsoft
Management Console (MMC) snap-in for the SQL Server Virtual Directory
Management utility contains a tab in the properties dialog box for upgrading virtual
directories to the latest SQLXML format.

Configuring IIS Virtual Directory Management for SQL Server
The IIS Virtual Directory Management for SQL Server utility can be accessed by
selecting “Configure SQL XML Support in IIS” from the SQL Server start menu
options. The utility creates an association between a virtual directory on the IIS

i538292 ch18.qxd 8/18/03 8:44 AM Page 436

437Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

server and SQL Server. A URL containing the IIS server address, the virtual direc-
tory, and an SQL expression can be passed from a Web browser or an application
over HTTP to the IIS Server. The IIS server will route the request to the SQL Server
based on the virtual directory name. Security, database port information that is pre-
configured in the virtual directory connects the request to a database for execu-
tion. The help associated with the configuration tool covers all of the setup details.
I do, however, have a few additional tidbits that may be useful for the setup:

✦ TCPIP must be enabled via the network utility, and the port must be config-
ured to port 1433.

✦ Windows and SQL Server login support must be enabled (the default is
“Windows Only”).

✦ A version of SQLXML must be loaded and installed. For the examples in this
chapter, SQLXML 3.0 SP1 should be installed. The examples may work with
previous examples, but have not been tested with anything other than the
most recent version.

Calling the Virtual Directory using URLs
Once the configuration is set up, HTTP commands can be used to access tables via
URLS containing HTTP-formatted SQL or XPath expressions. Here’s an example of a
simple URL that calls the BenzTech IIS server to return all rows of the
AmazonListings table of the XMLProgrammingBible Database:

http://iis.benztech.com/XMLProgrammingBible?sql=SELECT+*+FROM+AmazonListings+FOR
+XML+AUTO

Spaces are replaced by + in the URL. This is because URLs cannot contain spaces.
The escape character for a space (%20) can also be used to format the spaces. The
IIS server reformats the SQL query and replaces the spaces before the query gets
to the SQL Server. Also, the URL query does not have to be qualified by a database
name, because the virtual directory contains the information about which
database to access.

Parameters for SQL Server URLs
Table 18-6 lists optional parameters that can be used with a SQL Server query
string. Parameters are added to the end of an SQL Server query URL. They are sepa-
rated from the rest of the query and each other by an ampersand (&).

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 437

438 Part IV ✦ Relational Data and XML

Table 18-6
Parameters for SQL Server URLs

Parameter Description

&contenttype= The Multipurpose Internet Mail Extension (MIME) content-type of
the returned document. Example values are “text/XML,” “text/html,”
“text/plain,” and “image/jpeg.” The default value is “text/XML.” A
full listing of registered MIME types can be found at the Internet
Assigned Numbers Authority, at http://www.iana.org.

&outputencoding= The encoding character set to use for the resulting output. The
default is UTF-8.

&root= If multiple rows of data are returned in an XML document, they
result in multiple root elements in the document, which is not
well-formed XML. The root parameter specifies a root element
that is used to contain multiple rows of XML results in a well-
formed XML document format.

&xsl= The XSL stylesheet file specified in the xsl parameter value is used
to transform results before they are displayed in the browser.

SQL Server templates
An SQL Server template is a valid XML document that is stored in an SQL Server vir-
tual directory. Templates can contain one or more formatted SQL statements that
are returned as a single result XML document. Templates can also be used to return
more than one query result as a single XML document and store default param-
eters. Templates also have security advantages, because the calling URL containing
the SQL Server query is not directly readable by an HTML page. Here’s an example
of the same query, but this time the query contains a reference to a template called
MultiQueryExample1.xml instead of a query:

http://iis.benztech.com/XMLProgrammingBible/template/MultiQueryExample1.xml

The name of the virtual directory for this example is template. When you set up
an IIS virtual directory, you can specify directories under the virtual directory that
will contain templates and schemas. In this case, URL queries are sent to the
XMLProgrammingBible directory via the virtual directory settings. URLs that use
a template reference are sent to the /XMLProgrammingBible/template direc-
tory. URLs that use an XDR or W3C schema reference to process queries with XPath
expressions are sent to the /XMLProgrammingBible/schema directory (we’ll
cover schema references and XPath queries in more detail later in the chapter). The
template and schema directories were set up when we created the virtual directory
for XMLProgrammingBible. They can be named anything, and you can have more

i538292 ch18.qxd 8/18/03 8:44 AM Page 438

439Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

than one of each. The virtual directory settings specify if a directory is a schema
directory or a template directory. A directory can be a schema or template direc-
tory, but not both.

For security reasons, the directories have to already exist when you set up the vir-
tual directory settings. The Virtual Directory Configuration Utility does not create
new directories from names specified in the virtual directory settings.

Elements for SQL Server templates
SQL Server XML templates can contain several optional elements. The only two ele-
ments required by the XML template are the root element, which can be named any-
thing, and the namespace, xmlns:sql=”urn:schemas-microsoft-com:xml-sql,
which can have any namespace prefix. Most templates use a root element name of
ROOT and a namespace prefix of sql. Table 18-7 contains the rest of the legal ele-
ments of a SQL Server template file.

Table 18-7
Elements of a SQL Server Template File

Element Description

sql:xsl The sql:xsl attribute of a template root tag specifies an
<root xmlns:sql= XSL stylesheet that is applied to an XML result document.
‘urn:schemas-microsoft-com: Any path relative to the virtual directory root can be
xml-sql’ sql:xsl= specified for the stylesheet. This is a default value that can
‘stylesheet.xsl > be overwritten by a ?xsl=stylesheet parameter in a

URL that calls a template.

sql:header This is a container for one or more parameters, which are
<sql:header> text values associated with the <sql:param> tag. The

<sql:param header tag is designated for expanded but unspecified use,
</sql:header> in future versions of SQLXML.

sql:param This tag defines parameters that can be passed to a
<sql:param name= template query. Parameters are children of the
‘name’>DefaultValue <sql:header> tag. Multiple parameters can be
</sql:param> specified, but each parameter has to be enclosed in a

<sql:param> tag. Parameter names and default values
can be stored in the <sql:param> tag, and values that
override the default value can be passed from a URL using
a URL parameter in this format:

http://serverURL/template/template.xml?
ParameterName=ParameterValue

Continued

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 439

440 Part IV ✦ Relational Data and XML

Table 18-7 (continued)

Element Description

sql:query Contains SQL queries, which are text values associated
<sql:query> with the <sql:query> tag. Multiple queries can be
SELECT * FROM X specified in a template, but each parameter has to be
</sql:query> enclosed in a <sql:query> tag. Results from multiple

queries are assembled into a single XML document.

sql:xpath-query Specifies an XPath query that is processed against an
<sql:xpath-query> annotated XDR or W3C schema.
(XPathExpression)
</sql:xpath-query>

mapping-schema The mapping-schema attribute of the <sql:xpath-
query> element identifies a schema that is located in a
template file by the schema’s id attribute. You can also
identify external schemas from a template by relative path
and file name. XPath queries in the <sql:xpath-
query> element use the XDR or W3C schema that is
referenced to access SQL Server data.

Using XML templates to store SQL queries
Here’s an example of a very simple template that illustrates the combination of two
queries into one XML result document. In this case, the same query runs twice via
two sql:query tags, returning the first row (TOP 1) of the XMLProgramming
Bible.dbo.AmazonListings table twice in the same result XML document.

The query is accessed by HTTP, but because the template is already on the server
and does not travel by HTTP. Therefore, the spaces in the SQL statements do not
have to be reformatted with + or %20.

<QueryRoot xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:query>
SELECT TOP 1 * FROM XMLProgrammingBible.dbo.AmazonListings FOR XML AUTO
</sql:query>
<sql:query>
SELECT TOP 1 * FROM XMLProgrammingBible.dbo.AmazonListings FOR XML AUTO
</sql:query>

</QueryRoot>

When you save the template with a file name of MultiQueryExample1.xml in the
template subdirectory of the virtual directory, you can call the template via this URL:

http://iis.benztech.com/XMLProgrammingBible/template/MultiQueryExample1.xml

An XML document is returned, which contains a result set of two SQL Server rows.

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 440

441Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Transforming XML results with an XSL stylesheet
SQL Server also has a couple of ways to automatically transform XML results using
an XSL stylesheet. A stylesheet reference can be contained in a URL that references
a template with a parameter like this:

http://iis.benztech.com/XMLProgrammingBible/template/MultiQueryExample1.xml?xsl=
ResultTransform.xsl

In this example, the ResultTransform.xsl stylesheet is stored in the stylesheets
subdirectory of the virtual directory. This is not an official directory for stylesheets,
just a directory that I chose to create and store stylesheets in. It could be contained
anywhere under the virtual directory and be named anything. The relative path ref-
erence branches from the virtual directory root.

You can also reference default stylesheets inside a template file using the sql:xsl
attribute of a template’s root tag. This has the same effect as the URL parameter.

<root xmlns:sql=’urn:schemas-microsoft-com:xml-sql’
sql:xsl=’/stylesheets/ResultTransform.xsl’>

The stylesheet reference stored in the template file is a default value. This means
that any valid stylesheet reference that is passed as a parameter in a URL overrides
the default stylesheet.

XPath queries, W3C schemas, and templates
XPath queries can be used to access and update SQL server data. Combined with
Updategrams and OPENXML, SQL Server 2000 becomes a very flexible and robust
XML document repository. XPath queries do require some setup, however. You
have to create a schema subdirectory under your virtual root using the IIS Virtual
Directory Management for SQL Server utility. You also have to create what
Microsoft calls an “annotated schema” to map XML data elements and attributes to
relational data tables and columns.

You need to download and install SQLXML 2.0 or higher to use annotated W3C
schemas. Please refer to my SQLXML download and installation instructions earlier
in this chapter. Annotated XDR schemas, an older and proprietary schema format
based on a 1999 W3C schema working draft, can be used with SQLXML 1.0 or
above. However, because it’s an older non-standard industry schema format, I
don’t recommend using it if you can use W3C Schemas for the same purpose.

Annotated schemas are simply regular W3C schemas that use the W3C annotation
element (<xsd:annotation>) to contain information about relationships between
tables. To facilitate the elements and attributes inside the annotation, an additional
namespace must also be added to the schema, xmlns:sql=”urn:schemas-
microsoft-com:mapping-schema. Under normal circumstances, W3C annota-
tions are used to contain documentation about a certain element or attribute in a

Note

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 441

442 Part IV ✦ Relational Data and XML

W3C schema. For SQL Server annotated schemas, the annotation is located immedi-
ately after the root element and namespace declarations.

For more information on W3C Schemas, please refer to Chapter 3.

You can also map schema attributes and elements to relational data tables and
columns using the sql:relation and sql:field attributes. This is only required
if the schema element and attribute names do not match the table and column
names in a SQL Server table. An SQL Server table name automatically maps to a
complex element type with the same name in the schema. An SQL Server column in
a table automatically maps to a simple element or attribute with the same name in
the schema.

Here’s an example of a very simple annotated schema. This is actually just a regular
W3C schema for a table with the urn:schemas-microsoft-com:mapping-
schema namespace added. That was the only change I had to make, because the
first complex element, <xs:element name=”AmazonListings”>, contains the
same name as the table, AmazonListings, and the attributes in the schema all corre-
spond to column names in the AmazonListings table. The schema represents a sin-
gle table, so I didn’t need to add an annotation for database relationships either.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:sql=”urn:schemas-microsoft-com:mapping-schema”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”AmazonListings”>
<xs:complexType>

<xs:attribute name=”ProductID” type=”xs:short” use=”required”/>
<xs:attribute name=”Ranking” type=”xs:boolean” use=”required”/>
<xs:attribute name=”Title” type=”xs:string” use=”required”/>
<xs:attribute name=”ASIN” type=”xs:long” use=”required”/>
<xs:attribute name=”AuthorID” type=”xs:short” use=”required”/>
<xs:attribute name=”Image” type=”xs:string” use=”required”/>
<xs:attribute name=”Small_Image” type=”xs:string” use=”required”/>
<xs:attribute name=”List_price” type=”xs:decimal” use=”required”/>
<xs:attribute name=”Release_date” type=”xs:dateTime” use=”required”/>
<xs:attribute name=”Binding” type=”xs:string” use=”required”/>
<xs:attribute name=”Tagged_URL” type=”xs:anyURI” use=”required”/>

</xs:complexType>
</xs:element>

</xs:schema>

You can use the sql:relation attribute to explicitly specify the SQL Server table
name that the AmazonListings element maps to:

xsd:element name=”Alist” sql:relation=”AmazonListings”

Cross-
Reference

i538292 ch18.qxd 8/18/03 8:44 AM Page 442

443Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

You can also use the sql:field attribute to specify the SQL Server column name that
the AmazonListings attribute maps to:

<xs:attribute name=”PID” sql:field=”ProductID” type=”xs:short” use=”required”/>

There are many other SQL Server annotated schema elements and attributes. I’ll
cover some of them later in this chapter. The others are well documented in the
documentation that comes with the SQLXML download.

Now that the schema is defined, it can be saved in the virtual directory that you set
up for schemas. I named mine AmazonListings.xsd to match the table that the
schema refers to, and saved it in the XMLProgrammingBible\schemas directory.

Once the schema is saved, XPath expressions that refer to the schema can be
passed from a URL like this:

http://iis.benztech.com/XMLProgrammingBible/schema/AmazonListing.xsd/AmazonListi
ngs[@ProductID=1001]

The XPath expression in the above URL is AmazonListings[@ProductID=
1001]. The XPath refers to the ProductID attribute of the AmazonListings
element with a value of 1001 which maps to rows in the ProductID column in the
AmazonListings table that contains a value of 1001.

For more information on XPath expressions, please refer to Chapter 7. For more
information on the latest subset of XML expressions that are available with SQL
Server, please refer to the SQLXML documentation that was included with your
SQLXML download.

XPath expressions and references to schemas can also be passed from template
files.

Here’s a template file that contains an external schema reference and the same
XPath expression that I used in the previous URL example. The template file is
saved in the virtual template directory with a file name of XPathExample1.xml,
and the schema file is located in the /schema subdirectory of the root, hence the
relative path for the schema file:

<XPathRoot xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:xpath-query mapping-schema=”.\schema\AmazonListings.xsd”>
AmazonListings[@ProductID=1001]
</sql:xpath-query>

</XPathRoot>

The template-based XPath results are accessible via this URL:

http://iis.benztech.com/XMLProgrammingBible/template/XPathExample1.xml

Cross-
Reference

i538292 ch18.qxd 8/18/03 8:44 AM Page 443

444 Part IV ✦ Relational Data and XML

You can also include a schema in a template file, and refer to the schema with an ID
reference instead of a relative path to another file. However, I find this approach
leads to very large and complicated template files that quickly become unwieldy. I
recommend separating the schema files from the template files whenever possible.
Please refer to the SQLXML documentation for more details on including inline
schemas in template files if you want to follow this approach.

Retrieving XML Data Using FOR XML
Now that SQLXML is set up, Query Analyzer displays XML output in a readable way,
and I’ve explained all of the different ways that you can get at SQL Server data from
a Web browser, let’s get into the details of the FOR XML clause, and what data looks
like when FOR XML modes are used. FOR XML includes three modes; RAW, AUTO,
or EXPLICIT.

Using RAW mode
For example, this SELECT statement retrieves information from Customers and
Orders table in the Northwind database. This query specifies the RAW mode in the
FOR XML clause:

SELECT TOP 1 * FROM AmazonListings FOR XML RAW

This query returns the first row in the AmazonListings table. Here’s what the results
look like:

<row ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth” ASIN=”8432040231”
AuthorID=”1001”
Image=”http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”
Small_Image=”http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”
List_price=”7.95” Release_date=”1991-06-01T00:00:00” Binding=”Paperback”
Tagged_URL=”http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&benzte
chnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432040231”/>

As you can see from this example, RAW is a pretty good description of the format of
data that comes back. It’s certainly not very readable by human eyes. The row that
is retuned is defined by a single element called row, and all of the columns in that
row are defined by an attribute with the format columnName=”value”. This result
also points out an important problem with RAW mode — :the returned value does
not convert illegal XML characters to XML-formatted legal characters. For example,
the Tagged_URL attribute at the end of the result element contains several amper-
sands (&) that are used to parse parameters when the URL is sent to the Amazon
Website. RAW mode does not encode them to the ampersand entity reference
(&). If you need that functionality, you’ll have to use AUTO or EXPLICIT mode.

i538292 ch18.qxd 8/18/03 8:44 AM Page 444

445Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

The XMLDATA option
Using the XMLDATA option in RAW mode returns the row of data as an XML-Data
schema. This includes all of the information in the previous example, plus a couple
of XML-data schema names and the data type of each column associated with each
attribute. This can be very handy for data sharing or producing schemas.

Using AUTO mode
Let’s look at the same URL, but this time with the AUTO mode:

SELECT TOP 1 * FROM AmazonListings FOR XML AUTO

The only difference between AUTO and RAW in this example is that the row ele-
ment name has been replaced by the name of the table, AmazonListings, and the
ampersands (&) in the tagged_URL attribute have been converted to entity refer-
ences (&).

<AmazonListings ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth”
ASIN=”8432040231” AuthorID=”1001”
Image=”http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”
Small_Image=”http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”
List_price=”7.95” Release_date=”1991-06-01T00:00:00” Binding=”Paperback”
Tagged_URL=”http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&be
nztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432040231” />

AUTO mode is very handy for queries that use related tables, GROUP BY, or aliased
tables in the SQL statement. If there were more tables in the query and they were
related to AmazonListings, each row from the related table would be a child ele-
ment of the AmazonListings element. Table alias names are returned in the results
used, and GROUP BY also has its own elements that are retuned with the result set.

The ELEMENTS option
One of the most interesting features of AUTO mode is the ELEMENTS option, which
returns results from table columns as elements instead of attributes. A query like
this:

SELECT TOP 1 * FROM AmazonListings FOR XML AUTO,ELEMENTS

returns this format:

<AmazonListings>
<ProductID>1001</ProductID>
<Ranking>1</Ranking>
<Title>Hamlet/MacBeth</Title>
<ASIN>8432040231</ASIN>
<AuthorID>1001</AuthorID>

i538292 ch18.qxd 8/18/03 8:44 AM Page 445

446 Part IV ✦ Relational Data and XML

<Image>
http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg
</Image>
<Small_Image>
http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</Small_Image>
<List_price>7.95</List_price>
<Release_date>1991-06-01T00:00:00</Release_date>
<Binding>Paperback</Binding>
<Tagged_URL>
http://www.amazon.com:80/exec/obidos/redirect
?tag=associateid& benztechnonogies=9441&
camp=1793&link_code=xml&path=ASIN/8432040231
</Tagged_URL>
</AmazonListings>

The ELEMENTS option makes the data much easier to read, and may be more com-
patible with formats that use an element for each data column rather than an
attribute. Readers who have been following through the book chapter by chapter
will probably notice that this format looks a lot like the Amazon listings that are
part of the XML AmazonMacbethSpanish.xml document that we’ve been using as an
example in many places in the book.

Using Explicit mode
The EXPLICIT mode offers the most control of XML document formatting returned
from an SQL Server URL query. The cost of this flexibility is development and
debugging time. EXPLICIT mode is so very explicit that it may even be considered
its own XML document formatting language. Because of the uniqueness of the syn-
tax, FOR XML EXPLICIT queries are one of the most difficult parts of SQLXML to
master. It’s worth the work, however, because of the control that you have over
XML output. FOR XML EXPLICIT queries always start with the following two column
assignments:

SELECT 1 as Tag, 0 as Parent

Tag designates the column number of a tag for nesting purposes. Parent desig-
nates the nesting level of the column. A Parent value of 0 indicates that there are no
parents for this select statement. Both are required values in a FOR XML EXPLICIT
query, and both are integers.

The next line formats the first element in a FOR XML EXPLICIT query, and refers to
a table column. This example line formats an explicitly named amazon column as
an element, with the column value as the text value of the element:

ProductID AS [amazon!1!ProductID!element]

i538292 ch18.qxd 8/18/03 8:44 AM Page 446

447Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

The ProductID AS expression is regular T-SQL, but the rest is part of the FOR XML
EXPLICIT syntax. The Exclamations marks separate the FOR XML EXPLICIT argu-
ments in the syntax. amazon is the name of the parent element. 1 denotes the nest-
ing level (1 level below the amazon element). ProductID is the name of the new
element. Element tells SQL Server to render the output as an element. Here’s how
the output looks:

<amazon>
<ProductID>1001</ProductID>.......

A similar syntax is used to produce attribute output instead of element output:

ProductID AS [amazon!1!ProductID]

The only thing different between this attribute syntax and the previous element
syntax is the removal of the !element directive from the end of the argument. This
produces the following output format:

<amazon ProductID=”1001”>

This time, the ProductID becomes an attribute of the amazon element, instead of a
nested element.

There are several other arguments and directives. Table 18-8 shows all of the FOR
XML EXPLICIT arguments and directives, based on this syntax:

Parent!Tag!(attribute or element name)!(Optional Directives)

Table 18-8
FOR XML EXPLICIT Arguments and Directives

Element Description

Parent (Argument) An element defines a parent element by name. If the
expression creates an attribute, the attribute becomes part
of the element. If the expression creates an element, the
new element is nested under the Parent element.

Tag (Argument) Is the tag number of the element or attribute to be
created? Always an integer value. Tag indicates the level of
nested XML elements. Elements are nested according to
tag number. Attributes are created as part of the element
named at a specific tag level.

Continued

i538292 ch18.qxd 8/18/03 8:44 AM Page 447

448 Part IV ✦ Relational Data and XML

Table 18-8 (continued)

Element Description

(attribute or element) The name of an Is either the name of the XML attribute
name (Argument) (if Directive is not specified) or the name of the contained

element (if Directive is either xml, cdata, or element). If
Directive is specified, AttributeName can be empty. In this
case, the value contained in the column is directly
contained by the element with the specified
ElementName.

element (Optional Directive) If the element directive is included in an expression, the
output is formatted as an element. Otherwise, output is
formatted as an attribute.

XML (Optional Directive) If the XML directive is included in an expression, the output
is formatted as an element, and no entity reference
conversions take place (& is not converted to &, for
example). Otherwise, output is formatted as an attribute. If
the XML directive is used, the hide directive must be used
as well to remove the unconverted element from the
output.

hide (Optional Directive) Used in UNIONS, JOINS, and/or ORDER BY, GROUP BY to
structure output based on an attribute or element that will
not be sent to the final XML output.

xmltext (Optional Directive) xmltext is only used with hide in the same expression.
Stored left-over column data from an OPENXML statement
in a single element. The xmltext directive can be used
with an attribute too, but only under very restricted
conditions. Refer to the SQLXML documentation for details.

cdata (Optional Directive) Can only be used with hide and with elements, not
attributes. cdata stores column data in CDATA section
without making any entity reference conversions or
checking if the data is well formed.

ID (Optional Directive) ID designates an attribute as an ID attribute. Used with the
FOR XML EXPLICIT, XMLDATA Option.

IDREF (Optional Directive) IDREF designates an attribute as an IDREF attribute. Used
with the FOR XML EXPLICIT, XMLDATA Option.

IDREFS (Optional Directive) IDREFS designates an attribute as an IDREFS attribute.
Used with the FOR XML EXPLICIT, XMLDATA Option.

i538292 ch18.qxd 8/18/03 8:44 AM Page 448

449Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

That’s the overall syntax. We find that examples help a lot when dealing with FOR
XML EXPLICIT queries. Listing 18-1 contains an XML template that contains two
fairly simple FOR XML EXPLICIT queries. We’ve combined the queries in a template
file. This creates a single output document that starts with a root catalog element,
then a nested amazon element. Next, the second query produces an elcorteingles
element with nested elements. We’ve used TOP 1 in the queries to return the first
rows only of each result, just to make the results smaller. We saved the query in the
template virtual directory on our IIS server, with a name of MultiQueryExample2.xml.

Listing 18-1: The MultiQueryExample2.xml Template

<?xml version=”1.0” encoding=”UTF-8”?>
<catalog>

<sql:query>
SELECT TOP 1 1 as Tag, 0 as Parent,
ProductID AS [amazon!1!ProductID!element],
Ranking AS [amazon!1!Ranking!element],
Title AS [amazon!1!Title!element],
ASIN AS [amazon!1!ASIN!element],
AuthorID AS [amazon!1!AuthorID!element],
Image AS [amazon!1!Image!element],
Small_Image AS [amazon!1!Small_Image!element],
List_Price AS [amazon!1!List_price!element],
Release_Date AS [amazon!1!Release_date!element],
Binding AS [amazon!1!Binding!element],
Availability AS [amazon!1!Availablilty!element],
Tagged_URL AS [amazon!1!Tagged_URL!element]
FROM [XMLProgrammingBible].[dbo].[AmazonListings] FOR XML EXPLICIT

</sql:query>
<sql:query>

SELECT TOP 1 1 as Tag, 0 as Parent,
ProductID AS [elcorteingles!1!ProductID!element],
titulo AS [elcorteingles!1!titulo!element] ,
ISBN AS [elcorteingles!1!ISBN!element],
AuthorID AS [elcorteingles!1!AuthorID!element],
Imagen AS [elcorteingles!1!Imagen!element],
Precio AS [elcorteingles!1!Precio!element],
fecha_de_publicación AS [elcorteingles!1!fecha_de_publicación!element],
Encuadernación AS [elcorteingles!1!Encuadernación!element],
librourl AS [elcorteingles!1!librourl!element]
FROM [XMLProgrammingBible].[dbo].[ElcorteinglesListings] FOR XML
EXPLICIT

</sql:query>

</catalog>

i538292 ch18.qxd 8/18/03 8:44 AM Page 449

450 Part IV ✦ Relational Data and XML

The queries in the MultiQueryExample2.xml template file produce the output in
Listing 18-2. The output is formatted as two XML document segments, one for
amazon and one for elcorteingles. Each column name in the original query
table is formatted into an element name, and the column value is a text value for
each element.

Listing 18-2: Output from the MultiQueryExample2.xml
Template

<?xml version=”1.0” encoding=”UTF-8”?>
<catalog>

<amazon>
<ProductID>1001</ProductID>
<Ranking>1</Ranking>
<Title>Hamlet/MacBeth</Title>
<ASIN>8432040231</ASIN>
<AuthorID>1001</AuthorID>
<Image>
http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg
</Image>
<Small_Image>
http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</Small_Image>
<List_price>7.95</List_price>
<Release_date>1991-06-01T00:00:00</Release_date>
<Binding>Paperback</Binding>
<Tagged_URL>
http://www.amazon.com:80/exec/obidos/
redirect?tag=associateid&benztechnonogies=9441
&camp=1793&link_code=xml&path=ASIN/8432040231
</Tagged_URL>

</amazon>
<elcorteingles>

<ProductID>1001</ProductID>
<titulo>Romeo y Julieta/Macbeth/Hamlet/Otelo/
La fierecilla domado/El sueño de una noche de verano/ El mercader de
Venecia</titulo>
<ISBN>8484036324</ISBN>
<AuthorID>1001</AuthorID>
<Imagen>
http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639
</Imagen>
<Precio>759</Precio>
<fecha_de_publicación>1999-06-04T00:00:00</fecha_de_publicación>
<Encuadernación>Piel</Encuadernación>
<librourl>http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639</librourl>

</elcorteingles>
</catalog>

i538292 ch18.qxd 8/18/03 8:44 AM Page 450

451Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Updating SQL Server Data with XML
SQL Server 2000 data can be updated by XML documents using OPENXML, XML
Updategrams, and XML Bulk Load.

XML Bulk Load is designed to batch-load XML document data into SQL server
tables. Behind the scenes, it used the BULK INSERT command to update tables from
parsed XML document data. Bulk Load uses MSXML to process streams of XML,
which enables it to handle large amounts of XML data relatively quickly and effi-
ciently. While Bulk Load is for large-scale data insertions, XML Updategrams are
more suited for small-scale XML data inserts, deletions, or updates. They can be
used at runtime, and handle loading of smaller XML documents into tables via very
simple SQL Server templates. OPENXML is a flexible option for manipulating XML
document data using T-SQL commands.

Updating relational data using OPENXML
Like the FOR XML EXPLICIT mode shown earlier in this chapter, OPENXML is a lan-
guage unto itself. OPENXML is a keyword that can be added to T-SQL commands to
map and manipulate XML data represented by SQL Server tables and columns.
OPENXML is mostly used for updating, deleting, or inserting SQL server data from
an XML document data source. It can also be used to select and view XML docu-
ments in SQL Server tables.

There are many options for mapping XML documents to SQL Server tables. You can
also integrate ADO with OPENXML to provide a very flexible way for SQL server to
communicate with applications using XML instead of regular rowsets. The tech-
niques and syntax for this functionality is covered in great detail in the documenta-
tion that comes with SQL Server.

The help documentation for OPENXML is in the main SQL Server documentation,
not the SQLXML Documentation.

In this chapter we’ll focus on some of the most useful T-SQL functions of OPENXML;
inserting and updating SQL server tables based on table formats, and using
OPENXML with SELECT queries to produce edge tables.

Working with OPENXML edge tables
Let’s start with edge tables, because they need the smallest query and the results
provide insight into the structure of OPENXML. Despite the name, edge tables are
not something you find at IKEA. Edge tables are actually parsed representations of
an XML document that is formatted in an OPENXML format and inserted into a tem-
porary table for display. Microsoft says that the edge in edge table refers to “edges”
of the data in the XML document, whatever that means. We say that columns in the
edge table refer to parsed nodes from an XML document.

Note

i538292 ch18.qxd 8/18/03 8:44 AM Page 451

452 Part IV ✦ Relational Data and XML

Listing 18-3 shows a simple OPENXML query that formats one row of data in the
AmazonListings table as an Edge table. The code is only five lines long, but the XML
document in the middle makes it look more complicated than it is.

Listing 18-3: A Simple OPEXML Query That Creates an Edge
Table - OPENXMLExample1.sql

DECLARE @iDoc int, @cDoc varchar (5000)

SET @cDoc = ‘<AmazonListings ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth”
ASIN=”8432040231”
Image=”http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”
Small_Image=”http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”
List_price=”$7.95” Release_date=”2001-12-17T09:30:47-05:00”
Binding=”Paperback” Availability=””
Tagged_URL=”http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&a
mp;benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432
040231”/>’

EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc
SELECT * FROM OPENXML (@iDoc, ‘/AmazonListings’, 1)
EXEC sp_xml_removedocument @idoc

The first line declares two variables. The iDoc variable is used by the
sp_xml_preparedocument stored procedure to parse a provided XML document.
The cDoc variable contains the XML document that is parsed.

DECLARE @iDoc int, @cDoc varchar (5000)

The XML document that is parsed by the sp_xml_preparedocument stored pro-
cedure is usually passed via a parameter to the OPENXML command. For this intro-
ductory example, we’ve explicitly added the document in the code to make it easier
to follow the flow. The XML document is the result of a FOR XML AUTO query on
the first row of the AmazonListings table:

SET @cDoc = ‘<AmazonListings ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth”
ASIN=”8432040231”
Image=”http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”
Small_Image=”http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”
List_price=”$7.95” Release_date=”2001-12-17T09:30:47-05:00”
Binding=”Paperback” Availability=””
Tagged_URL=”http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&a
mp;benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432
040231”/>’

i538292 ch18.qxd 8/18/03 8:44 AM Page 452

453Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

sp_xml_preparedocument accepts the integer variable iDoc and the XML docu-
ment in the cDoc variable and returns a handle that is used to access the parsed
document.

EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc

The SELECT command uses the handle passed back from sp_xml_preparedocument
to access the parsed XML document. An XPath expression is used to select the
AmazonListings element. The last parameter designates the mapping style of the
source XML document to the output in the edge table. The most important values are 1
and 2. A value of 1 maps attributes in the source XML document to nodes in the edge
table. This is also the default value if the attribute is omitted. A value 2 of two maps
attributes in the source XML document to nodes in the edge table. You can also add
values together to provide mapping combinations. A value of 3 denotes attribute and
element mapping in the same document.

SELECT * FROM OPENXML (@iDoc, ‘/AmazonListings’, 1)

The last parameter also handles left-over values from the OPENXML expression.
When OPENXML queries process an XML document, the results are returned based
on XPath. For example, if we wanted to just return the List_price attribute in the
code listed in Listing 18-3, the SELECT statement would look like this:

SELECT * FROM OPENXML (@iDoc, ‘/AmazonListings[@List_price]’, 1)

The rest of the document that is not accessed by XPath is considered unprocessed
or overflow values in the OPENXML node tree. These overflow values are stored in
a variable called @mp:xmltext, and can be referred to for further processing. Any
variable with a @mp: prefix is an OPENXML metaproperty. Metaproperties contain
values that are assigned to reserved keywords and describe information about an
XML document such as schema data type, and so on. The @mp:xmltext is a spe-
cialized variable for handling overflow text from OPENXML expressions. The
numeric parameter at the end of the OPENXML expression accommodates the for-
matting of the overflow. Eight is the base number, and the 1, 2, and 3 values are
added together with 8 to get values 9 through 11. A value of 8 or 9 (8+1) stores over-
flow values in the @mp:xmltext variable mapped as attributes. A value of 10 (8+2)
stores overflow values in the @mp:xmltext variable mapped as elements. A value
of 11 (8+3) stores overflow values in the @mp:xmltext variable mapped as mixed
elements and attributes.

The next line in the code resets the connection and removes the handle created by
sp_xml_preparedocument using the sp_xml_removedocument stored proce-
dure with a passed parameter of the XML document handle (iDoc).

EXEC sp_xml_removedocument @idoc

i538292 ch18.qxd 8/18/03 8:44 AM Page 453

454 Part IV ✦ Relational Data and XML

Figure 18-1 shows the results of the query in grid format. The results are worth
reviewing because edge tables provide a good introduction to OPENXML syntax
and structure.

Figure 18-1: The edge table created as a result of the OPENXMLExample1.sql query

The structure and information in an edge table help analyze the parsed nodes of an
XML document as SQL Server sees it, based on the results of your OPENXML
expression. I usually start any OPENXML query by sending output based on an
XPath expression that returns the root element of an XML document to an edge
table. That way I can have a look at the data as SQL Server sees it, and shape the
output based on attribute and element settings. Edge tables are also good to check
before you do an insert or update with an OPENXML expression, to see what the
effect will be on the data before you point the expression at a table. Table 18-9
shows the columns in the edge table with descriptions.

Table 18-9
Columns in an Edge Table

Column Description

id There is one unique ID for each parsed document node. Node
counts start at 0 for the root element.

parented Refers to the node id number of the parent node. Parents of
attributes and text are their elements. Parents of element are other
elements. Root elements have null parent ids.

nodetype Based on the W3C DOM node types 1 to 12. The three most
common node types are listed in this edge table; elements (1),
attributes (2), and text (3). Table 5-3 in Chapter 5 has a full listing of
DOM Node types and descriptions.

i538292 ch18.qxd 8/18/03 8:44 AM Page 454

455Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Column Description

localname The local name of the element or attribute. #text for text data, and
null for non-named nodes.

prefix The namespace prefix of the node. null if there is no namespace.

namespaceuri The namespace uri of the node. null if there is no namespace.

datatype W3C schema data type for the node. Since I am not using schemas
in this XML document, all values are null.

prev The node id number of the previous sibling. Since this is a single-
element XML document, all sibling values are null.

text If the node is an element, the attribute value is in this column. If the
node is a text node, the text value is in this column. Otherwise, null.

OPENXML provides many ways to explicitly map the format of an SQL Server table
as part of an OPENXML expression. While explicit mapping of XML data to SQL
Server data may be useful for some applications, I prefer to use the features in
OPENXML that let me map my XML document to an existing SQL Server table struc-
ture when possible. That way, if my SQL Server table changes, I only have to change
the XML document structure, and not the explicit mapping in all of my OPENXML
expressions. Also, I find it a little easier to follow code that maps XML document
objects to SQL Server table objects with the same names, instead of having to fol-
low the mapping in a piece of intermediary code. Of course, in reality sometimes
you have to explicitly map XML documents to SQL Server tables. I’ll cover table
mapping in this part of the chapter, including how to insert and update XML docu-
ments while maintaining referential integrity in SQL Server tables. I’ll also show you
an example of a common situation where you have to bite the bullet and explicitly
map SQL Server table columns to XML document data. For all of the OPENXML
examples, I’m using the following XML document. The document starts with an
XML document declaration, followed by a root element of XMLProgrammingBible.
The root element can be named anything. Because it contains representations of all
of the tables and relationships in the XMLProgrammingBible database, I named it
XMLProgrammingBible.

<?xml version=”1.0” encoding=”UTF-8”?>
<XMLProgrammingBible>

Note that the element for the Quotations table is nested inside the elements for
the Sources and Authors tables. This is to represent foreign key relationships
between the tables. The Authors and Sources tables contain primary keys. The
Quotations table contains foreign key relationships with Authors and Sources.
Nesting the Quotations table inside the Sources and Authors table represents
the foreign key relationships.

<Authors AuthorID=”1001” AuthorName=”Shakespeare, William”>
<Sources SourceID=”1001” Source_Name=”Macbeth”>

i538292 ch18.qxd 8/18/03 8:44 AM Page 455

456 Part IV ✦ Relational Data and XML

The nested elements don’t contain references to the AuthorID or SourceID
columns, even though these values are part of the SQL Server tables represented by
the nested elements. This information is supplied by the foreign key relationships
in the tables and represented by the way that the elements are nested. It’s implied
by the element nesting that, for example, the AuthorID and the SourceID for the
Quotations data should be supplied by the AuthorID in the Authors parent
element.

<Quotations QuotationID=”1001” Quotation=”When the hurlyburly’s done,
/ When the battle’s lost and won.”/>

</Sources>
</Authors>

</XMLProgrammingBIble>

Using OPENXML to insert XML data
I’ve show you what XML document node trees look like when they are created by
OPENXML in an edge table, and I’ve provided an overview of the XML document
that I am using for the OPENXML examples. Now I can use OPENXML expressions to
insert data into related tables. The code in Listing 18-4 inserts data into three tables
from a single XML document.

Listing 18-4: Inserting Data into SQL Server Tables Using
OPENXML - OPENXMLExample2.sql

DECLARE @iDoc int, @cDoc varchar (5000)
SET @cDoc =
‘<XMLProgrammingBible>
<Authors AuthorID=”1001” AuthorName=”Shakespeare, William”>
<Sources SourceID=”1001” Source_Name=”Macbeth”>
<Quotations QuotationID=”1001” Quotation=”When the hurlyburlys done,
When the battles lost and won.”/>

</Sources>
</Authors>
</XMLProgrammingBible>’
EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc

INSERT INTO [XMLProgrammingBible].[dbo].[Authors]([AuthorID], [AuthorName])
(SELECT [AuthorID], [AuthorName] FROM OPENXML (@iDoc,
‘/XMLProgrammingBible/Authors’) WITH Authors)

INSERT INTO [XMLProgrammingBible].[dbo].[Sources]([SourceID], [Source Name])
(SELECT [SourceID], [Source Name] FROM OPENXML (@iDoc,
‘/XMLProgrammingBible/Authors/Sources’) WITH Sources)

INSERT INTO [XMLProgrammingBible].[dbo].[Quotations]([QuotationID], [SourceID],
[AuthorID], [Quotation])

i538292 ch18.qxd 8/18/03 8:44 AM Page 456

457Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

(SELECT QuotationID, SourceID, AuthorID, Quotation FROM OPENXML (@iDoc,
‘/XMLProgrammingBible’) WITH (
QuotationID int ‘./Authors/Sources/Quotations/@QuotationID’,
SourceID int ‘./Authors/Sources/@SourceID’,
AuthorID int ‘./Authors/@AuthorID’,
Quotation char(300) ‘./Authors/Sources/Quotations/@Quotation’))

EXEC sp_xml_removedocument @idoc

As with the previous OPENXML example, the first line declares two variables. The
iDoc variable is used by the sp_xml_preparedocument stored procedure to
parse a provided XML document. The cDoc variable contains the XML document
that is parsed.

DECLARE @iDoc int, @cDoc varchar (5000)

The XML document that is parsed by the sp_xml_preparedocument stored pro-
cedure is usually passed via a parameter to the OPENXML command. As with the
first example, I’ve explicitly added the document in the code to make it easier to
follow the flow.

SET @cDoc =
‘<XMLProgrammingBible>
<Authors AuthorID=”1001” AuthorName=”Shakespeare, William”>
<Sources SourceID=”1001” Source_Name=”Macbeth”>
<Quotations QuotationID=”1001” Quotation=”When the hurlyburlys done,
When the battles lost and won.”/>

</Sources>
</Authors>
</XMLProgrammingBible>’

sp_xml_preparedocument accepts the integer variable iDoc and the XML docu-
ment in the cDoc variable and returns a handle that is used to access the parsed
document.

EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc

Next is the first INSERT command. This insert uses a very simple OPENXML
SELECT statement to retrieve the AuthorID and AuthorName attributes from the
Authors element in the source XML document. The XPath expression locates the
element in the XML document. The WITH Authors command at the end of the
OPENXML expression tells OPENXML to use the Authors table as a guide when for-
matting the node tree.

INSERT INTO [XMLProgrammingBible].[dbo].[Authors]([AuthorID], [AuthorName])
(SELECT [AuthorID], [AuthorName] FROM OPENXML (@iDoc,
‘/XMLProgrammingBible/Authors’) WITH Authors)

i538292 ch18.qxd 8/18/03 8:44 AM Page 457

458 Part IV ✦ Relational Data and XML

The Sources INSERT command is almost identical to the Authors INSERT com-
mand. This time, the SourceID and Source_Name attributes from the Sources
element in the source XML document are retrieved. The WITH Sources command
at the end of the OPENXML expression tells OPENXML to use the Sources table as a
guide when formatting the node tree.

INSERT INTO [XMLProgrammingBible].[dbo].[Sources]([SourceID], [Source Name])
(SELECT [SourceID], [Source Name] FROM OPENXML (@iDoc,
‘/XMLProgrammingBible/Authors/Sources’) WITH Sources)

The Quotations INSERT command has to gather attributes from several elements in
the XML document, so unfortunately it can’t use the WITH (table) mapping like
Sources and Authors did. Instead, the WITH command contains explicit data typ-
ing and mapping. OPENXML explicit mappings gather the Quotation, SourceID,
AuthorID, and Quotation attributes from several elements in the XML document.
XPath expressions point to positions relative to the root /XMLProgrammingBible
element in the XML document.

INSERT INTO [XMLProgrammingBible].[dbo].[Quotations]([QuotationID], [SourceID],
[AuthorID], [Quotation])
(SELECT QuotationID, SourceID, AuthorID, Quotation FROM OPENXML (@iDoc,
‘/XMLProgrammingBible’) WITH (
QuotationID int ‘./Authors/Sources/Quotations/@QuotationID’,
SourceID int ‘./Authors/Sources/@SourceID’,
AuthorID int ‘./Authors/@AuthorID’,
Quotation char(300) ‘./Authors/Sources/Quotations/@Quotation’))

The last line in the code resets the connection and removes the handle created by
sp_xml_preparedocument using the sp_xml_removedocument stored proce-
dure with a passed parameter of the XML document handle (iDoc).

EXEC sp_xml_removedocument @idoc

Using OPENXML to update XML data
Updating XML data with OPENXML is very similar to OPENXML data insertion. The
code Listing 18-5 updates a row of data in the Sources table with a value provided
in an XML document.

Listing 18-5: Updating Data in SQL Server Tables Using
OPENXML - OPENXMLExample3.sql

DECLARE @iDoc int, @cDoc varchar (5000)
SET @cDoc =
‘<XMLProgrammingBible>

i538292 ch18.qxd 8/18/03 8:44 AM Page 458

459Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

<Sources SourceID=”1001” Source_Name=”McBeth”>
</Sources>

</XMLProgrammingBible>’
EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc

UPDATE Sources
SET [Source Name] = XS.Source_Name
FROM [XMLProgrammingBible].[dbo].[Sources] S, (SELECT [SourceID],

[Source_Name] FROM OPENXML (@iDoc, ‘/XMLProgrammingBible/Authors/Sources’)
WITH Sources) XS
WHERE S.[Source Name] = ‘Macbeth’

EXEC sp_xml_removedocument @idoc

This code starts with the same variable declarations as the previous two examples.
The XML document that is passed for the update contains a single row of data to
update the Sources table. The SourceID stays the sane, but the Source_Name
changes.

DECLARE @iDoc int, @cDoc varchar (5000)
SET @cDoc =
‘<XMLProgrammingBible>

<Sources SourceID=”1001” Source_Name=”McBeth”>
</Sources>

</XMLProgrammingBible>’
EXEC sp_xml_preparedocument @iDoc OUTPUT, @cDoc

The UPDATE command contains a nested SELECT statement that pulls the new
value out of the attributes in the XML source document and parses them into
nodes. The UPDATE command takes the value of the Source_Name attribute and
updates the [Source Name] value in the SQL Server table row. The last line in the
code resets the connection and removes the handle created by sp_xml_prepare
document using the sp_xml_removedocument stored procedure with a passed
parameter of the XML document handle (iDoc).

UPDATE Sources
SET [Source Name] = XS.Source_Name
FROM [XMLProgrammingBible].[dbo].[Sources] S, (SELECT [SourceID],

[Source_Name] FROM OPENXML (@iDoc, ‘/XMLProgrammingBible/Authors/Sources’)
WITH Sources) XS
WHERE S.[Source Name] = ‘Macbeth’

EXEC sp_xml_removedocument @idoc

i538292 ch18.qxd 8/18/03 8:44 AM Page 459

460 Part IV ✦ Relational Data and XML

Creating an annotated W3C schema for
SQL Server data
The next part of this chapter will cover XML Bulk Load and Updategram functional-
ity, both of which rely heavily on annotated SQL Server schemas. We provided an
introduction to five example tables and a simple single-table annotated schema ear-
lier in this chapter. Now we’ll produce a single annotated schema that represents
the five example SQL Server tables. To create an MS SQL Server Annotated schema,
you have a few options. The first option is to hand code a schema using an XML
developer tool. This is undesirable for obvious reasons, when using a very large,
complex schema. The second option is to use Visual Studio.NET to produce a
schema base on the tables. This is the fastest option, but we find that the VS.NET
output does not always adhere to the standards of a well-formed W3C schema. In
those cases you have to use an editing tool to edit the schema, and hope that it still
works with SQL server. The third option is the one that we use the most. Altova’s
XMLSpy (a free trial download is available from http://www.xmlspy.com) has a
tool that can connect to an SQL Server via OLE and create a W3C schema based on
tables that you select. The result is a W3C-compatible schema based on the tables,
but without the relationship annotation at the top of the schema. We then manually
code the relationship annotation, which took me about five minutes for the four
relationship annotations in the example database.

The five tables are represented by pieces of a W3C Schema. The relationships
between the tables are represented in the annotation at the top of the schema. The
rest of the schema is a standard W3C schema format, because we can use the
schema defaults to map tables to elements of complex type and attributes of simple
type. In other words, because all of the table columns match up to XML document
attributes in the schema, the basic, unmapped W3C schema meets our needs.
Below is an annotated schema for the five tables in the XMLProgrammingBible
database.

The first part of the Schema includes an XML document declaration and the W3C
and Microsoft namespaces that are used in the schema. The <xs:appinfo> tag in
the <xs:annotation> indicates that the annotation has specific information that
is reserved for an application that uses the schema. In this case, The relationships
between the SQL Server tables are stored in the <xs:appinfo> tag.

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:sql=”urn:schemas-
microsoft-com:mapping-schema”>

<xs:annotation>
<xs:appinfo>

The first reference is a foreign key relationship between The Authors table and
the AmazonListings table. The primary key is the AuthorID in the Authors table,
which is represented by the parent-key and parent attributes in the relationship

i538292 ch18.qxd 8/18/03 8:44 AM Page 460

461Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

element. The foreign key is the AuthorID in the AmazonListings table, which is rep-
resented by the child-key and child attributes in the relationship element. Naming
the attributes primary-table, primary-key, foreign-table and foreign-key was too
easy, we guess....

<sql:relationship name=”FK_AmazonListings_Authors” parent=”Authors”
parent-key=”AuthorID” child=”AmazonListings” child-key=”AuthorID”/>

The three remaining relationship elements represent other foreign key relation-
ships. The Authors table is also connected to the Quotations table and the
ElcorteinglesListings table by a foreign key reference. The Sources table is con-
nected to the Quotations table using another foreign key relationship.

<sql:relationship name=”FK_ElcorteinglesListings_Authors”
parent=”Authors” parent-key=”AuthorID” child=”ElcorteinglesListings”
child-key=”AuthorID”/>
<sql:relationship name=”FK_Quotations_Authors” parent=”Authors”
parent-key=”AuthorID” child=”Quotations” child-key=”AuthorID”/>
<sql:relationship name=”FK_Quotations_Sources” parent=”Sources”
parent-key=”SourceID” child=”Quotations” child-key=”SourceID”/>

</xs:appinfo>
</xs:annotation>

The first table in the schema is the AmazonListings table. The table is represented
by an element containing a W3C schema complex data type. Nested inside the com-
plex data type are attributes, some of which contain a W3C schema simple data
type.

<xs:element name=”AmazonListings”>
<xs:complexType>

<xs:attribute name=”ProductID” type=”xs:integer”/>
<xs:attribute name=”Ranking” type=”xs:integer”/>

XMLSPY automatically reproduces field constraints and data types based on SQL
server constraints and data types in schemas that are generated from SQL Server
databases. For example, the Title column is a W3C schema string data type, and
has a maximum length of 200.

<xs:attribute name=”Title”>
<xs:simpleType>

<xs:restriction base=”xs:string”>
<xs:maxLength value=”200”/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name=”ASIN”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

i538292 ch18.qxd 8/18/03 8:44 AM Page 461

462 Part IV ✦ Relational Data and XML

<xs:maxLength value=”10”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”AuthorID” type=”xs:integer”/>
<xs:attribute name=”Image”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”100”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”Small_Image”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”100”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”List_price” type=”xs:integer”/>
<xs:attribute name=”Release_date” type=”xs:dateTime”/>
<xs:attribute name=”Binding”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”50”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”Availablilty”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”10”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”Tagged_URL”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”200”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

XMLSPY doesn’t create the relationship annotation at the top of the schema, but it
does create W3C Schema key and keyref elements representing the relationships
via XPath. The keyref element below refers to the foreign key relationship
between The AuthorID in the AmazonListings table and the AuthorID in the
Authors table. The refer attribute refers to a unique key listed in the Authors
table in this schema. The xs:selector and the xs:field elements contain a

i538292 ch18.qxd 8/18/03 8:44 AM Page 462

463Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

reference to XPath expressions for the reference in the current AmazonListings
table. The keyref value represents the foreign key, and the key value represents
the primary key.

<xs:keyref name=”AmazonListings_AuthorID” refer=”Authors_AuthorID”>
<xs:selector xpath=”.”/>
<xs:field xpath=”@AuthorID”/>

</xs:keyref>
</xs:element>

The Authors table contains the same representational data types and constraints as
the AmazonListings table.

<xs:element name=”Authors”>
<xs:complexType>

<xs:attribute name=”AuthorID” type=”xs:integer”/>
<xs:attribute name=”AuthorName”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”50”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

The AuthorID field in the Authors table is the primary key for three relationships in
the sample tables. The foreign key relationships are represented by W3C schema
keyref elements with a refer attribute back to the Authors_AuthorID key shown
here. The field element refers to the authored attribute with an XPath expression
(@AuthorID), and the selector element refers to the value in the AuthorID
attribute to select with another XPath expression (.).

<xs:key name=”Authors_AuthorID”>
<xs:selector xpath=”.”/>
<xs:field xpath=”@AuthorID”/>

</xs:key>
</xs:element>

The ElcorteinglesListings table repeats the same data typing and constraints shown
in the previous tables.

<xs:element name=”ElcorteinglesListings”>
<xs:complexType>

<xs:attribute name=”ProductID” type=”xs:integer”/>
<xs:attribute name=”titulo”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”200”/>
</xs:restriction>

i538292 ch18.qxd 8/18/03 8:44 AM Page 463

464 Part IV ✦ Relational Data and XML

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”ISBN”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”20”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”AuthorID” type=”xs:integer”/>
<xs:attribute name=”Imagen”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”100”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”Precio” type=”xs:integer”/>
<xs:attribute name=”fecha_de_publicación” type=”xs:dateTime”/>
<xs:attribute name=”Encuadernación”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”50”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name=”librourl”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”200”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

This keyref refers back to the Authors_AuthorID key element in the Authors
table. Like the key element in the Authors table, the field element of the keyref
element refers to the authored attribute with an XPath expression (@AuthorID),
and the selector element refers to the value in the AuthorID selection expres-
sion with another XPath expression (.). It also represents a foreign key relationship
between the ElcorteinglesListings table and the Authors table.

<xs:keyref name=”ElcorteinglesListings_AuthorID”
refer=”Authors_AuthorID”>

<xs:selector xpath=”.”/>
<xs:field xpath=”@AuthorID”/>

</xs:keyref>
</xs:element>

i538292 ch18.qxd 8/18/03 8:44 AM Page 464

465Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

The Quotations table contains two keyrefs, one to the Authors_AuthorID key
element in the Authors table, and the Sources_SourceID key element in the
Sources table. These references represent foreign key relationships between the
Authors and Sources tables and the current Quotations table. The Authors
table is used to contain the author of a quotation, and the Sources table is used to
store sources of the quotation (book title, etc.).

<xs:element name=”Quotations”>
<xs:complexType>

<xs:attribute name=”QuotationID” type=”xs:integer”/>
<xs:attribute name=”SourceID” type=”xs:integer”/>
<xs:attribute name=”AuthorID” type=”xs:integer”/>
<xs:attribute name=”Quotation”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”300”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>
<xs:keyref name=”Quotations_AuthorID” refer=”Authors_AuthorID”>

<xs:selector xpath=”.”/>
<xs:field xpath=”@AuthorID”/>

</xs:keyref>
<xs:keyref name=”Quotations_SourceID” refer=”Sources_SourceID”>

<xs:selector xpath=”.”/>
<xs:field xpath=”@SourceID”/>

</xs:keyref>
</xs:element>

The Sources table contains data types and constraints of the SQL Server table, and
one key element.

<xs:element name=”Sources”>
<xs:complexType>

<xs:attribute name=”SourceID” type=”xs:integer”/>
<xs:attribute name=”Source_Name”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”50”/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>

</xs:complexType>

The SourceID field in the Authors table is the primary key for the foreign key
relationship between the Sources table and the Quotations table. The foreign
key relationship is represented by a W3C schema keyref element in the
Quotations table with a refer attribute back to the Sources_SourceID key

i538292 ch18.qxd 8/18/03 8:44 AM Page 465

466 Part IV ✦ Relational Data and XML

shown here. The field element refers to the authored attribute with an XPath
expression (@SourceID), and the selector element refers to the value in the
SourceID attribute to select with another XPath expression (.).

<xs:key name=”Sources_SourceID”>
<xs:selector xpath=”.”/>
<xs:field xpath=”@SourceID”/>

</xs:key>
</xs:element>

</xs:schema>

Using schemas to specify SQL Server table
relationships
For the Schema mapping examples, we’re using a document that is similar to the
one used for the OPENXML insert and update examples. The document starts with
an XML document declaration, followed by a root element of XMLProgramming
Bible. The root element can be named anything. Because it contains representa-
tions of all of the tables in the XMLProgrammingBible database, we named it
XMLProgrammingBible.

<?xml version=”1.0” encoding=”UTF-8”?>
<XMLProgrammingBIble>

Note that the elements for the Quotations, AmazonListings, and Elcorte
inglesListings tables are nested inside the elements for the Sources and
Authors tables. This is to accommodate the way that SQL Server parses relation-
ships when it loads XML documents into tables. The parsing process refers to the
schema, which contains several relationship elements in the annotation. When an
XML document is parsed, it loads XML document objects into memory until it
reaches an end tag for a table element. Nesting the Quotations,
AmazonListings, and ElcorteinglesListings table elements inside of the
Sources and Authors table elements ensures that all related fields are available
for the SQL server table load.

<Authors AuthorID=”1001” AuthorName=”Shakespeare, William”>
<Sources SourceID=”1001” Source_Name=”Macbeth”>

The other thing to note in this XML document representation of SQL Server data is
that the nested elements don’t contain references to the AuthorID or SourceID
columns. This information is supplied by the schema relationships and the way that
the elements are nested. It’s implied by the element nesting that, for example, the

i538292 ch18.qxd 8/18/03 8:44 AM Page 466

467Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

AuthorID and the SourceID for the Quotations data should be supplied by the
AuthorID in the Authors parent element. This is specified by the Foreign Key rela-
tionship between Authors and Quotations in the Schema.

<Quotations QuotationID=”1001” Quotation=”When the hurlyburly’s done,
/ When the battle’s lost and won.”/>
<AmazonListings ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth”
ASIN=”8432040231” Image=”http://images.amazon.com/images/P/
8432040231.01.MZZZZZZZ.jpg”
Small_Image=”http://images.amazon.com/images/
P/8432040231.01.TZZZZZZZ.jpg” List_price=”$7.95”
Release_date=”2001-12-17T09:30:47-05:00” Binding=”Paperback”
Availability=”” Tagged_URL=”http://www.amazon.com:80/exec/
obidos/redirect?tag=associateid&benztechnonogies=9441&
;camp=1793&link_code=xml&path=ASIN/8432040231”/>
<ElcorteinglesListings ProductID=”1001” titulo=”Romeo y
Julieta/Macbeth/Hamlet/Otelo/La fierecilla domado/El sueño de una
noche de verano/ El mercader de Venecia” ISBN=”8484036324”
Imagen=”http://libros.elcorteingles.es/producto/
verimagen_blob.asp?ISBN=8449503639” Precio=”7,59 €”
fecha_de_publicación=”1991-12-17T09:30:47-05:00”
Encuadernación=”Piel”
librourl=”http://libros.elcorteingles.es/producto/
libro_descripcion.asp?CODIISBN=8449503639”/>

</Sources>
</Authors>

</XMLProgrammingBIble>

Using XML Bulk Load
Bulk Load uses MSXML to process large amounts of data in XML-to-SQL insertions
via a streaming interface, which means that XML documents are parsed as they are
fed into tables. Streaming avoids having to load very large XML documents in their
entirety before parsing and table insertion, greatly increasing the maximum size of a
source XML document and the performance of the parsing and insertion. However,
as with any batch-style process, don’t expect stellar performance with XML Bulk
Load, because it’s not designed to be a run-time tool that is optimized for speed.

Unfortunately there is no command-line or Query Analyzer tool for running an XML
Bulk Load. The easiest way to activate XML Bulk Load is through the Data
Transformation Services (DTS) interface. You can write Visual basic code to desig-
nate the source XML file, the schema to be used to map the XML document to
tables and column, and then activate the bulk load. Listing 18-6 shows a simple
Visual Basic ActiveX Script that runs a simple Bulk Load.

i538292 ch18.qxd 8/18/03 8:44 AM Page 467

468 Part IV ✦ Relational Data and XML

Listing 18-6: Output from the MultiQueryExample2.xml
Template

‘**
‘ Visual Basic ActiveX Script
‘**
Function Main()

Set blObject = CreateObject(“SQLXMLBulkLoad.SQLXMLBulkLoad”)

blObject.ConnectionString = “provider=SQLOLEDB.1;data
source=(local);database=XMLProgrammingBible;Integrated Security=SSPI”
blObject.ErrorLogFile = “C:\XMLProgrammingBible\BulkXMLErrors.log”

blObject.Execute “C:\XMLProgrammingBible\XMLProgrammingBible.xsd,
C:\XMLProgrammingBible\XMLProgrammingBibleWithRelationalData.xml”

Set blObject=Nothing
Main = DTSTaskExecResult_Success

End Function

The first thing that this script does is create the SQLXMLBulkload.3.0 object,
denoting the fact that this object is using SQLXML 3. The name of the new Bulk
Load object is blObject.

Set blObject = CreateObject(“SQLXMLBulkLoad.SQLXMLBulkLoad”)

Next, connection string is defined to connect to the SQL server instance on the
local machine. The database name is specified and the security for the connection
is set to Windows integrated authentication (SSPI).

blObject.ConnectionString = “provider=SQLOLEDB.1;data
source=(local);database=XMLProgrammingBible;Integrated Security=SSPI”

Any errors that are generated by the Bulk Load procedure are routed to the
C:\XMLProgrammingBible\BulkXMLErrors.log file. There are two modes of XML
Bulk load, transacted and non-transacted. If the load mode is set to non-transacted
(the default value), the error log can be useful to see where the load stopped and
where the new load has to pick up from, or which tables you need to roll back to
their pre-load condition. Transacted mode cancels the entire load if there is any
error, so logs are not necessary to track updates.

blObject.ErrorLogFile = “C:\XMLProgrammingBible\BulkXMLErrors.log”

i538292 ch18.qxd 8/18/03 8:44 AM Page 468

469Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

Next, the Bulk Load is executed. The schema and the source XML document are
loaded. Behind the scenes, the XML Bulk load process actually parses the XML doc-
ument into column values organized by table, then preferoms BULK INSERT SQL
commands to insert data for each table.

blObject.Execute “C:\XMLProgrammingBible\XMLProgrammingBible.xsd,
C:\XMLProgrammingBible\XMLProgrammingBibleWithRelationalData.xml”

Next, assuming all the inserts went as planned, the object is cleaned up. The
DTSTaskExecResult_Success constant indicates a successful completion of the XML
Bulk Load task.

Set blObject=Nothing
Main = DTSTaskExecResult_Success

There are several properties and methods that can be used with XML Bulk Loads,
all of which are well documented in the SQLXML documentation that cones with
the download.

Updategrams
Updategrams are very handy for inserting, updating, and deleting table data over
the Web. Updategrams are stored in XML templates and XML document data.
Updategrams can handle this functionality without using schemas. For example,
here’s an example of an Updategram that adds an author authors table:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:before>
</updg:before>
<updg:after>

<Authors AuthorID=”9999” AuthorName=”Miller, Henry”>
</updg:after>

</updg:sync>
</ROOT>

The value in the after element is added to the Authors table.

The XML in the next example is saved as an XML template in the XMLProgramming
Bible virtual directory. That way the database doesn’t have to be designated, as it’s
already part of the virtual directory properties. All that has to be specified is the
table name and the columns to add. Here’s one that changes the author name:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:before>
<Authors AuthorID=”9999” AuthorName=”Miller, Henry”>

i538292 ch18.qxd 8/18/03 8:44 AM Page 469

470 Part IV ✦ Relational Data and XML

</updg:before>
<updg:after>

<Authors AuthorID=”9999” AuthorName=”Mailer, Norman”>
</updg:after>

</updg:sync>
</ROOT>

This is very similar to the previous example, except that the Author name is
replaced in an existing document instead of an insertion of a new row in the table.
The row is located using the value in the before element.

Now let’s delete the row:

<ROOT xmlns:updg=”urn:schemas-microsoft-com:xml-updategram”>
<updg:sync >

<updg:before>
<Authors AuthorID=”9999” AuthorName=”Mailer, Norman”>

</updg:before>
<updg:after>
</updg:after>

</updg:sync>
</ROOT>

Nothing in the after element means that a deletion command is generated by SQL
Server. Because these are templates, the real value is in specifying parameters from
URL queries that are passed to the before and after elements. The SQLXML docu-
mentation that cones with the download covers this in detail. Let’s move on to
using Updategrams with schemas, which is another good way to get relational data
into SQL Server from XML documents.

This example uses the same schema as the XML Bulk Load example, named
XMLProgrammingBible.xsd. The schema is located in the schemas subdirectory of
the XMLProgrammingBible virtual directory on the IIIS server. The schema enables
table relationships to be maintained without having to be specified in the template.
This time, instead of a raw insert of bulk data, we’re adding a Quotation in the quo-
tations table. Note that the Authors and Sources hierarchy must be defined in the
before and the after. The AuthorID attribute from the Authors element and the
SourceID from the Sources element are automatically added to the new quota-
tion in the Quotations table. This is because a foreign key relationship is estab-
lished n the schema that specifies the Quotations table as a foreign key table for
each relationship.

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql” xmlns:updg=”urn:schemas-
microsoft-com:xml-updategram”>

<updg:sync mapping-schema=”=”.\schema\XMLProgrammingBible.xsd”>
<updg:before>

<Authors AuthorID=”1001”>
<Sources SourceID=”1001”>

i538292 ch18.qxd 8/18/03 8:44 AM Page 470

471Chapter 18 ✦ Accessing and Formatting XML from SQL Server Data

</Sources>
</Authors>

</updg:before>
<updg:after>

<Authors AuthorID=”1001”>
<Sources SourceID=”1001”>

<Quotations QuotationID=”1001” Quotation=”Is this a dagger which
I see before me, the handle toward my hand? Come, let me clutch
thee: I have thee not, and yet I see thee still. Art thou not,
fatal vision, sensible to feeling as to sight? or art thou but a
dagger of the mind, a false creation, proceeding from the heat-
oppressed brain?”/>

</Sources>
</Authors>

</updg:after>
</updg:sync>

</ROOT>

Summary
In this chapter, you were introduced to the XML tools associated with SQL Server:

✦ An introduction to the sample relational data structure

✦ XML Templates and Schemas in SQL Server

✦ For XML RAW, AUTO and EXPLICIT

✦ Inserting relational data with OPENXML

✦ Updating data with OPENXML

✦ Creating Annotated Schemas

✦ Using Annotated Schemas with XML Bulk Load

✦ Using Annotated Schemas with Updategrams

In the next two chapters, we’ll show you how to work XML using DB2 and Oracle.
After that, we’ll show you how to create Web and J2EE applications that generate
XML data from relational data in Chapter 21. In Chapter 22 we’ll show you how to
transform relation data from one relational database’s XML format to another.

✦ ✦ ✦

i538292 ch18.qxd 8/18/03 8:44 AM Page 471

Accessing and
Formatting XML
from Oracle
Data

Oracle support for XML started with Oracle 8i database.
XML documents could be included in an Oracle

database file system (iFS) and manipulated like a folder-based
file system. XML documents could be broken down and
reassembled from Oracle data based on Oracle’s iFS
Document Type Definition, which is a proprietary format of
the W3C Document Type Definition (DTD). Parsing and
reassembly of XML documents was facilitated through
Oracle’s own XML document parser, which supported DOM
and SAX. The third feature supported in Oracle 8i was XML-
based searching in the ConText full-text search engine.
Content rating retrieved XML document content and ignores
tags, but searches could be tag-based.

Oracle9i has extended these capabilities with more advanced
XML database features, such as SQL/XML query support and
compatibility with W3C schemas. Also included is a Java
application server based on the Apache HTTP Server.

Oracle9i standard edition has everything that a developer
needs to create XML database solutions. The Enterprise
Edition includes more advanced capabilities, such as online
analytical processing (OLAP) server support and several fea-
tures that enable sophisticated data mining, partitioning, and
clustering.

Oracle8i XML features enabled developers to store XML in
Oracle databases or parse it into tabular data. Oracle9i
extends these capabilities to support full DOM 2 and DOM 3

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

XML features in
Oracle

Working with the
Oracle XML DB

Working with the
XMLType data type

W3C schemas in
Oracle

Developing with
DBMS_XMLGEN()

Working with
the XDK

Servlet solutions
using XSQL

Using the XML SQL
Utility (XSU) in Java

✦ ✦ ✦ ✦

i538292 ch19.qxd 8/18/03 8:44 AM Page 473

474 Part IV ✦ Relational Data and XML

features such as comments and namespaces. Additional support for W3C schemas
helps enforce element and attribute ordering, and other granular XML document
structures. Also, performance is enhanced by more advanced support for XML
indexes.

Oracle has split XML DB functionality into two groups: Structured XML and unstruc-
tured XML. Unstructured data features cater to developers who need to develop
XML document repositories for applications that work with unstructured data such
as pages on a Website. Structured data features meet the needs of developer who
are working with traditional tabular relational data, but need to manipulate that
data as XML.

The Oracle9i XML DB contains a set of special SQL functions that allows XML data
to be manipulated as relational data. A new data type called XMLType enables stor-
age of XML data as a plain XML document or as a format based on a DOM. XMLType
tables and views can be defined using annotated W3C Schemas. The schemas can
control how an XML document maps to Oracle data. Windows Explorer can be used
with the XML DB Repositories (formerly iFS) to view an XML database as a drive on
the file system.

A combination of XPath and SQL can also be used to manipulate XML documents.
You can also retrieve regular relational data in XML formats and perform an XSLT
transformation of the data to text, HTML, or custom formats of XML.

In this chapter we’ll show you how to work with SQL/XML and Oracle XML func-
tions using Oracle XML DB. We’ll also introduce you to the XMLType data type and
show you how to store data as XMLType and how to map relational data as
XMLType data using W3C Schemas. I’ll also show you how to store XML documents
as relational data using W3C Schemas. PL/SQL developers will see how to use
DBMS_XMLGEN() as part of a PL/SQL solution. We’ll also show you how to use the
XDK, XSQL, and the XML SQL Utility (XSU) in Java.

The XML Programming Bible Example Tables
All of the tables in this chapter and this part of the book use the same data struc-
ture. For Oracle9i, the data is structured into five tables. All five tables are con-
tained in a database called XMLPB1. Table 19-1 lists the structure of the
AMAZONLISTINGS table. This is the table that contains all of the Amazon book list-
ings for our relational data examples and applications.

We’ve included SQL code that creates these tables and inserts sample data as part
of the downloads for this chapter. Downloads for the XML Programming Bible can
be retrieved from http://www.XMLProgrammingBible.com, in the down-
loads section.

i538292 ch19.qxd 8/18/03 8:44 AM Page 474

475Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Table 19-1
Structure of the AMAZONLISTINGS Table

Table Column Data Type Maximum Size

PRODUCTID NUMBER 10
(Primary Key)

RANKING NUMBER 10

TITLE CHAR 200

ASIN CHAR 10

AUTHORID NUMBER 10
(Foreign Key - AUTHORS)

IMAGE CHAR 100

SMALL_IMAGE CHAR 100

LIST_PRICE NUMBER 10.2

RELEASE_DATE DATE

BINDING CHAR 50

AVAILABILITY CHAR 10

TAGGED_URL CHAR 200

Table 19-2 lists the structure of the AUTHORS table. This is the table that contains
information about the book and quotation authors. It is related to the AUTHORID
field in the AMAZONLISTINGS, ELCORTEINGLESLISTINGS, and the QUOTATIONS
tables.

Table 19-2
Structure of the Authors Table

Table Column Data Type Maximum Size

AUTHORID NUMBER 10
(Primary Key)

AUTHORNAME CHAR 50

Table 19-3 lists the structure of the ELCORTEINGLESLISTINGS table. This is the
table that contains all of the Spanish Language Elcorteingles Website book listings
for our relational data examples and applications.

i538292 ch19.qxd 8/18/03 8:44 AM Page 475

476 Part IV ✦ Relational Data and XML

Table 19-3
Structure of the ElcorteinglesListings Table

Table Column Data Type Maximum Size

PRODUCTID NUMBER 10
(Primary Key)

TITULO CHAR 200

ISBN CHAR 20

AUTHORID NUMBER 10
(Foreign Key - AUTHORS)

IMAGEN CHAR 100

PRECIO NUMBER 10.2

FECHA_DE_PUBLICACION DATE

ENCUADERNACION CHAR 50

LIBROURL CHAR 200

Table 19-4 lists the structure of the QUOTATIONS table. This is the table that con-
tains all of the Quotations related to books, authors, and sources in the relational
data examples and applications.

Table 19-4
Structure of the Quotations Table

Table Column Data Type Maximum Size

QUOTATIONID NUMBER 10
(Primary Key)

SOURCEID NUMBER 10
(Foreign Key - SOURCES)

AUTHORID NUMBER 10
(Foreign Key - AUTHORS)

QUOTATION CHAR 300

Table 19-5 lists the structure of the SOURCES table. This is the table that contains
information about the book and quotation authors. It is related to the AUTHORID
field in the AMAZONLISTINGS and QUOTATIONS tables.

i538292 ch19.qxd 8/18/03 8:44 AM Page 476

477Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Table 19-5
Structure of the Sources Table

Table Column Data Type Maximum Size

SOURCEID NUMBER 10
(Primary Key)

SOURCENAME CHAR 50

Installing and Configuring the Oracle
Database and the Oracle XDK

You can download the latest version of the database for evaluation and development
purposes from http://otn.oracle.com/software/products/oracle9i/
content.html. The examples in this chapter were developed using Oracle
database is Oracle9i database release 2.

The downloads are large, so plan for some download waiting time, even with a good
connection. For the bandwidth-challenged, there is also a trial download available
for a fee from the same site. Once the files are downloaded and installed, XML func-
tionality is available via the Oracle Enterprise Manager Console and the SQL
Scratchpad.

About Oracle XML DB
Oracle XML DB is a grouping of XML and XPath functions combined with SQL exten-
sions. XML DB features facilitate the manipulation of Oracle data as XML. They also
enable XML documents to be stored and queried as Oracle data using the XMLTYPE
data type. The Oracle XDK is not required for XML DB functions if you just want to
query XML documents from the Enterprise Manager Console or a third-party query
tool. Using XML DB functionality in your applications requires the XDK.

About the Oracle XDK
The latest version of the Oracle XDK is available at http://otn.oracle.com/
tech/xml/xdk. The XDK is available in Java, C, C++, and PL/SQL versions. At
time of this writing, I’m working with the beta release of the version 10 XDK. The
Oracle XDK is a set of XML APIS that can be used by developers to incorporate
Oracle data into their applications. I’ll cover the XDK in more detail later in this
chapter.

i538292 ch19.qxd 8/18/03 8:44 AM Page 477

478 Part IV ✦ Relational Data and XML

The Oracle9i database and the Oracle XDK are made available to developers for
evaluation and development use only. Any other use of the Oracle9i database or
XDK must be backed by an Oracle software license.

Developing Oracle XML Solutions
with XML DB

Oracle developers who are new to XML development are usually under the impres-
sion that the Oracle XDK is the only way to access and manipulate XML in Oracle.
In fact, there are several options for retrieving XML from Oracle tables, and for stor-
ing and retrieving XML documents in Oracle as XML. In this section I’ll review the
XML DB functions that read and write between Oracle data and XML. I’ll also show
you how to manipulate and store XML documents using the XMLType data type.

Working with XML DB
Oracle9i supports several core SQL functions, as well as core SQL/XML functions,
several SQL/XML extensions, and a PL/SQL package called DBMS_XMLGEN. Core
Oracle XML functions are unique to Oracle and are accessible via SQL*Plus queries.
SQL/XML functions are based on the SQL/XML standard, which is a combination
of XML and SQL functionality. The SQL/XML standard is maintained by the
International Committee for Information Technology Standards (INCITS). INCITS
maintains a grab-bag of international hardware, media, and other standards, includ-
ing the original SQL standard in the United States. Specific information on SQL/XML
can be found at http://sqlx.org. More information about INCITS can be found
at http://www.ncits.org.

Oracle XML documentation often refers to forests of XML documents, especially
when working with the XMLFOREST() function. At the highest level, a forest is a
grouping of XML documents. The forest concept is based on the same concept in
SGML, called groves. Single XML documents follow a tree structure, so logically
multiple document tree structures are a forest. In the case of elements, one or
more elements that are nested at the same level in an XML document are consid-
ered forests, made up of single-element trees. In the extreme extension of this
logic, a single element can also be referred to as a forest, made up of single-
character trees. Oracle and SQL/XML documentation refers to XML document
fragments (XML elements grouped together but without a root element) nested at
the same level as a forest.

Table 19-6 shows all of the Oracle9i XML functions, and a brief description of each.

Note

Note

i538292 ch19.qxd 8/18/03 8:44 AM Page 478

479Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Table 19-6
Oracle XML Functions

Function Description

DBMS_XMLGEN() A PL/SQL package that generates an XML document
PL/SQL package from an SQL query.

SYS_XMLGEN() SYS_XMLGEN() returns an XML document or document
Oracle XML DB Function fragment when passed an expression that evaluates to

a particular row and column of a table. The data
type of the row and column can be anything, but
SYS_XMLGEN() works best when retrieving XML
documents from a column formatted as the XMLType
data type. Use the SQL/XML functions (covered below)
for formatting regular relational data types as XML.

SYS_XMLAGG() SYS_XMLAGG() returns an aggregated XML document
Oracle XML DB Function from one or more rows of data. The rows of data are

created and formatted by a contained expression.
Returned values are automatically nested in a root
element named ROWSET.

XMLSEQUENCE() Used to produce XML document fragments that are
Oracle SQL/XML Extension parsed into relational table rows. The functionality is

essentially the opposite of the XMLCONCAT() function.
The output format is an array of XMLType data types,
called an XMLSequenceType. If used with a cursor,
XMLSEQUENCE() can also be used to extract fragments
of an XML document and parse them into multiple XML
documents formatted as XMLType data.

XMLTRANSFORM() Performs an XSLT transformation on an XML Document
Oracle SQL/XML Extension using an XSL Stylesheet. The XSL stylesheet and the

source XML document are passed as XMLType data
types. The transformation result is returned as another
XMLType data object.

EXTRACT() Returns an XML document fragment in an XMLType data
Oracle SQL/XML Extension type format from an XPath expression.

ExtractValue() Returns a scalar value from an XPath expression.
Oracle SQL/XML Extension

EXISTSNODE() If the result of an XPath expression returns any nodes,
Oracle SQL/XML Extension EXISTSNODE() is true.

UPDATEXML() Returns an XMLType object when passed a valid XPath
expression representing an element (as an XMLType),
an attribute, or a text node (as any scalar data type).

Continued

i538292 ch19.qxd 8/18/03 8:44 AM Page 479

480 Part IV ✦ Relational Data and XML

Table 19-6 (continued)

Function Description

XMLELEMENT() Creates XML document fragments from relational data.
SQL/XML Element names are hard-coded into the expression.

Column values become text values of the element.
Nested instances of XMLELEMENT are used to create
well-formed XML documents. Can be used with XML.

XMLATTRIBUTES() A nested expression of XMLELEMENT(). Provides a list
SQL/XML of attributes for an element as value pairs. Attribute

names can be hard-coded into the expression. By
default, column names become attribute names and
column values become attribute values.

XMLFOREST() Creates XML document fragments from relational data.
SQL/XML By default, each column name becomes an element

name and each column value becomes a text value.
Nested instances of XMLELEMENT and XMLFOREST()
are used to create well-formed XML documents.

XMLCONCAT() Concatenates multiple XMLType objects into a single
SQL/XML XML document. If the result of an XMLSEQUENCE()

function is passed, a single XMLType object is created
from the multiple instances in the XMLSequenceType
array.

XMLAGG() Creates an aggregated XML document fragment from a
SQL/XML collection of separate XMLType objects. SYS_XMLAGG()

nests results inside a ROWSET root element, XMLAGG()
does not.

XMLCOLATTVAL() XMLCOLATTVAL() creates an XML document fragment
Oracle SQL/XML Extension containing an element for each column with specified

column values as attributes. Each element in the
fragment is named column. Column names are
stored in the name attribute of the element. Column
values become text values of the column element.

Working with XMLFOREST()
For this section, I’ll extract data from the AmazonListings table using XML. The easi-
est way to start is with the XMLFOREST() function. In this query, I retrieve all of the
columns in the first row of the AMAZONLISTINGS table:

i538292 ch19.qxd 8/18/03 8:44 AM Page 480

481Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

SELECT XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

The following XML document fragment is returned by the XMLFOREST() function.
All of the elements are nested at the same level. As you may recall from Chapter 1,
an XML document needs a single, unique root element to be well-formed XML.
Therefore, XMLFOREST() is an easy way to return a fragment that will become part
of an aggregated or concatenated XML document, but is not useful for creating XML
documents all by itself.

<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>
<ASIN>8432040231</ASIN>
<AUTHORID>1001</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</SMALL_IMAGE>
<LIST_PRICE>7.95</LIST_PRICE>
<RELEASE_DATE>01-JUN-91</RELEASE_DATE>
<BINDING>Paperback</BINDING>
<TAGGED_URL>http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&a
mp;benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432
040231</TAGGED_URL>

Creating a well-formed XML document using SYS_XMLAGG()
The easiest way to return a completely well-formed XML document is to nest the
XMLFOREST() function inside of the SYS_XMLAGG() function like this:

SELECT SYS_XMLAGG(XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,

i538292 ch19.qxd 8/18/03 8:44 AM Page 481

482 Part IV ✦ Relational Data and XML

IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

This query returns the following XML Document. The addition of the
SYS_XMLAGG() function creates an element called ROWSET. The nesting in the SQL
query nests the XML document fragment returned by XMLFOREST() under the
ROWSET() element.

<ROWSET>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>
<ASIN>8432040231</ASIN>
<AUTHORID>1001</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg
</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</SMALL_IMAGE>
<LIST_PRICE>7.95</LIST_PRICE>
<RELEASE_DATE>01-JUN-91</RELEASE_DATE>
<BINDING>Paperback</BINDING>
<TAGGED_URL>http://www.amazon.com:80/exec/obidos/redirect?
tag=associateid&benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231</TAGGED_URL>

</ROWSET>

Specifying a root element using XMLELEMENT()
If you want to give the root element a specific name, instead of the default ROWSET
element name, use the XMLELEMENT() function and provide a hard-coded name:

SELECT XMLELEMENT(“RootElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,

i538292 ch19.qxd 8/18/03 8:44 AM Page 482

483Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

This returns the same set of results, but with the customized root element name of
RooElement:

<RootElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>
<ASIN>8432040231</ASIN>
<AUTHORID>1001</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg
</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</SMALL_IMAGE>
<LIST_PRICE>7.95</LIST_PRICE>
<RELEASE_DATE>01-JUN-91</RELEASE_DATE>
<BINDING>Paperback</BINDING>
<TAGGED_URL>http://www.amazon.com:80/exec/obidos/redirect?
tag=associateid&benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231</TAGGED_URL>

</RootElement>

Creating attributes using XMLATTTRIBUTES()
One of the additional advantages of using a nested XMLELEMENT() function to
create a root element is that the XMLATTRIBUTES() function can be used.
XMLATTRIBUTES() creates a set of attributes for an element specified as apparent
via the XMLELEMENT() function. This time we reuse the query from the last example,
but just replace the XMLFOREST() function with an XMLATTRIBUTES() function:

SELECT XMLELEMENT(“RootElement”, XMLATTRIBUTES(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

i538292 ch19.qxd 8/18/03 8:44 AM Page 483

484 Part IV ✦ Relational Data and XML

The result is a single XML element with an attribute for each column in the first row
of the AMAZONLISTINGS table:

RootElement PRODUCTID=”1001” RANKING=”1” TITLE=”Hamlet/MacBeth”
ASIN=”8432040231” AUTHORID=”1001”
IMAGE=”http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg”
SMALL_IMAGE=”http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg”
LIST_PRICE=”7.95” RELEASE_DATE=”01-JUN-91” BINDING=”Paperback”
TAGGED_URL=”http://www.amazon.com:80/exec/obidos/redirect?tag=associateid&a
mp;benztechnonogies=9441&camp=1793&link_code=xml&path=ASIN/8432
040231”/>

Creating elements and attributes using XMLCOLATTVAL()
The XMLCOLLATVAL() function also produces attributes for column data, but with
an important difference. XMLCOLATTVAL() produces an element named column for
each column value and an element named name for each column name. The value
of the column is the text value for the element. In this example I reuse the query
from the last example, but just replace the XMLATTRIBUTES() function with an
XMLCOLATTVAL() function:

SELECT XMLELEMENT(“RootElement”, XMLCOLATTVAL(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

The resulting combination of elements, attributes and text data could be created
with nested XMLELEMENT() and XMLATTRIBUTES() functions, but using
XMLCOLLATVAL() is much easier to code:

<RootElement>
<column name=”PRODUCTID”>1001</column>
<column name=”RANKING”>1</column>
<column name=”TITLE”>Hamlet/MacBeth</column>
<column name=”ASIN”>8432040231</column>
<column name=”AUTHORID”>1001</column>
<column name=”IMAGE”>

http://images.amazon.com/images/P/8432040231.01.
MZZZZZZZ.jpg</column>

i538292 ch19.qxd 8/18/03 8:44 AM Page 484

485Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

<column name=”SMALL_IMAGE”>
http://images.amazon.com/images/P/8432040231.01.
TZZZZZZZ.jpg</column>

<column name=”LIST_PRICE”>7.95</column>
<column name=”RELEASE_DATE”>01-JUN-91</column>
<column name=”BINDING”>Paperback</column>
<column name=”AVAILABILITY”/>
<column name=”TAGGED_URL”>

http://www.amazon.com:80/exec/obidos/redirect?tag=associateid
&benztechnonogies=9441&camp=1793&link_code=xml
&path=ASIN/8432040231</column>

</RootElement>

Working with multiple data rows using XML DB
So far we’ve shown you how to use the XMLFOREST(), SYS_XMLAGG(),
XMLELEMENT(), and XMLATTRIBUTES() functions to work with single rows of
data. Multiple row result sets are more of a challenge, because each row should be
defined in the XML document. Also, in most cases the XML document has to be well
formed, while containing the multiple row definitions. However, if more than one
row is contained in the previous SYS_XMLAGG() example, all elements are con-
tained at the same nesting level. The result is a jumble of row data as elements,
with no clear definition of the start and end of a row of results in the XML docu-
ment. The previous XMLELEMENT() and XMLATTRIBUTES() examples return an
XML document fragment with a RootElement for each row, but no XML document
root element.

Aggregating multiple rows of data using XMLAGG()
The XMLAGG() function aggregates multiple rows of data into a single XML docu-
ment. For example, the query below uses nested XMLELEMENT() and XMLFOREST()
functions to create well-formed XML document fragments for each row of data:

SELECT XMLELEMENT(“RowElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE)) as “RESULT” FROM AmazonListings

The XML result is not a well-formed XML document, but a set of document frag-
ments for each row of data:

<RowElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</RowElement>

i538292 ch19.qxd 8/18/03 8:44 AM Page 485

486 Part IV ✦ Relational Data and XML

<RowElement>
<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>
<TITLE>MacBeth</TITLE>

</RowElement>

<RowElement>
<PRODUCTID>1003</PRODUCTID>
<RANKING>3</RANKING>
<TITLE>William Shakespeare: MacBeth</TITLE>

</RowElement>

The XMLAGG() function aggregates multiple rows of results into a single XML
document when you use a query like this:

SELECT XMLELEMENT(“RootElement”, XMLAGG(XMLELEMENT(“RowElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE)))) as “RESULT” FROM AmazonListings

The result is a well-formed XML document with a root element and a definition of
each row of data. Data rows are children of the RowElement element:

<RootElement>
<RowElement>

<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</RowElement>
<RowElement>

<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>
<TITLE>MacBeth</TITLE>

</RowElement>
<RowElement>

<PRODUCTID>1003</PRODUCTID>
<RANKING>3</RANKING>
<TITLE>William Shakespeare: MacBeth</TITLE>

</RowElement>
</RootElement>

A combination of XMLAGG(), XMLELEMENT(), XMLATTRIBUTES(), XMLFOREST(),
and XMLCOMMATTVAL() are the most common ways to represent relational Oracle
data as XML.

i538292 ch19.qxd 8/18/03 8:44 AM Page 486

487Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Working with the XMLTYPE data type
As of Oracle9i the XMLType data type can be used to store an XML data in Oracle
databases. Before Oracle9i, LOBS and text were used to store XML documents as
text. At the base level, CLOB and XMLType data is not very different. However, there
are several useful methods in the XMLType API that can be used to manipulate XML
documents stored as XMLType data types.

When relational data tables are mapped to XML document data via W3C schemas,
data in the tables becomes available as an XMLType data type. Columns in a regular
table can also be XMLType data types, and XMLType views can be used to mask
relational data as XMLType data. For more information about XMLType, please refer
to the Oracle9i XML Database Developer’s Guide — :Oracle XML DB Chapter 4.

Getting data into XMLType columns
XMLType columns can be added to any Oracle table (in Oracle9i or above). In this
example, we create a table called XMLONLY, which consists of one column, called
XMLDOC. We assign the data type for XMLDOC as XMLTYPE:

CREATE TABLE XMLONLY (XMLDOC SYS.XMLTYPE);

With the new XMLONLY table, we can insert XMLType data from any source. In the
example below, we select the first three columns of the AMAZONLISTINGS table
using nested XMLELEMENT() and XMLFOREST() functions. The query selection is
inserted into a variable called XMLTypeVal, which is an in-memory XMLType
object. Next, we insert the XMLType object into the XMLDOC column of the
XMLONLY table.

XMLType data type columns only accept well-formed XML documents, not docu-
ment fragments. For example, if you try to insert an XML document fragment
resulting from an XMLFOREST expression, Oracle returns the ORA-19010:
Cannot insert XML fragments error message. Adding the XMLELEMENT()
function wraps a root element around the XMLFOREST result, and the insert is
accepted.

DECLARE
XMLTYpeVal SYS.XMLTYPE;

BEGIN
SELECT XMLELEMENT(“RootElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE)) as “result”
INTO XMLTYpeVal
FROM AmazonListings
WHERE rownum = 1;
INSERT INTO XMLONLY (XMLDOC) VALUES (XMLTYpeVal);
COMMIT;

END;

Tip

i538292 ch19.qxd 8/18/03 8:44 AM Page 487

488 Part IV ✦ Relational Data and XML

Using SQL and SYS_XMLGEN with XMLType columns
Now that we have some XMLType data in XMLDOC column of the XMLONLY table,
we can extract the data with regular SQL functions. For example, this simple select
will return the XML document stored in XMLDOC:

SELECT XMLDOC from XMLONLY

Here are the results of the query:

<RootElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</RootElement>

SYS_XMLGEN() is an Oracle SQL function that returns a single column of a table as
an XML element. The Element name is based on the column name. This can be used
in limited situations on regular data, but is really useful for XMLType columns.
Here’s an example of SYS_XMLGEN() returning an XML element from regular table
data:

SELECT SYS_XMLGEN(PRODUCTID) from AMAZONLISTINGS where rownum=1

And here’s the result of the query:

<PRODUCTID>1001</PRODUCTID>

The same query is very useful when applied against XMLType columns. In this
example, we query the XMLDOC column of the XMLONLY table and return a single
XML document:

SELECT SYS_XMLGEN(XMLDOC) from XMLONLY where rownum=1

SYS_XMLGEN() wraps the column name around the results as an element name:

<XMLDOC>
<RootElement>

<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</RootElement>
</XMLDOC>

You may have noticed that there is no XML document declaration at the top of the
XML document. This is on purpose. As you may recall from Chapter 1, XML declara-
tions are optional; only a root element is required to create a well-formed XML docu-
ment structure. It’s much better to store the XML document without the optional

i538292 ch19.qxd 8/18/03 8:44 AM Page 488

489Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

declaration and create a declaration as part of a query. XML documents without the
declaration can be added together to make a larger XML document. If you store the
XML declaration as part of the data, it takes up more space, and makes it harder to
aggregate XML results into a larger document. Here’s an example of a query that
prepends an XML document declaration to the SYS_XMLGEN() results from the
previous example:

SELECT ‘<?xml version=”1.0”?>’, SYS_XMLGEN(XMLDOC) from XMLONLY

And here are the results, with the XML document declaration added:

<?xml version=”1.0”?>
<XMLDOC>

<RootElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</RootElement>
</XMLDOC>

Creating relational data from XML documents
The Oracle Enterprise manager has facilities for registering generated schemas and
mapping XML document data to relational data. XMLType Views can also be used to
map XML document data to relational data, and act as an XML interface for legacy
data structures without having to alter the tables themselves. In this section we’ll
cover both methods. we’ll also cover some of the SQL commands that facilitate
data updates.

Generating W3C schemas from Oracle Database schemas
Oracle can generate W3C Schemas from relational data using XDK functions, the
PL/SQL DBMS_XMLSCHEMA.generateSchema() package, or a third-party tool such
as XMLSpy (a free evaluation is available at http://www.xmlspy.com). In Listing
19–1, we used XMLSpy, which can connect to Oracle data via an ADO string using
an Oracle OLE DB provider. XMLSpy automatically creates a W3C schema for all
tables in a database without needing an object type to be created or referenced.
The generated schema can be chopped up and reused. Below is the generated W3C
schema for the AMAZONLISTINGS table. The table is represented by an element
containing a W3C schema complex data type. Nested inside the complex data type
are attributes, some of which contain a W3C schema simple data type. XMLSpy
automatically reproduces field constraints and data types based on Oracle con-
straints and data types in schemas that are generated from Oracle databases. For
example, the Title column is a W3C schema string data type, and has a maximum
length of 200.

i538292 ch19.qxd 8/18/03 8:44 AM Page 489

490 Part IV ✦ Relational Data and XML

Listing 19-1: A Sample Schema from Oracle Data

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Brian Benz
(Wiley) -->
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”AMAZONLISTINGS”>
<xs:complexType>

<xs:sequence>
<xs:element name=”PRODUCTID” type=”xs:decimal”/>
<xs:element name=”RANKING” type=”xs:decimal”/>
<xs:element name=”TITLE”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”200”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”ASIN”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”10”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”AUTHORID” type=”xs:decimal”/>
<xs:element name=”IMAGE”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”100”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”SMALL_IMAGE”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”100”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”LIST_PRICE” type=”xs:decimal”/>
<xs:element name=”RELEASE_DATE” type=”xs:dateTime”/>
<xs:element name=”BINDING”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”50”/>
</xs:restriction>

i538292 ch19.qxd 8/18/03 8:44 AM Page 490

491Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

</xs:simpleType>
</xs:element>
<xs:element name=”AVAILABILITY”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”10”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”TAGGED_URL”>

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:maxLength value=”200”/>
</xs:restriction>

</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Registering W3C schemas in Oracle
A wonderful recent development in the Oracle enterprise manager is the ability to
interactively register an XML schema in a database and generate an Oracle table
based on the Schema. This used to be a laborious process of creating and/or run-
ning several sets of very complicated SQL commands to create a database, gener-
ate a schema, and register the schema. With XMLSpy and the Oracle Enterprise
Manager registration dialog, we were able to create the schema, register the
schema, create the table for the schema, generate a sample document and test the
new table in a fraction of the time it would take for a hand-coded solution.

To register a W3C schema, expand the User Types node in the enterprise manager
navigator, and then select the XML Schemas node. Right-click on the node and
choose “create” from the pop-up menu options. You have the option of selecting the
source for the W3C schema from the file system, a database, or a URL. You can also
cut and paste the source directly into the dialog window. The advanced tab gives
you the option of generating object types, tables, and Java beans from the regis-
tered schema. You also have the option of overriding any errors and saving the
schema, which we do not recommend, because improperly created schemas and
partially created object types can sometimes be difficult to remove from the
database. For this example, we generated object types and a table based on the
schema. Figure 19-1 shows the schema registration dialog box.

i538292 ch19.qxd 8/18/03 8:44 AM Page 491

492 Part IV ✦ Relational Data and XML

Figure 19-1: Registering a schema using the Enterprise Manager

The SQL*Plus code for registering the schema can be cut and pasted from the
“show SQL” window at the bottom of the dialog box. Here’s the code in its entirety:

DECLARE
xclob CLOB;

BEGIN
dbms_lob.createtemporary(xclob, FALSE,dbms_lob.SESSION);
? := xclob;

end;
/
BEGIN
DBMS_XMLSCHEMA.REGISTERSCHEMA(schemaurl=>’AmazonListingsSchemaTable.xsd’,
schemadoc=>:XMLSchemaTextCLobPtr, local=>FALSE, gentypes=>TRUE, genbean=>FALSE,
gentables=>TRUE, force=>FALSE, owner=>’BBENZ’);

DBMS_LOB.FREETEMPORARY(:XMLSchemaTextCLobPtr);
END;
/

Because the gentables=>TRUE option is set, the registration process creates a
new table called AmazonListingsSchemaTable that is used by the schema to map
XML data from XML documents to relational table formats.

i538292 ch19.qxd 8/18/03 8:44 AM Page 492

493Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Make sure that the schema name that you are using does not match any table
names that already exist in the database. If the schema name matches an existing
table name, a new table is created with a cryptic database name, which does not
match the schema name. This will inevitably create maintenance issues and con-
fusion in the future. To create mapping from existing relational structures to XML
documents, use an XMLType view, which we cover in detail later in this chapter.

SQL INSERT commands using XMLType.createXML()
Now that the schema is registered in the database and a table is created based on
the schema, we can test the new table by sending it a sample XML document.
XMLSpy has a menu option for generating a sample document, which we use as a
guide to build a real test document. Next, we wrap an SQL INSERT command around
the XML document like this:

INSERT INTO ‘AMAZONLISTINGSSCHEMATABLE VALUES(sys.XMLType.createXML(
‘<?xml version=”1.0” encoding=”UTF-8”?>
<AMAZONLISTINGS xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”’AmazonListingsSchemaTable.xsd”>
<PRODUCTID>1004</PRODUCTID>
<RANKING>4</RANKING>
<TITLE>Ulysses</TITLE>
<ASIN>0679722769</ASIN>
<AUTHORID>1002</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/0679722769.01._PE30_PIdp-

schmoo2,TopRight,7,-26_TCMZZZZZZZ_.jpg</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/0679722769.01._PE30_PId

p-schmoo2,TopRight,7,-26_SCMZZZZZZZ_.jpg</SMALL_IMAGE>
<LIST_PRICE>11.90</LIST_PRICE>
<RELEASE_DATE/>
<BINDING>Paperback</BINDING>
<AVAILABILITY/>
<TAGGED_URL>http://www.amazon.com/exec/obidos/ASIN/0679722769/qid=1050

987099/sr=2-1/ref=sr_2_1/104-2508041-6900765</TAGGED_URL>
</AMAZONLISTINGS>’));

The XML document is accepted into the database and stored as relational data. At
the same time, the XML schema checks to see if the document is valid, and issues
an error if it is not. For example, if the TITLE exceeds 200 characters, the INSERT
command returns the ORA-22814: attribute or element value is
larger than specified in type error message.

You can extract XML using a regular XML expression, provided you return all of the
columns in a row. For example, this query returns the first row of data as an XML
document:

select * from AmazonListingsSchemaTable WHERE rownum = 1;

Tip

i538292 ch19.qxd 8/18/03 8:44 AM Page 493

494 Part IV ✦ Relational Data and XML

However, because the database is based on a schema and not a regular table struc-
ture, a regular query that returns less than a full XML document is not permitted.
For example, a query to return the PRODUCTID column:

select PRODUCTID from AmazonListingsSchemaTable WHERE rownum = 1;

Returns an error message that says ORA-00904: “PRODUCTID”: invalid
identifier. Because the XML data is based on a schema, the entire table looks
like an XMLType object to queries. XMLType objects can be queried using XPath
expressions, which are part of the EXTRACT(), EXISTSNODE(), and UPDATEXML()
functions.

Querying XMLType Objects using EXTRACT() and EXTRACTVALUE()
In order to retrieve one or more columns from an XMLType column or table, use the
EXTRACT() command.

For more information on XPath expressions, please refer to Chapter 7.

This example extracts the PRODUCTID column using the EXTRACT() command and
an XPath expression from the AmazonListingsSchemaTable.

select extract(value(x), ‘/AMAZONLISTINGS/PRODUCTID’) from
AmazonListingsSchemaTable x WHERE rownum = 1;

Just the PRODUCTID column of row 1 is returned, as an element:

<PRODUCTID>1004</PRODUCTID>

The same query and XPath expression using the EXTRACTVALUE() command
returns the value of the column without the XML formatting:

select extract(value(x), ‘/AMAZONLISTINGS/PRODUCTID’) from
AmazonListingsSchemaTable x WHERE rownum = 1;

The value returned by the above expression is 1004.

Selecting data based on values using EXISTSNODE() and EXTRACT()
You can conditionally select XML documents from an XMLType object using the
EXTRACTVALUE() command in a Where expression:

select extract(value(x), ‘/AMAZONLISTINGS/PRODUCTID’) from AMAZONLISTINGS70_TAB
x WHERE extractValue(value(x),’/AMAZONLISTINGS/PRODUCTID’) = 1004;

Cross-
Reference

i538292 ch19.qxd 8/18/03 8:44 AM Page 494

495Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

You can also extract data conditionally using XPath expressions and the EXISTS
NODE() command. The following example extracts the row of data that has a
PRODUCTID value of 1004:

select extract(value(x), ‘/AMAZONLISTINGS/PRODUCTID’) from
AmazonListingsSchemaTable x WHERE existsNode(value(x),’
/AMAZONLISTINGS[PRODUCTID=”1004”]’) = 1;

Both queries produce the same XML Document Fragment results:

<PRODUCTID>1004</PRODUCTID>

Using UPDATEXML to update XMLType objects
Because the AmazonListingsSchemaTable table is an XMLType object, it can be
updated using XPath expressions and the UPDATEXML() command. The following
example updates the Availability column in the table by updating the Availability
element in the XMLType representation of the column:

UPDATE AmazonListingsSchemaTable x SET value(x) =
UPDATEXML(value(x), ‘/AMAZONLISTINGS/AVAILABILITY’, ‘Out of Stock’)
WHERE existsNode(value(x),’ /AMAZONLISTINGS[PRODUCTID=”1004”]’) = 1;

XMLType views
XMLType views are similar to XMLType tables, but do not require the tables repre-
sented by the view to be changed to accommodate XMLType queries. You can use a
table for regular data processing, and have the option of viewing the same data as
XML via the XMLType view. XMLType views can be created using most of the func-
tions that we have covered so far in this chapter, such as XMLELEMENT() and
XMLFOREST(). To create an XMLType view without a schema, use the CREATE OR
REPLACE VIEW <view name> OF XMLTYPE SQL command. You can also map an
XMLType view to a W3C schema. Schemas can validate XML data going in and for-
mat XML data coming out of the view.

Before creating an XMLType view based on a W3C schema, you must register the
schema in the database. See the “Registering W3C Schemas in Oracle” section
earlier in this chapter for instructions on schema registration.

To create XML Views that map to a W3C schema, it’s much easier to use the Oracle
Enterprise Manager than is to code the view creation and query processes. Select a
View node in the enterprise manager navigator. Right click on the node and choose
“create” from the pop-up menu options. In the general window, add the view name
and the query that produces the view. Figure 19-2 shows the general view creation
window for the XMLTYPEVIEW1 view.

Note

i538292 ch19.qxd 8/18/03 8:44 AM Page 495

496 Part IV ✦ Relational Data and XML

Figure 19-2: The General View Creation Window for the
XMLTYPEVIEW1 View

Mapping data in the query to a schema and setting constraints for the View is han-
dled in the advanced view creation window. For the XMLTYPEVIEW1 example, we
specified the BBENZ database schema, the previously registered W3C schema
called AmazonListingsXMLTable, and chose the root element for the schema, which
is AMAZONLISTINGS. Figure 19-3 shows the advanced view creation window for the
XMLTYPEVIEW1 view.

When the create button is pressed, the view is created and mapped to the chosen
W3C schema. Here’s the SQL that is generated by the Enterprise Manager:

CREATE OR REPLACE VIEW “BBENZ”.”” OF SYS.XMLTYPE
XMLSCHEMA
“http://xmlns.oracle.com/xdb/schemas/BBENZ/AmazonListingsXMLTable.xsd” ELEMENT
“AMAZONLISTINGS” WITH OBJECT IDENTIFIER (‘/’) AS SELECT
XMLELEMENT(“AMAZONLISTINGS”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings

i538292 ch19.qxd 8/18/03 8:44 AM Page 496

497Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Figure 19-3: The Advanced View Creation Window for the
XMLTYPEVIEW1 View

Once the view is set up, the AMAZONLISTINGS table can be queried and updated
via normal SQL queries, or queried and updated as an XMLType table via the XML-
TYPE1 view.

Managing XMLType objects using XML DB repositories
Another interesting feature of the Oracle XML DB is the ability to present XML Type
data objects as folders and files in a hierarchy over standard protocols such as
HTTP, WebDAV, and FTP. XMLType objects can be queried and updated via
XMLType-compatible SQL commands. For more information on setting up the
server, client, and databases for this feature, please refer to the Oracle9i XML
Database Developer’s Guide — :Oracle XML DB Chapter 13.

Formatting XML documents with XMLFormat
The SYS_XMLAGG() and SYS_XMLGEN() functions accommodate XML document
format definitions using the XMLFormat object type.

If you are using SYS_SMLAGG and have a W3C schema created for your XML data,
you can create an XMLFormat object using the createFormat() function. Here’s
an example of a query that formats output from the AMAZONLISTINGS table based
on a W3C Schema named AmazonListingsSchemaTable.xsd:

i538292 ch19.qxd 8/18/03 8:44 AM Page 497

498 Part IV ✦ Relational Data and XML

SELECT SYS_XMLAGG(XMLFOREST(
PRODUCTID,
RANKING,
TITLE)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1
XMLFORMAT.CREATEFORMAT(‘AZLIST’,
‘http://schemas.benztech.com/’AmazonListingsSchemaTable.xsd’));

You can also use the createFormat() function to specify the root tag of a
SYS_XMLGEN result. In this example, the XMLONLY table contains one XMLType
column called XMLDOC. The results of this query returns the AZLIST parameter as
the root element for the SYS_XMLGEN() XML document output.

SELECT SYS_XMLGEN(XMLDOC,
XMLFORMAT.CREATEFORMAT(‘AZLIST’)) FROM XMLONLY WHERE rownum = 1;

You can also create a hard-coded XMLFormat object using createFormat() and
several related attributes. Table 19-7 describes the XMLFormat object type
attributes, and which Oracle SQL functions support them. As you can see from the
attribute listings, hard-coding the XMLFormat object type is useful for generating
an ObjectType that references a schema. The only exception to this would be to
create XML document output form an XMLType data type that includes a process-
ing instruction. In this case, the instruction can be added to the XML output using
the processingIns attribute of the XMLFormat object.

XMLFormat schemas are W3C schemas, not Oracle database schemas. As of
Oracle 9.2, XMLSEQUENCE() also has partial support for XMLFormat, but does not
accommodate schemas. Instead, XMLSEQUENCE() uses an XMLFormat object cre-
ated with the createFormat() function using attributes in Table 19-7 to build an
XMLType data type.

Table 19-7
XMLFormat Object Type Attributes

Attribute Description

schemaType Indicates whether to use a W3C schema for
SYS_XMLGEN(), SYS_XMLAGG(), formatting or not. The options are ‘NO_SCHEMA’
and XMLSEQUENCE() (default) and ‘USE_GIVEN_SCHEMA’. Currently,

XMLSEQUENCE() does not support the
‘USE_GIVEN_SCHEMA’ option. XMLFormat objects
are passed to XMLSEQUENCE() as part of call that
contains a REF CURSOR. If ‘NO_SCHEMA’ is
specified, the XMLFormat object is created using
the createFormat object.

Note

i538292 ch19.qxd 8/18/03 8:44 AM Page 498

499Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

Attribute Description

schemaName The name of the target schema when the
SYS_XMLGEN() and SYS_XMLAGG() schemaType is set to ‘USE_GIVEN_SCHEMA’.

enclTag The name of the enclosing tag for the single-
SYS_XMLGEN() column result of the SYS_XMLGEN function. If no

hard-coded or schema value is provided, the
element name defaults to the column name.

targetNameSpace The target namespace when the schemaType is
SYS_XMLGEN() and SYS_XMLAGG() set to ‘USE_GIVEN_SCHEMA’.

Dburl The URL to the database to use when the
SYS_XMLGEN() and, SYS_XMLAGG() schemaType is set to ‘USE_GIVEN_SCHEMA’.

Default is a relative URL reference from the
current database instance.

processingIns Processing instructions to be added to the XML
SYS_XMLGEN() and SYS_XMLAGG() document output.

XML resources for PL/SQL developers
Oracle9i maintains a very complete set of XML DB functions for PL/SQL, Java, and
C++ in the XDK. However, PL/SQL developers who don’t want to use the XDK are
definitely not neglected. Many XDK XML document functions have comparable
PL/SQL functionality. For example, the XMLType API includes the createXML()
function for generating XML from a string and 20 other functions for manipulating
XMLType data types.

There is also a PL/SQL DOM Parser (DBMS_XMLDOM), a fast validating parser for
XMLType and CLOB data types (DBMS_XMLPARSER), and an XSLT Processor
(DBMS_XSLPROCESSOR). Oracle also includes packages for registering W3C
schemas (DBMS_XMLSCHEMA) and several views for reviewing schemas and their
user assignments (Oracle XML DB XML Schema Catalog Views). Administrators and
developers alike will appreciate the Resource API for PL/SQL (DBMS_XDB) for man-
aging XML DB security, and the DBMS_XDB_VERSION API for managing version con-
trol. The RESOURCE_VIEW and PATH_VIEW views accommodate access to Oracle
data via third party tools using JNDI, FTP, or WebDAV. The DBMS_XDBT API facili-
tates maintenance of ConText indexes for an XML DB instance.

All of these APIS and associated functions are well documented in Appendix F of the
Oracle9i XML Database Developer’s Guide — :Oracle XML DB. For this reason, we
won’t drill down any deeper into these APIS. Instead I’ll show you several important
tips and tricks for writing XML documents to the file system using another impor-
tant PL/SQL package: DBMS_XMLGEN().

i538292 ch19.qxd 8/18/03 8:44 AM Page 499

500 Part IV ✦ Relational Data and XML

Generating multi-row XML using DBMS_XMLGEN()
DBMS_XMLGEN() is a subset of the XML SQL Utility (XSU), which as originally a Java
servlet in Oracle8i. In Oracle9i, DBMS_XMLGEN() functions are part of the database
kernel to improve performance. Because DBMS_XMLGEN() is a PL/SQL package, it
contains several sub-functions that shape XML output. Table 19-8 shows all of the
DBMS_XMLGEN() functions.

Table 19-8
Oracle XML Functions

Function Description

getXML() Returns an XMLType or CLOB object from the results of an
SQL query.

newContext() Accepts an SQL query and returns a new context handle.

closeContext() Closes the named context.

setRowSetTag () Set the root tag for the XML document fragment that is
returned by getXML(). The default value is ROWSET.

setRowTag() Set the tag that defines each row of an XML document
returned by getXML(). The default value is ROWSET.

useItemTagsForColl() an _ITEM suffix is added collection element names in the
XML document. The default value is the object name.

setMaxRows() Limits the maximum number of rows to be fetched each
time. The default value is unlimited. Useful when
combined with setSkipRows() and
getNumRowsProcessed() for pagination of results.

setSkipRows() Skip x rows before returning results as XML. The default is
value 0. Useful when combined with setMaxRows() and
getNumRowsProcessed() for pagination of results.

getNumRowsProcessed() Returns the number of rows that were returned by the
latest query in the context. Useful for checking to see if
there are results to process. Also useful when combined
with setMaxRows() and setSkipRows() for pagination of
results.

setConvertSpecialChars() By default, non-XML characters are converted to their
escaped values. Conversion can be disabled with this
function.

convert() Manually converts non-XML characters to their escaped
values and vice versa.

restartQUERY() Resets the context to restart the query.

i538292 ch19.qxd 8/18/03 8:44 AM Page 500

501Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

A DBMS_XMLGEN example
As you can see from the list of sub-functions in Table 19-6, DBMS_XMLGEN() can be
a language unto itself. Listing 19-2 shows an example procedure that uses DBMS_
XMLGEN() and many of its functions. The result is a single well-formed XML docu-
ment containing two rows of data from the AMAZONLISTINGS table. The output is
saved to a file named DBMS_XMLGENEXAMPLE.xml.

Listing 19-2: A DBMS_XMLGEN Example

SET SERVEROUTPUT ON
CREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmlstr varchar2(32767);
line varchar2(10000);
begin

xmlstr := dbms_lob.SUBSTR(result,32767);
loop

exit when xmlstr is null;
line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
dbms_output.put_line(‘| ‘||line);
xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);

end loop;
end;
/

DECLARE
currentContext DBMS_XMLGen.ctxHandle;
XMLFile Utl_File.File_Type;
XMLCLOB CLOB;

BEGIN

currentContext := DBMS_XMLGen.newContext(‘SELECT PRODUCTID, RANKING,
TITLE FROM AmazonListings’);

DBMS_XMLGen.setRowsetTag(currentContext, ‘RootElement’);
DBMS_XMLGen.setRowTag(currentContext, ‘RowElement’);
DBMS_XMLGEN.setMaxRows(currentContext,3);
DBMS_XMLGEN.setSkipRows(currentContext,1);

XMLCLOB := DBMS_XMLGen.GetXML(currentContext);
printClobOut(XMLCLOB);
DBMS_XMLGen.closeContext(currentContext);

XMLFile := Utl_File.FOpen(‘C:Temp’, ‘DBMS_XMLGENEXAMPLE.xml’, ‘W’);
Utl_File.Put(XMLFile, XMLCLOB);
Utl_File.FClose(XMLFile);

END;
/

i538292 ch19.qxd 8/18/03 8:44 AM Page 501

502 Part IV ✦ Relational Data and XML

Let’s review the DBMS_XMLGEN() code line by line to see how the XML document
output was created. The first line sets the server output to on. That way, if you’re
running this example in the SQL*Plus Worksheet, results will be displayed on the
screen. The printClobOut procedure prints out CLOBS to the screen as well. The
procedure writes output from a CLOB to the screen one line at a time.

The printClobOut procedure is copied from the Oracle9i XML Developer’s Kits
Guide - XDK, Chapter 23. Even though the procedure is in the XDK documentation,
it’s pure PL/SQL, and does not require the XDK to run. We find it a very handy tool
for interactively developing and debugging PL/SQL functions that write CLOBS to
a file.

SET SERVEROUTPUT ON

CREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmlstr varchar2(32767);
line varchar2(10000);
begin

xmlstr := dbms_lob.SUBSTR(result,32767);
loop

exit when xmlstr is null;
line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
dbms_output.put_line(‘| ‘||line);
xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);

end loop;
end;
/

The next procedure (the / signifies the end of the printClobOut procedure) does
the work of generating XML from relational data using DBMS_XMLGEN(). The con-
text handle is called currrentContext. The file to write to is called XMLFile. The
CLOB is created by the getXML() function. We’re using a CLOB for this example so
that we can print results to the screen with the printClobOut procedure. You can
return the results of getXML() function directly into an XMLType data type. You
can also convert the CLOB to an XMLType later in the code using the PL/SQL
XMLType() function, which is part of the XMLType API.

DECLARE
currentContext DBMS_XMLGen.ctxHandle;
XMLFile Utl_File.File_Type;
XMLCLOB CLOB;

A hard-coded SQL query is passed to the current context, which returns the result
set. Before the result set data is generated as XML, we set the root element name to
RootElement for the document using DBMS_XMLGen.setRowsetTag(). The ele-
ment that defines the rows of data is named RowElement using DBMS_XMLGen.
setRowTag(). We also set the maximum rows to three, and change the default
setSkipRows() function of 0 to 1. This means that the getXML() function will read

Tip

i538292 ch19.qxd 8/18/03 8:44 AM Page 502

503Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

through the result set starting at the second row, skipping row 1, and return a maxi-
mum of three rows. In this case, there are only three rows in the AMAZONLISTINGS
table, so getXML() skips the first row and returns the last two rows.

The newContext() function can accept a hard-coded SQL query or a reference
cursor (REF CURSOR) as a parameter. REF CURSORS are great for interactive
queries, because parameters can be passed to the procedure in the contents of
the cursor, and variables defined in REF CURSORS can be shared with more than
one query. The contents of the cursor can be manipulated by PL/SQL, Java, or
other applications, and a state between the application and the procedure can be
maintained. This way, you can use DBMS_XMLGEN() to interactively paginate
results using a single query and REF CURSOR. we’ll talk about this technique a lit-
tle later in the XSU section.

BEGIN
currentContext := DBMS_XMLGen.newContext(‘SELECT PRODUCTID, RANKING,
TITLE FROM AmazonListings’);

DBMS_XMLGen.setRowsetTag(currentContext, ‘RootElement’);
DBMS_XMLGen.setRowTag(currentContext, ‘RowElement’);
DBMS_XMLGEN.setMaxRows(currentContext,3);
DBMS_XMLGEN.setSkipRows(currentContext,1);

Next, the CLOB is created containing the XML document. The getXML() function
creates the XML document using any previously defined functions that limit the
scope or shape the output. Because this is an example, we also print the contents
of the CLOB out to the screen using the printClobOut procedure. Once the CLOB
is created that contains all of the required data from the result set, we can drop the
current context object using the closeContext() function.

XMLCLOB := DBMS_XMLGen.GetXML(currentContext);
printClobOut(XMLCLOB);
DBMS_XMLGen.closeContext(currentContext);

Now that we have the CLOB and its XML document context, we can write the
DBMS_XMLGEN() output to a file. To do that, we use the Utl_File.FOpen function
to open a file, with a reference to the directory and file name. The third parameter
can be W for write, R for read, or A for append. Next, we use the Utl_File.Put()
function to write the CLOB to the open file, and then finish up the procedure by
closing the file using Utl_File.FClose().

If this procedure returns an error ORA-29280: invalid directory path,
you probably need to set file system security rights in Oracle for the output direc-
tory (in this case, C:\temp). To do this, you have to log in to the database
instance with an ID that has sys admin rights and type the following commands at
the SQL prompt:

create or replace directory dbdir as ‘C:\Temp\’;
Grant read on directory dbdir to <your user name>;

Tip

Tip

i538292 ch19.qxd 8/18/03 8:44 AM Page 503

504 Part IV ✦ Relational Data and XML

XMLFile := Utl_File.FOpen(‘C:\Temp’, ‘DBMS_XMLGENEXAMPLE.xml’, ‘W’);
Utl_File.Put(XMLFile, XMLCLOB);
Utl_File.FClose(XMLFile);

END;
/

Below are the contents of the DBMS_XMLGENEXAMPLE.xml file. DBMS_XMLGEN()
automatically creates the XML document declaration in XML document output. The
root element is defined by the DBMS_XMLGen.setRowsetTag() function, and the
element that separates row data is defined by the DBMS_XMLGen.setRowTag()
function. The rest of the data is formatted with the column name as the element
name and the column value as the text value for the element.

<?xml version=”1.0”?>
<RootElement>
<RowElement>
<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>
<TITLE>MacBeth</TITLE>
</RowElement>
<RowElement>
<PRODUCTID>1003</PRODUCTID>
<RANKING>3</RANKING>
<TITLE>William Shakespeare: MacBeth</TITLE>
</RowElement>
</RootElement>

Working with the Oracle XDK
The Oracle XDK includes DOM and SAX Parsers with support for W3C Schemas, and
a customized high-performance XSLT Processor. Java and C++ developers can use
the XML Class Generator to generate classes from DTDs and Schemas. The gener-
ated classes can be used to send XML documents to Oracle databases. XML Java
Beans provide a visual tool for exploring and transforming XML documents. Java
developers can use the XML SQL Utility to create XML documents, from SQL
queries. You can also create DTDs and Schemas for XML result sets. The XSQL
Servlet can be used with the Oracle Java VM or another application server, includ-
ing the Oracle AS (Application Server) to manipulate XML using SQL and XSLT. The
XML Pipeline processor enables the combination of queries and other Java pro-
cesses, and the TransX Utility facilitates XML document to Oracle data loading.

i538292 ch19.qxd 8/18/03 8:44 AM Page 504

505Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

For more information on parsing and transforming XML using Java, please refer to
Chapters 15 and 16. The parsing and transformation code examples for Xalan and
Xerces can be reused with the Oracle Java XDK. The only modification required is
the substitution of Oracle XDK transformation and parsing packages in the import
statements.

Oracle and Java integration: JDBC and SQLJ
Although the XDK is available in Java, C, C++, and PL/SQL versions, the most com-
plete feature set is in the Java XDK. The Oracle JDBC API is the standard way to
access Oracle data from J2EE applications. JDBC supports reading and writing of
data from Java to external data sources. JDBC is based on the X/Open SQL call level
interface (CLI) specification. More information on the X/Open SQL CLI can be found
at http://www.opengroup.org.

For more details on JDBC and an example of a JDBC application, please refer to
Chapter 21.

Oracle9i also supports SQLJ. SQLJ supports embedded SQL queries in Java code,
based on SQLJ syntax. A key component of SQLJ is a code generator that converts
SQLJ statements in Java source code with calls to the Oracle JDBC driver. The gen-
erated Java code can call Oracle database objects and return results via JDBC. This
saves some time in coding, but requires a SQLJ run-time engine to run on the Oracle
server. More information about SQLJ can be found at http://www.sqlj.org.

Developing with XSQL
The XSQL servlet processes SQL queries that are formatted in XML documents and
returns results as XML. XSQL functionality can be combined with the Oracle XML
Parser for Java, the XML- SQL Utility (XSU), and the Oracle XSL Transformation
(XSLT) Engine to produce complex XML and HTML pages. This combination of tools
is known as the XSQL Pages Publishing Framework. XSQL is compatible with most
J2EE application servers. JSP pages can also include calls to the XSQL servlet via
<jsp:forward> and <jsp:include> tags. For more details on XSQL including installa-
tion, setup and configuration instructions, please refer to the Oracle9i XML
Developer’s Kits Guide — :XDK Chapter 9.

XSQL queries are stored in XSQL page template files, which are defined by the .xsql
file extension. Here’s an example of a basic XSQL page template, called
GetProduct.xsql:

<?xml version=”1.0”?>
<xsql:query connection=”xsqlconnect” bind-params=”PRODUCTID”
xmlns:xsql=”urn:oracle-xsql”>
SELECT PRODUCTID, RANKING, TITLE
FROM AmazonListings
WHERE PRODUCTID = ?
</xsql:query>

Cross-
Reference

Cross-
Reference

i538292 ch19.qxd 8/18/03 8:44 AM Page 505

506 Part IV ✦ Relational Data and XML

Once the GetProduct.xsql file is created and stored under your Web server’s
virtual directory hierarchy, you can access the template via URL:

http://<J2EE server URL>/GetProduct.xsql?PRODUCTID=1001

The servlet registers the .xsql file and creates a servlet parameter from the
PRODUCTID URL parameter. The data is automatically formatted as XML. Here’s an
example of default XML output from the XSQL servlet:

<?xml version=”1.0”?>
<ROWSET>

<ROW num=”1”>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>

</ROW>
</ROWSET>

Changing the default SQLX-generated element names to something other than
ROWSET and ROW, or changing the XML output to another document format or
HTML requires XSL transformation. To automatically transform XSQL servlet out-
put using a stylesheet, add the following link to the page template file, just above
the xsql:query element:

<?xml-stylesheet type=”text/xsl” href=”<URI reference to the stylesheet>”?>

Developing with the XML SQL Utility (XSU)
The XSQL servlet uses the XML SQL Utility (XSU) to generate XML document out-
put. XSU functionality can also be added to any other servlet on a J2EE application
server. The XSU is an API that can run on a J2EE server. Other interfaces to XSU run
on a command line and through PL/SQL. The XSU can generate XML output from
SQL queries, generate DTDs and W3C schemas, and perform XSL transformations
on XML document output. XSU query output can be returned as an XML document,
a DOM node tree representation, or a series of SAX events.

Listing 19-3 shows a sample Java class that uses the XSU API OracleXMLQuery
class to create a simple XML document from the AMAZONLISTINGS table.

Listing 19-3: An XSU Example - GetAmazonListings.java

import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.xml.sql.query.*;

class GetAmazonListings {

i538292 ch19.qxd 8/18/03 8:44 AM Page 506

507Chapter 19 ✦ Accessing and Formatting XML from Oracle Data

public static void main(String[] argv)
{

try{

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection conn = new
oracle.jdbc.driver.OracleDriver().defaultConnection ();

OracleXMLQuery qry = new OracleXMLQuery(conn, “SELECT PRODUCTID,
RANKING, TITLE FROM AMAZONLISTINGS WHERE ROWNUM = 1”);
String str = qry.getXMLString();
System.out.println(str);
qry.close();

} catch(SQLException e){
System.out.println(e.toString());

}
}

}

The code starts by importing the standard Java SQL package, then the Oracle JDBC
driver classes, and the XSU classes, including the OracleXMLQuery class:

import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.xml.sql.query.*;

class GetAmazonListings {

public static void main(String[] argv)
{

This JDBC connection illustrates the connection string required for code that will
run in the Java server on the Oracle server. The JDBC driver on the Oracle server
runs on a default session, so no name and password are required as part of the
connection string. The defaultConnection() method of the oracle.jdbc.
driver.OracleDriver class retrieves the default session information. The XSU
OracleXMLQuery class uses JDBC to make the connection to the Oracle server
instance, and then returns the data as XML when it receives the result set from the
JDBC driver.

try{

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection conn = new

i538292 ch19.qxd 8/18/03 8:44 AM Page 507

508 Part IV ✦ Relational Data and XML

oracle.jdbc.driver.OracleDriver().defaultConnection ();
OracleXMLQuery qry = new OracleXMLQuery(conn, “SELECT PRODUCTID,
RANKING, TITLE FROM AMAZONLISTINGS WHERE ROWNUM = 1”);

Once the result set is retrieved and converted to XML by the OracleXMLQuery
class, the resulting XML document can be retrieved via the getXMLString()
method. Next, the OracleXMLQuery is closed to complete the class.

String str = qry.getXMLString();
System.out.println(str);
qry.close();

Summary
In this chapter, we showed you how to work with XML in Oracle:

✦ Working with the Oracle XML DB — :SQL functions that create XML

✦ Working with the XMLType data Type — :in columns, tables, and views

✦ Registering and using W3C Schemas in Oracle

✦ PL/SQL solutions using DBMS_XMLGEN()

✦ Working with the XDK — :key features

✦ Servlet solutions using XSQL and the XSQL Pages Publishing Framework

✦ An example of using the XML SQL Utility (XSU) in Java

In the next chapter, we’ll show you how to work XML using DB2. After that, in
Chapter 21, we’ll show you how to create Web and J2EE applications and Websites
that generate XML data from relational data. In Chapter 22, we’ll show how to con-
vert and transform relation data from one RDBMS XML format to another.

✦ ✦ ✦

i538292 ch19.qxd 8/18/03 8:44 AM Page 508

Accessing and
Formatting XML
from DB2

XML functionality in DB2 is facilitated through several
core XML functions for queries. Additional functions

and data types are available as part of the IBM DB2 Universal
Database (UDB) XML Extender. The XML extender preserves
the scalability and security of DB2 databases, while allowing
additional interfaces between XML and relational data.

Like Oracle and MS SQL Server, XML documents can be stored
in DB2 databases as CLOB data. You can also store XML docu-
ments on the DB2 server file system. File system documents
can be added to DB2 indexes and queries.

In this chapter we’ll show you how to retrieve XML docu-
ments from DB2 as whole documents.we’ll also show you
techniques for extracting XML documents and document frag-
ments from relational and CLOB data. We’ll also show you
how to use the DB2 XML Extender to store and retrieve XML
documents in their original formats and as relational data.

Installing DB2 and the
DB2 XML Extender

You can download a free developer version of the DB2 for
evaluation and development purposes from http://www-3.
ibm.com/software/data/db2. The examples in this chap-
ter were developed using DB2 version 8.1 and DB2 XML
Extender is version 7 Fixpack 9. As of DB2 version 8, the XML
Extender is part of the download file set.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Core DB2 XML
functions

Working with the
DB2 XML Extender

Document Access
Definitions (DADs)

XML columns and
XML collections

Validating DB2 XML
data with DTDs

Validating DB2 XML
data with schemas

SQL Mapping and
RDB Node DADs

✦ ✦ ✦ ✦

i538292 ch20.qxd 8/18/03 8:44 AM Page 509

510 Part IV ✦ Relational Data and XML

If you already have DB2 installed and just want to download the latest version of
the XML extender, it’s available for free at http://www-3.ibm.com/software/
data/db2/extenders/xmlext . We recommend installing the DB2 XML Extender
Administration Assistant as well to smooth the process of setting up XML extender.

The downloads for DB2 developer edition, the XML extender, and associated files
are well over 1GB, so plan for some download waiting time, even with a good con-
nection. Once the files are downloaded and installed, XML functionality is available
via the DB2 Command Center Console and the DB2 Development Center UI.

The XML Programming Bible Example Tables
All of the tables in this chapter and this part of the book use the same data struc-
ture. For DB2, the data is structured into five tables. All five tables are contained in
a database called XMLPB.

I’ve included SQL code that creates these tables and inserts sample data as part of
the downloads for this chapter. Downloads for the XML Programming Bible can be
retrieved from http://www.XMLProgrammingBible.com, in the downloads
section.

Table 20-1 lists the structure of the AMAZONLISTINGS table. This is the table
that contains all of the Amazon book listings for our relational data examples
and applications.

Table 20-1
Structure of the AMAZONLISTINGS Table

Table Column Data Type Maximum Size

PRODUCTID INTEGER
(Primary Key)

RANKING INTEGER

TITLE CHARACTER 200

ASIN CHARACTER 10

AUTHORID INTEGER
(Foreign Key - AUTHORS)

IMAGE CHARACTER 100

SMALL_IMAGE CHARACTER 100

LIST_PRICE DECIMAL Precision 2

RELEASE_DATE DATE

i538292 ch20.qxd 8/18/03 8:44 AM Page 510

511Chapter 20 ✦ Accessing and Formatting XML from DB2

Table Column Data Type Maximum Size

BINDING CHARACTER 50

AVAILABILITY CHARACTER 10

TAGGED_URL CHARACTER 200

Table 20-2 lists the structure of the AUTHORS table. This is the table that contains
information about the book and quotation authors. It is related to the AUTHORID
field in the AMAZONLISTINGS, ELCORTEINGLESLISTINGS, and the QUOTATIONS
tables.

Table 20-2
Structure of the Authors Table

Table Column Data Type Maximum Size

AUTHORID INTEGER
(Primary Key)

AUTHORNAME CHARACTER 50

Table 20-3 lists the structure of the ELCORTEINGLESLISTINGS table. This is the
table that contains all of the Spanish Language Elcorteingles Website book listings
for our relational data examples and applications.

Table 20-3
Structure of the ElcorteinglesListings Table

Table Column Data Type Maximum Size

PRODUCTID INTEGER
(Primary Key)

TITULO CHARACTER 200

ISBN CHARACTER 20

AUTHORID INTEGER
(Foreign Key - AUTHORS)

IMAGEN CHARACTER 100

PRECIO DECIMAL Precision 2

Continued

i538292 ch20.qxd 8/18/03 8:44 AM Page 511

512 Part IV ✦ Relational Data and XML

Table 20-3 (continued)

Table Column Data Type Maximum Size

FECHA_DE_PUBLICACION DATE

ENCUADERNACION CHARACTER 50

LIBROURL CHARACTER 200

Table 20-4 lists the structure of the QUOTATIONS table. This is the table that con-
tains all of the Quotations related to books, authors and sources in the relational
data examples and applications.

Table 20-4
Structure of the Quotations Table

Table Column Data Type Maximum Size

QUOTATIONID INTEGER
(Primary Key)

SOURCEID INTEGER
(Foreign Key - SOURCES)

AUTHORID INTEGER
(Foreign Key - AUTHORS)

QUOTATION CHARACTER 300

Table 20-5 lists the structure of the SOURCES table. This is the table that contains
information about the book and quotation authors. It is related to the AUTHORID
field in the AMAZONLISTINGS and QUOTATIONS tables.

Table 20-5
Structure of the Sources Table

Table Column Data Type Maximum Size

SOURCEID INTEGER
(Primary Key)

SOURCENAME CHARACTER 50

i538292 ch20.qxd 8/18/03 8:44 AM Page 512

513Chapter 20 ✦ Accessing and Formatting XML from DB2

DB2 XML Functions
DB2 developers who are new to XML development are usually under the impression
that the DB2 XML Extender is the only way to access and manipulate XML in DB2.
The XMLELEMENT, XMLATTRIBUTES, XMLAGG, REC2XML, COLATTVAL and
XML2CLOB functions are part of the DB2 core and do not need XML Extender to
function. These core functions are also SQL/XML functions, with the exception of
COLATTVAL, which is an SQL/XML extension function. SQL/XML functions are
based on the SQL/XML standard, which is a combination of XML and SQL function-
ality. The SQL/XML standard is maintained by the International Committee for
Information Technology Standards (INCITS). INCITS maintains a grab-bag of interna-
tional hardware, media and other standards, including the original SQL standard in
the USA. Specific information on SQL/XML can be found at http://sqlx.org.
More information about INCITS can be found at http://www.ncits.org.

The DB2 XML Extender adds the XMLVarcharFromFile, XMLCLOBFromFile,
XMLFileFromVarchar, XMLFileFromCLOB, svalidate, and dvalidate func-
tions to the core functions. It also adds some XML data types for storage of XML
documents. We will cover the XML Extender functions and data types later in this
chapter.

DB2 documentation often refers to XML forests. At the highest level, a forest is a
grouping of XML documents. The forest concept based on the same concept in
SGML, called groves. Single XML documents follow a tree structure, so logically;
multiple document tree structures are a forest. In the case of elements, one or
more elements that are nested at the same level in an XML document are consid-
ered forests, made up of single-element trees. In the extreme extension of this
logic, a single element can also be referred to as a forest, made up of single-char-
acter trees. DB2 and SQL/XML documentation refers to XML document fragments
(XML elements grouped together but without a root element) nested at the same
level as a forest.

Table 20-6 shows all of the DB2 core XML functions, and a brief description of each.

Table 20-6
DB2 Core XML Functions

Function Description

REC2XML() Creates a well-formed XML document fragment. The COLATTVAL
DB2 parameter creates an XML document fragment containing an

element for each column with specified column values as attributes.
Each element in the fragment is named column. Column names
are stored in the name attribute of the element. Column values
become text values of the column element.

Continued

Note

i538292 ch20.qxd 8/18/03 8:44 AM Page 513

514 Part IV ✦ Relational Data and XML

Table 20-6 (continued)

Function Description

XML2CLOB() Returns XML data types as CLOB data. The XMLELEMENT,
DB2 XMLATTRIBUTES, and XMLAGG functions return data as an XML

data type.

XMLELEMENT() Creates an XML document fragment from relational data. Element
DB2 names are hard-coded into the expression. Column values become
SQL/XML text values of the element. Nested instances of XMLELEMENT are

used to create well-formed XML documents. Can be used with
XMLATTRIBUTES() to construct custom XML element and attribute
formats.

XMLATTRIBUTES() A nested expression of XMLELEMENT(). Provides a list of attributes
DB2 for an element as value pairs. Attribute names can be hard-coded
SQL/XML into the expression. By default, column names become attribute

names and column values become attribute values.

XMLAGG() Creates an aggregated XML document fragment from a collection of
DB2 separate XMLType objects. SYS_XMLAGG() nests results inside a
SQL/XML ROWSET root element, XMLAGG() does not.

Creating a well-formed XML document using REC2XML()
The easiest way to return an XML document fragment is to use the REC2XML()
function. There are three parameters that are part of the RE2XML() function. The
first parameter is a number between 1 and 6, and specifies an expansion value for
characters columns in the original table. The second parameter is COLATTVAL or
XML_COLATTVAL. These values are case sensitive, and one of the options has to be
chosen. By default, all illegal XML characters in generated element names are con-
verted to their entity reference equivalents (< to <, > to >, “ to ", & to
&, and ‘ to '). The COLATTVAL and XML_COLATTVAL parameters deter-
mine if illegal characters in element values are converted as well. COLATTVAL con-
verts illegal characters to their entity reference values, while XML_COLLATVAL
leaves them in their original state. The third parameter specifies a root element
name for the document fragment. For example, if you want to return an XML docu-
ment fragment with no root element, the following query will do the job:

SELECT REC2XML(1.0, ‘COLATTVAL’, ‘ ‘,
PRODUCTID,
RANKING,
TITLE,
ASIN) as XMLTRESULTS
from AMAZONLISTINGS
FETCH FIRST ROW ONLY

i538292 ch20.qxd 8/18/03 8:44 AM Page 514

515Chapter 20 ✦ Accessing and Formatting XML from DB2

This query returns the following XML document fragment.:

<column name=”PRODUCTID”>1001</column>
<column name=”RANKING”>1</column>
<column name=”TITLE”>Hamlet/Macbeth</column>
<column name=”ASIN”>8432040231</column>

As you may recall from Chapter 1, an XML document needs a single, unique root
element to be well-formed XML. Therefore, this format of REC2XML() is an easy
way to return a fragment that will become part of an aggregated or concatenated
XML document, but is not useful for creating XML documents all by itself. To add a
root element with the DB2 default row element name, you just have to change the
space in the third parameter to a null value like this:

SELECT REC2XML(1.0, ‘COLATTVAL’, ‘’,
PRODUCTID,
RANKING,
TITLE,
ASIN) as XMLTRESULTS
from AMAZONLISTINGS
FETCH FIRST ROW ONLY

This format creates a root element. DB2 provides a default ROW element name to
create a well-formed XML document:

<row>
<column name=”PRODUCTID”>1001</column>
<column name=”RANKING”>1</column>
<column name=”TITLE”>Hamlet/Macbeth</column>
<column name=”ASIN”>8432040231</column>

</row>

You can also add your own name for the root element by replacing the null value in
the third parameter with legal XML element text:

SELECT REC2XML(1.0, ‘COLATTVAL’, ‘RowElement’,
PRODUCTID,
RANKING,
TITLE,
ASIN) as XMLTRESULTS
from AMAZONLISTINGS
FETCH FIRST ROW ONLY

This creates an XML document fragment with the root element name of your
choice:

<RowElement>
<column name=”PRODUCTID”>1001</column>
<column name=”RANKING”>1</column>

i538292 ch20.qxd 8/18/03 8:44 AM Page 515

516 Part IV ✦ Relational Data and XML

<column name=”TITLE”>Hamlet/Macbeth</column>
<column name=”ASIN”>8432040231</column>

</RowElement>

As you can see from these examples, REC2XML is a great way to quickly produce
XML document fragments from DB2 table data. However, you have very little control
over the format of the XML that is returned. Next, we show you the XMLELEMENT,
XMLATTRIBUTES, and XMLAGG functions. These DB2 core XML functions give you
more control, but are also more complex to code into queries.

Working with XML2CLOB()
The XMLELEMENT, XMLATTRIBUTES, and XMLAGG functions return data as an XML
data type. The XML data type is used in DB2 for manipulating and combining data
from XML function results. However, the XML data type is a DB2 data type that only
exists in DB2 memory. The XML data type can not be stored in a regular DB2 table col-
umn. It also can not be displayed interactively in the command center or command-
line processor. In order to remedy this, wrap any XMLELEMENT, XMLATTRIBUTES, or
XMLAGG functions in an XML2CLOB function, like this:

SELECT XML2CLOB (XMLELEMENT(........)) AS “XMLResult” FROM AMAZONLISTINGS

We’ll show XML2CLOB in use as we cover the next examples, for the XMLELEMENT,
XMLATTRIBUTE, and XMLAGG functions.

If you omit the XML2CLOB function from an SQL expression that returns an XML
data type, you will receive the following very misleading error message:

DBA2191E SQL execution error.
com.ibm.db.DataException: A database manager error occurred. :
[IBM][CLI Driver][DB2/NT] SQL0270N Function not supported (Reason
code = “58”). SQLSTATE=42997

The “Function not supported” phrase leads many developers to assume
that the XMLELEMENT, XMLATTRIBUTES, and XMLAGG commands are part of
the XML extender function set, and that XML extender needs to be installed and
enabled on the DB2 database instance before these functions will work. This is not
the case. The error is returned because the XML data type cannot be displayed on
the screen. Wrapping the query with a XML2CLOB function fixes the error.

Specifying a Row element using XMLELEMENT()
If you want to create a custom element structure from column and row data, use the
XMLELEMENT() function and provide a hard-coded name for each column of data.
You can also provide a hard-coded element name to define each row result by nest-
ing XMLELEMENT() functions. Here’s an example:

Note

i538292 ch20.qxd 8/18/03 8:44 AM Page 516

517Chapter 20 ✦ Accessing and Formatting XML from DB2

SELECT XML2CLOB(
XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING)))
AS “XMLResult” FROM AMAZONLISTINGS

This query returns the same row data as the REC2XML() function example did, but
this time the result is formatted in a custom element structure. Each row of data is
defined by the element named RowElement. RowElement is the result of the first
nested XMLELEMENT() function in the query:

<RowElement><PRODUCTID>1001</PRODUCTID><RANKING>1</RANKING></RowElement>
<RowElement><PRODUCTID>1002</PRODUCTID><RANKING>2</RANKING></RowElement>
<RowElement><PRODUCTID>1003</PRODUCTID><RANKING>3</RANKING></RowElement>

Creating attributes using XMLATTTRIBUTES()
One of the additional advantages of using a nested XMLELEMENT() function to
create a root element is that the XMLATTRIBUTES() function can be used.
XMLATTRIBUTES() creates a set of attributes for an element specified as apparent
via the XMLELEMENT() function. This time we reuse the query from the last example,
but just replace the XMLFOREST() function with an XMLATTRIBUTES() function:

SELECT XML2CLOB(
XMLELEMENT(NAME “RowElement”,
XMLATTRIBUTES(“PRODUCTID”, “RANKING”)))
AS “XMLResult” FROM AMAZONLISTINGS

The result is a single XML element for each row of data. Attributes in the element
define the column data:

<RowElement PRODUCTID =”1001” RANKING=”1”></RowElement>
<RowElement PRODUCTID =”1002” RANKING=”2”></RowElement>
<RowElement PRODUCTID =”1003” RANKING=”3”></RowElement>

You can also specify the attribute name for each attribute this way:

SELECT XML2CLOB(
XMLELEMENT(NAME “RowElement”,
XMLATTRIBUTES(PRODUCTID as “PID”, RANKING as “RANK”)))
AS “XMLResult” FROM AMAZONLISTINGS

The above query produces these results:

<RowElement PID =”1001” RANK=”1”></RowElement>
<RowElement PID =”1002” RANK=”2”></RowElement>
<RowElement PID =”1003” RANK=”3”></RowElement>

i538292 ch20.qxd 8/18/03 8:44 AM Page 517

518 Part IV ✦ Relational Data and XML

You may have noticed that the results here are not well-formed XML documents,
because the row data is not nested inside of a root element. In order to add a root
element to XMLELEMENT and XMLATTRIBUTES results, you need to use the XMLAGG
function, which we will cover next.

Aggregating multiple rows of data using XMLAGG()
The XMLAGG() function aggregates multiple rows of data into a single XML docu-
ment. For example, one might think that the following query would produce a well-
formed XML document, with a root element name of RootElement and rows of
data defined by RowElement elements:

SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING))))
AS “XMLResult” FROM AMAZONLISTINGS

However, the concatenated result is a set of sibling XML document fragments with
no root element:

<RootElement><RowElement><PRODUCTID>1001</PRODUCTID><RANKING>1</RANKING>
</RowElement></RootElement>
<RootElement><RowElement><PRODUCTID>1002</PRODUCTID><RANKING>2</RANKING>
</RowElement></RootElement>
<RootElement><RowElement><PRODUCTID>1003</PRODUCTID><RANKING>3</RANKING>
</RowElement></RootElement>

When the XMLAGG function is added between the XMLELEMENT() functions that
define RootElement and RowElement in the query, like this:

SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(
XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING)))))
AS “XMLResult” FROM AMAZONLISTINGS

The result is a single, aggregated, well-formed XML document, as shown here:

<RootElement>
<RowElement>

<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>

</RowElement>
<RowElement>

<PRODUCTID>1002</PRODUCTID>

i538292 ch20.qxd 8/18/03 8:44 AM Page 518

519Chapter 20 ✦ Accessing and Formatting XML from DB2

<RANKING>2</RANKING>
</RowElement>
<RowElement>

<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>

</RowElement>
</RootElement>

The same technique can be used for nested attributes in a query. In this example,
we replace the elements in the row results with attributes, and aggregate the results
using XMLAGG():

SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(
XMLELEMENT(NAME “RowElement”,
XMLATTRIBUTES(“PRODUCTID”, “RANKING”)))))
AS “XMLResult”
FROM AMAZONLISTINGS

The result is a well-formed XML document structures in a custom element and
attribute format:

<RootElement>
<RowElement PRODUCTID =”1001” RANKING=”1”></RowElement>
<RowElement PRODUCTID =”1002” RANKING=”2”></RowElement>
<RowElement PRODUCTID =”1003” RANKING=”3”></RowElement>

</RootElement>

Adding an XML document declaration
As you may recall from Chapter 1, an XML document declaration is an optional pro-
cessing instruction that is positioned at the top of the XML document. The XML
document declaration indicates the version of XML used to create a document and
the data encoding of the contents, among other things. To add an optional declara-
tion to the top of a XML document created with XMLAGG(), simply hard-code the
value into the query. The declaration should be positioned above the XMLAGG()
function expression. Here’s an example including an XML document declaration:

SELECT ‘<?xml version=”1.0” encoding=”UTF-8”?>’,
XML2CLOB (
XMLELEMENT(NAME “RootElement”,
XMLAGG(XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING)))))
AS “XMLResult” FROM AMAZONLISTINGS

i538292 ch20.qxd 8/18/03 8:44 AM Page 519

520 Part IV ✦ Relational Data and XML

The resulting XML document declaration is appended to the top of a well-formed
XML document:

<?xml version=”1.0” encoding=”UTF-8”?>
<RootElement>

<RowElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>

</RowElement>
<RowElement>

<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>

</RowElement>
<RowElement>

<PRODUCTID>1002</PRODUCTID>
<RANKING>2</RANKING>

</RowElement>
</RootElement>

Grouping and ordering XML with XMLAGG()
You can also use the GROUP BY and ORDER BY SQL clauses to group and sort the
display of XML elements and attributes. When The XMLAGG function is applied, the
results are formatted as individual well-formed XML documents for each group.
Grouping and sorting is processed before the data is converted to XML. This exam-
ple produces three XML documents, with the highest ranking document listed first:

SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING)))))
AS “XMLResult” FROM AMAZONLISTINGS
GROUP BY RANKING ORDER BY RANKING DESC

And here is what the results of the query look like, with the highest ranking at the
top and each XML document fragment grouped by ranking:

<RootElement>
<RowElement PRODUCTID =”1003” RANKING=”3”></RowElement>

</RootElement>
<RootElement>

<RowElement PRODUCTID =”1002” RANKING=”2”></RowElement>
</RootElement>
<RootElement>

<RowElement PRODUCTID =”1001” RANKING=”1”></RowElement>
</RootElement>

i538292 ch20.qxd 8/18/03 8:44 AM Page 520

521Chapter 20 ✦ Accessing and Formatting XML from DB2

So far we’ve shown you XML functionality that is part of the core DB2 SQL func-
tions. Next, we’ll show you how to use the DB2 XML extender to add more flexible
options for getting XML data you of DB2 and some new techniques for storing data
as XML in DB2 databases.

Developing XML Solutions with
the DB2 XML Extender

XML Extender adds several functions and data types to the core DB2 XML function-
ality that we’ve covered so far in the chapter. D2 XML extender adds several
options for storing data in DB2 tables, and several functions for reading, writing,
and updating that data. The XML extender also includes a DTD and W3C schema
repository in a database. DTDs that are part of the database can be used to validate
XML documents before they are converted to relational data and stored in tables.
You can also store and manipulate Data access Definition (DAD) files, which map
XML document structures to relational data structures.

Binding and enabling databases for XML Extender
In order to access DB2 XML Extender data types and functions, you have to “bind”
DB2 XML Extender classes to existing DB2 databases. Once bound, the database
also needs to be “enabled” to create tables for storing DTDs, schemas, and DADs.
This is done via the DB2 Command Line Processor. See the first section of this chap-
ter to download the DB2 XML extender if it’s not already installed on the same com-
puter as your DB2 server.

Binding a database to DB2 XML Extender
Access the Command Line processor. In Windows, under the Start menu, go to IBM
DB2 ➪ Command Line Tools ➪ Command Line Processor.

Use the Command Line processor to bind to DB2 extensions, not the DB2
Command Center. My experience (and the experience of others) is that not all
extension binding and enabling functions work as expected in Command Center,
but they always work in the Command Processor window.

Connect to the database to which you want to bind XML extender. For example, to
bind the XMLPB database to XML extender, use this command:

C:\Program Files\IBM\SQLLIB\BIN>db2 connect to XMLPB

You should get a similar response to this, depending on your DB2 version:

Note

i538292 ch20.qxd 8/18/03 8:44 AM Page 521

522 Part IV ✦ Relational Data and XML

Database Connection Information
Database server = DB2/NT 8.1.0
SQL authorization ID = OWNER
Local database alias = XMLPB

Next, bind XML Extender to the connected database using the following command.
Change the path to your DB2 XML Extender path if you didn’t use the default of
c:\dxx\.

C:\Program Files\IBM\SQLLIB\BIN>db2 bind “c:\dxx\bnd\@dxxbind.lst”

You should get the following response:

LINE MESSAGES FOR dxxbind.lst
SQL0061W The binder is in progress.
LINE MESSAGES FOR dxxcomp.bnd
1994 SQL0204N “DB2XML.XML_USAGE” is an undefined name.

SQLSTATE=01532
LINE MESSAGES FOR dxxbind.lst

SQL0091N Binding was ended with “0” errors and “1” warnings.

The warning above is displayed when you bind DB2 XML Extender for the first time
to a database that you have not yet enabled. That’s expected, because you haven’t
enabled it yet.

Next, disconnect from the database with the following command:

C:\Program Files\IBM\SQLLIB\BIN>db2 terminate

To which you should get this response:

DB20000I The TERMINATE command completed successfully.

Once disconnected, you can enable the database for use with the DB2 XML
Extender with this command:

C:\Program Files\IBM\SQLLIB\BIN>c:\dxx\bin\dxxadm enable_db XMLPB

This is the response you should get:

DXXA002I Connecting to database XMLPB.
DXXA005I Enabling database XMLPB. Please wait.
DXXA006I The database “XMLPB” was enabled successfully.
C:\Program Files\IBM\SQLLIB\BIN>

The database is now bound and enabled for DB2 XML Extender.

i538292 ch20.qxd 8/18/03 8:44 AM Page 522

523Chapter 20 ✦ Accessing and Formatting XML from DB2

Working with Document Access Definitions (DAD)
XML Extender uses Document Access Definition (DAD) documents to map XML ele-
ments and attributes to DB2 tables. DADs are used to translate selected XML docu-
ment data to “side tables,” which are tables that contain elements and attributes as
table columns.

Despite the name, side tables are not something you can find at IKEA (For those
of you who may have noticed — yes, we used the same joke in the SQL Server
chapter — relational data jokes are hard to come by, we have to reuse them when we
can!). Side tables are relation tables that are mapped to XML documents. They are
used to index XML data for fast searches without all of the XML document clutter.

DADs can also be used to translate data from XML documents to relational tables,
and vice versa. There are three types of DADs: XML column, XML collection SQL
mapping, and SQL collection RDB node mapping. SQL column DADs are used to
map an XML document column to side tables. XML collection SQL mapping is used
to map an SQL query statement to XML document output. SQL mapping is used for
queries only, not updates or inserts. XML collection RDB node mapping is used to
map XML documents elements, attributes, and text nodes to column data in rela-
tional tables. RDB node mapping provides a little more information than SQL collec-
tion mapping. It uses the additional information to handle both SQL queries and
relational data updates and inserts.

Working with XML columns
XML Extender-enabled databases can use XML columns to store XML documents in a
DB2 column. XML documents are stored in their original format inside an XMLCLOB
or XMLVARCHAR column. XMLCLOB and XMLVARCHAR are DB2 XML Extender user
defined data types that are based on core DB2 data types. XMLCLOB is based on
CLOB and XMLVARCHAR is based on VARCHAR(3000). A third data type, XMLFILE, is
used to store a reference to a file on the file system. XMLFILE is used to include XML
documents on the file system in text indexes. XMLFILE is also a DB2 XML Extender
user defined data type. It’s based on VARCHAR(512).

XML column data can be retrieved a whole XML document using cast functions.
There are also several functions that can retrieve XML document fragments from
stored XML documents using XPath functions.

i538292 ch20.qxd 8/18/03 8:44 AM Page 523

524 Part IV ✦ Relational Data and XML

Table 20-7
DB2 XML Extender Casting Functions

Function Description

XMLVARCHAR(VARCHAR) Returns an XMLVARCHAR from a VARCHAR

XMLCLOB(CLOB) Returns an XMLCLOB from a CLOB or a CLOB locator

XMLFILE(VARCHAR) Stores the file name of an XML document on the file system.

In addition to the three core casting functions in Table 20-7, there are also five XML
Extender user defined functions (UDFS) that can cast the XML extender User Defined
Types. These UDFS are used to read and write XML documents to and from the file
system on the server. Table 20-8 shows the user defined functions for casting.

Table 20-8
DB2 XML Extender Casting UDFS

UDF Description

XMLVarcharFromFile(file) Creates an XMLVARCHAR data type object from a
file on the file system. The parameter is a file
name and path.

XMLCLOBFromFile(file) Creates an XMLCLOB data type object from a file
on the file system. The parameter is a file name
and path.

XMLFileFromVarchar(file, encoding) Writes an XMLVARCHAR data type to a file on the
file system. The parameters are a file name and
path, and optional encoding for the XML
document file. Returns the file name in XMLFILE
format.

XMLFileFromCLOB(file, encoding) Writes an XMLCLOB data type to a file on the file
system. The parameters are a file name and path,
and optional encoding for the XML document file.
Returns the file name in XMLFILE format.

XML column mapping example
If a database has been enabled for use with DB2 XML, table columns can be format-
ted a mixture of regular DB2 data types and XML data types.

i538292 ch20.qxd 8/18/03 8:44 AM Page 524

525Chapter 20 ✦ Accessing and Formatting XML from DB2

For this example, we’ve created a table with one column. The column is formatted
as an XMLCLOB data type using this SQL command:

CREATE TABLE OWNER.XMLONLY (XMLDOC DB2XML.XMLCLOB NOT LOGGED) ;

The NOT LOGGED condition is needed because columns with a potential size of
1GB or more (XMLCLOBS can go up to 2GB) cannot be logged. You have to either
limit the size of the XMLCLOB to less than 1GB, or turn logging off for that column.

We’ll use the column to access book records as XML, rather than having to generate
and shred XML documents from relational data. We also create a very simple DAD
file, which will be used by the table to validate incoming XML documents and index
certain fields in the XML document for text searches. The dtdid element in the
example below tells DB2 XML Extender functions to validate incoming XML docu-
ments against the AmazonListings DTD. The DAD elements that are nested inside
the Xcolumn element tell DB2 to extract and index the PRODUCTID and the TITLE
elements from XML documents for fast text searches. The element locations are
defined by XPath expressions.

<DAD>
<dtdid>AmazonListings</dtdid>
<validation>YES</validation>
<Xcolumn>

<table name=”XMLONLY_side_tab”>
<column name=”PRODUCTID” type=”integer”
path=”/AMAZONLISTINGS/PRODUCTID” multi_occurrence=”NO”/>
<column name=”TITLE” type=”CHARACTER(200)”
path=”/AMAZONLISTINGS/TITLE” multi_occurrence=”NO”/>

</table>
</Xcolumn>

</DAD>

The DTD reference is based on a unique ID. DB2 databases that have been enabled
for XML Extender store DTDs in a table called DTD_REF with a unique ID. A refer-
ence in a DAD file to a unique ID returns the matching DTD. Here’s the DTD:

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT AMAZONLISTINGS (PRODUCTID, RANKING, TITLE, ASIN, AUTHORID, IMAGE,
SMALL_IMAGE, LIST_PRICE, RELEASE_DATE, BINDING, AVAILABILITY, TAGGED_URL)>
<!ELEMENT PRODUCTID (#PCDATA)>
<!ELEMENT RANKING (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT ASIN (#PCDATA)>
<!ELEMENT AUTHORID (#PCDATA)>
<!ELEMENT IMAGE (#PCDATA)>
<!ELEMENT SMALL_IMAGE (#PCDATA)>
<!ELEMENT LIST_PRICE (#PCDATA)>
<!ELEMENT RELEASE_DATE (#PCDATA)>
<!ELEMENT BINDING (#PCDATA)>
<!ELEMENT AVAILABILITY (#PCDATA)>
<!ELEMENT TAGGED_URL (#PCDATA)>

Note

i538292 ch20.qxd 8/18/03 8:44 AM Page 525

526 Part IV ✦ Relational Data and XML

The DTD is very basic, just specifying the elements that should be present in the
XML document, and the order in which they should be structured.

We used XMLSpy (free trial download available at http://www.xmlspy.com)
to generate the DTD instead of hand-coding it. XMLSpy can automatically connect
to DB2 databases using an included IBM OLE DB provider for DB2. XMLSpy gener-
ates a W3C Schema from a database schema. We based the schema on the AMA-
ZONLISTINGS table, and generated the schema. Next, we converted the W3C
Schema to the DTD you see here with another XMLSpy menu option. After that, we
created a sample document for use with the DTD. We made sure that the DTD was
valid by adding AMAZONLISTINGS table data to the XML document, then testing
the sample XML document against the DTD. The entire process to a few minutes,
a fraction of the time it would have taken to hand-code and test a DTD.

Once the DTD is ready , you can register it in the XMLPB database using the DB2
Administration Wizard, which is available from the Windows start menu at DB2
XML Extender➪XML Extender Administration Wizard. If you’re at the console of the
DB2 server, you can log on to the database using a local JDBC connection string
like this:

jdbc:db2:XMLPB

Next, choose the file containing the DTD and specify an ID for the DTD. You can
refer to the ID when using DADS that are associated with the same database. Figure
20-1 shows the “Import a DTD Wizard” screen that registers a DTD. The screen is
part of the DB2 XML Extender Administration Wizard.

Figure 20-1: The Import a DTD Wizard, part of the DB2 XML
Extender Administration Wizard

Tip

i538292 ch20.qxd 8/18/03 8:44 AM Page 526

527Chapter 20 ✦ Accessing and Formatting XML from DB2

Once the DTD is registered, the next step is to enable the XMLDOC column for use
with XML extender. This is done through the same screen as the DTD registration.
Select the “Work with XML Columns” button. In the screen that appears (Figure
20-2), choose the table (XMLONLY), the column name (XMLDOC), and the location
of the DAD file. The file is automatically registered with the column.

Figure 20-2: The Work with XML Columns Wizard, part of the
DB2 XML Extender Administration Wizard

Getting data into an XMLCLOB column
With the new XMLONLY table, we can insert XML document data from any file sys-
tem or in-memory XML document source. In the example below, we select a file that
contains XML document from the file system and store it in the XMLDOC column:

INSERT INTO XMLONLY(XMLDOC)
VALUES(XMLCLOBFromFile(‘C:/dxx/samples/xml/newbook.xml’))

This example imports the XML document from the file named C:/dxx/samples/
xml/newbook.xml into the XMLDOC column of the XMLONLY table.

Updating elements and attributes in Stored XML documents
The XML extender UPDATE UDF provides a way to update the values of selected
attributes or text values in an XML document that is stored in DB2. The following

i538292 ch20.qxd 8/18/03 8:44 AM Page 527

528 Part IV ✦ Relational Data and XML

example updates the value of the AVAILABILITY element of a book with a
PRODUCTID of 1004 to Out of Stock:

UPDATE XMLONLY set XMLDOC = Update(XMLDOC, ‘/AMAZONLISTINGS/AVAILABILITY’, ‘Out
of Stock’)
WHERE PRODUCTID = 1004

There are several other functions that can be used to extract and manipulate XML
documents stored in DB2 XML columns. Table 20-9 shows additional XML functions
for XML Columns.

Table 20-9
DB2 XML Extender Functions for XML Columns

Function Description

extractInteger(XPath) Extracts the value returned by XPath as an integer.

extractSmallint(XPath) Extracts the value returned by XPath as a smallint.

extractDouble(XPath) Extracts the value returned by XPath as a double.

extractReal(XPath) Extracts the value returned by XPath as real.

extractChar(XPath) Extracts the value returned by XPath as a character.

extractVarchar(XPath) Extracts the value returned by XPath as a varchar.

extractCLOB(XPath) Extracts the value returned by XPath as a CLOB.

extractDate(XPath) Extracts the value returned by XPath as a date.

extractTime(XPath) Extracts the value returned by XPath as a time.

extractTimestamp(XPath) Extracts the value returned by XPath as a timestamp.

XML collection SQL mapping DAD example
Let’s go through an XML collection SQL mapping DAD that is used to map an XML
document format to the AMAZONLISTINGS table. DAD documents are actually well-
formed XML, with a .DAD file extension. The !DOCTYPE processing instruction
refers to a DTD that is stored on the file system and is used to make sure that the
XML document follows a valid DAD file format. The next element contains the root
element for the XML document, DAD.

<?xml version=”1.0”?>
<!DOCTYPE DAD SYSTEM “c:\dxx\dtd\dad.dtd”>
<DAD>

i538292 ch20.qxd 8/18/03 8:44 AM Page 528

529Chapter 20 ✦ Accessing and Formatting XML from DB2

The dtdid element refers to a DTD that incoming XML documents can be validated
against. The validation tag toggles validation against the DTD on (YES) or off (NO).
XML collection SQL mapping DADs manage queries only, so DTD validation is not
required. However, the elements have to be present for a valid DAD file.

<dtdid>c:\dxx\dtd\DB2AmazonListings.dtd</dtdid>
<validation>NO</validation>

The Xcollection tag tells DB2 that this DAD is describing a DB2 XML collection
instead of an XML column. The SQL_stmt element defines the SQL statement that
will be used to define the mapping between the rows in a table and the elements in
an output XML document. Subsequent elements in the DAD refer back to columns
in this query. The text values of the prolog and doctype elements are appended
to XML documents that are generated using the DAD.

<Xcollection>
<SQL_stmt>SELECTPRODUCTID, RANKING, TITLE, ASIN, AUTHORID, IMAGE,

SMALL_IMAGE,
LIST_PRICE, RELEASE_DATE, BINDING, AVAILABILITY,TAGGED_URL
</SQL_stmt>
<prolog>?xml version=”1.0”?</prolog>
<doctype>!DOCTYPE AMAZONLISTINGS SYSTEM
“c:\dxx\dtd\DB2AmazonListings.dtd”</doctype>

Next, the DAD identifies the root node of the XML document with the root_node
element. The element node directly under that provides the name of the root ele-
ment, AMAZONLISTINGS.

<root_node>
<element_node name=”AMAZONLISTINGS”>

Next, the DAD maps the text value of the PRODUCTID element to the PRODUCTID
column in the SQL query. This is done my nesting the text_node element inside
the PRODUCTID element. If there were any attributes for the PRODUCTID element,
they would be nested under the element_node as an attribute_node.

<element_node name=”PRODUCTID”>
<text_node>

<column name=”PRODUCTID” type=”INTEGER”/>
</text_node>

</element_node>

The RANKING element is mapped to the RANKING column of the AMAZONLISTINGS
table in the same way. The data type is specified as INTEGER to match the data
type in the table. The source XML document does not have to specify a data type;
this is solely for the purpose of DB2.

<element_node name=”RANKING”>
<text_node>

i538292 ch20.qxd 8/18/03 8:44 AM Page 529

530 Part IV ✦ Relational Data and XML

<column name=”RANKING” type=”INTEGER”/>
</text_node>

</element_node>

The rest of the element-to-column mappings follow the same pattern, mapping all of
the XML document values to table column values, with the correct data types.

<element_node name=”TITLE”>
<text_node>

<column name=”TITLE” type=”CHARACTER”/>
</text_node>

</element_node>
<element_node name=”ASIN”>

<text_node>
<column name=”ASIN” type=”CHARACTER”/>

</text_node>
</element_node>
<element_node name=”AUTHORID”>

<text_node>
<column name=”AUTHORID” type=”INTEGER”/>

</text_node>
</element_node>
<element_node name=”IMAGE”>

<text_node>
<column name=”IMAGE” type=”CHARACTER”/>

</text_node>
</element_node>
<element_node name=”SMALL_IMAGE”>

<text_node>
<column name=”SMALL_IMAGE” type=”CHARACTER”/>

</text_node>
</element_node>
<element_node name=”LIST_PRICE”>

<text_node>
<column name=”LIST_PRICE” type=”DECIMAL(10,2)”/>

</text_node>
</element_node>
<element_node name=”RELEASE_DATE”>

<text_node>
<column name=”RELEASE_DATE” type=”DATE”/>

</text_node>
</element_node>
<element_node name=”BINDING”>

<text_node>
<column name=”BINDING” type=”CHARACTER”/>

</text_node>
</element_node>
<element_node name=”AVAILABILITY”>

<text_node>
<column name=”AVAILABILITY” type=”CHARACTER”/>

i538292 ch20.qxd 8/18/03 8:44 AM Page 530

531Chapter 20 ✦ Accessing and Formatting XML from DB2

</text_node>
</element_node>
<element_node name=”TAGGED_URL”>

<text_node>
<column name=”TAGGED_URL” type=”CHARACTER”/>

</text_node>
</element_node>

Once all of the elements have been mapped to columns, the root element node is
closed, the XML collection is closed, and the DAD root element closing finishes the
DAD file.

</element_node>
</root_node>

</Xcollection>
</DAD>

XML Collection RDB Node example
Earlier in this chapter we showed you an XML collection SQL Mapping DAD that is
used for queries only. An XML Collection RDB Node Mapping DAD can also be used
to translate data from XML documents to relational tables, and vice versa. Below is
a DAD that is used to insert an XML document into the AMAZONLISTINGS table.
The tSQL Mapping and RDB node DAD files are very similar. We have to repeat
myself a bit to fully explain both DADS. We’ll point out the additional elements in a
RDB node DAD as we go along.

DAD documents are well-formed XML, with a .DAD file extension. The !DOCTYPE
processing instruction refers to a DTD that is stored on the file system and is used
to make sure that the XML document is a valid DAD file. The next element contains
the root element for the XML document, DAD.

<?xml version=”1.0”?>
<!DOCTYPE DAD SYSTEM “c:\dxx\dtd\dad.dtd”>
<DAD>

The current version of DB2 and DB2 XML Extender support automatic validation of
incoming XML documents against a DTD, but not against a W3C schema. You can
still validate incoming XML documents against a schema, but you have to explicitly
add validation to your SQL expressions. The XML DB2 Extender and SVALIDATE()
function explicitly validates data against a schema. The DVALIDATE() function
explicitly validates against a DTD. The dtdid element refers to a DTD that incom-
ing XML documents can be validated against. The validation tag toggles validation
against the DTD on (YES) or off (NO).

<dtdid>c:\dxx\dtd\DB2AmazonListings.dtd</dtdid>
<validation>YES</validation>

i538292 ch20.qxd 8/18/03 8:44 AM Page 531

532 Part IV ✦ Relational Data and XML

The Xcollection tag tells DB2 that this DAD is describing a DB2 XML collection
instead of an XML column. XML columns are used for storing XML documents as a
single unit in a single column. XML collections split up XML document elements,
attributes, and text values into relational data columns, then reassemble the XML
document when data is queried. XML columns are best used for data that doesn’t
neatly fit into relational table structures, such as raw Website content. XML
columns can also be used for improving performance by storing frequently
accessed XML documents. If the data is already formatted as an XML document,
there is no overhead associated with shredding and building the document, as
there is with XML document collections.

The text values of the prolog and doctype elements are appended to XML docu-
ments that are generated using the DAD.

<Xcollection>
<prolog>?xml version=”1.0”?</prolog>
<doctype>!DOCTYPE AMAZONLISTINGS SYSTEM
“c:\dxx\dtd\DB2AmazonListings.dtd”</doctype>

Next, the DAD identifies the root node of the XML document with the root_node
element. The element node directly under that provides the name of the root ele-
ment, AMAZONLISTINGS. The multi-occurrence attribute specifies that all of the ele-
ments nested under the current element should be treated as a single row of
relational data. This means that the nested element values in the DAD are added to
the same row in the relational table, until another sibling occurrence of the AMA-
ZONLISTINGS element is found.

<root_node>
<element_node name=”AMAZONLISTINGS” multi_occurrence=”YES”>

Nested under the root_node are all of the elements that are contained in the
row of relational data. The RDB_node element defines a mapping from a relational
database object to an XML document object. The first mapping defines the
PRODUCTID element of an XML document as a primary key in the relational
database using a condition element..

<RDB_node>
<table name=”AMAZONLISTINGS” key=”PRODUCTID”/>
<condition>
AMAZONLISTINGS.PRODUCTID =AMAZONLISTINGS.PRODUCTID

</condition>
</RDB_node>

Next, the DAD maps the text value of the PRODUCTID element to the PRODUCTID
column in the AMAZONLISTINGS table. This is done my nesting the text_node
element inside the PRODUCTID element. If there were any attributes for the
PRODUCTID element, they would be nested under the element_node as an
attribute_node.

i538292 ch20.qxd 8/18/03 8:44 AM Page 532

533Chapter 20 ✦ Accessing and Formatting XML from DB2

<element_node name=”PRODUCTID”>
<text_node>

<RDB_node>
<table name=”AMAZONLISTINGS”/>
<column name=”PRODUCTID” type=”INTEGER”/>

</RDB_node>
</text_node>

</element_node>

The RANKING element is mapped to the RANKING column of the AMAZONLISTINGS
table in the same way. The data type is specified as INTEGER to match the data
type in the table. The source XML document does not have to specify a data type,
this is solely for the purpose of DB2.

<element_node name=”RANKING”>
<text_node>

<RDB_node>
<table name=”AMAZONLISTINGS”/>
<column name=”RANKING” type=”INTEGER”/>

</RDB_node>
</text_node>

</element_node>

The rest of the element-to-column mappings follow the same pattern, mapping all of
the XML document values to table column values, with the correct data types.

<element_node name=”TITLE”>
<text_node>

<RDB_node>
<table name=”AMAZONLISTINGS”/>
<column name=”TITLE” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”ASIN”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”ASIN” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”AUTHORID”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”AUTHORID” type=”INTEGER”/>

</RDB_node>
</text_node>

</element_node>

i538292 ch20.qxd 8/18/03 8:44 AM Page 533

534 Part IV ✦ Relational Data and XML

<element_node name=”IMAGE”>
<text_node>

<RDB_node>
<table name=”AMAZONLISTINGS”/>
<column name=”IMAGE” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”SMALL_IMAGE”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”SMALL_IMAGE” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”LIST_PRICE”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”LIST_PRICE” type=”DECIMAL(10,2)”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”RELEASE_DATE”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”RELEASE_DATE” type=”DATE”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”BINDING”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”BINDING” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”AVAILABILITY”>

<text_node>
<RDB_node>

<table name=”AMAZONLISTINGS”/>
<column name=”AVAILABILITY” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>
<element_node name=”TAGGED_URL”>

<text_node>
<RDB_node>

i538292 ch20.qxd 8/18/03 8:44 AM Page 534

535Chapter 20 ✦ Accessing and Formatting XML from DB2

<table name=”AMAZONLISTINGS”/>
<column name=”TAGGED_URL” type=”CHARACTER”/>

</RDB_node>
</text_node>

</element_node>

Once all of the elements have been mapped to columns, the root element node is
closed, the XML collection is closed, and the DAD root element closing finishes the
DAD file.

</element_node>
</root_node>

</Xcollection>
</DAD>

Checking your RDB Node DAD with the DAD Checker
The DAD checker is a tool from IBM that checks the validity of a DAD. It checks the
data constraints of the DAD document and returns errors and warnings, if there are
any. It can be downloaded from http://www-3.ibm.com/software/data/
db2/extenders/xmlext.

The DAD checker only validates XML collection DAD files, not XML Column.

Here’s an example of a DAD file session. As per the setup instructions, go to the
install directory and type the following command:

C:\Temp\Db2\dadchk\bin>java dadchecker.Check_dad_xml -dad AmazonListings.DAD

If all goes well, you should get a message like this, listing all of the errors that were
checked. The documentation that cones with the tool has a full explanation of the
messages. If there are any problems with the DAD format, the line number of the
error will display, along with a possible cause:

Checking DAD document: AmazonListings.DAD
No duplicated tags were found.
No type attributes are missing for <column> tags.
All <RDB_node> tags are properly enclosed.
The ‘name’ attributes for the <table> and <column> tags are all non empty
strings.
No <element_node> tags have been found with the same names and different
mappings.
No <attribute_node> tags have been found with the same names and different
mappings.
No missing multi_occurrence=”YES” has been found.
FIXPAK 3 or earlier only:
no <attribute_node> tag mapping order problems were found.

Note

i538292 ch20.qxd 8/18/03 8:44 AM Page 535

536 Part IV ✦ Relational Data and XML

Adding DADS and DTDs to the database
When we introduced XML Columns to you earlier in this chapter, we showed you
how to register DTDs and DADs with a database. Behind the scenes, the DB2 XML
Extender Administration Wizard provides a user-friendly interface to the
dxxEnableCollection() stored procedure. This procedure accepts a DAD file
name and a collection name, then registers the structure of the DAD as an XML col-
lection in the database. DTDs can be registered there as well. Once the connection
is registered, DB2 XML Extender stored procedures can be used to retrieve, store,
and manipulate XML documents and relational data. These are well covered in DB2
XML Extender documentation.

Table 20-10
DB2 XML Extender Stored Procedures

Procedure Description

dxxEnableCollection() Registers a DAD file in a DB2 XML Extender-enabled
database, and names a collection. The collection can be
referenced when extracting or shredding XML documents.

dxxDisableCollection() Disables a registered DAD file in a DB2 XML Extender-
enabled database, and removes the collection name
reference.

dxxGenXML() Returns a table-based result set from a query and a
supplied DAD file. The DAD file does not have to be
registered in the database as a named XML collection.

dxxRetrieveXML() Returns a table-based result set from a query and a named
XML collection that is registered in the database.

dxxShredXML() Creates relational data from a supplied XML document
based on a specified DAD file. The DAD file does not have
to be registered in the database as a named XML
collection.

dxxInsertXML() Creates relational data from a supplied XML document and
a named XML collection that is registered in the database.

i538292 ch20.qxd 8/18/03 8:44 AM Page 536

537Chapter 20 ✦ Accessing and Formatting XML from DB2

Summary
In this chapter, we showed you how to work with XML in DB2:

✦ Working with the DB2 Core SQL functions that create XML

✦ Introduction to the DB2 XML Extender

✦ Creating and editing DADs

✦ XML Column DADs

✦ XML Collection Node Mapping DADs

✦ XML Collection RDB Node DADs

✦ Checking Collection DADS with the DAD Checker

✦ Validating XML document data with DTDs and schemas

In the next chapter, we’ll show you how to create Web and J2EE applications and
Websites that generate XML data from relational data. In Chapter 22, we’ll show you
tips and tricks for converting and transforming native and custom relation data
from one relational database’s XML format to another.

✦ ✦ ✦

i538292 ch20.qxd 8/18/03 8:44 AM Page 537

Building
XML-Based Web
Applications
with JDBC

In this chapter we’ll apply much of the tools and techniques
that have been reviewed so far in the book. First, we’ll

show you how to create a J2EE application that accesses rela-
tional data via JDBC. Next, we’ll show you how to adapt the
J2EE application into a multi-tier application. The multi-tier
application uses servlets and JDBC to serve relational data via
XML to Web browsers and/or J2EE applications, depending on
parameters that are sent to the servlet.

These examples are a great way to show you how to create
applications that generate XML, parse XML, and transport
XML between servers and client applications. Examples also
include formatting considerations for displaying XML on the
Web, how to call servlets from Web browsers and custom
applications, and how to parse XML documents in a Web
browser and client application.

About Java Database
Connectivity (JDBC)

The JDBC specification and its reference implementation
classes are Sun products. Like other specifications such as
those included in the Sun Web Services Developer Pack (JAXP,
JAXB, JAXM, and so on), the JDBC specification is part of the
Java Community Process (JCP). At the time of this writing, the
latest version of JDBC is the JDBC 3.0 API. JDBC contains

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A J2EE sample
application –
XMLPBXMLApp

System prerequisites
for J2EE applications
that use JDBC

Generating custom
XML formats

Reviewing the
XMLPBXMLApp
source code

A three-tier system
combining Java
applications, servlets,
and JDBC

Prerequisites for
developing servlets

Accessing servlets
from a Web browser

Accessing servlets
from a J2EE
application

Under the hood
of a multi-tier
Web application

Under the hood
of a multi-tier
Java application

✦ ✦ ✦ ✦

i538292 ch21.qxd 8/18/03 8:44 AM Page 539

540 Part IV ✦ Relational Data and XML

classes that are stored in the java.sql and javax.sql packages. Java’s JDK 1.4
and up bundle JDBC as part of the JDK, so no additional packages are needed.
Otherwise, you’ll have to download JDBC support from http://java.sun.com/
products/jdbc/download.html and follow the instructions for setting up the
packages to use the examples in this chapter.

JDBC supports reading and writing of data from Java to external data sources. Even
though JDBC is a Sun product, it’s based on the X/Open SQL call level interface
(CLI) specification, which is the same specification that Microsoft’s Open Database
Connectivity (ODBC) offerings are based on. Because of this, JDBC and ODBC func-
tionality is closely related, and some JDBC drivers use ODBC as their connection
service. More information on the X/Open SQL CLI can be found at http://www.
opengroup.org.

JDBC is based on the java.sql and javax.sql packages for JDBC support coding
access to a JDBC driver. JDBC drivers are not included in the JDK or the JDBC
downloads. Most relational database vendors have created JDBC drivers for their
database offerings. Aside from vendor-provided drivers, there are dozens of third-
party JDBC drivers. Sun hosts a page that lists JDBC drivers and vendors at
http://industry.java.sun.com/products/jdbc/drivers.

Besides the three JDBC specification versions, there are four types of JDBC drivers:

✦ Type 1 JDBC drivers function as a JDBC-ODBC bridge. Just like a real bridge,
Type 1 drivers connect two things together. On one side, a Java interface is
used to map a connection to an ODBC driver. The ODBC driver does all of the
work of connecting to the database, and feeding information between the rela-
tional data source and the Java interface on the other side of the bridge.

✦ Type 2 drivers rely on external code to function. That code may be written in
Java or any other language, as long as it provides access to the driver through
Java.

✦ Type 3 drivers are written completely in Java. They can be downloaded and
configured at runtime, and talk to relational databases and middleware
servers via custom protocols.

✦ Type 4 drivers are Java-like Type 3 drivers. They handle connections directly
to database servers without any conversion protocols between the server and
the RDBMS.

The Microsoft SQL Server, Oracle, and DB2 (via the IBM DB2 Connect product) all
provide JDBC 3 Type 4 drivers with their RDBMS products. Even though all JDBC
drivers claim to fully support JDBC specifications, we’ve found that each provider
had interpreted the JDBC specifications in different ways. This means that while
there are significant compatibilities between provided JDBC drivers, you will find
that there are differences in functionality. The promise of being able to access any
database using the same J2EE code by swapping out one JDBC driver for another is
a good one, but not quite there yet.

i538292 ch21.qxd 8/18/03 8:44 AM Page 540

541Chapter 21 ✦ Building XML-Based Web Applications with JDBC

For the examples in this chapter, we’ll use the SQL Server JDBC driver from
Microsoft. You can download the JDBC driver and installation instructions, as well
as all other SQL Server-related downloads, from http://msdn.microsoft.com/
library/default.asp?url=/downloads/list/sqlserver.asp.

The JDBC driver should be installed on the same machine as SQL server, and the
SQL server should have URL access set up. The following conditions must be met
on the SQL server:

✦ TCPIP must be enabled via the network utility, and the port must be config-
ured to port 1433.

✦ Windows and SQL server login support must be enabled, (the default is
“Windows Only”).

Because SQL server data is accessed via JDBC, SQLXML and IIS are not needed for
the examples in this chapter. For the example that shows browser access with a
servlet, you will need a J2EE application server such as Tomcat or WebSphere to
run the servlet examples. I’ll briefly cover setup and deployment of the servlets
later in the chapter.

The most important part of the setup is the Setting up the CLASSPATH environment
variable for the machine you are running the JDBC driver on.

Once the JDBC drivers have been downloaded and installed, you need to set up
your CLASSPATH environment variable. In Windows 2000 and Windows XP, the
CLASSPATH is contained in the environment variable settings (control panel➪
system➪advanced).

One of the problems we had while setting up the latest version of the MS JDBC
drivers had to do with the order of .jar files in my CLASSPATH. We weren’t able to
get our J2EE application server (WebSphere) to recognize the JDBC driver, which is
in mssqlserver.jar. After some trial and error, we rearranged the references one by
one in the CLASSPATH until we got to the order shown below, with mssqlserver.jar,
then msutil.jar, then msbase.jar before the other .jar files in the CLASSPATH. Once
this order had been established, everything worked fine. We have since seen sim-
ilar problems outlined in MS SQL Server forums, with the same solution, but no
explanation of the cause. I recommend that if you have the same trouble, you set
the order as shown here:

CLASSPATH=.;c:\sqljdbc\mssqlserver.jar;c:\sqljdbc\msu
til.jar;c:\sqljdbc\msbase.jar;...(Other .jar files in
your CLASSPATH.)

Tip

Note

i538292 ch21.qxd 8/18/03 8:44 AM Page 541

542 Part IV ✦ Relational Data and XML

Introduction to the Sample Java Application –
XMLPBXMLApp.java

The first example in this chapter is a fully functional Java Application that uses
Swing Classes and AWT events to generate a UI, JDBC to access SQL Server data,
and Java classes to generate customized XML formats. Let’s jump right into the
application with a look at the screen. Figure 21-1 shows the Java Application (Quote
XML Generator) screen, with William Shakespeare selected as the Quote Author,
the first quote selected as the output, “Element XML (Table=Root, Field Name=
Element)” selected as the output format, and the resulting XML output displayed in
the lower pane of the screen.

Figure 21-1: The XMLPBXMLApp.java (Quote XML Generator)
application screen

How the application works
When the application window is opened, a class is called that retrieves a list of
unique quote authors from the Authors SQL Server Database via JDBC. The applica-
tion then draws the various Swing panels on the page and attaches AWT events to

i538292 ch21.qxd 8/18/03 8:44 AM Page 542

543Chapter 21 ✦ Building XML-Based Web Applications with JDBC

the panels. Users can scroll up and down the list of quote authors in the author List
panel, and select a single author by clicking on it in the list. Clicking on a quote
author name triggers another query to retrieve all the quotes attributed to the
selected author. The quotes are displayed in the quote list panel on the top right of
the screen. When a user clicks on one of the quotes in the quote list panel, another
Java class is called to generate output for the selected quote and display it in the
output panel in the lower half of the application window. In the middle of the
screen is a combo box that can be used to select output format options. Table 21-1
lists the four options and what they produce:

Table 21-1
Quote Output Formatting Options

Just the Quote Generates plain quote text in the output window.

Element XML (Table=Root, JDBC metadata and columns of a table
Field Name=Element) represented as elements nested in a parent

record element.

Attribute XML (Table=Element, JDBC metadata and columns of a table
Field Name=Attribute) represented as attributes in a record element.

Aside from being a good Java Application prototype, the Quote XML Application is
a good example of creating an alternative user interface to SQL Server data using
JDBC and Java GUI Classes. It contains examples of accessing and displaying SQL
Server tables in several different ways, including strings, arrays, and XML documents.

About the example SQL Server database
In this chapter we’re reusing tables from the XMLProgrammingBible SQL Server
database. Setup instructions for the database can be found in Chapter 18.

Creating the Java Application User Interface
Because the source code for this application is more than 400 lines, and occupies
more than 15 pages of this book, we have broken down the source code into seg-
ments that relate to a specific topic, rather than showing the source code in its
entirety on the pages. All of the examples contained in this chapter can be down-
loaded from the XMLProgrammingBible.com Website, in the Downloads section.
Please see the Website for installation Instructions.

i538292 ch21.qxd 8/18/03 8:44 AM Page 543

544 Part IV ✦ Relational Data and XML

Defining public variables and the application window
Let’s look under the hood of the Java Application by breaking down the Java
Application source code into topical sections with detailed explanations of the
code, starting with the introductory application setup Listing 21-1.

This Java Application imports the java.io classes for writing to the screen,
javax.swing classes to handle UI features, and selected java.awt classes to
manage action events. The java.sql classes manage access to the Microsoft SQL
server JDBC classes. The java.util classes handle list and array formatting.

The rest of this code sets up a Jframe window, which becomes the application win-
dow, and creates an instance of an actionlistener to watch for the window to be
closed. When the window is closed, the application exits.

Listing 21-1: Defining the Public Variables and the
Application Window

import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.sql.*;

public class XMLPBXMLApp extends JPanel {
JTextArea output;
JList authorList;
JList QuoteList;
ListSelectionModel authorListSelectionModel;
ListSelectionModel QuotelistSelectionModel;
public String[] listData;
JComboBox comboBox;

public static void main(String[] args) {
JFrame frame = new JFrame(“Quote XML Generator”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

frame.setContentPane(new XMLPBXMLApp());
frame.pack();
frame.setVisible(true);

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 544

545Chapter 21 ✦ Building XML-Based Web Applications with JDBC

Setting objects in the Window and
implementing ActionListeners
Listing 21-2 shows the code that is used to define the main UI on top of the applica-
tion Window. The first task is to retrieve a unique list of quote authors from the
SQL Server Authors table calling the GetAuthorList() class, which we will cover
a bit later.

Once this is done, the AuthorList object is created, and an AuthorList
SelectionHandler object is attached to the list. When users click on a quote
author, the AuthorListSelectionHandler class is called to handle the action.
Next, a JscrollPane called SourcePane is created for the list object, and the
pane is placed in the top left of the application window.

The instantiation steps are repeated for the QuoteList object, which will be used
to display quotes for a selected author on the top right of the application window. A
QuoteListSelectionHandler object is attached to the quote list.

Next, a drop-down combo box containing the application output options is created,
which will be located in the center of the Application window, just below the author
list and quote list panes. The hard-coded output options are defined and the default
is set to the first object.

The last step is for a JtextArea object to be defined and placed in the bottom half
of the application window. This is where the XML and text output is sent when a
user selects a quote from the quote list.

The balance of the code in Listing 21-2 is Swing and AWT class housekeeping to cre-
ate the details of the layout that the user interface needs.

Listing 21-2: Setting Objects in the Window and
Implementing ActionListeners

public XMLPBXMLApp() {
super(new BorderLayout());

listData = GetAuthorList();
String[] WelcomeMessage={“Click on a Source in the Left Pane to
Retrieve Quotes”};

authorList = new JList(listData);

authorListSelectionModel = authorList.getSelectionModel();
authorListSelectionModel.addListSelectionListener(

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 545

546 Part IV ✦ Relational Data and XML

Listing 21-2 (continued)

new authorListSelectionHandler());
JScrollPane SourcePane = new JScrollPane(authorList);

QuoteList = new JList(WelcomeMessage);
QuotelistSelectionModel = QuoteList.getSelectionModel();
QuotelistSelectionModel.addListSelectionListener(
new QuoteListSelectionHandler());
JScrollPane QuotePane = new JScrollPane(QuoteList);

JPanel OutputSelectionPane = new JPanel();
String[] OutputFormats = { “Just the Quote”, “Element XML
(Table=Root, Field Name=Element)”,
“Attribute XML (Table=Element, Field Name=Attribute)”};

comboBox = new JComboBox(OutputFormats);
comboBox.setSelectedIndex(0);
OutputSelectionPane.add(new JLabel(“Select an output Format:”));
OutputSelectionPane.add(comboBox);

output = new JTextArea(1, 10);
output.setEditable(false);
output.setLineWrap(true);
JScrollPane outputPane = new JScrollPane(output,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
add(splitPane, BorderLayout.CENTER);

JPanel TopPanel = new JPanel();
TopPanel.setLayout(new BoxLayout(TopPanel, BoxLayout.X_AXIS));
JPanel SourceContainer = new JPanel(new GridLayout(1,1));
SourceContainer.setBorder(BorderFactory.createTitledBorder(
“Source List”));
SourceContainer.add(SourcePane);
SourcePane.setPreferredSize(new Dimension(300, 100));
JPanel QuoteContainer = new JPanel(new GridLayout(1,1));
QuoteContainer.setBorder(BorderFactory.createTitledBorder(
“Quote List”));
QuoteContainer.add(QuotePane);
QuotePane.setPreferredSize(new Dimension(300, 500));
TopPanel.setBorder(BorderFactory.createEmptyBorder(5,5,0,5));
TopPanel.add(SourceContainer);
TopPanel.add(QuoteContainer);

TopPanel.setMinimumSize(new Dimension(400, 50));
TopPanel.setPreferredSize(new Dimension(400, 300));
splitPane.add(TopPanel);

i538292 ch21.qxd 8/18/03 8:44 AM Page 546

547Chapter 21 ✦ Building XML-Based Web Applications with JDBC

JPanel BottomPanel = new JPanel(new BorderLayout());
BottomPanel.add(OutputSelectionPane, BorderLayout.NORTH);
BottomPanel.add(outputPane, BorderLayout.CENTER);
BottomPanel.setMinimumSize(new Dimension(400, 50));
BottomPanel.setPreferredSize(new Dimension(800, 400));
splitPane.add(BottomPanel);

}

Listings 21-3 and 21-4 show the AWT Class ActionListeners, which facilitates the
UI functionality in the application.

Defining the action for the source list
Listing 21-3 shows the code that is called when a user clicks on a quote author.
When the ActionListener detects that the user has selected a quote author, the
GetSingleAuthorList class is called, which returns a single-column listing of
quotes for that author. The quotes are displayed in the quote list object on the top
right of the application window.

Listing 21-3: Defining the Action for the Author List

class authorListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent se) {

ListSelectionModel slsm = (ListSelectionModel)se.getSource();
String [] s =
GetSingleAuthorList(authorList.getSelectedValue().toString());
QuoteList.setListData(s);

}
}

Defining the action for the quote list
When a user selects a quote by clicking on a selection in the quote list, the code in
Listing 21-4 is called. When the ActionListener detects that the user has
selected a Quote, the QuoteListSelectionHandler checks the combo box to
see which output format is selected by the user.

If “Just the Quote” is selected, the quote is sent to the output object as text. If
the “Element XML (Table=Root, Field Name=Element)” option is chosen,

i538292 ch21.qxd 8/18/03 8:44 AM Page 547

548 Part IV ✦ Relational Data and XML

the GetSingleQuoteElement class is called to generate Custom XML for the out-
put, with SQL Server table column values formatted as elements in the XML docu-
ment. If “Attribute XML (Table=Element, Field Name=Attribute)” is
chosen, the GetSingleQuoteAttribute is called to generate result set table col-
umn values as attributes.

Listing 21-4: Defining the Actions for the Quote List

class QuoteListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent qe) {

ListSelectionModel qlsm = (ListSelectionModel)qe.getSource();
String OutputFormatChoice = (String)comboBox.getSelectedItem();

if (OutputFormatChoice.equals(“Just the Quote”)) {
output.setText(QuoteList.getSelectedValue().toString());

}

else if (OutputFormatChoice.equals(“Element XML (Table=Root,
Field Name=Element)”)) {

output.setText(GetSingleQuoteElement
(QuoteList.getSelectedValue().toString(
))); }

else if (OutputFormatChoice.equals(“Attribute XML
(Table=Element, Field Name=Attribute)”)) {

output.setText(GetSingleQuoteAttribute
(QuoteList.getSelectedValue().toString()));}

else {
output.setText(QuoteList.getSelectedValue().toString());

}

}
}

Retrieving a list of authors from the
Authors table via JDBC
The code in Listing 21-5 returns a unique listing of quote authors from the Authors
table of the XMLProgrammingBible SQL Server database. The code starts by defin-
ing an array for the list of authors and a string containing a hard-coded SQL Server
query. Next, an MS SQL Server JDBC driver instance is created. A connection is
defined to the SQL Server instance. In this case, we’re running the SQL Server
instance and the J2EE application on the same machine, so the IP address is the
home IP address of the machine - 127.0.0.1. The JDBC user and password for

i538292 ch21.qxd 8/18/03 8:44 AM Page 548

549Chapter 21 ✦ Building XML-Based Web Applications with JDBC

the database are set up in the connection string. Because the XMLProgramming
Bible database is specified in the connection string, we don’t need to explicitly
name the database in our SQL server query.

A JDBC result set object is created, which is the result of the query string passed to
the SQL server. An array is built from the result set with the buildArray class, which
we’ll show you in the next listing. Once the result set is processed, the connection
and the result set are dropped. The contents of the author list object are created by
the array and passed to the application window.

The port (1433) is designated, and the User and Password are predefined. Review
the setup section earlier in this chapter for instructions on preparing to run SQL
server and the JDBC driver if you have not already done so.

Listing 21-5: Retrieving a List of Authors from the
SQL Server Authors Table

public String [] GetAuthorList() {
String authorList [] = null;
String sql = “select AuthorName from Authors”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection(“jdbc:microsoft:
sqlserver://127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
authorList = buildArray(rs);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return authorList ;

}

Listing 21-6 shows the buildArray class that is used by the GetAuthorList and
GetSingleAuthorList classes to build an array from an SQL Server JDBC result set.
An ArrayList is created, which is an implementation of the List interface. The
most important feature of ArrayLists for the purposes of this code is that they are
automatically resizable, via the add() method.

Note

i538292 ch21.qxd 8/18/03 8:44 AM Page 549

550 Part IV ✦ Relational Data and XML

We have explicitly specified java.util.List because the java.awt package
also has a List interface.

The JDBC specification contains a .toArray() method for result sets, which
would be great for this purpose. However, not all JDBC drivers implement a com-
plete set of methods for JDBC classes. The code in the buildArray class can be
used when the toArray() method is not supported, as is the case with the MS SQL
Server JDBC driver, or when you want all JDBC result set array output to be the
same regardless of driver-specific formatting.

An SQL Server result set is passed from the calling object and an ArrayList is
defined called arrayResults. The code loops through the result set and retrieves
the current result set row value as a string. SQL Server result set values returned by
the SQL Server JDBC driver sometimes contain leading and trailing blanks, so the
trim() method is sued to trim spaces off the string as it is created. The string is
added to the arrayResults object using the ArrayList.add() method. Next, a
string array called sarray is created, and the value of the ArrayList is passed to
the string array using the ArrayList.toArray() method.

Listing 21-6: Building an Array for the Source and Quote lists

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

Retrieving a list of quotes from a selected author
When a user clicks on a quote author, the ActionListener for the author list object
passes the author name as a string value to the GetSingleAuthorList Class,
shown in Listing 21-7. This class uses the passed value, called CategoryName, to
retrieve all the quotes for an author using an SQL query passed to the server via
JDBC. A single-dimension array based on the quotes for the author is passed to the
quote list object using the buildArray class, which is shown in Listing 21-7. The

Note

i538292 ch21.qxd 8/18/03 8:44 AM Page 550

551Chapter 21 ✦ Building XML-Based Web Applications with JDBC

contents of the quote list object are then created by the array and the quote list
object is displayed in the upper-right panel of the application window.

Listing 21-7: Retrieving Quotes for an Author

public String [] GetSingleAuthorList(String CategoryName) {
String singleauthorList [] = null;
String sql = “SELECT dbo.Quotations.Quotation FROM dbo.Quotations
INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Authors.AuthorName = ‘“+CategoryName+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
singleauthorList = buildArray(rs);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return singleauthorList ;

}

Generating Custom XML Output
Users clicking on one of the quotes trigger a call to the QuoteListSelection
Handler, which is outlined in Listing 21-4. This triggers one of three actions,
depending on the output format chosen in the combo box. The first action is to
send the plain text directly to the output object. The code in Listing 21-8 is
called when a quote is selected in the quote list object and the Element XML
(Table=Root, Field Name=Element) option is chosen from the output format
combo box. The Quote text is passed to the GetSingleQuoteElement class. This

i538292 ch21.qxd 8/18/03 8:44 AM Page 551

552 Part IV ✦ Relational Data and XML

class generates another JDBC query to the SQL Server instance. The query returns
a result set containing all of the columns in the quotations table related to the
selected quote.

Next, the result set and the SQL query string are passed to the buildElementXML
class, which is used to build an XML document. The buildElementXML class is
shown in Listing 21-9.

Listing 21-8: The GetSingleQuoteElement Class

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name] FROM
dbo.Quotations INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote+”’)”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildElementXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

Listing 21-9 shows the buildElementXML class that is used to create a custom ele-
ment-based XML document for the SQL Server output. We could have used an
SQLXML format for our output at this point. Producing SQLXML output would have

i538292 ch21.qxd 8/18/03 8:44 AM Page 552

553Chapter 21 ✦ Building XML-Based Web Applications with JDBC

needed less code, but would probably result in maintenance issue when a new ver-
sion of SQLXML is released that changes the format of the output passed to this
application. Also, if for some reason we want to change the data source from SQL
Server to Oracle, DB2, or another RDBMS, we would have to figure out how to for-
mat the XML from the server to meet my needs. By manually writing XML at the
application level based on a JDBC result set, you have complete control over the
format of the XML that is produced.

The first thing the buildElementXML class does is create a new StringBuffer in
which to store the XML document. An XML document declaration is sent to the
StringBuffer, along with a root element, called resultset. Next, an element
called sql is created, which contains the SQL Server query that was used to gener-
ate the result set. We also retrieve the metadata into the XML document, which can
be used by applications that work with the XML document to parse the XML values
by data type and column name. We also use the metadata column name to name the
elements that represent columns in the XML document.

Row data is returned as children of a records element. Because this example
returns a single row, a single record element contains the column values. Column
values are stored in text data, and column names are represented as element
names. The entityRefs class converts any illegal XML characters in the text data (&,
‘, >, <, and “) into legal entity references for those values.

The buildElementXML class retrieves the XML document from the String
Buffer and returns the XML document to the calling object as a string.

Listing 21-9: The buildElementXML Class

String buildElementXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);
ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 553

554 Part IV ✦ Relational Data and XML

Listing 21-9 (continued)

while(rs.next()) {
rownumber++;
strResults.append(“<record
rownumber=\””+rownumber+”\”>\r\n”);
for(int i =1; i <= intFields; i++) {

strResults.append(“<” + rsMetadata.getColumnName(i) +
“>” + entityRefs(rs.getString(i).trim()) +
“</”+rsMetadata.getColumnName(i) +”>\r\n”);

}
strResults.append(“</record>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

Listing 21-10 shows the entityRefs and the stringReplace classes. These classes are
used to format text output from SQL Server into legal XML characters by replacing
non-XML characters with entity references. Two string arrays are created. The first
array contains illegal XML characters. The second array contains equivalent entity
references. The entityRefs class calls the stringReplace class to replace any
characters found with their entity reference equivalents.

Listing 21-10: The entityRefs and the stringReplace Classes

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring,
String xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());

i538292 ch21.qxd 8/18/03 8:44 AM Page 554

555Chapter 21 ✦ Building XML-Based Web Applications with JDBC

position = stringtofix.indexOf
(textstring,position+xmlstring.length());

}
return stringtofix;

}

Listing 21-11 shows what the Element XML output looks like for a quote in the
application:

Listing 21-11: Custom XML Output Generated by the
GetSingleQuoteElement Class

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<sql>SELECT dbo.Quotations.Quotation, dbo.Authors.AuthorName,
dbo.Sources.[Source Name] FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘When the hurlyburlys done, When the battles
lost and won.’) </sql>
<metadata>

<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”Source Name” datatype=”char”/>

</metadata>
<records>

<record rownumber=”1”>
<Quotation>When the hurlyburlys done, When the battles lost and
won.</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
</records>

</resultset>

Listing 21-12 is called when a user clicks on a quote and the Attribute XML
(Table=Element, Field Name=Attribute) option is chosen from the output
format combo box. The Quote text is passed to the GetSingleQuoteAttribute
class. This class generates another JDBC query to the SQL Server instance. The
query returns a result set containing all of the columns in the quotations Table
related to the selected quote.

i538292 ch21.qxd 8/18/03 8:44 AM Page 555

556 Part IV ✦ Relational Data and XML

Next, the result set and the SQL query string are passed to the buildAttribute
XML class, which is used to build an XML document. The buildAttributeXML
class is shown in Listing 21-13.

Listing 21-12: The GetSingleQuoteAttribute Class

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name] FROM
dbo.Quotations INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote.trim()+”’)”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildAttributeXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

}

Listing 21-13 shows the buildAttributeXML class that is used to create a custom
element-based XML document for the SQL Server output. It’s very similar to the
buildElementXML class, but this time the code produces row data as attributes
of a single element, instead of nested elements under a records element.

i538292 ch21.qxd 8/18/03 8:44 AM Page 556

557Chapter 21 ✦ Building XML-Based Web Applications with JDBC

The first thing the buildAttributeXML class does is create a new StringBuffer
in which to store the XML document. An XML document declaration is sent to the
StringBuffer, along with a root element, called resultset. Next, an element
called sql is created, which contains the SQL Server query that was used to gener-
ate the result set. We also retrieve the metadata into the XML document, which can
be used by applications that work with the XML document to parse the XML values
by data type and column name. We also use the metadata column name to name the
elements that represent columns in the XML document.

Row data is returned in a single records element. Because this example returns a
single row, a single element contains all of the column values as attributes. Column
values are stored in text data, and column names are represented as element
names. The entityRefs class converts any illegal XML characters in the text data
(&, ‘, >, <, and “) into legal entity references for those values.

The buildAttributeXML class retrieves the XML document from the String
Buffer and returns the XML document to the calling object as a string.

Listing 21-13: The buildAttributeXML Class

String buildAttributeXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);

ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;

while(rs.next()) {
rownumber++;
strResults.append(“<record rownumber=\””+rownumber+”\””);
for(int i =1; i <= intFields; i++) {

strResults.append(“ “+rsMetadata.getColumnName(i) + “ =
\”” + entityRefs(rs.getString(i).trim()) + “\””);

}

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 557

558 Part IV ✦ Relational Data and XML

Listing 21-13 (continued)

strResults.append(“/>\r\n”);
}

}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

Listing 21-14 shows what the Attribute XML output looks like for a quote in the
application:

Listing 21-14: Custom XML Output Generated by the
GetSingleQuoteAttribute Class

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<sql>SELECT dbo.Quotations.Quotation, dbo.Authors.AuthorName,
dbo.Sources.[Source Name] FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘When the hurlyburlys done, When the battles
lost and won.’) </sql>
<metadata>

<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”Source Name” datatype=”char”/>

</metadata>
<records>

<record rownumber=”1” Quotation=”When the hurlyburlys done, When the
battles lost and won.” AuthorName=”Shakespeare, William”
SourceName=”Macbeth”/>

</records>
</resultset>

XML Servlets
In general, Java has had some adoption issues in the IT marketplace, with the
exception of Servlets. Java Applets have not lived up to the promise of universal,
platform-independent application delivery using Web browsers as a front-end,

i538292 ch21.qxd 8/18/03 8:44 AM Page 558

559Chapter 21 ✦ Building XML-Based Web Applications with JDBC

because of performance, reliability, and compatibility issues. Java Applications
require a JDK or a JVM to be loaded on a client’s machine to provide any meaning-
ful functionality, and unfortunately share the performance, reliability, and compati-
bility characteristics of Java Applets. Servlets, however, are a different story. Java
Servlets are quickly becoming the method of choice for implementing Java solu-
tions in enterprise environments, mainly because of the high-performance Servlet
Application servers on the market that support high-volume, high-capacity transac-
tional Websites. Servlets are a natural fit for the middle tiers of multi-tier applica-
tion architectures because of their relatively good security model and multi-thread
performance characteristics. Because the Java in this case is running exclusively on
a server, there are less performance, distribution, and compatibility issues than the
Applet and Java Application Models.

Servlets are Java Code that extends the HTTPServlet Java Class, which is the core
of the Sun Java Servlet Development Kit (JSDK). Servlet class files are loaded onto a
Servlet Application server and are called via Web browser requests. Every Servlet
has a call method, which receives Servlet requests, and a response, which returns
Servlet responses. Because of this structure and functionality, Servlets are a great
tool for quickly and flexibly generating XML.

We will provide some insight into how servlets work in this chapter as we go
through the sample servlet code, but the chapter will focus more on XML than
servlets. If you’re new to servlets and would like more information, the best place
to start is the servlets.com Web page, at http://servlets.com. Also, Servlets are a
Java Community Process (JCP) Specification. The latest Java Specification Request
(JSR) document covers the Servlets 2.4 specification, and can be found at
http://web1.jcp.org/en/jsr/detail?id=154.

Example: A Three-Tier System Combining Java
Applications, Servlets, and SQL Server

In this section we’ll break up the Java Application that we showed you in Listings
21-1 to 21-14 and create two multi-tier servlet applications from the pieces.

The first application is a Web browser implementation that provides an HTML inter-
face to SQL Server data. The first tier is a Web browser, which provides the client
user interface to the data. The second tier is made up of four Java Servlets that use
JDBC to handle requests for data from the browser and retrieve data from the third
tier, which is SQL Server and its associated databases. The Web application has a
more basic user interface than the Java Application. The servlets are called via
URLs from a Web page and response data is directed back to a browser window
instead of a Java Application Object.

The second application is a Java Application implementation that provides the
same Swing and AWT interface to SQL Server data as the first application in this

Note

i538292 ch21.qxd 8/18/03 8:44 AM Page 559

560 Part IV ✦ Relational Data and XML

chapter did. The difference this time is that the first tier is a Java Application that
only handles the user interface. That means that you don’t need to load MS SQL
Server JDBC drivers on the machine that is running the application. The JDBC
drivers are used by the four application servlets on the second tier, so they only
need to be loaded on the server. The third tier is SQL Server.

Prerequisites for Servlet Development
It probably goes without saying that multi-tier applications are harder to develop
than single-tier applications. The biggest factor is all of the “moving parts.” You usu-
ally need a client platform, one or more middle-tier platforms, and a server tier.

Servlets run on a J2EE application server. Examples of J2EE application servers are
IBM’s WebSphere application server, Bea WebLogic Application Server, Sun One
Application Server, and Apache Tomcat. You’ll need one of these servers to use the
example servlets in this chapter. The servlets need to be deployed onto the J2EE
application server. Many J2EE IDEs come with an integrated J2EE Web application
server that makes development, deployment, and testing of servlets much faster
and easier. IDES with integrated J2EE servers include IBM’s WebSphere Studio
Application Developer, and the Sun ONE Studio. Check your IDE documentation to
see if it provides an integrated J2EE server for servlet development and testing.

The application and servlets for this example were developed and tested using
IBM’s WebSphere Studio Application Developer (WSAD) 5, which is available as a
trial download from http://www7b.software.ibm.com/wsdd/zones/studio. WSAD
includes an integrated J2EE application server, so servlets can be developed,
tested, and deployed on the same machine. We are also running Microsoft SQL
Server 2000 on the same machine with the JDBC driver loaded.

WebSphere Studio Application Developer is discussed in more detail in Chapter 36.

Introducing the XML example servlets
and client application
The following files are available for download from the XMLProgrammingBible.com
Website. Check with the documentation of your J2EE server for instructions on
deployment and setup. Check with your JDK setup instructions for information on
running the Java client application on a client machine.

All the servlets in this example, as well as the Java Application and T-SQL com-
mands for producing the SQL Server data, can be downloaded from the
XMLProgrammingBible.com Website, in the Downloads section.

Cross-
Reference

i538292 ch21.qxd 8/18/03 8:44 AM Page 560

561Chapter 21 ✦ Building XML-Based Web Applications with JDBC

The Web example application in this chapter uses four servlets:

✦ XMLPBWebServletGetAuthorList gets a list of quote authors from the SQL
Server Authors table.

✦ XMLPBWebServletGetSingleAuthorList gets a list of quotes for a single quote
author that a user selects via a URL.

✦ XMLPBWebServletBuildElementXML returns a Quote in XML format with
nested elements from row data to a Web browser.

✦ XMLPBWebServletBuildAttributeXML returns a Quote in XML format with
attributes created from row data to a Web browser.

The multi-tier Java Application uses four servlets and one client application:

✦ XMLPBAppServletGetAuthorList gets a list of quote authors from the SQL
Server Authors table.

✦ XMLPBAppServletGetSingleAuthorList gets a list of quotes for a single quote
author that a user selects in the Java Application.

✦ XMLPBAppServletBuildElementXML returns a Quote in XML format with
nested elements from row data to the Java Application.

✦ XMLPBAppServletBuildAttributeXML returns a Quote in XML format with
attributes created from row data to the Java Application.

✦ XMLPBServletApp is a Java Application that calls the above servlets to
retrieve SQL Server data via JDBC.

Running the Web Example Application
Once the Web servlets have been deployed on a J2EE server, the MS SQL Server
JDBC driver has been installed, and the JDBC driver is configured to access SQL
Server data, start up any browser and open the following URL:

http://<server IP address>/servlet/XMLPBWebServletGetAuthorList

Most J2EE application servers are case sensitive. URLs must match file name and
path case exactly. This is the first thing to check when having trouble with servlets
in a Web browser environment.

It may take 10-15 seconds for the Servlet to load the first time due to servlet initial-
ization. If everything is configured properly, you should get results like those in
Figure 21-2. The XMLPBWebServletGetAuthorList Servlet displays a unique list
of quote authors, formatted as URL links.

Caution

i538292 ch21.qxd 8/18/03 8:44 AM Page 561

562 Part IV ✦ Relational Data and XML

Figure 21-2: The output for the XMLPBWebServletGetAuthorList servlet, displaying
a list of authors as links

Clicking on one of the links calls the XMLPBWebServletGetSingleAuthorList
Servlet that generates a list of quotes for a specific author. The author is deter-
mined by a value that is passed in the link to the servlet. The links look like this to a
Browser:

<A HREF=/servlet/XMLPBWebServletGetSingleAuthorList?CategoryName=Dave+Barry
>Dave Barry

Figure 21-3 shows the links for Dave Barry.

Under each quote are two links, Element XML to Screen, and Attribute XML
to Screen. The Element XML to Screen option calls the XMLPBWebServlet
BuildElementXML Servlet to return the associated quote in a Custom XML
Format. This is what the link looks like for the first Quote in Figure 21-3:

<A HREF=/servlet/ XMLPBWebServletBuildElementXML?PassedQuote=There+is+a
very+fine+line+between+hobby+and+mental+illness.>Element XML to Screen

i538292 ch21.qxd 8/18/03 8:44 AM Page 562

563Chapter 21 ✦ Building XML-Based Web Applications with JDBC

Figure 21-3: The output for the XMLPBWebServletGetSingleAuthorList Servlet,
displaying a list of quotes for Dave Barry

The Attribute XML to Screen option calls the XMLPBWebServletBuild
AttributeXML Servlet to return the associated Quote in another form of custom
XML format. Here’s what this link looks like:

<A HREF=/servlet/ XMLPBWebServletBuildAttributeXML?PassedQuote=There+is+a
very+fine+line+between+hobby+and+mental+illness.>Element XML to Screen

Removing spaces from parameters
You may have noticed that the URL parameter references have a + where spaces
usually are. When a value is passed as a parameter via HTTP, the parser in the
application that receives the information stops at the first space it encounters,
because it is expecting a constant stream of data, and a space indicates the end of a
value. Therefore, spaces have to be removed from passed parameters. For example,
Dave+Barry is received by a servlet as Dave+Barry and the spaces can be
replaced using a simple one-line String.replace method in Java. However, Dave
Barry (without the +) is parsed as just Dave, and will not match the correct value
when re-sent as a parameter to a servlet.

i538292 ch21.qxd 8/18/03 8:44 AM Page 563

564 Part IV ✦ Relational Data and XML

Under the Hood of the Web
Application Servlets

The four servlets that make up the Web application that retrieves and displays
quotes from SQL Server data are adaptations of the classes that we created for the
regular Java Application earlier in this chapter. In this section we’ll go under the
hood of each servlet to show how they work. After that we’ll introduce you to the
servlets that are part of the multi-tier Java Application and point out the key differ-
ences between the servlets.

The XMLPBWebServletGetAuthorList Servlet
The servlet in Listing 21-15 returns a unique listing of quote authors from the
Authors table in the SQL Server XMLProgrammingBible database.

Listing 21-15: The XMLPBWebServletGetAuthorList
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBWebServletGetAuthorList extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String [] AuthorList = GetAuthorList();

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String title = “A Unique List of Quote Sources”;
out.println(“<HTML><HEAD><TITLE>”+ title +”</TITLE></HEAD>”);
out.println(“<BODY><H1 ALIGN=CENTER>” + title + “</H1>”);
for (int i= 0 ; i < AuthorList.length; i++) {

String sl=AuthorList[i].replace(‘ ‘,’+’);
out.print(“<A
HREF=/servlet/XMLPBWebServletAppGetSingleAuthorList”);
out.print(“?CategoryName=”+sl+”>”+AuthorList[i]+”
”);

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 564

565Chapter 21 ✦ Building XML-Based Web Applications with JDBC

out.println(“</BODY></HTML>”);
out.close();

}

public String [] GetAuthorList() {
String authorList [] = null;
String sql = “select AuthorName from Authors”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;DatabaseName
=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);

authorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return authorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 565

566 Part IV ✦ Relational Data and XML

This servlet starts with standard servlet code constructs. A doGet creates the
request and response object that is used to retrieve parameters and return data.
The next step is to call the GetAuthorList class, which returns an array of unique
quote authors. This is actually just a copy of the array that was used in the previ-
ous Java Application example, but this time the class returns data that will be for-
matted as HTML.

public String [] GetAuthorList() {

For Web browser output, the response.setContentType is set to “text/html.”
Next, an instance of the PrintWriter class is created. Next, the code generates
HTML to add a Browser window title from the HTML head object, then an HTML
title for the Web page.

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String title = “A Unique List of Quote Sources”;
out.println(“<HTML><HEAD><TITLE>”+ title +”</TITLE></HEAD>”);
out.println(“<BODY><H1 ALIGN=CENTER>” + title + “</H1>”);

Once the basic page layout is set up, The code cycles through the array that was
created by the GetAuthorList class to generate a URL for each of the unique
quote authors in the array and display the URL as a link on the page. Each link calls
the XMLPBWebServletAppGetSingleAuthorList servlet and passes the author
displayed in the link as a parameter named CategoryName. CategoryName is
based on the unique author name. It is used to retrieve a list of quotes for that
author from the SQL Server Quotations table.

for (int i= 0 ; i < AuthorList.length; i++) {
String sl=AuthorList[i].replace(‘ ‘,’+’);
out.print(“<A
HREF=/servlet/XMLPBWebServletAppGetSingleAuthorList”);
out.print(“?CategoryName=”+sl+”>”+AuthorList[i]+”
”);

}
out.println(“</BODY></HTML>”);
out.close();

}

The XMLPBWebServletAppGetSingleAuthorList
Servlet
The XMLPBWebServletAppGetSingleAuthorList Servlet (Listing 21-16) is called
when a user clicks on an Author link from a Web browser. The URL that is sent to the
Servlet passes the CategoryName as a parameter, and returns an array of quotes
for an author back to the Web browser.

i538292 ch21.qxd 8/18/03 8:44 AM Page 566

567Chapter 21 ✦ Building XML-Based Web Applications with JDBC

Listing 21-16: The XMLPBWebServletAppGetSingleAuthorList
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBWebServletGetSingleAuthorList extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String CategoryName=request.getParameter(“CategoryName”);

String [] SingleAuthorList = GetSingleAuthorList(CategoryName);

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
String title = “Quotes for “+CategoryName.replace(‘+’,’ ‘);
out.println(“<HTML><HEAD><TITLE>”+ title +”</TITLE></HEAD>”);
out.println(“<BODY><H1 ALIGN=CENTER>” + title + “</H1>”);
for (int i= 0 ; i < SingleAuthorList.length; i++) {

String sl=SingleAuthorList[i].replace(‘ ‘,’+’);
out.print(SingleAuthorList[i]+”
”);

out.print(“<A HREF=/servlet/XMLPBWebServletBuildElementXML”);
out.print(“?PassedQuote=”+sl+”>Element XML to Screen
”);

out.print(“<A HREF=/servlet/XMLPBWebServletBuildAttributeXML”);
out.print(“?PassedQuote=”+sl+”>Attribute XML To
Screen
”);

out.println(“</BODY></HTML>”);
out.close();

}

}

public String [] GetSingleAuthorList(String CategoryName) {
String singleauthorList [] = null;

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 567

568 Part IV ✦ Relational Data and XML

Listing 21-16 (continued)

String sql = “SELECT dbo.Quotations.Quotation FROM dbo.Quotations INNER
JOIN dbo.Authors ON dbo.Quotations.AuthorID = dbo.Authors.AuthorID
INNER JOIN dbo.Sources ON dbo.Quotations.SourceID =
dbo.Sources.SourceID WHERE (dbo.Authors.AuthorName =
‘“+CategoryName+”’)”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
singleauthorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return singleauthorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new

String[arrayResults.size()]);
return sarray;

}

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 568

569Chapter 21 ✦ Building XML-Based Web Applications with JDBC

Like the previous servlet, this servlet also returns data to a Web browser as well,
but instead of a single link for each quote, this time two links are sent to the screen
using the following code:

for (int i= 0 ; i < SingleAuthorList.length; i++) {
String sl=SingleAuthorList[i].replace(‘ ‘,’+’);
out.print(SingleAuthorList[i]+”
”);

out.print(“<A HREF=/servlet/XMLPBWebServletBuildElementXML”);
out.print(“?PassedQuote=”+sl+”>Element XML to Screen
”);

out.print(“<A HREF=/servlet/XMLPBWebServletBuildAttributeXML”);
out.print(“?PassedQuote=”+sl+”>Attribute XML To
Screen
”);

If the user clicks on the first link, the XMLPBWebServletBuildElementXML is
called. If the second link is chosen, the XMLPBWebServletBuildAttributeXML
servlet is called. Both are passed the PassedQuote parameter, which represents
the actual quote from the Web page. The GetSingleAuthorList class is the same
class that was used in the Java Application earlier in this chapter. This class uses
the CategoryName to retrieve all the quotes for that quote source. Once the array
has been created, it is passed back to the servlet’s doGet to be formatted for the
Web via the PrintWriter Class.

The SQL Server query string uses the CategoryName parameter to complete the
SQL query that will be set to the server:

String sql = “SELECT dbo.Quotations.Quotation FROM dbo.Quotations INNER
JOIN dbo.Authors ON dbo.Quotations.AuthorID = dbo.Authors.AuthorID
INNER JOIN dbo.Sources ON dbo.Quotations.SourceID =
dbo.Sources.SourceID WHERE (dbo.Authors.AuthorName =
‘“+CategoryName+”’)”;

The XMLPBWebServletBuildElementXML Servlet
The code in Listing 21-17 is called when a Quote is selected by clicking on the
“Element XML to Screen” link from a Web browser.

Listing 21-17: The XMLPBWebServletBuildElementXML
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 569

570 Part IV ✦ Relational Data and XML

Listing 21-17 (continued)

import javax.servlet.http.*;
import java.sql.*;

public class XMLPBWebServletBuildElementXML extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String PassedQuote=request.getParameter(“PassedQuote”);
String XMLQuote = GetSingleQuoteElement(PassedQuote);

response.setContentType(“text/xml”);
PrintWriter out = response.getWriter();
out.println(XMLQuote);
out.close();

}

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name]
FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID INNER JOIN
dbo.Sources ON dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildElementXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 570

571Chapter 21 ✦ Building XML-Based Web Applications with JDBC

return XMLDoc ;

}

String buildElementXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);
ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;
while(rs.next()) {

rownumber++;
strResults.append(“<record
rownumber=\””+rownumber+”\”>\r\n”);
for(int i =1; i <= intFields; i++) {

strResults.append(“<” + rsMetadata.getColumnName(i) +
“>” + entityRefs(rs.getString(i).trim()) +
“</”+rsMetadata.getColumnName(i) +”>\r\n”);

}
strResults.append(“</record>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 571

572 Part IV ✦ Relational Data and XML

Listing 21-17 (continued)

String stringReplace(String stringtofix, String textstring, String
xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position =
stringtofix.indexOf(textstring,position+xmlstring.length());

}
return stringtofix;

}

}

This time the output is not HTML. The output is formatted as XML for display on
the Web browser screen. Consequently, the Web output option is much simpler
than the previous two examples. The content type to text/xml instead of the pre-
vious type, text/html. Once this is done the string that was generated by the
GetSingleQuoteElement class is retrieved and returned to the Web as a string.

response.setContentType(“text/xml”);
PrintWriter out = response.getWriter();
out.println(XMLQuote);
out.close();

The BuildElementXML, entityRefs, and stringReplace classes are copied of the
classes that were used in the previous Java Application example. They format a
quotation that is extracted from the SQL Server quotations table as XML, based on
a structure of nested XML elements for each row of data in the result set.

The XMLPBWebServletBuildAttributeXML Servlet
The code in Listing 21-18 is called when a quote is selected by clicking on the
“Attribute XML to Screen” link from a Web browser. As in the previous example, the
output it text formatted as XML, so the content type is set to “text/xml.” Once this
is done, a string is generated by the buildAttributeXML class. The new string is
returned to the Web as an XML document.

The buildAttributeXML, entityRefs, and stringReplace classes are copies
of the classes with the same name from the previous Java example. Once the XML
output string has been created, it is passed back to the servlet’s doGet to be for-
matted for the Web via the PrintWriter class.

i538292 ch21.qxd 8/18/03 8:44 AM Page 572

573Chapter 21 ✦ Building XML-Based Web Applications with JDBC

Listing 21-18: The XMLPBWebServletBuildAttributeXML Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBWebServletBuildAttributeXML extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String PassedQuote=request.getParameter(“PassedQuote”);

String XMLQuote = GetSingleQuoteAttribute(PassedQuote);

response.setContentType(“text/xml”);
PrintWriter out = response.getWriter();
out.println(“<?xml version=\”1.0\” encoding=\”UTF-8\” ?>”);
out.println(XMLQuote);
out.close();

}

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name] FROM
dbo.Quotations INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote.trim()+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 573

574 Part IV ✦ Relational Data and XML

Listing 21-18 (continued)

ResultSet rs = s.executeQuery(sql);
XMLDoc = buildAttributeXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

String buildAttributeXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);

ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;

while(rs.next()) {
rownumber++;
strResults.append(“<record rownumber=\””+rownumber+”\””);
for(int i =1; i <= intFields; i++) {

strResults.append(“ “+rsMetadata.getColumnName(i) + “ =
\”” + entityRefs(rs.getString(i).trim()) + “\””);

}
strResults.append(“/>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 574

575Chapter 21 ✦ Building XML-Based Web Applications with JDBC

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring,
String xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position = stringtofix.indexOf(textstring,position+
xmlstring.length());

}
return stringtofix;

}

}

A Multi-Tier Java Application
The second set of servlets that you were introduced to earlier in this chapter work
with a Java Application instead of a Web browser. This Java Application example in
this chapter is based on the first Java Application example that I showed you ear-
lier in this chapter. It has been adapted as a multi-tier system by adding the ability
to call servlets from the application, instead of containing all of the application
code and functionality on the server. This eliminates many of the client configura-
tion headaches associated with loading extra support classes on the client
machine, such as JDBC drivers. It also provides more control over the data that is
accessed, because the SQL queries are stored on the server. It also provides reme-
dial security by moving much of the access and processing of data away from the
user and onto a server.

Installing the XMLPBServletApp Java Application
The XMLPBServletApp.java application has to be installed in a directory of a work-
station that is accessible to the Java JDK on the same machine, and accessible to
the server that is running the servlets over a network. Once the application is

i538292 ch21.qxd 8/18/03 8:44 AM Page 575

576 Part IV ✦ Relational Data and XML

downloaded, run the application by typing java XMLPBServletApp from a com-
mand prompt or the Windows “Run “ menu option. The application will appear on
the screen in its own Java window. The application is identical in function to the
single-tier Java Application shown earlier in this chapter. It’s what’s happening
behind the scenes that is probably of more interest to developers. In this section
we’ll show you how the servlets interact with the Java Application and SQL Server.

Under the Hood of the Multi-Tier
Application Servlets

The Java Application and four servlets that make up the Quote XML Generator –
Servlet Edition Application are adaptations of the classes that we created for the
regular single-tier Java Application that we showed earlier in this chapter. In this
section we’ll go under the hood of each servlet and the application to show how
they work together.

The XMLPBAppServletGetAuthorList Servlet
The code in Listing 21-19 is a servlet that returns a unique listing of authors to a
Java Application. The buildArray class is a coy of the buildArray class in the
single-tier Java Application.

Listing 21-19: The XMLPBAppServletGetAuthorList
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBAppServletGetAuthorList extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String [] AuthorList = GetAuthorList();

response.setContentType(“application/x-java-serialized-
object”);

i538292 ch21.qxd 8/18/03 8:44 AM Page 576

577Chapter 21 ✦ Building XML-Based Web Applications with JDBC

ObjectOutputStream out = new
ObjectOutputStream(response.getOutputStream());
out.writeObject(AuthorList);
out.flush();

}

public String [] GetAuthorList() {
String authorList [] = null;
String sql = “select AuthorName from Authors”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection(
“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);

authorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return authorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 577

578 Part IV ✦ Relational Data and XML

Instead of preparing the response object to return text for Web output, the
XMLPBAppServletGetAuthorList servlet returns an object to the calling appli-
cation that matches the original data format specified in the application. The
response.setContentType is set to application/x-java-serialized-
object, which is a mime type that can support any serializable Java class. Servlets
that access the Java Application are passing arrays and strings back to the applica-
tion, so this format is perfect for the needs of this application. A new instance of the
ObjectOutputStream is created, which in an extension of the Java Stream class,
instead of a PrintWriter or other type of Writer implementation. The calling
application uses an ObjectInputStream on the other end, which I will cover in
more detail later in the chapter. Next, the code simply writes the AuthorList to
the ObjectOutputStream, which is an array that was created by the
GetAuthorList class.

response.setContentType(“application/x-java-serialized-
object”);
ObjectOutputStream out = new
ObjectOutputStream(response.getOutputStream());
out.writeObject(AuthorList);
out.flush();

The XMLPBAppServletGetSingleAuthorList Servlet
The XMLPBAppServletGetSingleAuthorList Servlet in Listing 21-20 is
called when a user clicks on an author name in the Java Application. The call that
is sent to the Servlet passes the CategoryName as a parameter and returns an
array of quotes for the selected author. If the Servlet is being called from a Java
Application, the array representing the quote for a single author is passed to
the ObjectOutputStream. The ObjectOutputStream is passed back to the
servlet’s doGet and then is sent back to the Java Application as an array via the
ObjectOutputStream class.

Listing 21-20: The XMLPBAppServletGetSingleAuthorList
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBAppServletGetSingleAuthorList extends HttpServlet {

public void doGet(HttpServletRequest request,

i538292 ch21.qxd 8/18/03 8:44 AM Page 578

579Chapter 21 ✦ Building XML-Based Web Applications with JDBC

HttpServletResponse response)
throws IOException, ServletException {

String CategoryName=request.getParameter(“CategoryName”);

String [] SingleAuthorList = GetSingleAuthorList(CategoryName);

response.setContentType(“application/x-java-serialized-
object”);
ObjectOutputStream out = new
ObjectOutputStream(response.getOutputStream());
out.writeObject(SingleAuthorList);
out.flush();

}

public String [] GetSingleAuthorList(String CategoryName) {
String singleauthorList [] = null;
String sql = “SELECT dbo.Quotations.Quotation FROM dbo.Quotations
INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Authors.AuthorName = ‘“+CategoryName+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver://
127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
singleauthorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return singleauthorList ;

}

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 579

580 Part IV ✦ Relational Data and XML

Listing 21-20 (continued)

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

The XMLPBAppServletBuildElementXML Servlet
The code in Listing 21-21 is called when a quote is selected by choosing the
Element XML (Table=Root, Field Name=Element) option as the quote out-
put format in the Java Application. The content type we set to text/xml, indicat-
ing that an XML document is being built as the servlet output. The string
representing the Single Quote in XML Format is passed from the GetSingle
QuoteElement class to the ObjectOutputStream via the servlet’s doGet. Rows
of data are formatted as nested elements in the XML document structure. SQL
Server column names become XML document element names, and column values
become text data values.

Listing 21-21: The XMLPBAppServletBuildElementXML
Servlet Code

import java.sql.*;
import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class XMLPBAppServletBuildElementXML extends HttpServlet {

i538292 ch21.qxd 8/18/03 8:44 AM Page 580

581Chapter 21 ✦ Building XML-Based Web Applications with JDBC

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String PassedQuote=request.getParameter(“PassedQuote”);

String XMLQuote = GetSingleQuoteElement(PassedQuote);

response.setContentType(“application/x-java-serialized-object”);
ObjectOutputStream out = new
ObjectOutputStream(response.getOutputStream());
out.writeObject(XMLQuote);
out.flush();

}

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name] FROM
dbo.Quotations INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver://
127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildElementXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 581

582 Part IV ✦ Relational Data and XML

Listing 21-21 (continued)

String buildElementXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);
ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;
while(rs.next()) {

rownumber++;
strResults.append(“<record
rownumber=\””+rownumber+”\”>\r\n”);
for(int i =1; i <= intFields; i++) {

strResults.append(“<” + rsMetadata.getColumnName(i) +
“>” + entityRefs(rs.getString(i).trim()) +
“</”+rsMetadata.getColumnName(i) +”>\r\n”);

}
strResults.append(“</record>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring, String
xmlstring) {

int position = stringtofix.indexOf(textstring);

i538292 ch21.qxd 8/18/03 8:44 AM Page 582

583Chapter 21 ✦ Building XML-Based Web Applications with JDBC

while (position > -1) {
stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position =
stringtofix.indexOf(textstring,position+xmlstring.length());

}
return stringtofix;

}

}

The XMLPBAppServletBuildAttributeXML Servlet
The code in Listing 21-22 is called when a quote is selected by choosing the
Attribute XML (Table=Element, Field Name=Attribute) option as the
quote output format in the Java Application. As with the last example, the content
type is set to text/xml, indicating that an XML document is being built as the
servlet output. The string representing the Single Quote in XML Format is passed
from the GetSingleQuoteAttribute class to the ObjectOutputStream via the
servlet’s doGet. Rows of data are formatted as attributes in a row element in the
XML document structure. SQL Server column names become XML document
attribute names, and column values become attribute values.

Listing 21-22: The XMLPBAppServletBuildAttributeXML
Servlet Code

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;

public class XMLPBAppServletBuildAttributeXML extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

String PassedQuote=request.getParameter(“PassedQuote”);

String XMLQuote = GetSingleQuoteAttribute(PassedQuote);

response.setContentType(“application/x-java-serialized-object”);

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 583

584 Part IV ✦ Relational Data and XML

Listing 21-22 (continued)

ObjectOutputStream out = new
ObjectOutputStream(response.getOutputStream());
out.writeObject(XMLQuote);
out.flush();

}

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name] FROM
dbo.Quotations INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID =
dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘“+PassedQuote.trim()+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildAttributeXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

String buildAttributeXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);

ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);

i538292 ch21.qxd 8/18/03 8:44 AM Page 584

585Chapter 21 ✦ Building XML-Based Web Applications with JDBC

for(int h =1; h <= intFields; h++) {
strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;

while(rs.next()) {
rownumber++;
strResults.append(“<record rownumber=\””+rownumber+”\””);
for(int i =1; i <= intFields; i++) {

strResults.append(“ “+rsMetadata.getColumnName(i) + “ =
\”” + entityRefs(rs.getString(i).trim()) + “\””);

}
strResults.append(“/>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring, String
xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position =
stringtofix.indexOf(textstring,position+xmlstring.length());

}
return stringtofix;

}

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 585

586 Part IV ✦ Relational Data and XML

Under the Hood of the XML Quote
Generator — Servlet Edition Application

The Java Application in this example is based on the single-tier Java Application
that was shown earlier in this chapter. There are only a few changes that need to be
made to the original Java Application to adapt it for use a multi-tier application
client. The main change is to remove all of the classes that are not located in the
servlets. The other change is to adapt the classes that called those classes to call
servlets instead. Listing 21-23 shows the changed code in the XMLPBServletApp
Java Application.

I can now remove the java.sql.* import for the SQL Server JDBC driver classes,
because all JDBC driver functionality has been moved to the servlets. This means
that the application can be loaded on any workstation that supports Java JDK 1.3.1
or higher, and does not have to have a JDBC driver or any other external support
packages installed. The second change is the addition of a variable at the top of the
application that specifies the server location and the directory on that server
where the servlets are located.

Listing 21-23: Changed Code in the XMLPBServletApp Java
Application

import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class XMLPBServletApp extends JPanel {
JTextArea output;
JList authorList;
JList QuoteList;
ListSelectionModel authorListSelectionModel;
ListSelectionModel QuotelistSelectionModel;
public String[] listData;
JComboBox comboBox;
String ServletURLBase = “http://127.0.0.1/servlet/”;

In addition to the two small changes to the application code, there are a few
changes to the classes. Instead of containing code that generated lists of authors,

i538292 ch21.qxd 8/18/03 8:44 AM Page 586

587Chapter 21 ✦ Building XML-Based Web Applications with JDBC

quotes, and XML output in the Application code, the classes are now used to call
servlets that pass the correct data back to the application in the required format.
Listing 21-24 shows the classes that have been changed in the XMLPBServletApp
Java Application:

Listing 21-24: Changed Classes in the XMLPBServletApp Java
Application

public String [] GetAuthorList() {
String AuthorList [] = null;

try{
ObjectInputStream inputFromServlet = null;
String ServletCall = ServletURLBase +
“XMLPBAppServletGetAuthorList”;
URL ServletURL = new URL(ServletCall);
URLConnection ServletConnection = ServletURL.openConnection();
inputFromServlet = new
ObjectInputStream(ServletConnection.getInputStream());
AuthorList = (String []) inputFromServlet.readObject();

}

catch(Exception e) {
e.printStackTrace();

}
return AuthorList ;

}

public String [] GetSingleAuthorList(String CategoryName) {
String singleAuthorList [] = null;

try{
ObjectInputStream inputFromServlet = null;
String ServletCall = ServletURLBase +
“XMLPBAppServletGetSingleAuthorList”;
ServletCall += “&CategoryName=”+CategoryName.replace(‘ ‘,’+’);
URL ServletURL = new URL(ServletCall);
URLConnection ServletConnection = ServletURL.openConnection();
inputFromServlet = new
ObjectInputStream(ServletConnection.getInputStream());
singleAuthorList = (String []) inputFromServlet.readObject();

}

catch(Exception e) {
e.printStackTrace();

}

Continued

i538292 ch21.qxd 8/18/03 8:44 AM Page 587

588 Part IV ✦ Relational Data and XML

Listing 21-24 (continued)

return singleAuthorList ;

}

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

try{
ObjectInputStream inputFromServlet = null;
String ServletCall = ServletURLBase +
“XMLPBAppServletBuildElementXML”;
ServletCall += “&PassedQuote=”+PassedQuote.replace(‘ ‘,’+’);
URL ServletURL = new URL(ServletCall);
URLConnection ServletConnection = ServletURL.openConnection();
inputFromServlet = new
ObjectInputStream(ServletConnection.getInputStream());
XMLDoc = (String) inputFromServlet.readObject();

}

catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

try{
ObjectInputStream inputFromServlet = null;
String ServletCall = ServletURLBase +
“XMLPBAppServletBuildAttributeXML”;
ServletCall += “&PassedQuote=”+PassedQuote.replace(‘ ‘,’+’);
URL ServletURL = new URL(ServletCall);
URLConnection ServletConnection = ServletURL.openConnection();
inputFromServlet = new
ObjectInputStream(ServletConnection.getInputStream());
XMLDoc = (String) inputFromServlet.readObject();

}

catch(Exception e) {
e.printStackTrace();

}

i538292 ch21.qxd 8/18/03 8:44 AM Page 588

589Chapter 21 ✦ Building XML-Based Web Applications with JDBC

return XMLDoc ;

}

Each class in the Java Application builds a URL that calls the appropriate servlet
and creates a ObjectInputStream to receive data from the ObjectOutputStream
that is generated by the servlet. Below is the code that retrieves the list authors
from the Authors table in the SQL Server XMLProgrammingBible database:

ObjectInputStream inputFromServlet = null;
String ServletCall = ServletURLBase +
“XMLPBAppServletGetAuthorList”;
URL ServletURL = new URL(ServletCall);
URLConnection ServletConnection = ServletURL.openConnection();
inputFromServlet = new
ObjectInputStream(ServletConnection.getInputStream());
AuthorList = (String []) inputFromServlet.readObject();

In this example, a new instance of the ObjectInputStream is created, and a
URL is assembled into a string using the ServletURLBase variable assigned
at the beginning of the application, the servlet name, and any appropriate
parameters that need to be passed to the servlet. Next a URL object is created
from the string, and a URLConnection is created using the newly created URL
and the openConnection() method. This calls the servlet, which returns an
ObjectOuputStream. The ObjectInputStream on the application side
collects the response from the servlet and passes the response back to the
application. The response from the servlet that has been collected using the
ObjectInputStream is assigned to an object in the Java Application via
the ObjectInputStream.readObject method. There are two formats for
responses from the servlets in this application: arrays and strings. An array
that contains a list of authors is received using this code:

AuthorList = (String []) inputFromServlet.readObject();

A Java string that contains custom XML for a single quote is received using this
code:

XMLDoc = (String) inputFromServlet.readObject();

In either case, the object is passed back to the application and used as an element
of the application user interface.

i538292 ch21.qxd 8/18/03 8:44 AM Page 589

590 Part IV ✦ Relational Data and XML

Summary
In this chapter we’ve outlined techniques for building J2EE applications that work
with XML documents and relational data:

✦ A J2EE sample application

✦ Using JDBC with J2EE applications that use JDBC

✦ Controlling custom XML formats

✦ A three-tier system combining Java Applications, servlets, and JDBC

✦ Accessing servlets from a Web browser

✦ Accessing servlets from a J2EE application

In the next chapter we’ll show you how to transform relational data from one
RDBMS format to another using XSL, and relational XML data formats.

✦ ✦ ✦

i538292 ch21.qxd 8/18/03 8:44 AM Page 590

Transforming
Relational
XML Output into
Other Formats

So far in this section we’ve shown you how to get XML
data out of MS SQL Server, Oracle, and DB2. You can use

the generated XML to integrate data with other formats of
XML using XSLT transformation. You can also transform the
relational XML output directly to HTML, or load the data into
an XML data island.

In this chapter we’ll review XSL transformation of XML rela-
tional data formats that we showed you in Chapters 18, 19,
and 20 for MS SQL Server, Oracle, and DB2. We’ll start with a
comparison of each vendor’s approach to transforming XML.
Then we’ll show you how to transform data structures from
each RDBMS platform. We include examples of stylesheets for
transforming XML output from MS SQL Server, Oracle and
DB2. These can serve as good bases for your own transforma-
tion stylesheets.

We’ll also show you a way to transform a generalized XML for-
mat created by the JDBC-based J2EE application that we
showed you in Chapter 21. During the process we’ll put
together a framework for transforming relational data formats,
including tips for converting relational XML output to HTML.
We’ll finish up the chapter with an XML data islands example
that transforms relational data and manipulates the data in a
Web browser client using Microsoft XML Core Services
(MSXML).

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Options for
transforming
relational XML data

XSL stylesheets for
transforming
relational data

Transformation
functions in Oracle,
DB2, and MS SQL
Server

Transforming JDBC
result sets to HTML

Using MSXML with
relational data

Creating data islands
from relational XML

✦ ✦ ✦ ✦

i538292 ch22.qxd 8/18/03 8:44 AM Page 591

592 Part IV ✦ Relational Data and XML

In this chapter we’ll cover the ways of formatting relational data as XML, but
we won’t cover the fundamentals of XSLT. For that information, refer to Chapters 7
and 8.

Transformation Functions in Oracle,
DB2, and MS SQL Server

Each RDBMS vendor has its own way of handling XSL transformations, either via
SQL functions, or via other languages that receive XML output from the RDBMS.
Major software vendors are providing facilities for developers to generate HTML
directly to a Web browser using XSLT. While this may be a handy feature for devel-
opers, it’s a potential security nightmare for RDBMS administrators. Allowing direct
access between a Web browser and a relational database is not a recommended
solution for most secure IT shops.

We’ll show you the easiest ways to generate HTML from relational data via XSL
transformations, but flexible application architectures should always use a middle-
tier HTTP server such as MS Internet information Server (IIS), a portal server such
as IBM WebSphere portal server, an MS SharePoint server, or a J2EE application
server. The middle tier takes some of the processing load from the RDBMS server
and also acts as a physical and virtual security layer. The middle tier of a multi-tier
application separates the Web from your data store. That’s a good thing, as Martha
would say.

Later in the chapter we’ll show you an example of transforming JDBC XML output
from the J2EE application in Chapter 21. Because this technique can be used in a
multi-tier environment, it may be a more appropriate solution than directly produc-
ing HTML from relational data.

When creating XSL stylesheets to transform relational output to HTML, don’t hurt
yourself by trying hand-code and test stylesheet. Use an XSLT tool like the XMLSpy
stylesheet designer, which is available as a trial download from http://
www.XMLSpy.com. We used it to create all of the examples in this chapter. Other
tools are available from www.xmlsoftware.com, but we’ve found the XMLSpy
Stylesheet designer to be the best, if not the cheapest.

MS SQL Server and XSL
There are two ways to transform data in SQL Server output. An XSL stylesheet can
be included in a template file as a default stylesheet. Any XML document output
that is created with this template is automatically transformed by a SQL Server

Tip

Note

i538292 ch22.qxd 8/18/03 8:44 AM Page 592

593Chapter 22 ✦ Transforming Relational XML Output into Other Formats

before results are sent back to the requestor. You can also specify a stylesheet via
URI when making a URL call to a template file.

For more information on working with XML in SQL Server, please refer to Chapter 19.

Transforming MS SQL Server XML results with an XSL stylesheet
SQL Server 2000 supports two ways to automatically transform XML results using
an XSL stylesheet. In this example, the ResultTransform.xsl stylesheet is
stored in the stylesheets subdirectory of the IIS virtual directory. This is not an
official directory for stylesheets, just a directory that we chose to create and store
stylesheets in. It could be contained anywhere under the virtual directory and be
named anything. The relative path reference branches from the virtual directory
root.

You can also reference stylesheets inside a template file using the sql:xsl
attribute of a template’s root tag. Here’s an example of a very simple query that
transforms a row of XML data to HTML:

<?xml version=”1.0” encoding=”UTF-8”?>
<QueryRoot xmlns:sql=”urn:schemas-microsoft-com:xml-sql”
sql:xsl=”/stylesheets/ResultTransform.xsl”>
<sql:query>
SELECT TOP 1 * FROM XMLProgrammingBible.dbo.AmazonListings FOR XML AUTO
</sql:query>
</QueryRoot>

A stylesheet reference can be contained in a URL that references a template with a
parameter like this:

http://iis.benztech.com/XMLProgrammingBible/template/MultiQueryExample1.xml?xsl=
/stylesheets/ResultTransform.xsl

If a template contains an XSL stylesheet reference and a stylesheet is specified
in a URL that calls the template, stylesheet in the URL overrides the template
stylesheet reference.

Transforming FOR XML AUTO output to HTML
Here’s the output that is generated by the example template shown above. The
QueryRoot root element is defined in the temple, everything else is created by the
SQL command. The row that is retuned is defined by a single element called
AmazonListings, and all of the columns in that row are defined by an attribute
with the format columnName=”value”. Note that the ampersands (&) in the
tagged_URL attribute have been converted to entity references (&). This is
part of the functionality of the AUTO SQL command parameter.

Note

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 593

594 Part IV ✦ Relational Data and XML

<?xml version=”1.0” encoding=”UTF-8”?>
<QueryRoot>

<AmazonListings ProductID=”1001” Ranking=”1” Title=”Hamlet/MacBeth”
ASIN=”8432040231” Image=”http://images.amazon.com/images/
P/8432040231.01.MZZZZZZZ.jpg” Small_Image=”http://images.amazon.com
/images/P/8432040231.01.TZZZZZZZ.jpg” List_price=”$7.95”
Release_date=”2001-12-17T09:30:47-05:00” Binding=”Paperback”
Availability=”” Tagged_URL=”http://www.amazon.com:80
/exec/obidos/redirect?tag=associateid&
benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231”/>

</QueryRoot>

I used XMLSpy’s (http://www.xmlspy.com) stylesheet designer to create the
stylesheet that transforms this XML document to an HTML table. The XMLSpy
stylesheet designer uses DTDs or W3C schemas to create XSL stylesheets. I loaded
the XML document shown above into XMLSpy and created a DTD from the XML
document using the Generate Schema/DTD menu option. I saved the DTD and
reopened it in Stylesheet designer. All I had to do then was drag and drop the
AmazonListings element into the stylesheet designer window and format the input
as an HTML table. I messed with the fonts a little, and the HTML output in Figure
22-1 is the result.

The stylesheet that is generated by the stylesheet designer is 178 lines and very
repetitive, so we won’t show you the whole thing here. Instead we’ll just show you
the first few lines, which are repeated for each row in the HTML table.

The examples in this chapter can be downloaded from the XMLprogramming
Bible.com Web site, under the Downloads section.

The stylesheet starts with an XML document declaration, and an XSL transforma-
tion namespace declaration as part of the xsl:stylesheet root element. This defines
the XSL elements from any other types of elements such as HTML output. This is
mainly for the benefit of XSLT processors. The XSLT processing is started by a tem-
plate element with a match attribute. The XPath expression for the source XML
document refers to the root element (/).

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

i538292 ch22.qxd 8/18/03 8:44 AM Page 594

595Chapter 22 ✦ Transforming Relational XML Output into Other Formats

Figure 22-1: The Transformed HTML output from an SQL Server FOR XML
AUTO query

The next few elements are HTML and become part of the Output HTML document,
exactly as you see them here. The span element sets up the style for the display of
the heading on the HTML page.

<html>
<head/>
<body>

XML Programming Bible -
Transformed Results of an MS SQL Server Query

Next, the XSLT elements define that for each instance of the QueryRoot/
AmazonListings element in the source document, a new HTML table should be
created on the page. More HTML elements define the first row of the HTML table.

i538292 ch22.qxd 8/18/03 8:44 AM Page 595

596 Part IV ✦ Relational Data and XML

<xsl:for-each select=”QueryRoot”>
<xsl:for-each select=”AmazonListings”>
<xsl:if test=”position()=1”>

<table border=”1”>
<tbody>

<tr>
<td>

<span style=”font-family:Arial; font-size:xx-small;
“>ProductID

</td>
<xsl:for-each select=”../AmazonListings”>

<td>

Next, a new row is added to the HTML table for each instance of the ProductID
attribute inside of the AmazonListings element. The attribute name is used for the
left column in the table row. The attribute value becomes the value in the right col-
umn in the row.

<xsl:for-each select=”@ProductID”>
<span style=”font-family:Arial; font-size:xx-
small; “>
<xsl:value-of select=”.”/>

</xsl:for-each>
</td>

</xsl:for-each>
</tr>
<tr>

The rest of the stylesheet repeats this pattern for each attribute in the
AmazonListings element. If there is another AmazonListings element, the stylesheet
creates another table and starts over.

Oracle and XSL
Oracle supports a number of methods of transforming XML using XSLT. You can use
the integrated high-performance parser and transformation engine that is part of the
Oracle XDK in a multi-tier environment. You can also use XML DB XMLTRANSFORM
function. The XSQL servlet and XSQL Pages Publishing Framework also support
XSLT transformation features.

For more information on parsing and transforming XML using Java, please refer to
Chapters 15 and 16. The parsing and transformation code examples for Xalan and
Xerces can be reused with the Oracle Java XDK. The only modification required is
the substitution of Oracle XDK transformation and parsing packages in the import
statements.

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 596

597Chapter 22 ✦ Transforming Relational XML Output into Other Formats

One of the easiest ways to get data out of Oracle is though a combination of the
XMLELEMENT and XMLFOREST XML DB functions. Here’s the query we am using to
create an XML document from Oracle data:

SELECT XMLELEMENT(“RootElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;

And here’s what a sample XML document looks like when it is returned by this
query:

<RootElement>
<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/MacBeth</TITLE>
<ASIN>8432040231</ASIN>
<AUTHORID>1001</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/8432040231.01.MZZZZZZZ.jpg
</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/8432040231.01.TZZZZZZZ.jpg
</SMALL_IMAGE>
<LIST_PRICE>7.95</LIST_PRICE>
<RELEASE_DATE>01-JUN-91</RELEASE_DATE>
<BINDING>Paperback</BINDING>
<TAGGED_URL>http://www.amazon.com:80/exec/obidos/redirect?
tag=associateid&benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231</TAGGED_URL>

</RootElement>

Creating an Oracle table to store stylesheets
In Chapter 19 we showed you how to create a table that contains an XMLType data
type. In this chapter we’ll create another table in the XMLPB1 database that con-
tains three columns. The table is named STYLESHEETS. The first column is named
SHEETNUMBER and is a numeric column used to store an incremental ID for
stylesheets. The second column is named SHEETID and is used to store character-
based IDs for stylesheets. The third column is named STYLESHEET and contains

i538292 ch22.qxd 8/18/03 8:44 AM Page 597

598 Part IV ✦ Relational Data and XML

the XSL stylesheet formatted as an XMLType data type. Here’s the SQL that creates
the table:

CREATE TABLE “BBENZ”.”STYLESHEETS” (“SHEETNUMBER” NUMBER(10) NOT
NULL, “SHEETID” CHAR(50), “STYLESHEET” “SYS”.”XMLTYPE”)

Once the table is created, stylesheets can be stored and retrieved as needed by
Oracle applications. This has several advantages over the alternate options, which
are storing XSL on the file system or hard-coding a stylesheet into an application.
First, you can take advantage of Oracle security for managing stylesheets. Second,
the stylesheets are always contained in the database with the XML that is being
transformed. Third, application performance is better when retrieving a stylesheet
from a table than retrieving the stylesheet from the file system. Here’s a sample
query for inserting a stylesheet into the STYLESHEETS table:

INSERT INTO STYLESHEETS(SHEETNUMBER, SHEETID, STYLESHEET) VALUES(1,
‘FirstStyleSheet’,
xmltype(
‘<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”xml”/>
<xsl:template match=”@*”>
<xsl:element name=”{name()}”>

<xsl:value-of select=”.”/>
</xsl:element>
</xsl:template>
<xsl:template match=”*”>
<xsl:copy>

<xsl:apply-templates select=”*|@*”/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>’));

This works well for loading stylesheets into a table from the SQL*Plus console. You
can also retrieve an XSL document from a document on the file system and load it
into the STYLESHEETS table using DBMS_XMLGEN() functions. Stylesheets can be
retrieved from the database using an SQL subquery like this:

SELECT STYLESHEET from STYLESHEETS where SHEETID =
‘FirstStyleSheet’

For more information on working with XML in Oracle, please refer to Chapter 19.

The XSL Stylesheet is called OracleXMlElement.xslt, and has a SHEETID of
OracleXMLElement in the STYLESHEETS table. Here’s what the beginning of the
stylesheet looks like. The rest of the stylesheet is repetitive and long, so we’ll only
show the first part in the book.

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 598

599Chapter 22 ✦ Transforming Relational XML Output into Other Formats

The examples in this chapter can be downloaded from the XMLprogramming
Bible.com Website, under the Downloads section.

The stylesheet starts with an XML document declaration, and an XSL transforma-
tion namespace declaration as part of the xsl:stylesheet root element. This defines
the XSL elements from any other types of elements such as HTML output. This is
mainly for the benefit of XSLT processors. The XSLT processing is started by a tem-
plate element with a match attribute. The XPath expression for the source XML
document refers to the root element (/).

?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

The next few elements are HTML and become part of the Output HTML document,
exactly as you see them here. The span element sets up the style for the display of
the heading on the HTML page.

<html>
<head />
<body>

XML Bible - Transformed Results
of an Oracle Query

Next, the XSLT elements define that for each instance of the RootElement element
in the source document, a new HTML table should be created on the page. More
HTML elements define the first row of the HTML table.

<xsl:for-each select=”RootElement”>
<xsl:if test=”position()=1”>

<table border=”1”>
<tbody>

<tr>
<td>

<span style=”font-family:Arial; font-size:xx-small;
“>PRODUCTID

</td>
<xsl:for-each select=”../RootElement”>

<td>

Next, a new row is added to the HTML table for each instance of the PRODUCT ele-
ment. The element name is used for the left column in the table row. The text value
of the element becomes the value in the right column in the row.

<xsl:for-each select=”PRODUCTID”>
<span style=”font-family:Arial; font-size:xx-small;
“>

i538292 ch22.qxd 8/18/03 8:44 AM Page 599

600 Part IV ✦ Relational Data and XML

<xsl:apply-templates />

</xsl:for-each>
</td>

</xsl:for-each>
</tr>

Figure 22-2 shows the transformed HTML output from the combined XMLELEMENT
and XMLFOREST query.

Figure 22-2: The transformed output for the Oracle HTML transformation

Now that you have an understanding of the XSL stylesheet and what the XSL output
looks like, let’s go through the options for performing an XSL transformation.

Using the XML DB XMLTRANSFORM() function
XMLTRANSFORM() accepts a source XML document in XMLType data type and an
XSLT stylesheet. It applies the stylesheet to the XML document and returns a trans-
formed XML instance. Here’s an example of XMLTRANSFORM that returns an XML

i538292 ch22.qxd 8/18/03 8:44 AM Page 600

601Chapter 22 ✦ Transforming Relational XML Output into Other Formats

document as a string. The XML document source in the first subquery is a combina-
tion of nested XMLELEMENT and XMLATTRIBUTE functions. The result is a source
XML document that is passed to the XMLTRANSFORM function. The second sub-
query retrieves the OracleXMLElement stylesheet as an XMLType document. The
stylesheet becomes the second parameter in the XMLTRANSFORM function. The
transformation output is converted to a string using the getStringVal() method.

SELECT XMLTRANSFORM(
(SELECT XMLELEMENT(“RootElement”, XMLFOREST(
PRODUCTID,
RANKING,
TITLE,
ASIN,
AUTHORID,
IMAGE,
SMALL_IMAGE,
LIST_PRICE,
RELEASE_DATE,
BINDING,
AVAILABILITY,
TAGGED_URL)) as “RESULT”
FROM AmazonListings
WHERE rownum = 1;
),
(SELECT STYLESHEET
from STYLESHEETS
where SHEETID =
‘OracleXMLElement’)).getStringVal()
AS HTMLResult from AMAZONLISTINGS
WHERE rownum = 1;

DB2 and XSL
DB2 supports two DB2 XML Extender functions for transforming XML documents.
The XSLTransformToClob() function accepts a stylesheet object and an XML
document object and returns a CLOB object. The XSLTransformToFIle () func-
tion accepts a stylesheet object and an XML document object and writes a file to
the file system. You can use DB2 XML columns to store and retrieve stylesheets
from a database.

DB2 has many ways to generate XML data from Relational tables. One of the sim-
plest ways is to use a combination of XMLAGG and XMLELEMENT to build a well-
formed XML document from rows of table data. Here’s a query that we’re using for
the DB2 examples in this chapter:

SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(

i538292 ch22.qxd 8/18/03 8:44 AM Page 601

602 Part IV ✦ Relational Data and XML

XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING),
XMLELEMENT(NAME”TITLE”, TITLE),
XMLELEMENT(NAME”ASIN”,ASIN),
XMLELEMENT(NAME”AUTHORID”,AUTHORID),
XMLELEMENT(NAME”IMAGE”,IMAGE),
XMLELEMENT(NAME”SMALL_IMAGE”,SMALL_IMAGE),
XMLELEMENT(NAME”LIST_PRICE”,LIST_PRICE),
XMLELEMENT(NAME”RELEASE_DATE”,RELEASE_DATE),
XMLELEMENT(NAME”BINDING”,BINDING),
XMLELEMENT(NAME”AVAILABILITY”,AVAILABILITY),
XMLELEMENT(NAME”TAGGED_URL”, TAGGED_URL)
))))
AS “XMLResult” FROM AMAZONLISTINGS

And here’s what the XML document results look like:

<RootElement>
<RowElement>

<PRODUCTID>1001</PRODUCTID>
<RANKING>1</RANKING>
<TITLE>Hamlet/Macbeth</TITLE>
<ASIN>8432040231</ASIN>
<AUTHORID>1001</AUTHORID>
<IMAGE>http://images.amazon.com/images/P/8432040231.01.
MZZZZZZZ.jpg</IMAGE>
<SMALL_IMAGE>http://images.amazon.com/images/P/8432040231.01.
TZZZZZZZ.jpg</SMALL_IMAGE>
<LIST_PRICE>07.</LIST_PRICE>
<RELEASE_DATE>1991-06-01</RELEASE_DATE>
<BINDING>Paperback</BINDING>
<AVAILABILITY/>
<TAGGED_URL>http://www.amazon.com:80/exec/obidos/redirect?
tag=associateid&benztechnonogies=9441&camp=1793&
link_code=xml&path=ASIN/8432040231</TAGGED_URL>

</RowElement>
</RootElement>

Creating a DB2 Table to store stylesheets
In Chapter 20 we showed you how to create a table that contains an XML Column in
a database that has been enabled for use with DB2 XML Extender. In this chapter
we’ll create another table in the XMLPB database that contains three columns. The
table is named STYLESHEETS. The first column is named SHEETNUMBER, and is an
INTEGER column used to store an incremental ID for stylesheets. The second col-
umn is named SHEETID and is used to store character-based IDs for stylesheets.
The third column is named STYLESHEET and contains the XSL stylesheet formatted
as an XML Column. Here’s the SQL that creates the table:

i538292 ch22.qxd 8/18/03 8:44 AM Page 602

603Chapter 22 ✦ Transforming Relational XML Output into Other Formats

CREATE TABLE OWNER.STYLESHEETS (SHEETNUMBER INTEGER , SHEETID CHARACTER (50) ,
STYLESHEET DB2XML.XMLCLOB) ;

Once the table is created, stylesheets can be stored and retrieved as needed by DB2
functions and applications. This has several advantages over the alternate options,
which are storing XSL on the file system or hard-coding a stylesheet into an applica-
tion. First, you can take advantage of DB2 security for managing stylesheets.
Second, the stylesheets are always contained in the database with the XML that is
being transformed. Here’s a sample query for inserting a stylesheet into the
STYLESHEETS table from a file using the DB2 XML Extender XMLCLOBFromFile()
function:

INSERT INTO STYLESHEETS (SHEETNUMBER, SHEETID, STYLESHEET)
VALUES(1, ‘Db2XMLElement’, DB2XML.XMLCLOBFromFile
(‘c:\dxx\samples\DB2XMLELement.xsl’))

Stylesheets that are stored in DB2 XML columns can be retrieved from the database
using an SQL subquery like this:

SELECT STYLESHEET from STYLESHEETS where SHEETID =
‘Db2XMLElement’

For more information on working with XML in DB2, please refer to Chapter 20.

The DB2 XSL stylesheet is called DB2XMLElement.xslt, and has a SHEETID of
DB2XMLElement in the STYLESHEETS table. Here’s what the beginning of the
stylesheet looks like. The rest of the stylesheet is repetitive and long, so we’ll only
show the first part in the book.

The examples in this chapter can be downloaded from the XMLProgramming
Bible.com Website, under the Downloads section.

The DB2 stylesheet starts with an XML document declaration, and an XSL transfor-
mation namespace declaration as part of the xsl:stylesheet root element. This
defines the XSL elements from any other types of elements such as HTML output.
This is mainly for the benefit of XSLT processors. The XSLT processing is started by
a template element with a match attribute. The XPath expression for the source
XML document refers to the root element (/).

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 603

604 Part IV ✦ Relational Data and XML

The next few elements are HTML and become part of the output HTML document,
exactly as you see them here. The span element sets up the style for the display of
the heading on the HTML page.

<html>
<head />
<body>

XML Bible - Transformed
Results of a DB2 Query

Next, the XSLT elements define that for each instance of the RootElement element
in the source document, a new HTML table should be created on the page. More
HTML elements define the first row of the HTML table.

<xsl:for-each select=”RootElement”>
<xsl:for-each select=”RowElement”>

<xsl:if test=”position()=1”>
<table border=”1”>

<tbody>
<tr>

<td>
<span style=”font-family:Arial; font-size:xx-small;
“>PRODUCTID

</td>
<xsl:for-each select=”../RowElement”>

<td>

Next, a new row is added to the HTML table for each instance of the PRODUCT ele-
ment. The element name is used for the left column in the table row. The text value
of the element becomes the value in the right column in the row.

<xsl:for-each select=”PRODUCTID”>
<span style=”font-family:Arial; font-size:xx-
small; “>
<xsl:apply-templates/>

</xsl:for-each>

</td>
</xsl:for-each>

</tr>

Figure 22-3 shows the transformed HTML output from the combined XMLAGG and
XMLELEMENT query.

i538292 ch22.qxd 8/18/03 8:44 AM Page 604

605Chapter 22 ✦ Transforming Relational XML Output into Other Formats

Figure 22-3: The transformed output for the DB2 HTML transformation

Using XSLTransformToClob and XSLTransformToFile to
transform data to a CLOB
XSLTransformToClob is a handy way to create a CLOB object that contains an
HTML page. The XSLTransformToClob function receives two parameters; an XML
source document and an XSL stylesheet document. Both parameters must be in
CLOB format (hence the XML2CLOB function is used). Stylesheets can also be in
VARCHAR format. Both input parameters can also be file names with paths to the
file system.

SELECT XSLTransformToClob(
(SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(
XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING),

i538292 ch22.qxd 8/18/03 8:44 AM Page 605

606 Part IV ✦ Relational Data and XML

XMLELEMENT(NAME”TITLE”, TITLE),
XMLELEMENT(NAME”ASIN”,ASIN),
XMLELEMENT(NAME”AUTHORID”,AUTHORID),
XMLELEMENT(NAME”IMAGE”,IMAGE),
XMLELEMENT(NAME”SMALL_IMAGE”,SMALL_IMAGE),
XMLELEMENT(NAME”LIST_PRICE”,LIST_PRICE),
XMLELEMENT(NAME”RELEASE_DATE”,RELEASE_DATE),
XMLELEMENT(NAME”BINDING”,BINDING),
XMLELEMENT(NAME”AVAILABILITY”,AVAILABILITY),
XMLELEMENT(NAME”TAGGED_URL”, TAGGED_URL)
))))
AS “XMLResult” FROM AMAZONLISTINGS),
(SELECT XML2CLOB(STYLESHEET from STYLESHEETS where SHEETID =
‘Db2XMLElement’)))

The XSLTransformToFile function is almost identical, except that it uses a third
parameter to pass the transformed output to a file instead of a CLOB object. Here’s
an example that writes the transformed output to a file named c:\dxx\samples\
DB2TransformExample.xml:

SELECT XSLTransformToFile(
(SELECT XML2CLOB(
XMLELEMENT(NAME “RootElement”,
XMLAGG(
XMLELEMENT(NAME “RowElement”,
XMLELEMENT(NAME “PRODUCTID”, PRODUCTID),
XMLELEMENT(NAME “RANKING”, RANKING),
XMLELEMENT(NAME”TITLE”, TITLE),
XMLELEMENT(NAME”ASIN”,ASIN),
XMLELEMENT(NAME”AUTHORID”,AUTHORID),
XMLELEMENT(NAME”IMAGE”,IMAGE),
XMLELEMENT(NAME”SMALL_IMAGE”,SMALL_IMAGE),
XMLELEMENT(NAME”LIST_PRICE”,LIST_PRICE),
XMLELEMENT(NAME”RELEASE_DATE”,RELEASE_DATE),
XMLELEMENT(NAME”BINDING”,BINDING),
XMLELEMENT(NAME”AVAILABILITY”,AVAILABILITY),
XMLELEMENT(NAME”TAGGED_URL”, TAGGED_URL)
))))
AS “XMLResult” FROM AMAZONLISTINGS),
(SELECT XML2CLOB(STYLESHEET from STYLESHEETS where SHEETID =
‘Db2XMLElement’), ‘c:\dxx\samples\DB2TransformExample.xml’))

Transforming JDBC Result Sets to HTML
As we mentioned at the beginning of this chapter, while facilities exist to produce
HTML and XML output from relational data directly from a RDBMS server, we have
misgivings about them. This is mainly due to security and performance issues asso-
ciated with providing a direct connection from the Web to your data store. Also,

i538292 ch22.qxd 8/18/03 8:44 AM Page 606

607Chapter 22 ✦ Transforming Relational XML Output into Other Formats

speaking of performance, the more you as a server to do, the busier it gets, and per-
formance goes down. This is especially true of high volumes of XSL parsing and
transformation.

In this part of the chapter, we’ll use the XML document output that was generated
by the J2EE application in Chapter 21. This is a good example of transforming XML
data on a mid-tier in the infrastructure, instead of on the RDBMS server.

After reviewing the SQL Server, Oracle, and DB2 solutions for XSL transformations,
you are probably noticing that this gets a bit repetitive. This is actually a good
thing; it means that the process of transforming relational XML formats to HTML
(and other formats of XML) is somewhat standardized across platforms. Oracle and
DB2 are closer together in features than SQL Server, but on the other hand SQL
Server has some unique and useful features.

Here’s a sample XML document that was produced by the J2EE application in
Chapter 21. The XML document consists of three quotes, with the author and
source for each quote as siblings of a quotation. Each quotation record is the child
of a record element, and records are children of the resultset root element.

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<metadata>
<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”SourceName” datatype=”char”/>

</metadata>
<records>

<record rownumber=”1”>
<Quotation>When the hurlyburly’s done, When the battle’s lost and
won.</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
<record rownumber=”2”>

<Quotation>Out, damned spot! out, I say!-- One; two; why, then ‘tis
time to do’t ;--Hell is murky!--Fie, my lord, fie! a soldier, and
afeard? What need we fear who knows it, when none can call our power
to account?--Yet who would have thought the old man to have had so
much blood in him?</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
<record rownumber=”3”>

i538292 ch22.qxd 8/18/03 8:44 AM Page 607

608 Part IV ✦ Relational Data and XML

<Quotation>To-morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of recorded time;
and all our yesterdays have lighted fools the way to dusty death.
Out, out, brief candle! Life’s but a walking shadow; a poor player,
that struts and frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and fury,
signifying nothing. </Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
</records>

</resultset>

Here’s the transformation stylesheet for the JDBC example. As with the three previ-
ous examples, the DB2 stylesheet starts with an XML document declaration, and an
XSL transformation namespace declaration as part of the xsl:stylesheet root ele-
ment. This defines the XSL elements from any other types of elements such as
HTML output. This is mainly for the benefit of XSLT processors. The XSLT process-
ing is started by a template element with a match attribute. The XPath expression
for the source XML document refers to the root element (/).

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

The next few elements are HTML and become part of the output HTML document,
exactly as you see them here. The span element sets up the style for the display of
the heading on the HTML page.

<html>
<head/>
<body>

XML Programming Bible - JDBC XML
Document Transformation Example

Next, the stylesheet creates a process for handling each resultset, records, and
record element on the page. Next, the table headings are hard-coded into the
HTML table as table column headers.

<xsl:for-each select=”resultset”>
<xsl:for-each select=”records”>

<xsl:for-each select=”record”>
<xsl:if test=”position()=1”>

<table border=”1”>
<thead>

i538292 ch22.qxd 8/18/03 8:44 AM Page 608

609Chapter 22 ✦ Transforming Relational XML Output into Other Formats

<tr>
<td>

<span style=”font-family:Arial; font-size:xx-small;
“>Author Name

</td>
<td>

<span style=”font-family:Arial; font-size:xx-small;
“>Source Name

</td>
<td>

<span style=”font-family:Arial; font-size:xx-small;
“>Quotation

</td>
</tr>

</thead>

The table body starts with the tbody element. The author name, source name, and
quotation are defined by the elements with the same names in the source XML doc-
ument. The parent of these elements is the record element. This code defines the
table row values as three columns across the HTML page. When another record ele-
ment is encountered, a new row is started in the table. The rest of the stylesheet is
font formatting and tag closing until the end of the stylesheet is encountered.

<tbody>
<xsl:for-each select=”../record”>

<tr>
<td>
<xsl:for-each select=”AuthorName”>
<span style=”font-family:Arial; font-size:xx-
small; “>
<xsl:apply-templates/>

</xsl:for-each>

</td>
<td>
<xsl:for-each select=”SourceName”>
<span style=”font-family:Arial; font-size:xx-
small; “>
<xsl:apply-templates/>

</xsl:for-each>

</td>
<td>
<xsl:for-each select=”Quotation”>
<span style=”font-family:Arial; font-size:xx-
small; “>
<xsl:apply-templates/>

</xsl:for-each>

</td>

i538292 ch22.qxd 8/18/03 8:44 AM Page 609

610 Part IV ✦ Relational Data and XML

</tr>
</xsl:for-each>

</tbody>
</table>

</xsl:if>
</xsl:for-each>

</xsl:for-each>
</xsl:for-each>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Figure 22-4 shows the results of the XSL transformation from JDBC XML document
output to HTML.

Figure 22-4: The transformed output for the DB2 HTML transformation

i538292 ch22.qxd 8/18/03 8:44 AM Page 610

611Chapter 22 ✦ Transforming Relational XML Output into Other Formats

Transforming the JDBC XML Output using Java
The example J2EE application in Chapter 21 shows you how to connect MS SQL
server data to a J2EE application via a JDBC connection. The connection itself
could be swapped out with any other RDBMS product that supplies JDBC drivers.
Even if the JDBC connection is altered, the XML document output format should
not be affected, because the XML is generated from the result set, not by the
RDBMS server. The transformation itself can use any XSLT engine, including Xalan,
and if you’re using Oracle, the high-performance XSLT processor in the Oracle XDK.

Please refer to Chapter 16 for examples of XSL transformations using Java.

Another option is client-side processing of XML data. In the next section of this
chapter we show you how to manipulate XML data on a Web browser client using
XML data islands.

Building Data Islands with the Microsoft
XML Core Services (MSXML)

Data islands is a term used to describe tagged data embedded on an HTML page.
The data itself can be physically embedded into the HTML. XML data can also be
added to an HTML page using a reference to an XML page with a src=’source’
attribute, just like an image. You can also load a separate XML document XML into
the page programmatically using JavaScript XMLDOM and XMLHTTP ActiveX objects.
We’ll show you an example of loading an XMLDOM ActiveX object via JavaScript.

Introduction to XML data islands
XML filtering and sorting is usually faster on a client than via interactive calls to a
server. If you use a server to process the sorts and filters, you have to rely on a net-
work connection to process and server each page of filtered or sorted data.
Avoiding trips back and forth to the server is usually easier on the server and net-
work. This is why other types of client-side processing, such as JavaScript data vali-
dation for forms, produce faster response times for users. The downside is that
developers are relying their code to run on a client environment that they have no
control over.

Despite Mozilla and Navigator 6.0 advances in client-side DHTML and XML han-
dling, the JavaScript and client-side XML and XSL examples in this chapter work
most reliably on Microsoft Internet Explorer Web browser clients.

Note

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 611

612 Part IV ✦ Relational Data and XML

The Microsoft XML Core Services (MSXML)
Microsoft XML Core Services (formerly known as the Microsoft XML Parser, which
is a little closer to the acronym) is available for free with Internet Explorer 5 and up.
The example in this chapter requires the MSXML 4.x parser, which began shipping
with IE 6.

If you can’t upgrade to IE6, a separate MSXML DLL and related files can be down-
loaded for free and added to browsers without requiring a full browser upgrade. For
developers who are unsure which version they have on their machines, Microsoft
provides a free utility for verifying MSXML installation and checking the version of
the install. The version checking tool and the latest version of the parser can be
downloaded from http://www.microsoft.com/msxml.

The Data Islands Example Page
For this example, I start with an XML document. The XML document is created by
the multi-tier J2EE application in Chapter 21. At the top of the XML document is a
metadata element, which lists the MS SQL server column names that this XML doc-
ument is based on. There are three columns: Quotation, AuthorName, and
SourceName. Nested inside of the records row is a record element for each row
returned by the JDBC query. Listing 22-1 shows the XML document that forms the
base of this example.

Listing 22-1: XML Output from the Quote Generator -
Servlet Edition

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<metadata>
<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”SourceName” datatype=”char”/>
</metadata>
<records>
<record rownumber=”1”>

<Quotation>When the hurlyburly’s done, When the battle’s lost and
won.</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
<record rownumber=”2”>

i538292 ch22.qxd 8/18/03 8:44 AM Page 612

613Chapter 22 ✦ Transforming Relational XML Output into Other Formats

<Quotation>Out, damned spot! out, I say!-- One; two; why,
then ‘tis time to do’t ;--Hell is murky!--Fie, my lord, fie! a
soldier, and afeard? What need we fear who knows it, when none can
call our power to account?--Yet who would have thought the old man
to have had so much blood in him?</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
<record rownumber=”3”>

<Quotation>To-morrow, and to-morrow, and to-morrow, creeps in this
petty pace from day to day, to the last syllable of recorded time;
and all our yesterdays have lighted fools the way to dusty death.
Out, out, brief candle! Life’s but a walking shadow; a poor player,
that struts and frets his hour upon the stage, and then is heard no
more: it is a tale told by an idiot, full of sound and fury,
signifying nothing.

</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
</records>

</resultset>

The MSXML 4 parser that is part of my IE 6 installation loads the XML document in
Listing 22-1 into an HTML page. The XML document is then transformed into a
smaller XML document that contains only the Quotation, AuthorName, and
SourceName elements, nested inside an element named Quotes. Listing 22-2
shows the transformed data.

If you are using large XML documents that contain a lot of data that is not needed
by the data island, I recommend transforming the data. By performing a transfor-
mation to a smaller XML document format when loading the page, you enhance
the performance of sorts and filters later. The overhead when loading the page is
much less noticeable than when a user clicks on a sort button. If you are using rel-
atively small XML documents as I am here, you probably don’t need to perform an
XSL transformation.

The new XML document object is parsed into a table that can be sorted by a sec-
ond XSL stylesheet. The XML document is displayed on the screen as an HTML
table with hidden frames. Figure 22-5 shows the HTML page containing the XML
data island. The format looks basic, but it contains some very powerful functional-
ity courtesy of the MSXML parser. When the buttons along the top of the screen are
clicked, the data dynamically sorts according to instructions sent to the HTML
page. The main feature of the page is not the sorting, but the fact that all of the
action takes place on the local workstation. No server interaction is needed to filter
or sort data once the page is loaded.

Tip

i538292 ch22.qxd 8/18/03 8:44 AM Page 613

614 Part IV ✦ Relational Data and XML

Figure 22-5: The Data Islands Example Page, with buttons for client-side data island
sorting

All of the examples contained in this chapter can be downloaded from the
XMLProgrammingBIble.com Website, in the Downloads section. Please see the
Web site for installation Instructions.

Creating a data island using JavaScript and MSXML
The HTML page shown in Figure 22-5 calls the getTransformedXML() JavaScript
function via the HTML page’s onLoad event. The getTransformedXML() function
and two deceptively small XSL stylesheets contain most of the functionality for this
example. Let’s have a look at the getTransformedXML() function in its entirety,
then break it down in segments and review each step in more detail. Listing 22-2
shows the code for the getTransformedXML() function.

Listing 22-2: The Code for the getTransformedXML() Function

var XMLDoc;
var xslSheet;
var transformedXML;

i538292 ch22.qxd 8/18/03 8:44 AM Page 614

615Chapter 22 ✦ Transforming Relational XML Output into Other Formats

var sortSheet;
var strResult;

function getTransformedXML()
{

XMLDoc = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
XMLDoc.async = false;
loadSuccess = XMLDoc.load(“QuotesExport1.xml”);

xslSheet = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
xslSheet.async = false;
loadSuccess = xslSheet.load(“JDBCXMLtoDIV.xsl”);

sortSheet = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
sortSheet.async = false;
loadSuccess = sortSheet.load(“SortXML.xsl”);
sortSheet.setProperty(“SelectionNamespaces”,
“xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’”);
transformedXML= new
ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
XMLDoc.transformNodeToObject(xslSheet, transformedXML);

NodeList = transformedXML.documentElement.childNodes;

var vHTML = “<table
border=0><tr><thead><th>Author</th><th>Source</th>
<th>Quote</th></thead>”;

for (var i=0; i<NodeList.length; i++) {

ChildList = NodeList.item(i).childNodes
for (var j=0; j<ChildList.length; j++) {

Child = ChildList.item(j);
vHTML += “<td>” + Child.text + “</td>”;

}
vHTML += “</tr>”;

}
transformedXMLOutput.innerHTML = vHTML;

}

As mentioned before, we use the Microsoft XML Core Services XMLDOM ActiveX
Object to load and parse XML data into the data island. The data island JavaScript
code looks deceptively short and simple, because MSXML does most of the work.
Let’s go through each segment of code and review what’s happening when the
HTML page is loaded.

i538292 ch22.qxd 8/18/03 8:44 AM Page 615

616 Part IV ✦ Relational Data and XML

Loading the XML document into the data island
The XML document is loaded into the data island by creating a new ActiveX Object.
The contents of the XML document are loaded into the XMLDoc object on the
page. The async property is set to false, meaning that JavaScript execution is
paused until the data is loaded. This doesn’t usually represent a noticeable delay
and saves developers from having to write code to check and see if a data island
has completed population before something is done with the data. The XML docu-
ment will be transformed once the XMLDoc object is loaded, so it’s best to wait for
the object to complete loading instead of taking the chance on generating trans-
form errors on an incomplete XML View.

XMLDoc = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
XMLDoc.async = false;
loadSuccess = XMLDoc.load(“QuotesExport1.xml”);

Loading the stylesheets
The next step is to load each of two XSL stylesheets. The first sheet, represented by
the xslSheet object, is used to transform data from the original JDBC result for-
mat to a smaller and leaner XML format for sorting and filtering.

The second stylesheet, represented by the sortSheet object, is used to facilitate
client-side sorting of data island data. We’ll show you how sorting works a little
later, but for now let’s have a look at how the XML to XML transformation takes
place.

xslSheet = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
xslSheet.async = false;
loadSuccess = xslSheet.load(“JDBCXMLtoDIV.xsl”);

sortSheet = new ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
sortSheet.async = false;
loadSuccess = sortSheet.load(“SortXML.xsl”);

Transforming an XML document to an
XML data island
Once the XML data island source and the XSL stylesheets are loaded, the next step
is to transform the XML in the XMLDoc object using the xslSheet stylesheet. To
facilitate this, we create a new object called transformedXML. The new object
uses the transformNodeToObject method of the XMLDomNode class to apply the
xslSheet object and create the new XML document.

The document child nodes are replaced when the document is transformed. The XML
transformation can also be sent to a stream, but we’re using the transformed data on
the same page, so replacing the transformedXML object is more appropriate.

i538292 ch22.qxd 8/18/03 8:44 AM Page 616

617Chapter 22 ✦ Transforming Relational XML Output into Other Formats

transformedXML= new
ActiveXObject(“Msxml2.FreeThreadedDOMDocument.4.0”);
XMLDoc.transformNodeToObject(xslSheet, transformedXML);

The JDBCXMLtoDIV stylesheet is used to facilitate the transformation. The code in
the stylesheet starts at the /resultset/records element and adds a new root
element for the XML document, called “Quotes.” Next, the stylesheet traverses the
JDBC result document until it gets to the first /resultset/records/record
element. The record element is replaced by the QuoteEntry element in the new
XML document. Next, all of the child elements under the record, which represent
table columns in the JDBC result, are replaced with simple elements that use their
original element names. The contents of the stylesheet are shown in Listing 22-3.

For more information on XSL transformations and XSL Stylesheets, please refer to
Chapters 7 and 8.

Listing 22-3: The JDBCXMLtoDIV Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”xml”/>
<xsl:template match=”/resultset/records”>
<xsl:element name=”Quotes”>

<xsl:apply-templates/>
</xsl:element>
</xsl:template>
<xsl:template match=”/resultset/records/record”>
<xsl:element name=”QuoteEntry”>

<xsl:apply-templates select=”AuthorName”/>
<xsl:apply-templates select=”SourceName”/>
<xsl:apply-templates select=”Quotation”/>

</xsl:element>
</xsl:template>
<xsl:template match=”AuthorName”>
<xsl:element name=”{name()}”>

<xsl:value-of select=”.”/>
</xsl:element>
</xsl:template>
<xsl:template match=”SourceName”>
<xsl:element name=”{name()}”>

<xsl:value-of select=”.”/>
</xsl:element>
</xsl:template>
<xsl:template match=”Quotation”>
<xsl:element name=”{name()}”>

<xsl:value-of select=”.”/>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 617

618 Part IV ✦ Relational Data and XML

Listing 22-4 shows what the JDBC result set XML document looks like after being
transformed to a compact XML format using the stylesheet in Listing 22-3.

Listing 22-4: The Transformed XML Document That Is Loaded
into the Data Island

<?xml version=”1.0” encoding=”UTF-8”?>
<Quotes>

<QuoteEntry>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>
<Quotation>When the hurlyburly’s done, When the battle’s lost and
won.</Quotation>
</QuoteEntry>
<QuoteEntry>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>
<Quotation>Out, damned spot! out, I say!-- One; two; why, then ‘tis
time to do’t ;--Hell is murky!--Fie, my lord, fie! a soldier, and
afeard? What need we fear who knows it, when none can call our power
to account?--Yet who would have thought the old man to have had so
much blood in him?</Quotation>
</QuoteEntry>
<QuoteEntry>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>
<Quotation>To-morrow, and to-morrow, and to-morrow, creeps in this petty
pace from day to day, to the last syllable of recorded time; and all
our yesterdays have lighted fools the way to dusty death. Out, out,
brief candle! Life’s but a walking shadow; a poor player, that struts
and frets his hour upon the stage, and then is heard no more: it is a
tale told by an idiot, full of sound and fury, signifying nothing.
</Quotation>
</QuoteEntry>

</Quotes>

Parsing data island data into a table
Now that the XML document data is in a more compact format, it can be parsed
into an HTML table and displayed in a Web browser. The code below iteratively
parses the transformed data into DOM nodes, which are then nested in table rows
and columns.

i538292 ch22.qxd 8/18/03 8:44 AM Page 618

619Chapter 22 ✦ Transforming Relational XML Output into Other Formats

NodeList = transformedXML.documentElement.childNodes;

var vHTML = “<table
border=0><tr><thead><th>Author</th><th>Source</th>
<th>Quote</th></thead>”;

for (var i=0; i<NodeList.length; i++) {

ChildList = NodeList.item(i).childNodes
for (var j=0; j<ChildList.length; j++) {

Child = ChildList.item(j);
vHTML += “<td>” + Child.text + “</td>”;

}
vHTML += “</tr>”;

}
transformedXMLOutput.innerHTML = vHTML;
}

Once the data has been parsed into HTML table format, it is passed to the
transformedXMLOutput DIV tag on the screen for display.

Linking XSL with HTML page design elements
At this point the XML document from the J2EE application is transformed and
parsed. It’s now ready to be filtered and sorted. Now it’s time to add design objects
to the HTML page to enable data sorting. Four buttons and another JavaScript func-
tion are added to the JavaScript to enable the sorting of the data island. It would be
great if just adding the buttons enabled sorting on the XML document data, but
alas, there is still some work to do before the example is fully functional.

Sorting data islands using JavaScript and XSL
The four buttons along the top of the XML Data Island Example Page call a
JavaScript sort function. The buttons also pass parameters with instructions on
how to sort the data island data. For example, here’s the JavaScript code for the
buttons:

sort(‘AuthorName’, ‘ascending’)
sort(‘AuthorName’, ‘descending’)
sort(‘SourceName’, ‘ascending’)
sort(‘SourceName’, ‘descending’)

Listing 22-5 shows the sort function, which is added to the header object of the
XML Data Island Example HTML code. The JavaScript sort function is passed
parameters from the JavaScript button codes listed above. These parameters

i538292 ch22.qxd 8/18/03 8:44 AM Page 619

620 Part IV ✦ Relational Data and XML

become the strSortBy and strOrder variables in the function. The function calls
the sortSheet Stylesheet and calls the selectSingleNode method of the
XMLDOMNode class, which returns the first node that matches the value passed by
the sort button. Next, the code assigns the nodeValue for the XML element and
the sort method (either ascending or descending), and transforms the data
using the transformNode method of the XMLDOMNode Class.

Listing 22-5: The JavaScript Sort Function

function sort(strSortBy, strOrder) {

var objSelect = sortSheet.selectSingleNode(“//xsl:sort/@select”);
var objOrder = sortSheet.selectSingleNode(“//xsl:sort/@order”);

objSelect.nodeValue = strSortBy;
objOrder.nodeValue = strOrder;

strResult = transformedXML.transformNode(sortSheet);

transformedXMLOutput.innerHTML = strResult;
}

The transformation is based on the SortXML stylesheet, which is shown in Listing
22-6. The SortXML Stylesheet is actually a rough sketch of the entire layout of the
XML Data Island Example Page, laid out in an XSL stylesheet. The top half of the
code sets up the HTML page title, the fonts and layouts via an embedded cascading
style sheet (CSS), and a default display if none is specified for page loading.

When the JavaScript sort function calls this stylesheet, it sets the nodeValue for
the XML element, which is either AuthorName or SourceName. The sort method is
determined by the ascending or descending. Once these default nodes are set,
the transformation result pivots around the default nodes and produces a sorted
XML document, which is rewritten to the transformedXMLOutput DIV Tag.

For more information on XSL transformations that incorporate HTML, please refer
to Chapter 8.

Listing 22-6: The SortXML Stylesheet

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>

Cross-
Reference

i538292 ch22.qxd 8/18/03 8:44 AM Page 620

621Chapter 22 ✦ Transforming Relational XML Output into Other Formats

<html>
<head>
<title>XM Programming BIble Data Islands Example</title>
</head>
<body>
<table border=”0” cellpadding=”10”>

<tr>
<th align=”left”>AuthorName</th>
<th align=”left”>SourceName</th>
<th align=”left”>Quotation</th>
</tr>
<xsl:apply-templates select=”/Quotes/QuoteEntry”>
<xsl:sort select=”AuthorName” order=”ascending”/>
</xsl:apply-templates>

</table>
<p/>
</body>

</html>
</xsl:template>
<xsl:template match=”QuoteEntry”>
<tr>

<td>
<xsl:value-of select=”AuthorName”/>
</td>
<td>
<xsl:value-of select=”SourceName”/>
</td>
<td>
<xsl:value-of select=”Quotation”/>
</td>

</tr>
</xsl:template>

</xsl:stylesheet>

Summary
In this chapter we’ve outlined techniques for building transforming relation data to
HTML and other formats. We reviewed XSL transformation features in MS SQL
Server, Oracle, and DB2. We also showed you how to manipulate XML data from a
JDBC result set on a multi-tier application infrastructure using MSXML.

✦ About XSLT

✦ Techniques and tools for building stylesheets

✦ Converting XML to HTML

i538292 ch22.qxd 8/18/03 8:44 AM Page 621

622 Part IV ✦ Relational Data and XML

✦ Support for XSL on MS SQL Server, Oracle, and DB2 RDBMS servers

✦ Manipulating XML data from JDBC result sets

✦ Building data islands

In the next chapter you’re introduced to one of the best and most exciting develop-
ments in the XML world, Web services. Web services are almost completely based
on XML formats, so you’ll have plenty of opportunities to apply what you’ve
learned so far.

✦ ✦ ✦

i538292 ch22.qxd 8/18/03 8:44 AM Page 622

Introducing Web
Services

Part V introduces Web services that are based on XML
formats and technologies. Web service concepts are

introduced, and the three key components of Web services,
SOAP, WSDL and UDDI are discussed in detail, with illustrative
examples of each technology. Part V ends with a comparison
of J2EE and Microsoft Web services, which both use the same
underlying technologies but implement them in subtly differ-
ent ways.

✦ ✦ ✦ ✦

In This Part

Chapter 23
Web Service
Concepts

Chapter 24
SOAP

Chapter 25
WSDL

Chapter 26
UDDI

Chapter 27
Microsoft Web
Services

Chapter 28
J2EE Web Services

✦ ✦ ✦ ✦

P A R T

VV

j538292 pp05.qxd 8/18/03 8:44 AM Page 623

Web Service
Concepts

Web services are quickly becoming more than just a
promising idea. Countless organizations are imple-

menting them at a surprising rate, even though Web services
are still in their relative infancy. At its heart, a Web service is a
component-based, self-describing application based on an
architecture of emerging standards. Other technologies like
CORBA, DCOM, and Java RMI have all targeted the same
objective: deliver application functionality as a service-
oriented component in a distributed and heterogeneous
environment.

This chapter will introduce readers to the concepts of Web
services and how they relate to application development,
whether the applications leverage XML or not. Nonetheless,
we will see how much Web services use XML to make remote
interactions possible. We’ll start with the basic concepts of
Web Services Architectures, SOAP, WSDL, and UDDI. Once we
have the basic concepts, we will show how these standards,
SOAP, WSDL, and UDDI, can be used in a server-based applica-
tion and then see how a client can consume the application.
These examples are merely introductory as other chapters
are specifically dedicated to creating more sophisticated
client-server applications using Web services.

Introduction to Web Services
Web services can be defined as a method of integrating data
and applications via XML standards across computing plat-
forms and operating systems. Web-service enabled applica-
tions make calls and send responses to each other via an XML
format called SOAP (Simple Object Access Protocol). Web ser-
vices are described to clients and other server applications
by using another XML format called WSDL (Web Services

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introduction to
Web services

Web service
building blocks

Web services
architecture

Web service models

Serving Web services

Consuming
Web services

✦ ✦ ✦ ✦

k538292 ch23.qxd 8/18/03 8:44 AM Page 625

626 Part V ✦ Introducing Web Services

Description Language), which is associated with all standard Web services.
Registration information and location of a Web service can be published to a UDDI
(Universal Description, Discovery, and Integration) directory, which is itself a Web
service, and because it’s a Web service, each UDDI registry server contains associ-
ated WSDL files and SOAP accessibility.

Web services are moving quickly, and new sites that either implement a UDDI reg-
istry search tool or provide their own navigational tools to find Web Service
Providers (WSPs) are springing up daily. Those that implement UDDI browsing are a
little forbidding to the Web service newcomer, but they often have the most
detailed and well-organized information. Whether you discover a Web service
through an online search or if you just stumble upon one (it does happen), the fun-
damentals of the service are all the same.

The promise of Web services is not in simple or even complex call-and-response
applications, but in having those applications function together as a single entity
while accessing many different types of data on several disparate software plat-
forms and operating systems. For example, most readers have probably had the
experience of booking a flight, rental car, or hotel on a Website. The promise of Web
services is to take this common experience such as travel booking and extend it via
a smart client and Web services to coordinate your flight booking with simultane-
ous hotel and car bookings based on a client’s preferences and expense limits, and
then update a calendar and expense tracking system with final booking data. Then
have the smart Web Services client notify the traveler of any flight delays or sched-
ule changes, incorporating all the data in several back-end and client systems via
the smart client. Web services and related emerging technologies promise this kind
of seamless functionality and are starting to deliver.

Web Service Building Blocks
It’s important to point out that the specifications for the main building blocks for
Web services are still very much in development, even though most of the tech-
nologies and specifications are based on the W3C (World Wide Web Consortium)
XML Standard. There are several organizations that are working on the develop-
ment of these specifications and tools, hopefully with backward-compatibility for
the existing tools that make up many core Web services.

The Web services organization that’s grabbing most of the attention these days is
the Web Services Interoperability Organization (WS-I). WS-I is an industry organiza-
tion that represents most of the major players, including Oracle, IBM, Microsoft,
BEA System, and many others, including recently, SUN. Their charter is to provide
Web services interoperability (hence the name!) across platforms, applications, and
programming languages. You may be wondering why such a consortium is needed
when the whole idea of Web services is to provide platform-agnostic component
interaction. The irony is lost on no one. However, in fairness, the truth of the matter

k538292 ch23.qxd 8/18/03 8:44 AM Page 626

627Chapter 23 ✦ Web Service Concepts

is that nothing is very simple. Even XML, the most critical protocol of Web services,
is not completely platform-agnostic. If this were not true, some parts of this book
would not be necessary.

Aside from providing a forum to hammer out compatibility and standards, there are
several WS-I “deliverables” that may be of interest to Web service developers:

✦ Profiles are sets of specifications that work together to support specific solu-
tions, like design patterns, but outlining best practices in Web service stan-
dards rather than application architectures.

✦ Sample implementations are teams that are the result of teams that are put
together to assemble and test applications based on profiles, which provide
valuable documentation on performance and functionality flashpoints.

✦ Implementation guidelines are a result of the sample implementations based
on the profiles. They are similar to W3C Recommendations, but also can be
based on W3C Recommendations, and are not specifications per se, but more
like best practices based on implementation testing.

✦ Test Materials are for testing, monitoring, and logging Web service interac-
tions. The monitor tool runs at runtime and produces a log file that the ana-
lyzer reads. The monitor and analyzer produce results that are based on
implementation guidelines.

More information about the WS-I and the deliverables can be found at http://
www.ws-i.org/.

Most of the current efforts and implementations at the WS-I are based on specifica-
tions that are being developed by the W3C. The WS-I cooperates with the W3C on
developing the SOAP and WSDL specifications, and the Universal Description,
Discovery and Integration (UDDI) project for UDDI registries.

In general the WS-I provides implementation testing and support for applications
based on emerging specifications, and the W3C and UDDI project provide speci-
fications, which are in turn often extended and updated by efforts by the WS-I
deliverables.

Now that we have some idea of the players involved in the specification develop-
ment and implementation of Web service standards, let’s have a look at the SOAP,
WSDL, and UDDI building blocks that are currently in development.

SOAP (Simple Object Access Protocol)
SOAP enables transportation of Web service calls and responses. SOAP is a messag-
ing format that describes XML data according to W3C standards, and represents
call and response data in an envelope and message format. The current W3C speci-
fication-in-progress can be viewed at http://www.w3.org/TR/SOAP/.

k538292 ch23.qxd 8/18/03 8:44 AM Page 627

628 Part V ✦ Introducing Web Services

SOAP structure can be compared to a letter or package mailer. SOAP documents are
XML documents that contain an envelope, which contains a description of the con-
tents of a message (but not the message yet!), serialization (encoding) rules for
application-defined data types, which are represented as text serializations of data
according to XML specifications, and optional RPC representation for remote proce-
dure call and response formats, if RPC is the transport being used to send an
receive the SOAP document. HTTP and SMTP are other transport options, though
RPC is the most common transport method, and SMTP is rarely used.

WSDL (Web Services Description Language)
WSDL is based on the W3C XML standard, and describes what Web services are,
what they do, and how they can be accessed to applications that want to access
them via SOAP. All standard Web services are described in an associated WSDL doc-
ument. WSDL can be complicated and verbose, but it enables clients or other Web
services to develop or adapt application interfaces based on WSDL document spec-
ifications. For example, currently there are several tools that enable developers to
create a client and/or server interface to a Web service by parsing a service’s WSDL
and automatically building code to handle calls and responses to the Web service,
including the IBM Web Services Tool Kit (WSTK) for Java interfaces, and several
tools from Microsoft for MS and .NET applications (wsdl.exe, disco.exe, and more).
Most of these tools create and adapt a proxy class from WSDL. The proxy class can
act as a client or server interface to the Web service by handling SOAP calls and
responses to and from the client or another Web service via the generated Java
classes. The Web services activity group at the W3C is currently developing WSDL,
and the working draft of the specification can be seen at http://www.w3.org/
TR/2002/WD-wsdl12-20020709/.

UDDI (Universal Description, Discovery and
Integration)
UDDI is the directory standard for Web services, developed and maintained by the
Universal Description, Discovery and Integration (UDDI) project, which is a part of
the Organization for the Advancement of Structured Information Standards (OASIS)
and is not part of the W3C. There are no auto-indexing or discovery features as are
common with Web crawler search engines for HTML pages on the Web. Each Web
service provider and each service must be registered on a UDDI server and must be
manually registered, either at the one of the two current UDDI Websites, or via a
UDDI registry Web service client. Currently IBM, Microsoft, SAP, and NTT Telecom
host versions of the UDDI directory, which are kept in sync via replication. URLs for
registry sites as well as the latest version of the UDDI specification can be found at
http://uddi.org/.

k538292 ch23.qxd 8/18/03 8:44 AM Page 628

629Chapter 23 ✦ Web Service Concepts

Web Services Architecture
Due to the developing nature of the Web services specification and the community,
vendors such as IBM and Microsoft, and organizations such as the WS-I have devel-
oped several Web service architectures and published specifications. However, the
most advanced and complete architecture for general Web services based on cur-
rent W3C specifications is the specification developed by the W3C Web Services
Architecture Working Group. The full specification is described at http://www.
w3.org/2002/ws/arch/.

Basic Web service architecture
Basic Web services can be described as applications that employ W3C and UDDI
standard specifications for SOAP, WSDL, and UDDI to exchange messages, describe
Web services, and publish Web service descriptions. The official term for applica-
tions that handle Web services is agents. Agents can be consumers or servers of a
Web service, but consumers must be able to find descriptions of Web services via
WSDL associated with a Web service provider agent.

Added to the mix is the role of the service discovery agency, which uses UDDI to
publish registered Web services to Web service consumers, much like a real estate
agency puts buyers and sellers together for homes, but (so far!) without the com-
mission. The concept is that a consumer will find a Web service they need at a ser-
vice discovery agency, then follow the registration information to the service
location, and then access the service according to instructions in the published
WSDL document. Figure 23-1 shows the layout of a basic Web service architecture,
including an optional service discovery agency.

Extended Web service architectures
Extended Web service architectures involve support for more complicated message
exchange patterns (MEPs) that create a full multi-layered transaction from simple
call and response mechanisms. These transactions can include security and
authentication, event chaining to other Web services, and confirmation and roll-
back functionality.

Extended Web service architectures also take advantage of more recent develop-
ments in W3C and UDDI specifications, such as including attachments in SOAP doc-
uments to represent several transactions accumulated or concatenated during a
complicated multi-layer transaction, authenticating messages via user ID and pass-
word, application authentication tokens, or X.509 certificates.

k538292 ch23.qxd 8/18/03 8:44 AM Page 629

630 Part V ✦ Introducing Web Services

Figure 23-1: The basic Web service architecture

Other initiatives include development of encryption for SOAP messages, digital
signatures, fixed message routing, and session handling between messages and
services.

Figure 23-2 shows the layout of extended Web service architectures, illustrating
how the different components work together. Most of the operational load falls on
the SOAP messages, with additional support for authentication and security in the
WSDL documents, and no significant changes in the UDDI directory role.

The role of workflow is also currently being developed, with the Business Process
Execution Language for Web Service (BPEL4WS) looking like a good but developing
way to handle synchronized execution of Web services. BPEL4WS was developed in
a joint effort between IBM, Microsoft, and BEA Systems. More information on the
specification can be found at http://www-106.ibm.com/developerworks/
library/ws-bpel/.

Discovery
Agencies

Interact

PublishFind

Service
Description

Service
Requester

Service
ProviderClient

Service

Service
Description

k538292 ch23.qxd 8/18/03 8:44 AM Page 630

631Chapter 23 ✦ Web Service Concepts

Figure 23-2: Extended Web service architectures

Web Service Models
Beyond the specifications, basic and extended Web service architectures can be
broken down into three real-world models: call and response, brokered calls, and
chained.

The call and response model
The basic format for a Web service is a default call and response mechanism from
one calling agent to a serving agent. In this scenario, the calling agent can either be
a Web services client or a Web services provider.

The calling agent in this case has already discovered the serving agent, and the call-
ing agent simply interacts with the serving agent via SOAP calls and responses. The
call is made to the serving agent via a dynamic generation of an interface by the
calling agent based on the WSDL document of the serving agent, a developer who
has read the WSDL and created a compatible interface, or by a non-dynamic WSDL
interface generation tool. Figure 23-3 illustrates a basic call and response Web ser-
vice model, with WDSL being interpreted and SOAP calls and responses generated
based on the WSDL.

Packaging

SOAP Msgs & Headers WSDL

Transport (the wire) DiscoveryDescription

Management

Conversations

Reliability

Security

Asynchrony

Transactions

Caching

Routing

Choreography

XML Schema

Service
Characteristics

Workflow
Language Security

Misc.

Registry

Inspection

k538292 ch23.qxd 8/18/03 8:44 AM Page 631

632 Part V ✦ Introducing Web Services

Figure 23-3: The call and response model

This is the most common method of Web service interaction today. Most clients are
either Web browsers or smart clients such as Java or Windows applications that
access a predetermined Web service at a predetermined location. If interactions
with multiple Web services are required for a transaction, as in the travel-booking
scenario described in the introduction of this chapter, then the client usually con-
trols the Web service call and response flow by waiting for one Web service to
return data before the next Web service is called.

The brokered calls model
The brokered calls model is very similar to the call and response model, but with
the addition of a Web service between the calling and providing agents. The func-
tion of the “middle man” in this case is not the same as the service discovery
agency role described in the basic Web service architecture. Instead of acting as an
agent that puts calling agents together with appropriate providing agents, the cen-
tral Web service in this case acts like an application proxy for the calling agent, pro-
cessing one or more call and response mechanisms on behalf of the original calling
agent to one or more serving agents, and then returning concatenated responses to
the calling agent. As with the previous scenario, the calling agent can either be a
Web services client or another Web services provider. The central Web service can
also be used to centrally enforce security and authentication standards between
Web services.

This multi-tier Web services architecture simplifies client application maintenance
by simplifying the application requirements for the calling agent and providing a
layer for the Web service to adapt to changes in the environment, such as a server
move or WSDL change for a serving agent. Figure 23-4 illustrates a brokered calls
model, with WDSL being interpreted and SOAP calls and responses generated based
on the WSDL, through an intermediate Web service.

InteractService
Requester

Service
ProviderClient

Service

Publish

Service
Description

Service
Description

k538292 ch23.qxd 8/18/03 8:44 AM Page 632

633Chapter 23 ✦ Web Service Concepts

Figure 23-4: The call and response model

The chained model
The chained model is more closely aligned with current architecture specifications,
and implements several new features of SOAP and a few features of more recent
WSDL specifications, such as support for attachments in SOAP documents to repre-
sent several transactions accumulated or concatenated during a complicated multi-
layer chained transaction, authenticating messages, digital signatures, commit and
rollback functionality, and workflow specifications such as the Business Process
Execution Language for Web Service (BPEL4WS).

Web Service interaction is still facilitated through calls and responses, but the call-
ing and responding agents can also call and respond to other agents to get their
jobs done, rolling the series of calls and responses into a single network transaction
that eventually finds it way back to the calling agent. The chain can start at the
client level or at a server level via the brokered calls model. Figure 23-5 illustrates a
brokered calls model, with WDSL being interpreted, and SOAP calls and responses
are generated based on the WSDL along every link of the chain.

Figure 23-5: The chained model

Serving Web Services
Web services can be served from any platform that can support data binding to the
HTTP, RPC, or SMTP protocols and the deployment of a related WSDL document to
describe an application as a Web service. Once that’s done, the Web service can be
registered to a UDDI server (or published at Xmethods.com) for Web service clients
to access.

Service
Requester

Service
Provider

Service
Provider

Service
Provider

Service
Provider

Client

Service
Description

Service
Requester

Service
ProviderIntermediary

Client Service

Service
Description

Service
Description

k538292 ch23.qxd 8/18/03 8:44 AM Page 633

634 Part V ✦ Introducing Web Services

However, in most cases Web service providing agents are implemented in either
Java or one of the MS Visual Studio.net languages, to take advantage of platform-
specific tools, utilities, and class libraries that make Web service development more
of a practical enterprise.

For example, most Java implementations of Web services use one of the UI tools for
development, such as WebSphere application Developer, Sun One developer for
Java, or the IBM Web Services toolkit to speed up Web service development time. In
almost all cases, Java implementation of Web services uses the Apache SOAP class
libraries as their SOAP implementation.

Consuming Web Services
As with serving Web services, Web services can be called from any platform that
can support data binding to the HTTP, RPC, or SMTP protocols and that is able to
read and interpret a Web service provider’s WSDL document, either via a dynamic
generation of an interface by the calling agent based on the WSDL document of the
serving agent, a developer who has read the WSDL and created a compatible inter-
face, or by a non-dynamic WSDL interface generation tool. Once the interface to the
Web service has been established, the client can call the Web service as if it were
part of the local system.

However, Web services shine when a smart client with a rich UI base and easy inte-
gration with tools such as calendars, to-do lists, and e-mail are available. In this
case, browsers make very basic Web service clients. The best Web service clients
tend to be Windows applications or ASP.NET applications because of the Web ser-
vice integration features in Windows, Office XP, the .NET Framework, and the ease
of development for Web service client applications via Visual Studio.NET tools.

Summary
In this chapter, we provided an introduction to Web services and a description of
how Web service standards and specifications are developing. Next, we provided a
quick introduction to the Web Service Building Blocks: SOAP, WSDL, and UDDI. We
provided an overview of Web service architecture as well, with details on the three
most common Web service models: call and response, brokered calls, and chaining.
We also covered the basic requirements for serving Web services and consuming
Web services. Other chapters get into the building blocks in greater detail. For
example, we look at the detail of a SOAP request and response. We also get into
WSDL and how it works, and we take a hard look at UDDI and its operations.

✦ ✦ ✦

k538292 ch23.qxd 8/18/03 8:44 AM Page 634

SOAP

The Simple Object Access Protocol (SOAP) is designed to
let you invoke remote applications independent of plat-

form and programming language. It is important for applica-
tion development to allow applications to communicate over
the Internet, irrespective of the platform on which the applica-
tion is running. Today’s applications communicate using
Remote Procedure Call (RPC) mechanisms between objects
using protocols like DCOM and CORBA. However, HTTP was
not really designed to accommodate the sophisticated inter-
actions needed when using these RPCs. Because an RPC car-
ries a request to do something rather important, RPC
represents a compatibility and security vulnerability that fire-
walls and proxy servers will normally block.

The challenge then is to allow this kind of complex applica-
tion interaction using an RPC without compromising security
and without sacrificing platform-agnostic advantages. SOAP is
the protocol for packaging these requests when sending
method calls over HTTP. SOAP makes it possible to communi-
cate between applications running on different operating sys-
tems, with different technologies and programming languages
all in play. In this chapter, we will get into the nuts and bolts of
SOAP. We will look at the specific structure of SOAP messages,
how to send and receive messages, and what is contained in
the full payload of a SOAP message.

For information on the actual SOAP specification go to
http://www.w3.org/. For more practical SOAP infor-
mation and samples you can go to http://www.
xmethods.com.

Introduction
SOAP is an evolutionary result of the development of dis-
tributed computing over the Web. In recent years, the need
has arisen for a method of invoking application calls and
responses in a format that will travel easily through corporate

Note

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Receiving and
sending SOAP

SOAP structure

SOAP Message
format

Encoding

Message transports

Envelope

Header

Body

Payload

✦ ✦ ✦ ✦

k538292 ch24.qxd 8/18/03 8:44 AM Page 635

636 Part V ✦ Introducing Web Services

firewalls and the Internet, and at the same time describe the often-complicated data
that is being delivered in an accurate and detailed way. As most developers know,
applications and data usually start out simple and quickly get complicated as layers
of complexity are added to systems. For example, here’s a fairly simple ASP URL
call with some querystring parameters.

http://localhost/XMLWeb/GetCustomerData.aspx?Formatting=FullHTM
L&CustomerIDEncoded=1823F3A3948300E4

This call passes only two parameters to the URL, which are then passed to the code
behind the page. This code returns some customer data based on the parameters
that are passed. You are accustomed to seeing this kind of URL when visiting many
sites on the Internet, and there is nothing inherently wrong with such things. While
this is a very simple example, it is not uncommon to have 20 or 100 parameters
passed to a URL in an unreadable string. Where this strategy starts to become cum-
bersome is when the need arises to start describing the data format of parameters
for distributed applications or when needing to send or return complex datatypes
to the application. Also, this URL-based strategy is not a component-based solution.
No matter what you do, you are still just sending URL requests and getting
responses as URLs, not as actual objects in code. It starts to become obvious that a
new way is needed to pass values from one distributed application to another,
including the description of the data being sent. XML is a natural format for sending
this data, because of its transportability and rich formatting capabilities for repre-
senting complex data formats in a hierarchy. Add messaging capabilities, encoding
for data representation, and RPC descriptors, and you have SOAP.

SOAP format
The W3C SOAP specification is based on XML and used to describe objects that are
used to make calls and responses in Web services and other distributed applica-
tions over HTTP.

SOAP is formatted in several parts that are used to deliver calls and responses:

✦ The SOAP endpoint, which is an HTTP-standard URL, with an optional URI
and SoapAction.

✦ One or more SOAP methods (for calls via HTTP POST) to be called on a Web
service. Each method is identified by a namespace URI (more on namespace
URIs a little later).

✦ The HTTP header indicating the method being invoked by this call.

✦ The SOAP envelope describes what is in a message and what should be done
with the message.

✦ The SOAP encoding rules describe serializations of data based on general or
application-specific data types.

k538292 ch24.qxd 8/18/03 8:44 AM Page 636

637Chapter 24 ✦ SOAP

✦ The optional SOAP RPC representation can be used to represent remote pro-
cedure calls and responses.

✦ The SOAP body contains the call or response message that is described by
the envelope and encoded according to the encoding rules.

A SOAP request
Let’s examine an actual SOAP call and response to a Web service. The examples we
are using in this chapter include the “Delayed Quote” example on the Xmethods
Website, at http://www.Xmethods.com and some custom Web services created
for this chapter. The Xmethods Website is a great starting point for developers who
want to get familiar with Web services. It provides several practical working exam-
ples, tutorials, and a place for Web Service Developers to post and share their Web
services.

One thing to keep in mind before looking at these examples is that in all cases here
we are using SOAP to bind to HTTP as the transport protocol for the SOAP requests
and responses. The advantage is that transport protocol fits the request/response
message model providing SOAP request parameters in a HTTP request and SOAP
response parameters in an HTTP response.

The HTTP header
The HTTP header is generated based on values in the WSDL file for the Web ser-
vice, which we will review a little later in this chapter.

Let’s look at the HTTP Request and the SOAP envelope that is sent with the request
in Listing 24-1.

Listing 24-1: Xmethods Stock Quote SOAP Request
HTTP Header

HTTP Header:
POST /soap HTTP/1.1
Host: 66.28.98.121:9090
Content-Type: text/xml; charset=utf-8
SOAPAction: “urn:xmethods-delayed-quotes#getQuote”

k538292 ch24.qxd 8/18/03 8:44 AM Page 637

638 Part V ✦ Introducing Web Services

POST and GET
The first line of the HTTP header for the soap request contains three things: the
HTTP method (POST), the request Uniform Resource Identifier (/soap), and the
HTTP protocol version (1.1). HTTP GET is the regular HTTP method for surfing the
Web, which sends a URL and optional parameters such as port number. POST is
used to make calls to Web services, which tells the HTTP server to expect more
than just a URL as part of the request. The HTTP method is blank when a response
is returned.

URIs, URLs, and URNs
Uniform Resource Identifiers are just short strings that identify resources in the
Web. You can think of URIs as the general format definition of which URLs are an
implementation. URIs point to things like documents, images, files, services, e-mail
inboxes, and so on. URIs, as a generalization, do not specify what protocol should
be used to access the resource. However, common access methods are HTTP or
FTP. Uniform Resource Locators (URLs), with which anyone who uses the Web is
probably already familiar, are a type.

Uniform Resource Names (URNs) are different, but they are also URIs. The main dif-
ference is that URLs are used to specify a location-specific resource on the Web,
such as http://www.ibm.com, while URNs are used to describe a value that could
be at any Web location. In other words, a URN is the name of a resource that identi-
fies a unit of information independent of its location. URNs are a name that can be
mapped to one or more URLs. URNs are usually used to mask a complicated name-
space or value for later reference, similar to the way DNS replaces an IP address with
a URL. In this case, the request URI (Uniform Resource Identifier) identifies the soap
subdirectory as the target of the request. If no URI is specified in an HTTP POST, the
default HTTP directory of the server is used.

SOAPAction
Let’s see what this discussion of URIs, URLs, and URNs has to do with SOAP.
SOAPAction is used with a URL and a URI to further identify the location of the Web
service on the server. In most implementations, the URI and the SOAPAction header
will have the same value and therefore is optional. However, in this case the
SOAPAction is “urn:xmethods-delayed-quotes#getQuote,” which indicates the
method name of getQuote and the URN name of urn:xmethods-delayed-quotes.
The HTTP header assembles the URL and URI of the HTTP post to find the Web ser-
vice endpoint. A Web service endpoint is the place where the Web service calling
methods are located. In this case, the endpoint is the /soap directory at
66.28.98.121:9090, and the SOAPAction tells us that we need to use the getQuote
method of the service in our request.

k538292 ch24.qxd 8/18/03 8:44 AM Page 638

639Chapter 24 ✦ SOAP

The SOAP request envelope
Once we have the target of the HTTP Post, we can use the SOAP envelope to make
the call to the Web service method listed in the SOAPAction and pass the contents
of the SOAP envelope to the Web service for processing. Listing 24-2 shows the
SOAP request envelope.

Listing 24-2: Xmethods Stock Quote SOAP Request

<?xml version=”1.0” encoding=”UTF-8” standalone=”no”?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:tns=”http://www.themindelectric.com/wsdl/net.xmethods.ser
vices.stockquote.StockQuote/”
xmlns:electric=”http://www.themindelectric.com/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>
<mns:getQuote xmlns:mns=”urn:xmethods-delayed-quotes” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<symbol xsi:type=”xsd:string”>MSFT</symbol>
</mns:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP envelope structure
Like the HTTP header in a SOAP request, the SOAP envelope is based on values
declared in the WSDL file for the Web service, which provides instructions on how
requests and responses to the Web Service are structured. Because SOAP messages
are well-formed XML documents, we start with an XML declaration, followed by a
single <SOAP-ENV:Envelope> root element. The <SOAP-ENV:Envelope> con-
tains several namespace declarations, which we will cover in the next section of
this chapter.

In the mandatory <SOAP-ENV:Body> element, we find the getQuote method call as
an element name. The nested value in the getQuote element is the parameter that
we will pass to the getQuote method when it is called by the SOAPAction in the
HTTP header, the value of which is the stock symbol for Microsoft Corporation. All
parameters for a method must be contained in elements inside the procedure call.

k538292 ch24.qxd 8/18/03 8:44 AM Page 639

640 Part V ✦ Introducing Web Services

One advanced technique that the SOAP structure permits is the passing of what is
known as the SOAP header. A SOAP header is an optional element in the overall
SOAP envelope structure. The Body element contains the data specific to the mes-
sage, and the Header element can hold additional information not directly related
to the particular method call. Each child element of the Header element is called a
SOAP header.

For example, you may want to place authentication information in the SOAP header
for some or all methods of a Web service. In this way, the authentication informa-
tion is passed with the method call and can be verified before the specific target
method executes. If the authentication fails, you can throw a new SOAP exception
so that the calling program knows why the call failed. Sending back a clear excep-
tion will help the calling code know that the error had nothing to do with the target
method and was an authentication error.

Although the SOAP headers can contain data related to the message, it is probably
not as straightforward to do so. You should control data for a given method call by
using parameters rather than using a SOAP header element. The SOAP specification
doesn’t have any rules about what can be in the header, so you can define its con-
tents any way you wish. A good practice is to define a SOAP header that holds
method-independent information that can be processed by the Web service once it
is passed; they typically contain information processed by infrastructure within a
Web server. Listing 24-3 shows the XML definition of a SOAP envelope that also con-
tains a SOAP header element.

Listing 24-3: SOAP Request with an Optional SOAP Header

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-
instance” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>

<soap:Header>
<CustomerHeader xmlns=”http://tempuri.org/”>

<CustomerToken>string</CustomerToken>
</CustomerHeader>

</soap:Header>
<soap:Body>

<GetAccountDetails xmlns=”http://tempuri.org/”>
<accountID>int</accountID>

</GetAccountDetails>
</soap:Body>

</soap:Envelope>

Notice that there is a new section that you do not see in Listing 24-2. The SOAP
header here specifies that we can pass a custom type called CustomerHeader.

k538292 ch24.qxd 8/18/03 8:44 AM Page 640

641Chapter 24 ✦ SOAP

That type has a property called CustomerToken that is a string. When the client
program calls a method of the Web service, like GetAccountDetails, it can also
pass the SOAP header in the way shown in Listing 24-4.

Listing 24-4: Client Application Calling the Web Service with
the SOAP Header

Dim oSVC As New CustomerSVC.SoapHeaderDemo()
Dim oHeader As New CustomerSVC.CustomerHeader()
oHeader.CustomerToken = “One”
oSVC.CustomerHeaderValue = oHeader
Dim bln As Boolean = oSVC.GetAccountDetails(ID)

Don’t worry too much about the language syntax here and other environmental
conventions. Rather, look at the way the special SOAP header is used. First, the
code gets an instance of the special SOAP header type defined in the WSDL. This is
the CustomerHeader type. The type has a property called CustomerToken that
accepts a string value. Then, the instance of the CustomerHeaderType is placed
in a value container extended by the Web service. At this point, the client applica-
tion can access the Web service method that uses the SOAP header in a normal
fashion.

In the end, the principal benefit of SOAP headers is the ability to pass along to the
Web service additional information. This information can be of any sort and can
even be contained in complex types. The important thing is that the Web service
knows what to do with the SOAP header once it is received.

Namespaces, URNs, and SOAP encoding
Unlike most basic forms of XML, namespaces and schemas are a very important
part of Web services XML technologies. Namespaces can be arbitrary in other
types of applications. For example, when writing your own object libraries, you can
specify your own namespace for components written for your company, such as
ourcompany.applications.customers or ourcompany.applications.humanresources.
These two namespaces are ones that make sense within the frontiers of your orga-
nization. Other namespaces, however, may actually point to specification documents
or schemas when the namespace is resolved. The namespaces referenced inside an
XSL stylesheet are examples of these, such as <xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>. This namespace
is not arbitrary as it makes it possible to use XSL elements in your stylesheets like
<xsl:if> or <xsl:copy>.

In a similar manner, the namespaces referenced in a SOAP call are not arbitrary. All
of the URLs specified by namespaces in the SOAP envelope in Listing 24-2 actually

k538292 ch24.qxd 8/18/03 8:44 AM Page 641

642 Part V ✦ Introducing Web Services

resolve to real Schema documents describing the structure of the elements and
attributes represented by that namespace. Each URL namespace is assigned to a
smaller URN for use in the SOAP envelope. For example, the URL represented in this
line is assigned a namespace of SOAP-ENV that resolves to the SOAP envelope
Schema URL:

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

This way, when we define the body of the envelope, we can use this:

<SOAP-ENV:Body>

Which is easier to follow than this:

< http://schemas.xmlsoap.org/soap/envelope/:Body>

Schemas also define SOAP data encoding as well as element and attribute struc-
tures. For example, any nested elements in the getQuote method use the name-
space xsi, which resolves to http://www.w3.org/2001/XMLSchema-instance,
which in turn describes basic data types for elements, such as float and string.
Developers can choose between using standard data encoding formats, or develop-
ing their own, and an associated schema to go with them.

A SOAP response
Once the SOAP request has been made, the Web service returns a response. The
body of the response formatted according to the same SOAP envelope structure
and encoding rules, but in this case containing less namespaces and a slight varia-
tion on the method name, as shown in Listing 24-5.

Listing 24-5: Xmethods Stock Quote SOAP Response

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<soap:Body>
<n:getQuoteResponse xmlns:n=”urn:xmethods-delayed-quotes”>
<Result xsi:type=”xsd:float”>56.27</Result>
</n:getQuoteResponse>
</soap:Body>
</soap:Envelope>

k538292 ch24.qxd 8/18/03 8:44 AM Page 642

643Chapter 24 ✦ SOAP

The single Body element contains the original method name with the word
“Response” added to the end of it (getQuote + Response=getQuoteResponse),
which makes for easy calculation of the response element name for parsing and
transformation of the response data. The response to the request is located in the
same nested element of the method as the request was located, using the same
encoding namespace, xsi.

Summary
This chapter introduced the SOAP specification. We have seen how SOAP messages
are put together and how they are represented. SOAP messages define the points of
contact between the Web service and the client application that calls it. SOAP does
not care about how the messages are passed between the two parties. Rather, SOAP
is concerned with how the messages are put together. Each party, the client and the
server-based application, must have the necessary SOAP tools to pick up a mes-
sage packaged according to the SOAP specification and then pass the information
to code that will do the processing. The data are packaged up in a deliberate fash-
ion that includes an envelope, header(s), body, SOAPAction, and how to send
requests and receive responses. The next chapter goes deeper into WSDL, the spec-
ification that lets the client application know about the methods, headers, and
other data interactions that are possible with a Web service.

✦ ✦ ✦

k538292 ch24.qxd 8/18/03 8:44 AM Page 643

WSDL

So far we have looked at the SOAP message format that is
sent to and from Web services. WSDL is the other mov-

ing part of a Web Services Architecture, which defines what
SOAP calls and responses should look like, and helps Web ser-
vice calling agents define what an interface should be to a spe-
cific Web service.

WSDL Format
In a previous chapter, we used the Stock Quote Web service
from the XMethods Website. This service accepts a stock sym-
bol and returns the stock quote that is up to 20 minutes old.
Listing 25-1 contains the calling code that gets the stock quote
from the service and puts it in a text box.

Listing 25-1: Code from a Calling Application
That Uses a Web Service

Dim oSvc As New DelayedQuote. _

netxmethodsservicesstockquoteStockQuoteService
()

Dim sglPrice As Single
sglPrice = oSvc.getQuote(“MSFT”)
txtPrice.Text = CType(sglPrice, String))

There is a single class available, one that is inordinately long
to be sure, netxmethodsservicesstockquoteStock
QuoteService, has a method, getQuote. If the following
conditions are true: 1) a Web service is entirely remote and 2)
using a Web service means that no code components or type
library information is downloaded to the computer that calls
the Web service, then the only way the client application can

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How WSDL works

Overall WSDL
structure

Dissection of an
actual WSDL file

Namespaces, types,
and other structural
elements

Working with WSDL
dynamically

✦ ✦ ✦ ✦

k538292 ch25.qxd 8/18/03 8:45 AM Page 645

646 Part V ✦ Introducing Web Services

know about the service’s behaviors is by having some kind of type library informa-
tion. This is provided by WSDL.

Most developers are overwhelmed when they see WSDL for the first time. Web
Services Description Language is based on XML, but with the addition of many
namespaces, parts, ports, and so on, the format can be intimidating. However, it’s
important to remember that WSDL is not really meant for humans to read; its pur-
pose is to inform Web service clients and other Web services about how to access
the methods in a Web service. The verbosity of WSDL is actually a very good fea-
ture for Web services. The detail allows Web services to converse with each other
without ambiguity about any aspect of each other’s function.

The good news is that most development tools in the Java and Windows application
world these days have some sort of WSDL generation tools to free developers from
the drudgery of WSDL coding. Also, more advanced tools are currently becoming
available that allow clients and other Web services to create and adapt interfaces to
other Web services. The theory is that if a Web service changes its data formats,
the calling agent should be able to adapt to the function, as long as the serving
agent’s WSDL is up to date.

WSDL is formatted in several parts that are used to describe a Web service:

✦ definitions: WSDL files start with a root definitions element, which defines a
Web service. As with SOAP, this is followed by namespace definitions as
parameters of the definitions element.

✦ documentation: Can be contained under the definitions element in a docu-
mentation tag.

✦ types: Describe the structures of data to be contained in call and response
SOAP messages.

✦ messages: Group types together to describe an input, output, or fault message.

✦ operations: Group input, output, and fault messages into a unit.

✦ portTypes: Can group together or contain one or more operations. All
operations have to be contained in at least one portType.

✦ bindings: Tie portTypes to a specific protocol.

✦ ports: Tie bindings together with specific Web service endpoints.

✦ Services: Tie one or more ports together.

It is important to know that as of this writing, WSDL is not yet a full standard, but it
will be. Some big companies are behind WSDL as the standard descriptive language
for Web services. Companies like Microsoft and IBM are supporting its adoption
and development, and it is currently the de facto standard on the Web.

k538292 ch25.qxd 8/18/03 8:45 AM Page 646

647Chapter 25 ✦ WSDL

Let’s have a look at the WSDL file for the XMethods Stock Quote Web Service, in
Listing 25-2.

Listing 25-2: XMethods Stock Quote WSDL

<wsdl:definitions
xmlns:tns=”http://www.themindelectric.com/wsdl/net.xmethods.ser
vices.stockquote.StockQuote/”
xmlns:electric=”http://www.themindelectric.com/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
targetNamespace=”http://www.themindelectric.com/wsdl/net.xmetho
ds.services.stockquote.StockQuote/”
name=”net.xmethods.services.stockquote.StockQuote”>
<message name=”getQuoteResponse1”>
<part name=”Result” type=”xsd:float”/>
</message>
<message name=”getQuoteRequest1”>
<part name=”symbol” type=”xsd:string”/>
</message>
<portType
name=”net.xmethods.services.stockquote.StockQuotePortType”>
<operation name=”getQuote” parameterOrder=”symbol”>
<input message=”tns:getQuoteRequest1”/>
<output message=”tns:getQuoteResponse1”/>
</operation>
</portType>
<binding
name=”net.xmethods.services.stockquote.StockQuoteBinding”
type=”tns:net.xmethods.services.stockquote.StockQuotePortType”>
<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”getQuote”>
<soap:operation soapAction=”urn:xmethods-delayed-
quotes#getQuote”/>
<input>
<soap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:xmethods-delayed-quotes”/>
</input>
<output>
<soap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:xmethods-delayed-quotes”/>
</output>

Continued

k538292 ch25.qxd 8/18/03 8:45 AM Page 647

648 Part V ✦ Introducing Web Services

Listing 25-2 (continued)

</operation>
</binding>
<service
name=”net.xmethods.services.stockquote.StockQuoteService”>
<documentation>net.xmethods.services.stockquote.StockQuote web
service</documentation>
<port name=”net.xmethods.services.stockquote.StockQuotePort”
binding=”tns:net.xmethods.services.stockquote.StockQuoteBinding
”>
<soap:address location=”http://66.28.98.121:9090/soap”/>
</port>
</service>
</wsdl:definitions>

This may seem like a lot of information, but let’s break it down. Figure 25-1 shows
the same WSDL file only with the nodes collapsed so we can make a little more
sense of it.

Figure 25-1: Collapsed nodes of the WSDL file

The bulk of what you see are Namespace declarations. Then there are five more
nodes. Two are for the request and response of the method the service offers. One
is for the port (the exposed interfaces), another is for the binding information (the
message format and protocol details), and a final one for the name and address of
the service itself.

k538292 ch25.qxd 8/18/03 8:45 AM Page 648

649Chapter 25 ✦ WSDL

Using WSDL
In this example, several WSDL parts are combined hierarchically, which is the com-
mon definition method for defining WSDL elements. Let’s break down the elements
line by line and review the role of each part.

Definitions
The definition for this example defines several namespaces for structure and data
encoding, as in the SOAP examples, then names the class on the XMethods server
that is used for the Web service, net.xmethods.services.stockquote.StockQuote.

<wsdl:definitions
xmlns:tns=”http://www.themindelectric.com/wsdl/net.xmethods.ser
vices.stockquote.StockQuote/”
xmlns:electric=”http://www.themindelectric.com/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
targetNamespace=”http://www.themindelectric.com/wsdl/net.xmetho
ds.services.stockquote.StockQuote/”
name=”net.xmethods.services.stockquote.StockQuote”>

Parts, types, and messages
In this example, the parts described become part of the request and response calls
in the SOAP messages that access this Web service. The result parameter is a float,
and the symbol parameter is a string. The parts and types are grouped into input
and output messages.

<message name=”getQuoteResponse1”>
<part name=”Result” type=”xsd:float”/>
</message>
<message name=”getQuoteRequest1”>
<part name=”symbol” type=”xsd:string”/>
</message>

Operations and portTypes
Next, the input and output messages are grouped into an operation, then into a
portType, and named net.xmethods.services.stockquote.StockQuotePortType.

k538292 ch25.qxd 8/18/03 8:45 AM Page 649

650 Part V ✦ Introducing Web Services

<portType
name=”net.xmethods.services.stockquote.StockQuotePortType”>
<operation name=”getQuote” parameterOrder=”symbol”>
<input message=”tns:getQuoteRequest1”/>
<output message=”tns:getQuoteResponse1”/>
</operation>
</portType>

Bindings
Next, we bind the net.xmethods.services.stockquote.StockQuotePortType portType
to RPC over HTTP (really SOAP). We also define the Namespace and SoapAction
urn:xmethods-delayed-quotes#getQuote that will be used in the HTTP POST header
of any SOAP request that calls the Web service, and call the binding
net.xmethods.services.stockquote.StockQuoteBinding.

<binding
name=”net.xmethods.services.stockquote.StockQuoteBinding”
type=”tns:net.xmethods.services.stockquote.StockQuotePortType”>
<soap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”getQuote”>
<soap:operation soapAction=”urn:xmethods-delayed-
quotes#getQuote”/>
<input>
<soap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:xmethods-delayed-quotes”/>
</input>
<output>
<soap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”urn:xmethods-delayed-quotes”/>
</output>
</operation>
</binding>

Services and ports
Now we bind the net.xmethods.services.stockquote.StockQuoteBinding with the
reference to the SOAPAction to the Web service endpoint, and name the port
net.xmethods.services.stockquote.StockQuotePort, then bind the port to the ser-
vice net.xmethods.services.stockquote.StockQuoteService.

<service
name=”net.xmethods.services.stockquote.StockQuoteService”>
<documentation>net.xmethods.services.stockquote.StockQuote web
service</documentation>

k538292 ch25.qxd 8/18/03 8:45 AM Page 650

651Chapter 25 ✦ WSDL

<port name=”net.xmethods.services.stockquote.StockQuotePort”
binding=”tns:net.xmethods.services.stockquote.StockQuoteBinding
”>
<soap:address location=”http://66.28.98.121:9090/soap”/>
</port>
</service>
</wsdl:definitions>

When the WSDL is read by a client or another Web service, the HTTP header cre-
ates references to the endpoint and the SOAPAction from the binding, and gener-
ates a SOAP envelope with input and output messages and appropriate nested
parameters from the portType.

Updating WSDL
As is obvious by now, WSDL is the type library information for components that run
over the Web. But what happens when the component changes? In other words, if
the WSDL file is generated and stored locally on a machine, that file can become
outdated if the Web service behaviors are changed by the Web service provider
(that may or may not be you). Your calling application needs to stay informed
about changes that have occurred in the WSDL before it attempts to call a method
whose definition may have changed or that no longer exists. In the end, the proxy
class that resides on the client machine must reflect the precise characteristics
offered by the remote service. This means that there must be a way to generate the
proxy class at a point in time after the application has been compiled and deployed.
Here are some of the effects of this type of dynamic Web services invocation:

✦ This technique frees you from having to know the precise Web service end-
point at design or compile time.

✦ You can point to different Web services to find methods that can be dynami-
cally selection based on the client application logic or user input.

✦ You can dynamically acquire the WSDL from UDDI or a custom location (like
XMethods).

To make this possible, you need code in your client application that creates a Web
service proxy on the fly. There are no limitations in the standards to prevent you
from doing this. The main ones, SOAP, XML, HTTP, and WSDL, will not care when
you are building the proxy class. The real dependency is the development environ-
ment in which you are creating the client application. Not all runtimes are created
equal, so you will need to look within the tools of your development platform to fig-
ure out if you can do this. Irrespective of your environment, your code needs to find
the location of a desired Web service.

k538292 ch25.qxd 8/18/03 8:45 AM Page 651

652 Part V ✦ Introducing Web Services

To do this, you can choose from a nearly infinite collection of possibilities here
such as loading nodes of an XML file that stores possible Web service addresses, or
calling a Web service to get a list of Web services (an intriguing idea actually).

✦ Get the WSDL for the desired Web service

✦ Build the proxy class based on the WSDL

✦ Make a runtime-consumable version of the proxy class

✦ Use an instance of the class and call methods

Some of these techniques for dynamically finding and referencing a Web service are
not for beginners, but if you need an application that could consume any number of
unknown Web services you will need to go beyond simple referencing and find ways
to dynamically generate proxy classes. The very fact that we are even discussing
this says something about how far we have come in the world of distributed com-
puting. This kind of thing, especially between remote components on different plat-
forms, is nearly unthinkable without the standards involved with Web services. Yes,
it has been done prior to Web services, but not without some very complicated
code. Web services make this technique much more accessible to all developers.

Editing WSDL
A word or two must be said about WSDL editors. Any text editor will do. Even
though WSDL was not created explicitly for human eyes to read, the fact remains
that the more curious developer will want to know what is going on in the WSDL. It
is important to read WSDL when troubleshooting applications or when using more
advanced techniques with Web services. Even though any text editor will do, if the
WSDL file is long because of Web service complexity, then a simple text editor
becomes less useful. Fortunately, WSDL files are just XML files, so any XML editor
will do. However, things can be taken a step further, and there are editors (not
many just yet) that can parse the XML while also knowing that it is a WSDL file.
Some of the more notable WSDL editors in existence as of this writing include the
following (these may be larger suites that contain a WSDL editor):

✦ XML Spy version 5.0+

✦ OmniOpera

✦ Cape Clear 4 suite (see Figure 25-2)

k538292 ch25.qxd 8/18/03 8:45 AM Page 652

653Chapter 25 ✦ WSDL

Figure 25-2: An example of a WSDL editor

Because WSDL is good old XML (can “old” be associated with XML yet?), you can
also create your own WSDL editor. It could be fun.

Summary
In this chapter, we have dissected a WSDL file. We saw how the file is structured
and what information is included therein. We discovered what the elements of
WSDL mean and how they are used by the calling application to determine a Web
service’s behaviors and characteristics. WSDL is arguably the de facto standard on
the Internet for making known to consuming client applications what a Web service
does. We also learned about how to dynamically create a Web service proxy class at
runtime based on WSDL that is not known at design time. Finally, we learned that
there are some WSDL editors out there and that one can be created from scratch if
desired.

✦ ✦ ✦

k538292 ch25.qxd 8/18/03 8:45 AM Page 653

UDDI

Web services can be used for interaction between
remote systems within a single organization.

However, one of the most promising aspects of Web services
is that they can be used business-to-business integration. For
example, one company might expose an invoicing Web service
that the company’s suppliers use to send their own internal
invoices. Similarly, a company might expose a Web service for
placing orders electronically, using special schemas that the
customers can use internally for their own purchasing pro-
cess. Now, if one company wanted to purchase goods from a
vendor using a service of this kind, how would it find it? Let’s
say the company wants to begin ordering office supplies from
a John’s International Office Supplies (an idea waiting to hap-
pen) it would need to search for all vendors who sell office
supplies over the Internet and then find ones that sell goods
using a Web service.

To do this, the customer needs a directory, a sort of yellow
pages-type directory of all businesses that expose Web ser-
vices. This directory is called Universal Description, Discovery,
and Integration or UDDI. UDDI is an industry effort started in
September of 2000 by Ariba, IBM, Microsoft, and 33 other com-
panies. Today, UDDI has over 200 community members.

This chapter describes UDDI, the final piece of the Web
Service puzzle, in greater detail. It explains how UDDI links
together consumers of Web services with providers and how
it works. We also learn who is backing the UDDI effort and
what UDDI means to the future of Web services. We learn how
UDDI works and what it means with respect to the technology
of Web services.

UDDI Structure
UDDI is a platform-independent framework for describing ser-
vices, businesses, and integrating business services. While
the UDDI project is not part of a regular standards body like
the W3C or the IETF, the structure of UDDI is based on Web

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

UDDI architecture

UDDI today

Information model

Businesses

Services

Bindings

Tmodels

✦ ✦ ✦ ✦

k538292 ch26.qxd 8/18/03 8:45 AM Page 655

656 Part V ✦ Introducing Web Services

service standards, which means that UDDI registries are theoretically accessible
through the same means as all other Web services. In short, UDDI is a directory for
Web services, and it is a Web service. Currently IBM, Microsoft, SAP, and NTT
Telecom host public versions of the UDDI directory, which are kept in sync via a
form of replication. URLs for registry sites as well as the latest version of the UDDI
specification can be found at http://uddi.org/. Like a typical yellow pages
directory, UDDI provides an indexed database of businesses searchable by the type
of business.

Finding Web services with UDDI
Each of the four public UDDI Registries (IBM, Microsoft, SAP, and NTT) has its own
interface and UI to access its registry via the Web. You typically search using busi-
ness taxonomy such as the North American Industry Classification System (NAICS)
or the Standard Industrial Classification (SIC). You could also search by business
name or geographical location. Regardless of the interface provided, the UI is noto-
riously hard to navigate for Web developers that are used to more user-friendly
HTML search sites. However, like WSDL, the main users of the UDDI registries are
intended to be Web services rather than developers. As a testament and/or a
response to this, Microsoft, IBM, and a few smaller players have released UDDI
SDKs, which make developing Web Service front-ends to UDDI registries more
accessible to anything on the other end of the SDK, be it human or machine.
Microsoft SDKs can be downloaded at http://uddi.microsoft.com/, and the
IBM UDDI4J can be downloaded as part of the IBM Web Services toolkit from
http://alphaworks.ibm.com/tech/webservicestoolkit.

These tools, and a few others, can also be used to set up private UDDI servers for
use within an organization or via VPN, for groups that want to have the full benefits
of a complete set of Web Services technologies, but don’t want to share their Web
Services with the world on one of the public sites.

Going back to our example of office supplies, a company could search UDDI for
NAICS code 422120, which corresponds to providers of office supplies and paper
goods. This search would return a list of such companies that are registered with
UDDI. At this stage of Web service adoption, it is not uncommon to find no Web ser-
vices for categories you search in UDDI. This does not mean, however, that no Web
services exist for that category of business. It only means that none is registered
using UDDI. In searching, the consumer will need to know which of the office sup-
plies vendors exposes Web services that are compatible with the systems used
within the company. For example, if our company supports a specific purchase
order process that uses SOAP-based Web services for acquiring office supplies it
would need to know which vendors have a Web service that is compatible.

k538292 ch26.qxd 8/18/03 8:45 AM Page 656

657Chapter 26 ✦ UDDI

This brings us to the taxonomic conventions of UDDI. There are a number of differ-
ent types used in the UDDI model to identify a service or collection of services.
These five types are shown in Figure 26-1.

Figure 26-1: The types used in the UDDI taxonomy

publisherAssertion
To understand how they work together, let’s look at UDDI from the perspective of
an organization that wants to publish its services in the UDDI registry. In this case,
we will imagine a company that has many subdivisions within its organization. The
recommended practice for a business of this type that wants to register in a UDDI
registry is for each division to register as a separate businessEntity. For example
Microsoft may have a separate businessEntity entry for the Windows OS, Office
divisions, and gaming division. Thus, rather than provide a single businessEntity
entry in the UDDI registry which attempts to describe all the services Microsoft
provides, it makes more sense to have each division submit a separate
businessEntity that the division can support and maintain. However, it would be
advantageous if the relationship between the different services offered by
Microsoft’s different businessEntity entries could be made known in UDDI. This is
done through what is known as a publisherAssertion structure, which allows busi-
nesses to publish relationships between businessEntities. To prevent one publisher
from claiming a relationship to another that is not reciprocated, both publishers
must publish identical assertions for the relationship to become known. The
allowed relationships are peer-to-peer. A peer-to-peer relationship is one where the
two businessEntity structures are related as peers, and a parent-child relationship
is hierarchical. Next, let’s look at the businessEntity.

businessEntity

businessService tModel

publisherAssertion

bindingTemplate

k538292 ch26.qxd 8/18/03 8:45 AM Page 657

658 Part V ✦ Introducing Web Services

businessEntity
A businessEntity is simply the provider of a service, a businessService. There is not
a lot to the structure of a businessEntity. Primarily, it contains:

✦ Name of the provider

✦ Description of the businessEntity

✦ Contact information, such as name, phone, fax, e-mail, and so on

✦ Identifiers: Classifiers for the business using specifications like DUNS, NAICS,
or SIC

As mentioned before, a businessEntity may not necessarily be a separate business
or organization. There is nothing in the specification to prevent a large business (or
small one for that matter) from having divisions register services with UDDI using
separate businessEntity entries. A businessEntity is described using a well-formed
XML document and is created by someone who represents the provider of the ser-
vice. UDDI specifies a schema for structuring the information in the businessEntity
entry. In short, the businessEntity describes who is providing a businessService.

businessService
This data structure is used to describe each offered service in business terms. You
have to specify at least a name and one binding template. A single businessService
may contain more than one binding template, but it must contain at least one.
Listing 26-1 shows some of the XML content of a businessService entry.

Listing 26-1: A View of Some of the Elements in a
businessService Entry

<businessService serviceKey=”...”>
<name> SymbolService </name>
<description>Description of the service here</description>
<bindingTemplates>

<bindingTemplate>
<accessPoint

urlType=”http”>
http://mycompany.com/myservice
</accessPoint>

<tModelInstanceDetails>
<tModelInstanceInfo tModelKey=”12345678”/>
</tModelInstanceDetails>

</bindingTemplate>
</bindingTemplates>

</businessService>

k538292 ch26.qxd 8/18/03 8:45 AM Page 658

659Chapter 26 ✦ UDDI

As you can see here, the core of the businessService entry is the binding template.
A binding templates structure serves as a container for one or more binding tem-
plate structures. A binding template structure describes how to get access to a ser-
vice. They contain what are known as access points, which are usually just URLs.
Valid values for an accessPoint element are:

✦ mailto

✦ http

✦ https

✦ ftp

✦ fax

✦ phone

✦ other

Another attribute called a hostingRedirector can be used if the binding template
refers to another one that has already been specified. In this case, the access point
need not be specified a second time. Another element called tModelInstanceDetails
holds information for a particular tModel, which is referenced by its key.

tModels
Each business registered with UDDI lists all its services and gives each of these ser-
vices a type. This service type has a unique identifier (GUID-style number) and
comes from a group of well-known service types that are registered with UDDI.
These service types are called tModels (technology models). Let’s recall that the
two primary goals of UDDI are to:

✦ Make it possible to describe a Web service, and make that description mean-
ingful for searches

✦ Provide a way to make these descriptions useful enough so consumers can
interact with a service without needing to know its inner workings

This being so, we need a way to tag the service so others can easily know its behav-
iors, the standards with which it is compliant, and so forth. All of the other types
we have seen up to this point (publisherAssertion and so on) relate to who owns,
publishes, describes, and maintains the Web service. A tModel is concerned with
the service itself. A tModel makes it possible to describe compliance with a specifi-
cation, concept, standard, or a collectively shared design. The first goal is met by
using tModel as a namespace or categorization, while the second goal is met by its
usage as a tag that is technically recognizable.

k538292 ch26.qxd 8/18/03 8:45 AM Page 659

660 Part V ✦ Introducing Web Services

Each tModel has a name, description, and the unique identifier. This unique
identifier is a UUID and is called the tModelKey. For example, the tModelKey
uuid:d819efe0-4471-11d6-9b35-000c0e00acdd identifies the tModel called uddi-
org:http, which has the description “An HTTP or Web browser-based Web service.”
By having a pool of well-known service types, UDDI makes it possible to find out
how to do electronic business with a company. This is the primary advantage UDDI
has compared to other Web-based business directories.

As part of the registration process, registrants can use an existing tModel or they
can create their own. It might make sense for an organization or a group of organi-
zations to develop their own tModels to classify a service they all offer (competi-
tively even), but that would make it easier for potential consumers of the service to
find the group of vendors who offer a certain type of service. For example, package
delivery companies (UPS, FedEx, Airborne Express, USPS, and so on) may decide to
agree upon a mutual standard tModel for package tracking. This tModel would
behave in the same way for all shippers, the same method names with the same
parameters.

tModels store information that includes:

✦ The name of the model

✦ The publisher of the model

✦ The categories that describe the service type

✦ Pointers to related technical specifications, interface definitions, message for-
mats, message protocols, security protocols, and other details that would
help a potential consumer of the service be able to use it

Listing 26-2 shows an example of a tModel fully exposed. Notice how it uses the
reference to a WSDL document as an identifier for what the service does (see
Chapter 25 for more on WSDL).

Listing 26-2: An Example of a tModel

<tModel
authorizedName=”...” operator=”...”
tModelKey=”UUID:12345678>

<name>Our special service</name>
<description xml:lan=”en”>

WSDL description of our service
</description>
<overviewDoc>

<description xml:lang=”en”>WSDL source document.
</description>
<overviewURL>

k538292 ch26.qxd 8/18/03 8:45 AM Page 660

661Chapter 26 ✦ UDDI

http://mycompany/ourservice/service1.wsdl
</overviewURL>

</overviewDoc>
<categoryBag>

<keyedReference tModelKey=”UUID:987654”
keyName=”uddi-org:types” keyValue=”wsdlSpec”/>

</categoryBag>
</tModel>

Fortunately, there are already a host of categories defined as tModels within the
UDDI world. If you visit a UDDI site such as http://uddi.microsoft.com, you will see
that there are business classification code models for SIC (Standard Industrial
Classification) and NAICS (North American Industry Classification System), in addi-
tion to other categorization standards.

More information on UDDI and links to public servers and tModels can be found
at http://uddi.org/.

As of this writing, the current public servers include:

✦ uddi.microsoft.com – Microsoft’s UDDI Business Registry Node

✦ uddi.ibm.com – IBM’s UDDI Business Registry Node

✦ uddi.sap.com – SAP’s UDDI Business Registry Node

✦ www.ntt.com/uddi – NTT Com’s UDDI Business Registry Node

UDDI APIs
To ensure most platforms can access UDDI’s services, the UDDI directory exposes a
bunch of APIs in the form of a SOAP-based Web service. There are currently two
main nodes that expose the UDDI Web service: http://uddi.microsoft.com/inquire
and http://www-3.ibm.com/services/uddi/inquiryapi. The API is con-
cerned with registering and discovering Web services.

You can download the API specification from the following link: http://www.uddi.
org/pubs/ProgrammersAPI-V1.01-Open-20010327_2.pdf

The APIs are accessed only through SOAP messages with the appropriate body con-
tent. For example, to search for a company called XYZ Industries you would send
the XML in the body of a SOAP message as shown in Listing 26-3.

Note

Note

k538292 ch26.qxd 8/18/03 8:45 AM Page 661

662 Part V ✦ Introducing Web Services

Listing 26-3: Finding a Business Using UDDI

<find_business generic=”1.0” xmlns=”urn:uddi-org:api”>
<categoryBag>

<keyedReference tModelKey=
“uuid:70a80f61-77bc-4821-a5e2-2a406acc35dd”
keyName=”Advertising” keyValue=”7310” />
</categoryBag>
</find_business>

The SOAP response that comes back from UDDI contains all businesses that match
your search criteria and the registered services for each business. This information
comes back as an XML data structure, of course. These structures are called
businessInfos. The UDDI APIs accept and return several data structures, and these
are all spelled out in the documentation of the API. Remember that the UDDI API, as
an API, is not concerned with it is actually accessed. Any vendor can create class
libraries that call the API to interact with UDDI. Listing 26-4 shows how the
response is received from the previous inquiry using the tModel in Listing 26-3.
Notice how the request and the response are all in SOAP, the bedrock dependency
of anything related to UDDI.

Listing 26-4: The SOAP Response from a UDDI Request

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<serviceList generic=”1.0”

operator=”Microsoft Corporation”
truncated=”false” xmlns=”urn:uddi-org:api”>

<serviceInfos>
<serviceInfo serviceKey=
“d5b180a0-4342-11d5-bd6c-002035229c64”
businessKey=”ba744ed0-3aaf-11d5-80dc-002035229c64”>
<name>XMethods Barnes and Noble Quote</name>
</serviceInfo>

</serviceInfos>
</serviceList>
</soap:Body>
</soap:Envelope>

k538292 ch26.qxd 8/18/03 8:45 AM Page 662

663Chapter 26 ✦ UDDI

Because the UDDI is really just a collection of SOAP calls through a Web service, we
must use classes that wrap the Web service and provide calls. You can write your
own classes to do so if you wish. While there may be some compelling reasons for
doing so out there in the universe, chances are that the reasons are not ones you
will stumble upon very easily. It is probably a better idea to use some that have
already been created for you. Microsoft and IBM are the most prominent leaders in
the UDDI realm, and both have provided SDKs to interact with UDDI via SOAP.

The Microsoft UDDI SDK
Microsoft has created classes that work directly with the UDDI APIs for
sending/receiving SOAP messages. These classes are well documented and come
with samples. You can download the Microsoft UDDI SDK from http://msdn.
microsoft.com/UDDI. The links change every now and then, but you can poke
around a little and find the SDK pretty easily. When you download the SDK, you will
see that there are both COM-based and .NET-based components that let you search
the UDDI registry as well as publish to it.

To show you how to use the UDDI SDK, let’s take a look at the SDK sample. The
main form of the sample is shown in Figure 26-2. Submitting the information in the
search form will bring back a result from Microsoft’s UDDI registry.

Figure 26-2: The main form of Microsoft’s
UDDI SDK sample with a search result

k538292 ch26.qxd 8/18/03 8:45 AM Page 663

664 Part V ✦ Introducing Web Services

Now, let’s see how the code works that makes the request in Listing 26-5. You will
quickly notice how simple things are compared to the full SOAP requests we have
seen elsewhere. Here, a class, FindBusiness, is used to go get businesses that match
the search criteria. All of the plumbing and complexity is hidden.

Listing 26-5: Searching Using the Microsoft UDDI Classes

searchResults.BeginUpdate();
FindBusiness fb = new FindBusiness();
fb.Names.Add(name.Text ;
try
{

//
// Perform search
//
BusinessList bl = fb.Send();
searchResults.Nodes.Clear();
foreach(BusinessInfo bi in bl.BusinessInfos)
{

searchResults.Nodes.Add(new TreeNode(bi.Name));
}

}

Summary
Leveraging UDDI means that businesses can publish their Web services and find
other Web services that they need. UDDI is a nonproprietary standard that uses
XML, SOAP, and HTTP to make the registry maintainable and accessible on the Web.
In this chapter, we learned about the different data types that UDDI uses to let busi-
nesses register their Web services and to find other Web services. Whether for
commercial or internal uses, you can program directly against the UDDI API. This
would take place in the form of SOAP requests and responses. However, other com-
panies are already providing nice class libraries that leverage UDDI behind the
scenes and that let you focus on developer productivity rather than the plumbing
of UDDI.

✦ ✦ ✦

k538292 ch26.qxd 8/18/03 8:45 AM Page 664

Microsoft Web
Services

If you have read the other chapters in this book about Web
services, then you have often seen Microsoft mentioned as

one of the biggest champions of the Web services paradigm.
The fact is that Microsoft has been promoting Web services
and remote component-based interaction using independent
standards from the very start. It is worth noting that some
have expressed a measure of surprise that Microsoft has been
so enthusiastic about a technology that is platform-agnostic
and based on standards that Microsoft does not own or con-
trol the way it does COM or the way Sun controls Java APIs.
Microsoft .NET technologies are a huge reason why Microsoft
is so excited about Web services, a subject that is handled
more specifically in Chapter 29.

This chapter will help readers understand Microsoft’s technol-
ogy toolkit for creating and consuming Web services using its
COM-based technologies. Without question, Microsoft’s pri-
mary focus for Web services development is with .NET.
However, Microsoft recognizes that not all companies can or
will migrate to .NET at the drop of a hat. Adoption cycles for
some organizations can take years. On the other hand, organi-
zations who have a large body of COM-based applications do
not want the Web services train to pass them by. Therefore,
there must be a non-.NET way for Windows applications to
take advantage of Web services technologies.

The primary COM-based vehicle for Web services is contained
in the MS SOAP Toolkit. This chapter will describe how
Microsoft has implemented its strategy in technologies that
do not fall directly within the .NET initiative. We will look at
version 3.0 of the MS SOAP Toolkit, a COM-based collection of
code and documentation for working with SOAP in COM-
based applications. We will also explore the Office XP Web
Services toolkit, a clever Addin that lets Office applications
consume Web services in productivity applications, all using
MS SOAP under the hood.

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The MS SOAP Toolkit

Building server-side
and client-side SOAP
applications

WSML

The Office XP Web
Services Toolkit

✦ ✦ ✦ ✦

k538292 ch27.qxd 8/18/03 8:45 AM Page 665

666 Part V ✦ Introducing Web Services

The Microsoft SOAP Toolkit
Most of the focus with respect to Web services in the Microsoft world is on .NET-
related technologies. However, there are still myriad applications that are written in
COM-based code, and most of these will be around for years to come. As exciting as
the .NET initiative is, it is important that non-.NET Windows applications need to be
able to connect to Web services. Recall that in order for an application to communi-
cate using SOAP (the protocol that specifies how requests and responses are struc-
tured and passed between the client and the Web service) it must have the ability
to understand XML and communicate over some transport protocol (normally
HTTP). Because XML is used to package messages between the client and Web ser-
vice, both parties in the relationship must package the messages in XML using a
certain structure, and some mechanism must be able to both do the packaging and
process packages that are received. The Microsoft SOAP Toolkit has these ingredi-
ents so that COM applications can both expose and consume Web services.

What’s in the SDK
The MS SOAP Toolkit is an SDK you can download from the Microsoft Website as a
free download. After downloading and installing, you will see four main directories.
They are:

✦ Binaries: Contains the executables and other files that are used by some of
the utilities for use with COM-based SOAP

✦ Documentation: Contains a pretty nice .chm file chock-full of overview and
detailed information about how to program with the SDK

✦ Inc: Contains a single include file you can use if you are programming with the
SDK in C++

✦ Lib: A C++ inline file containing definitions of inline functions, as well as tem-
plate function definitions

As discussed in Chapter 24, SOAP is an XML-based standard for describing objects
that are used to make calls and responses in Web Services over HTTP. In the end,
SOAP is just the grammar for describing remote component calls. Fortunately, XML
is syntactical language for such descriptions. When a client makes a call to a Web
service, the request must be structured in a specific way. While an ambitious devel-
oper could create a custom component to assemble the request in the correct hier-
archy with the correct XML syntax so that the call is intelligible to the remote
component, it would be much more convenient to have one that everyone using the
same development platform can share. MS SOAP is that ready-to-use library for
packaging up SOAP requests and responses for COM-based applications. The MS
SOAP Toolkit has everything that a COM developer needs to get up and running
with Web services on Windows.

k538292 ch27.qxd 8/18/03 8:45 AM Page 666

667Chapter 27 ✦ Microsoft Web Services

Not surprisingly, the MS SOAP 3.0 relies heavily on MSXML 4.0. Earlier releases of
the Toolkit used earlier XML parser versions, but, if you do not have legacy applica-
tions that require previous MS SOAP versions, it is recommended that you uninstall
the older version and go ahead with a clean installation of version 3.0. You must
also have Microsoft Internet Explorer 5.01 or greater installed whether you are run-
ning MS SOAP on the client or server. From a server perspective, you need IIS 5.0 or
greater if you are running Windows 2000, Windows XP, or Windows .NET Server. If
you are still running Windows NT 4.0, you will need IIS 4.0 or greater. You will need
IIS installed because (forgive the declaration of the obvious here, but it does per-
haps merit emphasis) Web services are, after all, Web applications. Therefore, there
must be some service to listen for Web requests and then send back the responses.
From a client perspective, you need Microsoft(r) Windows(r) XP, Microsoft
Windows 2000 SP1 or greater, Microsoft Windows NT(r) 4.0 SP6, Microsoft Windows
98, or Windows ME.

Overview of the MS SOAP component library
As one might expect, when writing client-side code with MS SOAP 3.0 things are
much simpler than when writing server-side code. However, in either case the same
library is in play. The MSSOAP30.DLL contains a primary set of components for
sending and receiving SOAP messages. The classes defined therein include:

✦ SoapClient30: If you are ever going to do any client-side programming with MS
SOAP 3.0, you will probably use this class more than any other. It is actually a
fairly intelligible class with methods for initializing the SOAP request, sending
it and then processing the response that is sent from the server.

✦ SoapServer30: As you might think, there is a server-side counterpart for the
client-side one. SoapServer30 is that server-side class. It has methods for pro-
cessing an incoming SOAP request and then returning a SOAP response.

✦ SoapReader30: While it is true that SOAP requests and responses are made in
XML, if you are working with, say, an instance of SoapClient30, you are not
working directly with an explicit instance of the DOM when working with the
SOAP messages. If you want to go a level lower and work with the XML
directly when reading SOAP messages, you can use the SoapReader30 class.
This is a useful class when you are working with messages at a lower level for
customization purposes.

✦ FileAttachment30: Lets you send a file as an attachment to a Web service.

✦ ByteArrayAttachment30: Lets you send a byte array as an attachment to a
Web service.

✦ SteamAttachment30: Lets you read a stream and send it as an attachment to a
Web service.

k538292 ch27.qxd 8/18/03 8:45 AM Page 667

668 Part V ✦ Introducing Web Services

✦ StringAttachment30: Lets you send a simple string as an attachment to a Web
service. You may wonder why to use this rather than sending a string as a
parameter to a Web service method. The reason is that parameters to meth-
ods should really not be large data loads that will be used by the method
itself. It is better to use method arguments to specify things that define how a
method should execute, not large data payloads that contain what the method
is going to process.

✦ SentAttachments30: This is a collection that contains the attachments being
sent to the server.

✦ ReceivedAttachments30: This is the collection of attachments that the server-
side code can pick up and unpack for processing.

✦ SoapSerializer30: This class lets you build your SOAP messages at a lower
level rather than letting the built-in classes (like SoapClient30) do the work
for you.

✦ HttpConnector30, SoapConnectorFactory30, SoapTypeMapperFactory: If you
do not like the behavior of the built-in connector that binds your SOAP
objects to HTTP, you can customize how MS SOAP creates, sends, receives,
and processes your SOAP messages. If you are doing custom security or other
advanced operations, these classes are particularly useful.

Server-Side Programming with MS SOAP
Recall that one of the main drivers behind Web services generally is to make a
remote component accessible over HTTP so that applications can interact without
needing to share their bits one with another. To the client, the remote component
should still look and act like a local component. When you create the remote com-
ponent, you are not obligated to do anything special to make it available via a Web
service. Listing 27-1 shows the code for a simple component with a single method
that accepts a key for quote and then returns the quote text from database. Notice
how there is nothing Web service related in this code. It is just good old-fashioned
COM code.

Listing 27-1: COM Code for a Component That Will Be
Exposed as a Web Service

Public Function GetQuote(ByVal QuoteKey As String) As String
Dim CN As ADODB.Connection
Dim RS As ADODB.Recordset
Set CN = New ADODB.Connection
Set RS = New ADODB.Recordset
If Len(QuoteKey) > 0 Then

k538292 ch27.qxd 8/18/03 8:45 AM Page 668

669Chapter 27 ✦ Microsoft Web Services

CN.ConnectionString = “Data Source=C:\quotes.mdb;” _
& “Provider=Microsoft.Jet.OLEDB.4.0;”

CN.Open
RS.Open “SELECT Quote FROM QuoteTable WHERE QuoteKey=’” _

& QuoteKey & “‘“, CN, adModeRead
If RS.State = adStateOpen Then

GetQuote = RS.Fields(0).Value
Else
GetQuote = “Quote not found”
End If

Else
GetQuote = “No criteria provided”

End If
End Function

Once this component is compiled, it has all of the functionality it needs to be
exposed on a Website as a Web service. Now, in order for a client to connect to the
component remotely, there must be an intermediary to translate requests and
responses as SOAP messages because there is no SOAP information in this custom
component. The intermediary must also know which custom code DLL to load that
will do the actual processing of the data contained in the SOAP request and pro-
duce response data that can be sent via SOAP to the client. That intermediation is
what the MS SOAP Toolkit is all about. When you install the Toolkit, an ISAPI DLL is
installed on the server that allows IIS to receive SOAP requests and then route the
request to the appropriate processing code.

Let’s take a step back and revisit the installation of the Toolkit for just a moment.
When you complete the installation, there are some other files installed that we
have not yet looked at. One of these files is the SOAPIS30.DLL. This is the handler
that will receive requests that are routed from IIS. This DLL then is the ISAPI lis-
tener or handler for SOAP. There is a registry key that has settings you can adjust in
order to modify the behavior of the ISAPI listener. This key is found at:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSOAP\30\SOAPISAP. Figure 27-1
shows how these keys look in the registry.

Figure 27-1: Keys pertaining to the ISAPI handler for MS
SOAP 3.0

k538292 ch27.qxd 8/18/03 8:45 AM Page 669

670 Part V ✦ Introducing Web Services

The keys and their purpose are:

✦ Isapi: This value is the physical path for the ISAPI DLL used by IIS.

✦ MaxPostSize: This value is the maximum size of any SOAP message that the
ISAPI handler can manage. The default is 100KB, and it is a good idea to keep
it as low as your applications can accommodate so that hackers are not able
to cause DOS attacks against your Web server.

✦ NoNagling: This value has to do with response times using TCP/IP, and its
value should normally be 0.

✦ NumThreads: This value sets the maximum number of threads the ISAPI han-
dler can manage. The default is for the value to be two times the number of
CPUs plus one. If messages are stacking up, you can increase the number of
threads, but keep in mind that this can impact other server resources.

✦ ObjCachedPerThread: Caching is a popular technique for improving perfor-
mance in Web applications. This value sets the maximum number of files that
can be cached for a single message thread. When a call is first received, the
ISAPI handler caches the WSDL and WSML files for the SOAP service in ques-
tion. As requests for other services are received, they are also cached. This
value should be equal to the number of services you are running on your
server via the MS SOAP Toolkit.

Now, just because you have installed the MS SOAP Toolkit does not mean that the
ISAPI filter is automatically going to be invoked when a SOAP request comes in.
There is actually one more step you need to take in order to tell the ISAPI listener
which Web sites where it should be enabled. This is done using a special script that
is also found in the Toolkit, SOAPVDIR.CMD. By running this command, you effec-
tively map a virtual directory in IIS to the ISAPI handler. This makes it possible to
thus link the SOAP requests and responses directly to the ISAPI listener without
using ASP Web pages to field the request and hand it off to SOAP.

In some situations, it is needful to be able to switch between version 3.0 of the
handler and earlier versions. If this is so, you can indeed change which binary is
used in the mapping between IIS and the SOAP requests/responses. The registry
key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSOAP\30\SOAPISAP is where
you can change this mapping.

Now that we have reviewed what pieces are installed on the Web server when MS
SOAP is installed, let’s return to our server-side code shown in Listing 27-1. This
code is compiled in a DLL, which is in turn registered on the Web server. The first
thing that needs to be done is to create the equivalent type library information for
the component(s) in the DLL. This type library information is the WSDL file.
Gratefully, the Toolkit has a tool for creating this WSDL for you. It is called the
WSDL Generator and is executed by running wsdlgen3.exe. This executable is found
in the MSSOAP\Binaries directory where you have installed the Toolkit and works
only on Microsoft Windows(r) XP, Microsoft Windows(r) 2000, or Microsoft(r)
Windows NT(r) 4.0. When you run the WSDL Generator, just click Next to get past

Note

k538292 ch27.qxd 8/18/03 8:45 AM Page 670

671Chapter 27 ✦ Microsoft Web Services

the introductory screen and click Next again to bypass the Specify Configuration
screen. This will bring you to a screen like the one shown in Figure 27-2.

Figure 27-2: Specifying the source DLL for
generating WSDL

Here you need to provide a name for the Web service. Keep in mind that the name
you specify here will be the name for the WSDL and WSML files. What the WSML file
means will be explained in a moment. After specifying this information, click Next,
and you see the screen shown in Figure 27-3.

Figure 27-3: Exposing services and methods for a
given component

k538292 ch27.qxd 8/18/03 8:45 AM Page 671

672 Part V ✦ Introducing Web Services

Here you need to specify which service(s) will be exposed. If you check a service
and one or more of its methods, these will be represented in the resulting WSDL
and WSML files so that SOAP clients can make calls to them. Implicit in the design
of the WSDL Generator tool is that you can have more than one Web service in a
single component or in the components of a single DLL. It is a good idea to attempt
to aggregate Web service functionality in a single DLL if it makes sense in your busi-
ness and if you plan on maintaining the Web services as a group.

After you have told the WSDL Generator what methods you want to expose in the
Web service, you need to map the SOAP requests and responses to a specific Web
site. This is done in the following screen, shown in Figure 27-4. Here, you need to
specify a valid Web site address on a machine where the MS SOAP Toolkit has been
installed. It should go without saying that this is also the server where your DLL is
installed. Make sure you also specify on this screen that you are using an ISAPI lis-
tener and not an ASP listener.

Figure 27-4: Mapping your custom SOAP service
to a Web site that users or developers can address

With this information specified you can click Next and move to a screen as shown
in Figure 27-5. Here you will see a number of text boxes where you can specify a
namespace for use within your Web service. The URIs here are not necessarily the
same as the URI for the Web site that users will reference to gain access to your
Web service. These URIs are namespaces for use within the XML WSDL file and
should correspond to namespaces you use within your organization.

k538292 ch27.qxd 8/18/03 8:45 AM Page 672

673Chapter 27 ✦ Microsoft Web Services

Figure 27-5: Specifying namespace URIs for your
Web service

After setting your namespaces, you need to tell the WSDL Generator where to place
your configuration files. This location does not have to be the same as where the
Web site directory is stored, but it should be in a location where client applications
can get access to it in some way. If do not want to make the WSDL file accessible
directly to client applications from the server, you still need to get the WSDL file to
client workstations in some way, a technique we will discuss in greater detail when
we discuss building client applications that use MS SOAP. This is done via a screen
as shown in Figure 27-6.

Figure 27-6: Specifying file locations for the output
of the WSDL Generator

k538292 ch27.qxd 8/18/03 8:45 AM Page 673

674 Part V ✦ Introducing Web Services

With these things done, you have done all that is needful to make a COM object
available as a Web service. But, something else remains to be explained. You see,
neither the WSDL nor the SOAP standard has any specifications that deal with map-
ping SOAP requests directly to COM objects. In other words, with just the WSDL file
on the server, IIS will know that a given SOAP request should be handled by a Web
site and passed to the appropriate ISAPI handler. On the other hand, the ISAPI DLL
does not know that the request for a method really is targeting a method in a COM
DLL. Hence, we need another file to do that job for us. That file is Web Services
Meta Language (WSML) file on the server. WSML has nothing whatever to do with
the Web services standards such as WSDL, SOAP, or UDDI. A WSML file contains
information that maps the methods of service to specific methods in the COM
object. The WSML file is responsible for acknowledging which COM object to load
to make it possible for a SOAP request to be handled.

The WSML for the Web service created in this chapter is shown here in Listing 27-2.

Listing 27-2: WSML for the QuotesService Web Service

<?xml version=’1.0’ encoding=’UTF-8’ ?>
<servicemapping name=’QuotesService1’

xmlns:dime=’http://schemas.xmlsoap.org/ws/2002/04/dime/wsdl/’>
<service name=’QuotesService1’>

<using PROGID=’QuoteService1.Quotes’ cachable=’0’
ID=’QuotesObject’ />

<port name=’QuotesSoapPort’>
<operation name=’GetQuote’>

<execute uses=’QuotesObject’ method=’GetQuote’
dispID=’1610809344’>

<parameter callIndex=’-1’ name=’retval’
elementName=’Result’ />

<parameter callIndex=’1’ name=’QuoteKey’
elementName=’QuoteKey’ />

</execute>
</operation>

</port>
</service>

</servicemapping>

Notice in this file how the PROGID, a COM-specific term for designating a given
component installed and registered on a Windows machine, is referenced here. The
ports for the SOAP request are also listed here, and they are mapped to methods
provided by the COM DLL itself. Parameters for the COM method are listed as well.
So, as you can see the WSML file is vital for making COM components directly
accessible through SOAP on the Web.

k538292 ch27.qxd 8/18/03 8:45 AM Page 674

675Chapter 27 ✦ Microsoft Web Services

Client-Side Programming with MS SOAP
With the server-side pieces installed, it is now possible to access the Web service
from a client application. Clients can be non-Windows clients, COM-based clients, ASP
applications, .NET applications, and Windows forms applications of varying sorts.
The field is quite large. Here, we will focus on building COM-based clients. First, we
will make an extraordinarily simple client application, a console application.

To do this, we will create a simple VBScript file that will invoke the method of our
Web service and report its results in a message box. The text of the VBScript file is
shown in Listing 27-3.

Listing 27-3: A Simple Console Application to Call an MS
SOAP-Based Web Service

Option Explicit

Dim soapClient3
set soapclient3 = CreateObject(“MSSOAP.SoapClient30”)
On Error Resume Next
Call SoapClient3.mssoapinit(“QuotesService1.wsdl”, _

“QuotesService1”, “QuotesSoapPort”)
if err <> 0 then

wscript.echo “initialization failed “ + err.description
end if

wscript.echo SoapClient3.GetQuote(“HNEY-4TTL6B”)
if err <> 0 then

wscript.echo err.description
wscript.echo “faultcode=” + SoapClient3.faultcode
wscript.echo “faultstring=” + SoapClient3.faultstring
wscript.echo “faultactor=” + SoapClient3.faultactor
wscript.echo “detail=” + SoapClient3.detail

end if

The key to this file is really where the SOAP client is initialized, the mssoapinit
method call. This call requires that we pass the path to the WSDL file for the Web
service. The second parameter is the name of the service. Recall that we specified
this when we generated the WSDL file using the WSDL Generator tool. The last
parameter passed is the name of the SOAP port we are going to call. A port is the
target of a SOAP request, and this maps to a method in the component. See Chapter
24 for more on SOAP. After that, we use the instance of the SOAPClient30 object,
here in a variable called SoapClient3, to call the method and retrieve a quote.

k538292 ch27.qxd 8/18/03 8:45 AM Page 675

676 Part V ✦ Introducing Web Services

What is remarkable about this code is that it is so simple. The client is almost
always on a remote workstation, which means that this code is making a method
call to a remote server, and it is done in a way that both shields the complexity
from the user or developer while also making it possible to modify the underlying
pieces of the conversation if the need should arise.

Admittedly, this console application is neither very attractive nor is it realistic for a
typical, true business solution. What we want to do now is make it possible to call
this same service from a more sophisticated client. You can create a Windows appli-
cation using Visual Basic 6 or the .NET Framework if you wish; the latter technique
is dealt with in a different chapter. One possible client for the Web service is an
office productivity application. You can create a Web service client using really any
COM-enabled application, and pretty much any version of Microsoft Office or other
applications like WordPerfect would also do. However, Microsoft Office XP has
added a tool to make it even easier to create a Web service client for Microsoft
Office.

Office XP Web Services Toolkit
The Office XP Web Services Toolkit (version 2.0 as of this writing) is a free down-
load from Microsoft’s Website. The main thrust of the toolkit is to install a special
Addin in Office so that you can easily call Web services in your VBA code. There are
other things that accompany the Addin such as whitepapers and some samples.
Let’s use the Web services toolkit in an Office application, in this case a VBA appli-
cation in Microsoft Word. To get to the point of creating the VBA project, you need
to open Word and go to Tools | Macro | Visual Basic Editor to open up the editor.
Once in the editor, you can go to Tools | Web Service Reference to open up the dia-
log box shown in Figure 27-7.

The main purpose of this dialog box is to get a reference to a WSDL file. Based on
the contents of that WSDL file, the toolkit will create a wrapper class for you that
will expose the same methods as the actual Web service on the remote server.
The wrapper class’ methods will have the same signature as those on the remote
service; they will just be accessible as if on a local DLL rather than a remote
component.

If you know where the WSDL is located, you can begin referencing it in the dialog
box by clicking the Web Service URL radio button and typing the URL to the WSDL
in the text box provided. If you need to find a service, you can use the UDDI
browser that is also part of the dialog box. For more information on UDDI and
browsing UDDI directories, see Chapter 26.

k538292 ch27.qxd 8/18/03 8:45 AM Page 676

677Chapter 27 ✦ Microsoft Web Services

Figure 27-7: Creating a Web Services Reference using the Office XP
Web Services Toolkit 2.0

As you can see in Figure 27-7, we are referencing the Web service created earlier in
this chapter. What is important to know here is that Microsoft Word application
that is being used here is actually on a separate computer on the network. After ref-
erencing the WSDL file, you click on Search, and the toolkit will load the WSDL file,
if it can find it. If a WSDL file cannot be found in the location your specify, then the
dialog will inform you of that fact.

Notice how the QuotesService1 service is listed, and the GetQuote method is also
shown. If the service had multiple methods, you would see those here. It is impor-
tant to know that the Office XP Web Services Toolkit is not restricted to referencing
Web services created using the MS SOAP Toolkit. The only MS SOAP dependency
that exists here is that the SOAPClient30 class be defined on the client machine.
That way the client machine can package up the requests to be sent to the Web ser-
vice and parse responses that are returned. The client can access .NET or COM
Web services in addition to ones not running on Windows at all.

After you have selected the Web service you want to use, just click Add to make it
part of your project. This creates the wrapper class for you. Figure 27-8 shows how
this class is located in the VBA project.

k538292 ch27.qxd 8/18/03 8:45 AM Page 677

678 Part V ✦ Introducing Web Services

Figure 27-8: The resulting wrapper
class in a VBA project after referencing
a Web service

Let’s take a quick peek at what is inside the wrapper class. First, the class contains
some information that tells the SOAP client object where to go to make the call, as
shown in Listing 27-4.

Listing 27-4: Declarations in the Wrapper Class for a
Web Service

Private sc_QuotesService1 As SoapClient30
Private Const c_WSDL_URL As String = _
“http://dpower30/xmlweb/quotesservice1.wsdl”
Private Const c_SERVICE As String = “QuotesService1”
Private Const c_PORT As String = “QuotesSoapPort”
Private Const c_SERVICE_NAMESPACE As String = _
http://tempuri.org/QuotesService1/wsdl/

This code has some of the same bits of information we saw in our less-sophisticated
example in Listing 27-3. In fact, upon close inspection of the class, you will find that
there is little difference between what it contains and what is in the types of things
spelled out in Listing 27-3. The essentials are nearly identical. However, the beauty
of the wrapper class is that you can use it in your code as if it were just a locally
installed component.

k538292 ch27.qxd 8/18/03 8:45 AM Page 678

679Chapter 27 ✦ Microsoft Web Services

Here, in Figure 27-9, you see a simple user interface created to call the Web service
and receive a response. The code behind it, in Listing 27-5, is extraordinarily simple.
This is the benefit of the Web Services Toolkit. The complexity of calling and using
the service is hidden, although if you wish to edit it you still can.

Figure 27-9: The Microsoft Office user
interface for using a Web service

Listing 27-5: Code for Calling a Web Service within the
Office Project

Private Sub cmdOK_Click()
Dim qs As clsws_QuotesService1
Set qs = New clsws_QuotesService1
txtQuote.Text = qs.wsm_GetQuote(txtKey.Text)

End Sub

While the code needed to make SOAP calls through the MS SOAP client is not terri-
bly difficult, the Office XP Web Services Toolkit does make it less of a developer-
centric task than one that is approachable to even power-users.

k538292 ch27.qxd 8/18/03 8:45 AM Page 679

680 Part V ✦ Introducing Web Services

Utilities in the MS SOAP Toolkit
Now that we have had a chance to really get into the MS SOAP SDK and create some
sample applications, it is useful to take a broader look the utilities that are provided
in the Toolkit. These include:

✦ SOAPVDIR.CMD

✦ wsdlgen3.dll

✦ MsSOAPT3.exe

We have already learned the purpose of SOAPVDIR.CMD, namely that it tells IIS
which Web sites should be tied to the ISAPI listener. We also used the wsdlgen3.exe
utility to create WSDL and WSML files for a custom Web service. The last utility is
the Trace Utility. Have you ever wondered what kind of information gets sent along
the wire when a SOAP call is made and when the response is given? If so, then the
Trace Utility is for you. This tool makes it possible to see what information is
passed along the wire. The Trace Utility does not show all of the TCP/IP protocol
information, as this is better handled by lower level listeners. Rather, the Trace
Utility is concerned specifically with SOAP messages.

Starting the utility is easy enough. Just double-click the executable or run it from
the Start menu in Windows. However, you need to do a couple of things to make it
possible for the utility to intercept SOAP traffic as it is sent to and from IIS. To do
this, the utility must listen in on a specific TCP port. The client that wishes to use
the Web service must then reference that port when sending requests to the Web
service. The Trace Utility then passes along the message to the Web service on its
original port number (usually 80) so that the Web service is none the wiser. The
response is then routed back to the Trace Utility, which then in turns sends the
information back to the client that made the original request. The client does not
know that there is a listener involved, nor does the Web service. All the client
knows is that instead of making requests to port 80, it will make them to a different
port. To make that possible, you will need to modify the client’s copy of the WSDL
and add the special port number to a specific section in the WSDL file. This is done
in the <port> element of the client-side WSDL. Listing 27-6 shows that section of the
file with the subsequent modification.

Listing 27-6: Changing the Client-Side WSDL So That
Messages Can Be Intercepted by the Trace Utility

<service name=’QuotesService1’ >
<port name=’QuotesSoapPort’
binding=’wsdlns:QuotesSoapBinding’ >

<soap:address

k538292 ch27.qxd 8/18/03 8:45 AM Page 680

681Chapter 27 ✦ Microsoft Web Services

location=’http://localhost:8080/XMLWeb/QuotesService1.WSDL’/>
</port>

</service>

The only modification here is the addition of the “:8080” to the end of the server
name. In a production scenario, the server name would normally not be here and
would be instead replaced by a DNS name that hides the name of the actual host.

Now that the client-side WSDL is modified, we need to start up the Trace Utility and
get it to intercept all requests made to the port we have added, 8080. Which port
you choose is up to you, but it is probably not a good idea to use other well-known
ports, like 21 or 443. Usually 8080 will work for you without any hassles.

With the Trace Utility running, go to the File | New | Formatted Trace menu, and
you will see a dialog box like the one shown in Figure 27-10. This dialog box simply
tells the Trace Utility which port to listen on and which port to which it should
send traffic as it receives it.

Figure 27-10: Enabling the Trace
Utility to listen in on a specified
port number

With these things enabled, running the same client application in VBScript pro-
duces results as shown in Figure 27-11. Here you can see the SOAP messages in
their entirety. These, of course, are somewhat simple because the Web service is
not terribly complex. As you add more information such as SOAP headers and secu-
rity information to your Web service, your SOAP messages may be more verbose. In
addition to seeing the XML representation of the messages, you can also look at the
SOAP headers and look at the encoded representations of the messages.

The Trace Utility can be helpful in creating and troubleshooting Web services, and
you should become familiar with its operations to save yourself time and agony as
you create and deploy Web services.

k538292 ch27.qxd 8/18/03 8:45 AM Page 681

682 Part V ✦ Introducing Web Services

Figure 27-11: The results of a SOAP request and response using the Trace Utility

Summary
In this chapter, we have explored the features of the MS SOAP Toolkit SDK. While
much of the interest in Web services is around Java and .NET, COM developers
(there are millions of them) need not be left behind. In fact, in some respects, COM
developers have helped fuel the interest in Web services all along, precisely the rea-
son why the SOAP Toolkit is now on version 3.0. The toolkit contains utilities and
other DLLs to make it possible for COM-based technologies to send and receive
SOAP messages. One of the key features is the installation of an ISAPI handler on
the target server so that IIS can receive SOAP messages and route them directly to
COM DLLs that are exposed as Web services. Clients can use a set of client objects
to connect to Web services and treat them as if there were local components. We
also saw how to build client applications including using the Office XP Web Services
Toolkit, a clever Addin that turns applications like Microsoft Excel into full Web ser-
vice consumers. Finally, we saw how to use the Trace Utility to get a good look at
the SOAP requests and responses passed to and from a Web service.

✦ ✦ ✦

k538292 ch27.qxd 8/18/03 8:45 AM Page 682

J2EE Web
Services

The Java 2 Platform, Enterprise Edition (J2EE), is a Java-
based component model that simplifies enterprise Java

Application development and deployment. The J2EE platform
is accessible though J2EE application servers, such as IBM
WebSphere Application Server, BEA WebLogic, Sun ONE, and
Apache Tomcat. J2EE classes and methods manage infrastruc-
tures and provide supports for Java, XML, and Web service
applications. The J2EE platform is also the foundation tech-
nology of Sun’s Open Network Environment (ONE) platform
and Web services strategy.

However, core J2EE classes, methods, and properties
have absolutely nothing to do with XML or Web services.
Fortunately for J2EE developers, J2EE classes do contain
robust and flexible support for text, and Web services are
based on XML, and XML is text (Web services are based on
very complicated XML text , but it’s still text). Web service
code is based on manipulating this text, and converting the
text to other platform formats.

There are several architectural options that can be used to
efficiently develop and deploy Web services in J2EE. In this
chapter we’ll introduce an example of a basic J2EE Web
Service architecture. We’ll use the example to describe some
of the advantages of working with Web services in J2EE. I’ll
also introduce you to vendor platforms that support the archi-
tecture. In Chapter 32 we’ll discuss the details of the tools
available for developing Web services.

Web Services: .NET or J2EE?
It’s hard not to discuss Web service architecture without
discussing both .NET and J2EE. Both platforms are big sup-
porters of Web services. Often, both platforms are compared

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The difference
between .NET and
J2EE Web services

Smart clients

Portals

J2EE Web Service
Architecture

J2EE Web service
building blocks

Vendor support for
J2EE Web services

✦ ✦ ✦ ✦

k538292 ch28.qxd 8/18/03 8:45 AM Page 683

684 Part V ✦ Introducing Web Services

and contrasted as opposite Web service camps, but that’s not the way that it has to
be at an enterprise level. In fact, many organizations to which I have provided XML
and Web service architectural services have plans to deploy both platforms. J2EE’s
multi-platform base makes it a natural choice for enterprise applications. Also,
many vendors, such as SUN, IBM, and Oracle, provide robust interfaces to their
relational data stores via J2EE/JDBC, XML and Web service interfaces. Microsoft
and many other software vendors provide .NET interfaces to their enterprise prod-
ucts, and .NET’s Web service client implementation provides a compelling platform
for smart Web service clients.

Yeah, blah, blah, blah, Brian: Which one do I pick?
Of course, the enterprise-level scenario we’ve described doesn’t help if you’re plan-
ning to start a Web services project and have to start with...something. Usually, that
something means picking a platform, at least as a starting point. How should you
make that decision?

In most cases, the software and hardware products that a company has chosen to
work with and the skill sets that the company has available for a project should
determine a solution platform. Because Web services use industry-standard for-
mats for communication, it’s not imperative to stick with one platform or the other
as the scope of a project or solution grows. But before you start a project, you usu-
ally must have to pick one. This is what makes Web service architecture interesting!
The consolation is that Web service architecture can often accommodate imperfect
platform decisions. For example, if you start a project with Oracle XML DB as a Web
service data repository, then for some reason decide to switch the data to SQL
server or DB2, the change from one RDBMS platform to another should not be diffi-
cult within a well-designed multi-tier Web service architecture. Before Web services,
this change would probably require a rewrite of the client, the access method to the
data, and the application server that accesses the data.

When selecting a Web services platform, what you already have to work with
should be a big factor. Existing platforms and development tools, existing developer
skill sets, and existing investment in software and hardware are important factors in
determining future direction. Because Web services are supported by most major
software vendors and development tools these days, the deciding factor often
comes down to the OS platform that the Web service solution will run on. J2EE has
an advantage in multi-platform applications, while .NET has a clear advantage in
Windows server environments.

Don’t overlook smart clients!
Windows has something that J2EE does not, and may never have — a smart Web
services client. Smart clients are applications that function at the application or OS
level of client hardware, and are easily integrated with other parts of the client

k538292 ch28.qxd 8/18/03 8:45 AM Page 684

685Chapter 28 ✦ J2EE Web Services

hardware and software to provide rich, configurable functionality to the user. This
functionality is usually automated and requires little or no custom development.
Because they require no developer assistance, smart clients are often overlooked
when designing and building Web service applications, in favor of server-based
Web browser solutions. As Web service clients, Web browsersare great for basic
display of data. However, one of the key features of Web services is the ability to
access data over the Web from any client, not just a Web browser. This means that
you can add Web services to a column of a spreadsheet or integrate Web services
into a calendar application on your desktop or a smart wireless phone. The smart
client can be easily integrated with other applications at the client level, making it
easy to build robust, customizable client applications that access data via Web ser-
vices. For example, a Web browser is handy for booking a flight online. However,
once you book a flight, how do you get the flight data into your calendar or your
PDA? This is usually a cut and paste procedure, or the task of a third-party tool that
can read the flight data and knows how to insert the data in your client application.
But what if you could just add an airline’s or hotel’s reservation system directly into
your calendar? You could select dates, make reservations, and store itinerary data
from your calendar as if the airline’s reservation system was part of your calendar
application. This is the promise of Web service smart clients.

.NET and MS Office have already added very impressive Web service client capabili-
ties into many Windows client applications. This functionality increases with each
new version of Windows and Office. Another potential Web service client competi-
tor is Lotus Notes, which integrates e-mail, calendaring, applications, an integrated
application development environment, and much more into their very impressive
Notes client application. At the moment, Notes has an advantage over other smart
clients in terms of client application security and multi-platform server support,
but MS Office and .NET applications have the advantage of providing robust and
easy client access to Web services.

About portals
J2EE’s answer to smart clients is the portal. Applications that use J2EE Web ser-
vices commonly use a Web browser as the client, which accesses data from a
server. The server is usually a mid-tier J2EE server, which has access to other
servers to retrieve and process data. This model usually referred to as a “thin
client” architecture. I question the thin part, as modern browsers are actually quite
complex clients — but in this case thin can describe the workload, not just the foot-
print of the client. In thin client architecture, the client, usually a Web browser does
little or no work. Almost all of the processing is done on a middle-tier J2EE applica-
tion server. The browser’s job is to send requests to a J2EE server, and wait for an
HTML page response. The J2EE server usually sends requests to one or more other
servers for data and then processes the HTML page that is sent back to the
browser.

k538292 ch28.qxd 8/18/03 8:45 AM Page 685

686 Part V ✦ Introducing Web Services

A portal provides a common interface to multiple applications. The portal acts as a
central point of contact for various applications that serve data on multiple plat-
forms, and is usually customizable by the user. User configuration information is
usually stored on a centralized portal server, so that the user can interact with their
customized environment on any machine that can access the portal server. Portals
are currently a very popular segment of J2EE development, because they are well-
suited to a multi-tier J2EE application architecture.

Having a large number of users connect to a centralized portal server presents scal-
ability issues that multi-tier J2EE architectures are designed to address. .NET does
have portal capability integrated as part of its framework as well, but the jury is
still out when it comes to enterprise-level Web service scalability on a Windows-
only platform.

Web services can be an important part of J2EE portal architectures. They act as the
glue that holds together the communication infrastructure between the tiers.
Instead of having to adapt data formats and platform protocols to communicate
with each other, Web-service-enabled data providers can connect to each other via
the Web service “lingua franca” of SOAP. Portals and Web services extend the func-
tionality of the thin-client model by providing more interactivity between a thin
client and a J2EE application server. Instead of a smart client that interacts with
server data, the portal aggregates and processes data, and serves the data to a
thin Web services client. Portal servers take on the role of the smart client in this
scenario.

Portal servers have two advantages over a smart client in Web service architec-
tures. The first advantage is that the portal is always on. In the case of a smart
client such as a PDA, smart wireless phone, or laptop, there are times when pro-
cessing will be limited because the client is not accessible. The second advantage is
that user configuration is stored on a centralized server. Theoretically, this means
that any client that can access the portal server is automatically configured to a
user’s centrally stored settings. These advantages have to be weighed, however,
with the rich and flexible display and application integration options that smart
clients offer. I predict that as Web services evolve, “thin” Web service clients will
start to look more and more like smart Web service clients, as features are added to
process data at the client level. This has happened with Web browsers and HTTP
servers, and I expect the same evolution for Web service clients and servers. Even
today, portals and smart clients can interact. There’s no law stating that Web ser-
vice portals can only serve HTML pages to browser clients. Portals can also send
and receive SOAP to interact with a smart Web service client.

k538292 ch28.qxd 8/18/03 8:45 AM Page 686

687Chapter 28 ✦ J2EE Web Services

J2EE Web Service Architecture
While it is true that there is an exception to every rule, exceptions tend to be more
plentiful in the fast-evolving Web services world. That’s why we tend to use words
like “usually” and commonly” a lot when describing Web service architectures. With
that warning in mind, let’s run through the basic building blocks of a J2EE Web ser-
vices architecture.

Multi-tier J2EE Web service client architectures start with a thin client, which is
usually a browser, but could be any hardware or software device. Other common
software clients are another Web service, a proxy class in VB, Java, C++, or any
other language, or a smart client that generates SOAP envelopes.

Instead of clients and servers, W3C documentation refers to service requestors and
service providers. This is to account for the fact that Web services can have many
layers, and that in some cases a “client” may be another Web service on another
server.

Requestors connect to a server that processes requests. Requests and responses
between the requestor and the provider are usually, over HTTP. W3C-standard calls
and responses can be sent and received using SMTP as well, but this is not very
common.

The messages that are sent between the requestor and the provider are contained
in SOAP envelopes. The SOAP envelope can contain anything, but usually contains
XML. There are two basic ways that SOAP envelope contents can be formatted,
remote procedure call (RPC) and anything else. The most common method is RPC.
In SOAP envelopes, the XML contents of the envelope follow a basic call and
response protocol between the requestor and the provider. The requestor makes a
call and waits for a response. The provider receives the call and makes a response.
If the SOAP envelope is not formatted as RPC, the call-and-response mechanism, if
there is any, has to be described as part of the envelope contents.

SOAP is covered in more detail in Chapters 23 and 24.

A Web Service Requestor sees a Web Service provider as a single entity. However, a
single Web service provider is usually made up of multiple layers.

A portal is an optional first layer for J2EE Web services. The portal can be part of a
J2EE application server environment, or a separate portal server. Portals act as a
smart client proxy to manage information and tasks on behalf of a user. In a J2EE
Web service architecture, the portal interacts with the J2EE application server to

Cross-
Reference

Note

k538292 ch28.qxd 8/18/03 8:45 AM Page 687

688 Part V ✦ Introducing Web Services

process Web services. (For more information on portals, and how they can be use-
ful for Web Service architectures, see the “About portals” section earlier in this
chapter.)

If a portal server is not implemented, the first layer in a J2EE Web service is a J2EE
application server, such as IBM’s WebSphere Application Server, BEA WebLogic, Sun
ONE server, or Apache Tomcat.

If SOAP envelope contents are formatted as RPC, the J2EE application server uses
an RPC Router and a deployment descriptor to process the functionality associated
with the Web service. Deployment descriptors are used to make the link between
Web service requests and responses and an application. Deployment descriptors
are XML documents that are stored on the J2EE application server. The RPC router
uses these deployment descriptors to find classes and methods associated with the
Web service. The J2EE application server controls the calls and responses to other
entities that make up the Web service. Processing could include calling another
Web service, calling a Java class, or retrieving data from a data repository such as a
RDBMS. When the appropriate responses have been received, the J2EE application
server builds a SOAP response envelope and sends it back to the requestor. Figure
28-1 shows a typical J2EE application server architecture.

Figure 28-1: A typical J2EE Web services architecture

Now that you have an overview of what a J2EE Web service looks like, let’s drill
down a little deeper into the workings of a J2EE application server. Specifically,
let’s look at how associated applications make up a Web service. Once again, I’ll
start with a browser as a Web service requestor.

UDDI/WSDL

Web Service

J2EE Application
Server

(WebSphere,
WebLogic, Tomcat,

Sun One, etc.)

External
Applications

Web
Service

J2EE Server

Data Repository

UDDI/
WSDL

Web Services Smart Client

Another Web Service

J2EE Proxy Class

Browser

SOAP

HTTP Get/P
ost

WSDL Protocols

J2EE
Portal

RPC
Router

Deployment Descriptor

Deployment Descriptors

k538292 ch28.qxd 8/18/03 8:45 AM Page 688

689Chapter 28 ✦ J2EE Web Services

A Web service requestor can optionally access a UDDI server entry. J2EE UDDI func-
tionality is usually implemented using IBM’s UDDI4J or Sun’s JAXR. The UDDI entry
points to the latest version of a WDSL file. If the requestor already has an instance
of the WSDL file located, they can skip this step.

JAXR includes a registry server as part of the implementation classes.

The WSDL document contains information about a Web service. J2EE proxy classes
can be used as a requestor interface. Proxy classes are designed to read the WSDL
file at a predefined location on a J2EE server. WSDL files are registered on the J2EE
application server. A well-written proxy class is designed to adapt calls and
responses to the Web service according to WSDL values.

WSDL is covered in more detail in Chapters 23 and 25.

When a Web service requestor makes a call to a Web service provider using a
SOAP envelope formatted as RPC, the request is routed to a transport-independent
SOAP RPC router. The RPC Router is usually based on the org.apache.soap.
server.RPCRouter class, which is a member of the Apache AXIS packages. The
RPC Router listens for HTTP POSTs that are sent to a URL on the J2EE application
server. SOAP envelopes are retrieved from the POST. The RPC Router builds an
RPC call object from the SOAP envelope contents, and checks the validity of the
object and makes the call. If the call requires a response, the RPC Router waits for
a response, and generates a SOAP response envelope from the response object.

Creating a SOAP envelope from a call or response object is known as marshaling
a SOAP envelope. Breaking down a SOAP call into another object is called unmar-
shaling the SOAP object.

The unmarshaled RPC call is directed to its destination by a deployment descriptor.
Deployment descriptors are XML documents that reside on the J2EE application
server, and describe a SOAP action. SOAP actions are mapped to applications.
Those applications can be a simple class on the J2EE server, another Web service, a
RDBMS query, or virtually anything else that can accept an RPC call.

The Apache AXIS packages contain classes that accept a Java class as input and
generate a WSDL document. AXIS can also generate a client proxy class for the
source J2EE class. Proxy classes can act as a client-side interface between Java
applications, servlets, or applets. AXIS can also generate a deployment descriptor
at the same time it generates the WSDL and the proxy class.

Figure 28-2 shows the structure of a Typical J2EE application server that is config-
ured for Web services, with all of the components we’ve described in this section of
the chapter.

Tip

Note

Cross-
Reference

Tip

k538292 ch28.qxd 8/18/03 8:45 AM Page 689

690 Part V ✦ Introducing Web Services

Figure 28-2: Structure of a typical J2EE Application Server,
configured for Web services

Software Support for J2EE Web Services
J2EE Web services are built on a platform of Web service standards. They are also
built on a set of components that adhere to those standards. Multi-tier J2EE Web
services start with a thin client, usually a Web browser. In between the browser and
the data that is being accessed, there are one or more tiers that provide data for-
matting and processing. Software for developing and deploying multi-tier J2EE Web
services is based on java developer community effort. Most of these efforts center
on projects at the Apache Software Foundation. Most J2EE Web service software
providers use the latest version of the Apache software foundation’s AXIS as the
core of their offerings. AXIS stands for “Apache eXtensible Interaction System,” and
is a J2EE reference implementation of the latest W3C recommendations for SOAP
and WSDL. AXIS code can be implemented on the client side as proxy classes and
on the server side as routers and implementation classes. We’ll get into the archi-
tecture in more detail later in this chapter. For now it’s just important to know that
AXIS code is used in most J2EE implementations where SOAP and WSDL functional-
ity is needed.

Web Service Requestor

J2EE Server

UDDI Discovery (Optional)
(UDDI4J, JAXR)

WSDL Page
(AXIS)

Action (Class or Method) Enterprise
Data

RPC Router

Deployment Descriptor

k538292 ch28.qxd 8/18/03 8:45 AM Page 690

691Chapter 28 ✦ J2EE Web Services

Apache Offerings
The Apache Software Foundation is a non-profit consortium that provides organiza-
tional, legal, and financial support for Apache open-source software projects, all of
which can be seen at http://www.apache.org/. The goal of all of the Apache
Web service projects is to provide high-quality standards-based XML solutions that
are developed in an open and cooperative fashion. Apache project participants are
in a unique position to provide feedback to W3C Web service working groups
regarding implementation issues, based on real-life implementation attempts. All
implementation code is available in Java. Server code is based on J2EE. Some
projects produce other code in other languages as well. For a full list of Apache
projects, go to http://apache.org/.

Apache AXIS
Apache Software Foundation code is weaved in to most commercial and non-com-
mercial J2EE development tools for handling XML and Web services. For example,
IBM and Sun both have features built in to their J2EE development UIs that generate
a WSDL file from a Java class, and vice versa. These tools are based on AXIS code
that has been integrated into the product. AXIS also provides RPC Router function-
ality and classes to handle SOAP envelopes on J2Ee servers and in developer UI test
environments.

Web Services Invocation Framework (WSIF)
The Web Services Invocation Framework (WSIF) is a Java API for invoking Web
services without directly accessing a SOAP API, such as AXIS. It provides the same
kind of functionality that JAXP does for Web parsing. A WSIF interface can be used
on any WDSL-compatible Web service, regardless of the original SOAP or WSDL
version or implementation. Additional information can be found at http://ws.
apache.org/wsif.

Web Services Inspection Language (WSIL)
The Web Services Inspection Language is a standardized way to find out about
published WSDL without a USDDI server implementation. WSIL also provides rules
for how inspection-related information can be revealed by a site. WS-Inspection
documents point to WSDL and other forms of Web service descriptors. The WSIL
specification can be reviewed at http://cvs.apache.org/viewcvs.cgi/
checkout/xml-axis-wsil/java/docs/wsinspection.html.

k538292 ch28.qxd 8/18/03 8:45 AM Page 691

692 Part V ✦ Introducing Web Services

XML security
Apache has implemented Java reference implementations of the XML-Signature
Syntax and Processing Recommendation, and the XML Encryption Syntax and
Processing. By the time this book is in print, they probably will have finished the
XML Key Management recommendation implementation in Java as well.

We cover Web service security in more detail in Chapter 37.

Jakarta Tomcat
Tomcat is the official J2EE Reference Implementation for Java Servlet and JavaServer
Pages technologies. Tomcat is a J2EE application server that also supports SOAP and
WSDL implementations via AXIS classes. This includes an RPC Router, which is based
on the AXIS rpcrouter class. Additional information about Tomcat can be found at
http://jakarta.apache.org/tomcat/index.html.

IBM Offerings
Aside from integrating Apache and other Web service tools as part of the
WebSphere Studio Application Developer, IBM also provides the WebSphere
Application Server (WAS). WAS is an integral part of J2EE Web Service architectures
on IBM platforms. AlphaWorks is also an important place for learning about and
using cutting-edge technologies.

WebSphere Application Server
IBM’s WebSphere Application Server (WAS) is IBM’s offering in the J2EE application
server marketplace. WAS provides the glue that holds a J2EE Web Service architec-
ture together. Support for multi-platforms, including IBM mainframe hardware,
ensures scalability. More information can be found at http://www.ibm.com/
websphere.

WebSphere Portal Server
As we mentioned earlier in this chapter, portals are the J2EE version of a Web
Service smart client. IBM WebSphere Portal is a platform more than it is an applica-
tion or server. It seamlessly integrates with WebSphere Application Server, which
seamlessly integrates with just about anything else — :you just have to write most
of the seams yourself. The WebSphere Portal Collaboration Center integrates IBM’s
Lotus Domino for collaborative applications. Features include integrated instant
messaging, team workspaces and online meetings. More information can be found
at http://www.ibm.com/websphere.

Cross-
Reference

k538292 ch28.qxd 8/18/03 8:45 AM Page 692

693Chapter 28 ✦ J2EE Web Services

IBM AlphaWorks
IBM AlphaWorks (http://alphaworks.ibm.com) is a very important resource
for anyone who has to code XML or Web Service applications in J2EE. For those
unfamiliar with the site, it contains a wealth of free tools and utilities that can be
downloaded and integrated into a Web services developer’s arsenal. Many of the
tools adhere to recent or developing W3C recommendations, and are a great com-
plement for J2EE Web service infrastructures. A good example is the XML Security
Suite, which adds W3C-defined security features such as digital signature, encryp-
tion, and access control to Web service and XML applications.

I discuss AlphaWorks tools offerings in more detail in Chapter 32.

Eclipse Tools for J2EE Web Service Developers
The eclipse.org Website (http://www.eclipse.org) is the center of the Eclipse
consortium. Eclipse is an open source, freely distributable platform for developer
tool integration. In essence, it provides a “lowest common denominator” for devel-
opers to integrate functionality into a development UI. IBM provided most of the
code for the startup, and since then other large players have joined in at the board
level, including Borland, MERANT, QNX Software Systems, Rational Software, Red
Hat, SuSE, and TogetherSoft. Several other very large players have also joined as
non-board members, including Sybase, Fujitsu, Hitachi, Oracle, SAP, and the Object
Management Group (OMG).

The Eclipse Modeling Framework
The Eclipse Modeling Framework (EMF) is a framework for generating applications
based on class models. EMF uses Java and XML to generate Java code from applica-
tion models. The intention is to provide the same sort of functionality that is found
in other, more expensive application architecture and modeling tools. In addition to
a Java code generator, EMF saves objects as XML documents that can be trans-
formed and adapted for use with other tools and applications. In addition, an
updated model can regenerate Java code, and updated Java code can be used to
update a model.

Here’s a listing of the EMF framework components:

✦ The EMF framework core includes a set of tools for describing models using
metadata. The metadata starts with an instance of an object, then describes
all of the features of that object, including properties, methods, and so on.
The framework core is implemented as a plug-in to the Eclipse platform UI.

✦ The EMF.Edit component contains reusable classes that developers can use to
build EMF model editors. Classes include support for class content, labels and
source code. Also included is support for display of the classes in the Eclipse
platform UI.

Cross-
Reference

k538292 ch28.qxd 8/18/03 8:45 AM Page 693

694 Part V ✦ Introducing Web Services

✦ The EMF.Codegen component generates J2EE code from an EMF model.
Classes include support for a developer UI for specifying generation options
and calling generators. Code can be generated for EMF Models, implementa-
tion classes for editing and display of the model in the Eclipse Platform UI,
and editors that manage the editing and display of the model in the Eclipse
Platform UI.

BEA Offerings
BEA sells their very popular WebLogic J2EE application server and an integrated
development environment as a bundle. BEA also sells a high-performance JVM for
Windows client machines, called JRockit. More information on BEA offerings can be
found at http://www.bea.com.

Sun Offerings
Sun owns the Sun ONE Studio Developer, which is the biggest competitor to IBM’s
WebSphere Studio Application Developer. Sun also offers the Sun ONE Server, which
competes with IBM’s WebSphere Application Server (WAS, and BEA’s WebLogic
Server.

Like IBM, Sun also provides a huge amount of J2EE and Web service resources for
free download from Sun’s Java site. In addition, free XML tutorials, articles, and
sample code are available from the Sun Developer Services Website.

Sun ONE Application Server
The Sun ONE Application Server is a J2EE application server that is integrated with
the Sun ONE application developer Studio and the Sun Web Services Developer
Pack. More information on the Sun ONE application server and related offerings
can be found at http://wwws.sun.com/software/products/appsrvr/
home_appsrvr.html.

The Sun Java Web Services Developer Pack
The Java Web Service Developer Pack (WSDP) is downloadable from Sun at
http://java.sun.com/webservices/webservicespack.html. The current
version of the WSDP is compatible with JDK 1.3.1 and higher. The WSDP APIs
include the following:

k538292 ch28.qxd 8/18/03 8:45 AM Page 694

695Chapter 28 ✦ J2EE Web Services

✦ JAXP (Java API for XML Processing) supports processing of XML docu-
ments, including WSDL documents, SOAP envelopes, and deployment
descriptors.

✦ JAXB (Java Architecture for XML Binding) automates mapping between XML
documents and Java objects, making elements and attributes classes, proper-
ties and methods.

✦ JAXM (Java API for XML Messaging) provides an Interface for SOAP mes-
sages, including SOAP with attachments.

✦ JSTL (Java Server Pages Standard Tag Library) consists of four custom Java
Server Page (JSP) tag libraries called the core, XML, I18N & Formatting, and
database access libraries.

✦ JAX-RPC (Java API for XML-Based RPC) provides an Interface for XML mes-
sages using an RPC transport, including, but not limited to, SOAP calls over
RPC to Web services.

✦ JAXR (Java API for XML Registries) provides an interface for XML registries,
supporting UDDI and OASIS/U.N./CEFACT ebXML Registry and Repository
standards, among others.

✦ The Java WSDP Registry Server implements Version 2 of the UDDI (Universal
Description, Discovery and Integration) specification. It provides a registry
that is compatible with JAXR (Java API for XML Registries).

✦ SAAJ (SOAP with Attachments API for Java) provides support for producing,
sending, and receiving SOAP messages with attachments.

Summary
In this chapter we compared the .NET Web services that you were introduced to in
Chapter 27 with J2EE architectures, and compared the features of each Web service
platforms. We also introduced you to a basic J2EE Web service architecture and
some of the ways that the architecture can be implemented. By now you should
have a pretty good understanding of the way a J2EE Web service architecture is
structured and how it can be created in the real world using vendor tools that are
available today:

✦ The structure of .NET and J2EE Web service infrastructures

✦ J2EE Web service architecture

✦ How Web service calls and response are made in J2EE

✦ How a J2EE Application server handles Web services

✦ How an RPC Router works

k538292 ch28.qxd 8/18/03 8:45 AM Page 695

696 Part V ✦ Introducing Web Services

✦ An introduction to deployment descriptors

✦ Tools available to build your J2EE Web service infrastructure

✦ IBM, BEA, Sun, and Apache offerings

The next couple of chapters will highlight .NET Web Service examples. After that,
we’ll describe the tools that developers can use to build Web services, and give you
a lot more detail on the offerings available from major Web service vendors. In
Chapters 35, 36, and 37, we’ll show some advanced examples of Web services in
action.

✦ ✦ ✦

k538292 ch28.qxd 8/18/03 8:45 AM Page 696

Microsoft.NET
and Web
Services

Part VI covers the techniques and tools for building Web
services for MS .NET. These include using ASP.NET for

creating and deploying .NET Web services, accessing .NET
Web services from Web applications, and building a Windows-
based .NET Web services Client application using Visual
Studio.Net and Visual Basic.NET.

✦ ✦ ✦ ✦

In This Part

Chapter 29
Creating and
Deploying .NET Web
Services

Chapter 30
Accessing .NET Web
Services

Chapter 31
Building a .NET Web
Services Client

✦ ✦ ✦ ✦

P A R T

VIVI

l538292 pp06.qxd 8/18/03 8:45 AM Page 697

Creating and
Deploying .NET
Web Services

Without question one of the most compelling technolo-
gies for building Web services is Microsoft’s .NET

Framework. The .NET Framework comes with all of the build-
ing blocks for Web services built right in. Essentially, any
server with the Framework and IIS installed is ready to pro-
vide Web services. Furthermore, .NET carefully balances the
need for making Web services easier to create, deploy, and
maintain with the requirement that developers still be able to
go under the hood and do more advanced techniques.

In this chapter, we will see how to build Web services using
the .NET Framework. We will look at the APIs provided in the
Framework that make Web services possible. We will also
inventory what is needed to deploy a Web service into a pro-
duction scenario, and how Web services can be further cus-
tomized. Most importantly, we will see how XML is used
throughout the .NET Framework support for Web services,
which classes use XML, how the configuration files use XML,
and how other Framework XML classes can be used when cre-
ating Web services.

This chapter does not deal with creating .NET client applica-
tions for consuming Web services. This is dealt with in
Chapter 31. However, we will take advantage of a couple of
client applications, both in .NET and in COM, to show how the
Web services created here work.

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

.NET Framework
Web service
architecture

Tools and languages

Web services in
Visual Studio .NET

XML in .NET
Web services

✦ ✦ ✦ ✦

m538292 ch29.qxd 8/18/03 8:45 AM Page 699

700 Part VI ✦ Microsoft .NET and Web Services

Introduction
The .NET Framework comes with a large number of APIs, and some of them deal
directly with the operations of Web services. Fortunately, the level to which you
want to learn these classes is really up to you. In other words, if you want to get
going with Web Services in .NET, you are not obligated to have a mastery of every
building block that undergirds the .NET Web Services architecture. On the other
hand, if you want to do more and more advanced things, the complete blueprint of
these building blocks is open to you. You can inherit and extend the underlying
classes and use them to accomplish rather specific needs.

Brief overview of .NET
Before diving into the .NET Web Services classes, it is useful to understand the gen-
eral architecture of .NET and how the .NET Framework works. This overview is
intended to be brief as our focus remains on Web Services more directly. If you wish
to more fully grasp the .NET Framework, you can go to Microsoft’s Website dedi-
cated to .NET as well as a number of excellent other Websites that are dedicated to
the understanding and promotion of .NET.

Websites include:

✦ http://msdn.microsoft.com/net

✦ http://www.gotdotnet.com

✦ http://www.asp.net

✦ http://www.dotnet247.com

Perhaps the most succinct definition of .NET is this: .NET is an entirely distinct
(read not COM-based) runtime that is designed to run on operating systems in the
Windows family. There is no overstating that this runtime is unique and is not
based on the legacy of runtimes that have been part of the Windows development
platform up to this point. This new runtime is not just a reworking of previous run-
times with some enhancements. Instead, it is a runtime that is new from the ground
up, while it also benefits from lessons learned in other runtimes (even those that
are not Windows-based). The .NET runtime manages all code execution, code and
user security, memory management, the type system, JIT compilation, exception
handling, and so much more. What is especially notable about this runtime is that
all of these things that the runtime does are the same irrespective of which lan-
guage is used. For example, instead of a string type being different in Visual Basic
.NET, C#, or J#, they all use the same underlying type and use the same name.
Additionally, the API used to create and manage Windows forms is the same no
matter which language is used.

m538292 ch29.qxd 8/18/03 8:45 AM Page 700

701Chapter 29 ✦ Creating and Deploying .NET Web Services

What this means is that the .NET runtime is not tied to any specific language. In
fact, the runtime does not really understand the development languages you would
use to create applications. It understands a single language called Microsoft
Intermediate Language or MSIL. This language is an assembler-style language, and,
although you can program directly in this language, it would not be terribly fun to
do so, as Figure 29-1 shows.

Figure 29-1: A look at the common language that is understood by the .NET runtime

As you can see, while the language is intelligible, it would be difficult to create killer
applications in short order using this language. What this means is that to get your
application into MSIL, you need to pass your project files through a language com-
piler. So, you can use Visual Studio .NET or a simple text editor if you wish to create
your project files. Then, you use a language compiler to turn your project files into
a compiled executable. That executable has the MSIL embedded directly within
itself. The .NET runtime then looks at the executable, pulls out the instructions it
needs in the common language and then compiles the code into native code that
can be scheduled on the processor of the machine where the code is running. This
is why the .NET runtime is called the Common Language Runtime or CLR.

The .NET Framework has two main components: the CLR and the .NET Framework
class library. The CLR is the foundation of the .NET Framework. It manages code at
execution time, providing core services such as memory management, thread man-
agement, and remote component invocation, while enforcing strict safety and accu-
racy of the code. Code that targets the CLR is known as managed code, while code
that does not target the Runtime is known as unmanaged code.

The .NET Framework also includes an extensive and comprehensive, object-
oriented, hierarchically organized collection of reusable classes that will help you
develop applications ranging from traditional command-line or Graphical User

m538292 ch29.qxd 8/18/03 8:45 AM Page 701

702 Part VI ✦ Microsoft .NET and Web Services

Interface (GUI) applications to applications based on the latest innovations pro-
vided by ASP.NET and Web services. For example, to create a Windows form and
work with controls on that form one would use classes contained in System.
Windows.Forms. Again, all of these things are independent of the development lan-
guage you choose to use. So, if you want to write a Web Service using VB.NET syn-
tax, you can. Or you can use a more C-based syntax by using C# (pronounced
C-sharp). In the end, your development language choice has more to do with the
syntax with which you are comfortable than anything else. As you may expect,
newsgroups are filled with debates about the merits of .NET-compliant languages.
Read these as you wish, but perhaps your time is probably better spent learning
the language-independent classes defined in the .NET Framework and how to
leverage the CLR. Figure 29-2 shows generally how the languages use the .NET
Framework classes to do things like create forms, Web Services, access data, use
XML, and do other things that are managed by the CLR. It also shows how Visual
Studio .NET can be used to create applications that target the .NET Framework.

Figure 29-2: Developer-oriented languages target .NET
Framework classes to do programming tasks that run
inside the CLR.

In this chapter, we will use Visual Studio.NET exclusively to create Web Services. In
subsequent chapters, we will also use Visual Studio.NET to create client-side appli-
cations that can consume Web Services. If you are unsure about how Web Services
work, you should make sure you look at Chapters 23 through 26 that deal with the
general concept of Web Services and how they work. Here, we will assume you are
already familiar with these concepts, and we can focus uniquely on how to build
them targeting using .NET technologies.

VB C++ C# JScript

Web Forms

Windows Forms

XML and Data

Base Class Library

Visual Studio .N
ET

Common Language Runtime

J#

Web Services

m538292 ch29.qxd 8/18/03 8:45 AM Page 702

703Chapter 29 ✦ Creating and Deploying .NET Web Services

Web Services Class and Attributes
The main class that makes Web Services possible in .NET is System.Web.
Services.WebService. The name is sensible and simple enough, and, to be
truthful, you will not find that this class has a lot of special properties and methods.
This class is really just a generic one that you will inherit and thereby get hooks
into the SOAP plumbing and other things that make Web Services possible. As you
can see, the WebService class is found in the System.Web.Services namespace,
and there are other classes there that let you take .NET Web Services from the sim-
ple to the advanced level. There are many classes, and each of these has many mem-
bers, too many to cover in this chapter. Thus, we will focus on the things that will
let you get up and running with Web Services while also going beyond a simple
“Hello World” Web Service.

First, let’s look at the classes that help you instance and define your own Web
Service class. They include:

✦ WebService

✦ WebServiceAttribute

✦ WebServiceBindingAttribute

✦ WebMethodAttribute

Let’s take a moment to understand what these classes do. First, the WebService
class is what the .NET Framework will create to represent your “object” when the
Web Service runs. You give your custom class a name and make it inherit from this
WebService class so that it becomes something the runtime can render in a spe-
cific way. Listing 29-1 shows all of the code you need to get your Web Service going
using this class. The System.Web.Services.WebService class, which defines
the optional base class for XML Web services, provides direct access to common
ASP.NET objects, such as those for application and session state. By default, XML
Web services created in managed code using Visual Studio inherit from this class.
While it is possible to produce a custom class that does not inherit from the
WebService class yet still fields Web Service requests, it requires more coding to
do so, and you must use ASP.NET System.Web.HttpContext.Current property
in your class to pull it off. In some advanced situations, this may be the way to go,
but for the most part, just inherit from the WebService class to make your class
SOAP-enabled.

m538292 ch29.qxd 8/18/03 8:45 AM Page 703

704 Part VI ✦ Microsoft .NET and Web Services

Listing 29-1: Basic Code Using the WebService Class to
Create a Custom Web Service

Imports System.Web.Services

<System.Web.Services.WebService(Namespace := _
“http://tempuri.org/GetQuote/QuoteService”)> _
Public Class QuoteService

Inherits System.Web.Services.WebService
Public Sub New()

MyBase.New()
End Sub
<WebMethod()> Public Function QuoteFinder(_

ByVal Key As String) As String
Return(“Quote will go here eventually.”)

End Function
End Class

The coding in Listing 29-1 alone is enough to create a simple, functional Web
Service. Before we get ahead of ourselves, let’s take a moment to understand how
this code would suddenly become a service that a remote user could access via
SOAP. First, .NET in and of itself cannot respond to HTTP requests over TCP/IP. In
other words, just putting the .NET Framework on a server and creating a Web
Service makes it available. The .NET runtime works closely with Windows and IIS to
field SOAP requests and send back SOAP responses. So, this class, as such, only
does part of the work of fielding the request and processing it before sending a
response. Windows and IIS are involved all along the way to route the user’s
request to the .NET application that in turn runs this Web Service.

That said, we should take note of a few other things in this simple code. First, you
notice that there are attributes in the code (offset with < and > tags) that add spe-
cial behaviors. These attributes are there to tell the .NET runtime more about what
the Web Service does and how it is supposed to function.

One of these attributes is the WebServiceAttribute and is shown in our code as:

<System.Web.Services.WebService(Namespace :=
“http://tempuri.org/GetQuote/QuoteService”)>

This attribute lets you specify a namespace for the Web Service. The Namespace
allows you to organize your Web Service in a hierarchical Namespace so that it
makes more sense in your organization. In addition to the Namespace you can
specify a description of your Web Service in this attribute so that external con-
sumers can learn more about what it does.

m538292 ch29.qxd 8/18/03 8:45 AM Page 704

705Chapter 29 ✦ Creating and Deploying .NET Web Services

The second attribute we see here is the WebMethod attribute. This attribute has
several properties that let you further define the behavior of your Web Service. For
example, you can provide additional SOAP Header information in this attribute in
order to pass along special information with method calls, typically information
that you do not want to include as part of the method parameters themselves. For
example, when you call the QuoteFinder method in the Web Service in Listing
29-1, you pass along a key value that the code will use to find the quote. It makes
sense to specify the key value as part of the method. On the other hand, what about
credentials? It would not make as much sense to provide credentials or other glob-
ally used information in this parameter. Passing this information as part of SOAP
Header in the WebMethod attribute would make a lot more sense. It contains sev-
eral properties for configuring the behavior of the XML Web service. Here, we
change the WebMethod attribute so that the method provides a description of itself
to a consumer:

<WebMethod(Description:= _
“Accesses Quotes database to retrive a quote”)>

The only one of the four classes mentioned earlier we are not using in our sample is
the WebServiceBindingAttribute class. We are not using it because we are
using the default bindings in our Web Service. A binding is defined in Web Services
Description Language (WSDL), and it defines the operations of the Web Service. Our
method, GetQuote, is a single method located in a specific binding. In some cases
it might be useful to further define a binding, thus adding attributes to it. For exam-
ple, you may want to create a custom Web service proxy class that gives clients
applications options for when and how they access the service, rather than just
using the default options (which is good for most uses).

To summarize up to this point, we have looked at the four basic classes you will
need to use in order to get a .NET Web Service up and running. The two principal
classes are the WebService and WebMethod classes. Using them gives you direct
access to the SOAP capabilities of the .NET Framework and its ability to team up
with IIS to make your application accessible over the Web.

Visual Studio .NET and Language Support
As mentioned previously, the .NET runtime is not tied to any specific development
language such as VB.NET or C#. The CLR derives its name from the fact that it is a
runtime that understands a single, common language: MSIL. That said, there are
many languages you can use to create your Web Services in .NET. You can use the
ones Microsoft supports (VB.NET, C#, J#, C++, JScript.NET), or you can use one of
your own creation along with ones developed by third parties. The most likely case
is that you will use a Microsoft-supported language. However, you can write the

m538292 ch29.qxd 8/18/03 8:45 AM Page 705

706 Part VI ✦ Microsoft .NET and Web Services

application entirely in a simple text editor if you wish. From there, you take your
source files and pass them to a language compiler. For example, the language com-
piler for VB.NET files is vbc.exe. Thus, you point the compiler to your project and
the compiler will in turn create an actual executable for you.

For the most part, you will use Visual Studio.NET to create your projects and add
the necessary files for you. When debugging and developing you will use Visual
Studio.NET to compile the application. However, there are still times to use the
command-line compilers, as when you create scripts for an automated build pro-
cess. In this case, the final executable is created without the help of the IDE. This
process is described in greater detail in Chapter 30.

Let’s create our QuoteService Web Service in Visual Studio.NET by opening the IDE
and either using the Start Page or the File | New Project menu to begin our new pro-
ject. When you do, you will see a dialog box as shown in Figure 29-3. You can
choose the language that interests you, normally C# or Visual Basic.NET. You also
designate where the Web Service will be created.

Figure 29-3: Choosing the project type in Visual
Studio.NET

After specifying the basic information for your Web Service, Visual Studio.NET will
create the Website and set up the necessary project files for you (see Figure 29-4).

m538292 ch29.qxd 8/18/03 8:45 AM Page 706

707Chapter 29 ✦ Creating and Deploying .NET Web Services

Figure 29-4: The basic
project files of a Web Service

By default, Visual Studio.NET creates a service file for you called Service1.asmx,
and this contains a default Web Service class called Service1. You can just delete
the file and add your own with a Web Service name and file name that makes more
sense to your application. Or you can simply rename the default file and class
name. At this point, you are ready to add code to the Web Service class definition.
You can add methods using the Web Method attribute as already explained. What
you put in the Web Service method is completely up to you, and there is nearly no
limit to what a Web Service can do. You can access databases, make calls to other
Web Services, open XML files, transform XML, instantiate custom component
libraries, and work with security infrastructures. The choice is up to you.

XML Support for Web Services
Because this book is about XML, you may be wondering just what all this talk about
creating Web Services in .NET has to do with XML classes. Well, to begin with, client
applications that call Web Services package their requests in XML, and the Web
Service packages its responses in XML. All of this is explained in greater detail in
Chapters 23 through 26. These chapters contain descriptions of SOAP, WSDL, UDDI,
and how XML is used in each of these protocols to make Web Services possible.

Fortunately, all of the work that goes on to use XML with these protocols is done for
you by the .NET Framework itself. In other words, you are not responsible for
assembling SOAP messages in XML, because that is what the .NET Framework
classes are supposed to do. On the other hand, what about using XML in your Web
Service itself? That is entirely possible, and is in fact quite easy to do.

To illustrate this, we will take our QuoteService Web Service and use the
System.XML.XmlDocument class in the .NET Framework to load a list of the
quotes in an XML file. Then we will locate a quote that corresponds to a key value
that is passed to the Web Service method. Finally, the Web Service will return the
quote that is found by the Web Service.

m538292 ch29.qxd 8/18/03 8:45 AM Page 707

708 Part VI ✦ Microsoft .NET and Web Services

Listing 29-2 shows the code that is used to locate a quote by the quote’s key value.
Here, we are using the System.XML Namespace of the .NET Framework. This
Namespace contains the classes that deal with parsing, transforming, navigating,
reading, and writing XML content within the Framework. The XML Framework in
.NET provides a comprehensive and integrated set of classes, so that you can work
with XML documents and data.

The XML classes in the .NET Framework can be categorized in the following way:

✦ Parsing, editing, and writing XML using the XmlReader, XmlWriter, and the
XmlDocument classes

✦ Querying using the XPath classes

✦ Transforming using the XslTransform classes

✦ Editing schema definitions using the XslSchema classes

The XmlDocument class implements the W3C Document Object Model (DOM) Level
1 Core and the DOM Level 2 Core. So, it is used for loading, parsing, navigating, and
saving XML content. This is the class we use in our Web Service to load the XML
data and find the target quote.

Listing 29-2: Locating a Quote in an XML Document
Using an XPath Expression

<WebMethod()> Public Function QuoteFinder(_
ByVal Key As String) As String

Dim oDoc As New Xml.XmlDocument
oDoc.Load(“http://localhost/QuoteService/Quote.xml”)
Dim oNode As Xml.XmlNode
oNode = oDoc.SelectSingleNode(_

“dataroot/QuoteTable[QuoteKey=’” & Key & “‘]”)
oNode = oNode.ChildNodes(2)
Return (oNode.InnerText)

End Function

In this function, a simple XPath expression is used to locate the node that contains
the desired quote. This is done by using the SelectSingleNode method from the
instance of the XmlDocument object. This method accepts a query string in the
form of an XPath expression and returns the first node, if any, that matches the
query definition. The “dataroot/QuoteTable” portion at the beginning of the XPath
expression tells the query processor to find any node called “QuoteTable” beneath
the root node of the XML hierarchy. It further tells the query processor to look for a
“QuoteTable” node that has a sub node calls “QuoteKey” whose text value is equal
to the contents of a variable. A sample of the XML is shown in Figure 29-5.

m538292 ch29.qxd 8/18/03 8:45 AM Page 708

709Chapter 29 ✦ Creating and Deploying .NET Web Services

Figure 29-5: XML content in the Quotes.XML file

Calling the Web Service returns a value in well-formed XML document. That is
shown in Listing 29-3.

Listing 29-3: XML Output from a Call to the QuoteService
Web Service

<?xml version=”1.0” encoding=”utf-8” ?>
<string xmlns=”http://tempuri.org/QuoteService/Service1”>
Very funny Scotty, now beam down my clothes.
</string>

If you are wondering how to build a client application to call this Web Service, that
is dealt with specifically in Chapter 31. Here we are using Internet Explorer to make
direct calls to the Web Service. What this example does show is how you can lever-
age XML within your Web Service. There are so many other ways that the XML
classes of the .NET Framework can be used, and the other chapters in this book
should give you plenty of ideas on what you can do.

Summary
In this chapter, we have taken a look at building Web Services using the .NET
Framework and Visual Studio.NET. The .NET Framework classes, like WebService,
make it extraordinarily easy to get hooks into the world of sending and receiving
SOAP messages. Designing your Web Service using Visual Studio.NET is a particu-
larly wise choice in that the IDE takes care of setting up all of the pieces you need
for a Web Service. However, it does not do so at the expense of flexibility and
power. If you are not pleased with the basic set up of a Web Service, you can use
the classes in the Framework to customize your Web Service as you need.

✦ ✦ ✦

m538292 ch29.qxd 8/18/03 8:45 AM Page 709

Accessing .NET
Web Services

Creating Web Services is deceptively easy. Furthermore,
the Microsoft Visual Studio .NET tools make creating a

Web Service surprisingly simple. The MS SOAP Toolkit, even
though it is based on COM technologies, also simplifies Web
Service creation quite a bit. However, there are more things to
think about before rolling out your first production Web
Services.

In this chapter, we take a step back and look at some of the
issues that encompass more than the simple client-server
relationship itself. We will look at security with .NET Web
Services. We will also explore how to deploy these services
and make them highly available. We will look at some of the
things you should think about as you consider upgrading an
existing application to use .NET Web Services.

Web Services Security
In one sense, Web Services are really just another Web appli-
cation. A Web Service class instance runs on a Web server
that receives the request, detects that it is for a Web Service,
and passes it along to the right processing engine. However,
one should attempt to control what code can run on the
server, and one should also be able to constrain which users
can gain access and what they can do.

The .NET Framework works closely with IIS to restrict access
to what is available on the Web server. Microsoft ASP.NET
architecture and IIS do the following:

✦ Authenticate code to verify whether it should be granted
access to server resources

✦ Authenticate user credentials

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Authentication and
authorization

IIS integration with
.NET Web Services

Windows security

Working with Web
Service assemblies

Moving from legacy
code to .NET Web
Services

✦ ✦ ✦ ✦

m538292 ch30.qxd 8/18/03 8:45 AM Page 711

712 Part VI ✦ Microsoft .NET and Web Services

✦ Grant users access to resources

✦ Serve up resources as allowed by granted permissions

Given the tight integration between .NET and IIS, it is important to understand a lit-
tle bit more about how they work together to provide a secure runtime environ-
ment. ASP.NET is an ISAPI extension loaded by IIS, and it ultimately receives SOAP
messages that are passed along from the SOAP client to the Web server. Before a
Web Service can entertain any messages, the request must first pass through the
security in IIS. All IIS modes can be used here. They include:

✦ Basic

✦ Certificates

✦ Digest

✦ NTLM

✦ Kerberos

✦ Anonymous

Microsoft’s product documentation is filled with information about these authenti-
cation mechanisms. Additionally, you can configure a site to use Microsoft Passport
for authentication, client certificates, or a simple form-based mechanism.

IIS controls the request to the Web server resources by looking at the credentials
being offered up by the client and comparing them to some privileged source. That
source can be a custom database, the Windows Active Directory, or some other
custom store. If the credentials can be verified, then the request is passed along to
the Website and the appropriate ISAPI application, in this case ASP.NET. That is
when the Web Service actually kicks in, and the runtime can use the identity of the
code and the user to verify whether the desired permissions can be granted.

One of the most important files you can use as part of your .NET Web Service config-
uration is the Web.Config file. This file is located at the root of the Web Service appli-
cation, but one can also include other Web.Config files in subsequent directories
that are located in the Web Service application site. Each Web.Config file controls
settings for the directory in which it is found and for any directories contained
therein, unless there is a Web.Config file in a child directory. In the Web.Config file,
you can specify authentication and authorization information. First, let’s look at the
authentication information in Listing 30-1. These settings would prevent any user
who is not authenticated as having a valid Windows account from accessing the site.

m538292 ch30.qxd 8/18/03 8:45 AM Page 712

713Chapter 30 ✦ Accessing .NET Web Services

Listing 30-1: Integrating the Windows Security Infrastructure
into the Authentication of a Web Service

<authentication mode=”Windows”>
</authentication>

Using Integrated Windows authentication is a compelling choice, among the possi-
ble ones already listed. The reason why is because a user need not supply special
credentials to access the Web Service. If the user has logged onto the Windows-
based workstation, things are simple enough. No further authentication will be
requested when IIS fields the request. Again, other authentication mechanisms like
forms-based authentication could be used with Web applications, but these require
a user to provide extra credentials, something that is not really possible with a Web
Service.

Once a user is authenticated, code can load and methods can be requested.
Sometimes, it is necessary for a user’s identity to be preserved within the code that
will run in the Web Service. For example, if the user is calling the Web Service to
access a database, it might be a very good idea to have the Web Service method
use the user’s identity when making the database call. In this kind of scenario,
unless we make a couple of special modifications, the database call would be made
using the identity of the account that the Web Service is running under, in this case
the identity that IIS uses IUSR_[MACHINENAME].

To make the Web Service use the user’s identity, we need to change the Web.Config
file for the Web Service so that it knows to impersonate the user when doing its pro-
cessing. Table 30-1 shows different Web.Config settings and what they mean to the
final identity used by the Web Service.

Table 30-1
Web.Config Settings

Web.Config Setting Context Effective Identity

<identity impersonate= WindowsIdentity Domain\UserName
”true”/> Thread Domain\UserName
<authentication mode=
”Windows” />

<identity impersonate= WindowsIdentity MACHINE\ASPNET
”false”/> Thread Domain\UserName
<authentication mode=
”Windows” />

m538292 ch30.qxd 8/18/03 8:45 AM Page 713

714 Part VI ✦ Microsoft .NET and Web Services

In this table you can see that there are two different contexts listed. They are
WindowsIdentity and Thread (or Thread Identity). These are two of the dif-
ferent contexts that apply within your code. If you decided to look at the user iden-
tity in your code by using the WindowsIdentity class, and the settings were
configured as described here, then you would find the effective identity value
shown in the table. If you chose to access the identity under which a thread is run-
ning, you would find that its effective identity would be as shown. You can use
Windows security then to restrict what users can do and what files they can access.

While using Integrated Windows authentication is a great way to simplify the admin-
istration on your site, it is sometimes useful to configure some authorization using
the Web.Config file itself. The settings in Listing 30-2 would allow only users who
are in the Administrator role to access the files on the site at this level. All other
users would be denied.

Listing 30-2: Specifying Authorization in a Website Using a
Web.Config file in a Web Service Site

<authorization>
<allow roles=”Administrator” />
<deny users=”*” />

</authorization>

In a Web.Config file, authorization is controlled in an <authorization> tag, with
accompanying <allow> and <deny> elements. For example, the following autho-
rization configuration in Listing 30-3 allows some user, Bob, as well as
Administrators to access the Web application, but denies everyone else.

Listing 30-3: Customizing Authorization Information for a
.NET Web Service

<authorization>
<allow users=”Bob” />
<allow roles=”Administrators” />
<deny users=”*” />

</authorization>

The asterisk (*) wildcard in use here is used to denote all users. Optionally, a ques-
tion mark (?) could be used to denote all non-authenticated users.

m538292 ch30.qxd 8/18/03 8:45 AM Page 714

715Chapter 30 ✦ Accessing .NET Web Services

Deploying .NET Web Services
Once you have developed your Web Service, you need to deploy it. There are a few
different ways to deploy your Web Services, and which one you elect to use will
depend on what your Web Service does and what kind of environment will host it.
First, let’s deal with the simplest deployment mechanism: Copy/Paste. Yes, that’s
right. Finally, because of the advent of the .NET Framework, one is no longer
required to mess around with the Windows registry when deploying completed
components. When you compile a release version of your Web Service, you will find
that there is a resulting DLL in the application’s bin directory. This DLL is what con-
tains the MSIL for your Web Service along with other metadata. This DLL is essen-
tial in deployment, and so is the .asmx file that Web Service clients will address
when making SOAP requests. These two things, the DLL and .asmx files, are the two
principal requirements for getting your .NET Web Service to run on a server. But
you should include your Web.Config file and a few others as shown in Figure 30-1.
These are the bare minimum files that you should copy to the production server.

Figure 30-1: Files and directory needed for a
release version of a .NET Web Service

Just copying the files is not enough, however. You need to create an IIS Website or
Virtual Directory whose main directory has the contents shown in Figure 30-1. Only
then is the application accessible through IIS. Other than that, there is little else to
do to make the application accessible over the Web. Obviously, you will want to
configure security and make other modifications as needed.

If your .NET Web Service has dependencies that are not purely .NET, such as using
COM components or special files such as XML files, you will want to copy them and
deploy them according to their needs. COM DLLs will need to be registered (the
Windows registry is the only way) just the way COM requires. You can do all of this
manually, or you can create a setup project in Visual Studio.NET. The beginning of
this process is shown in Figure 30-2 where a setup project is created for a custom
Web Service.

You should consult MSDN documentation for the complete instructions in complet-
ing this process. After you create the setup project, you will have a Microsoft
Installer file that you can launch to create the Website and install the project with
any dependencies.

m538292 ch30.qxd 8/18/03 8:45 AM Page 715

716 Part VI ✦ Microsoft .NET and Web Services

Figure 30-2: Creating a setup project for a .NET Web
Service using Visual Studio.NET

The final technique that we’ll mention for creating a production version of a Web
Service is to use the NMAKE.exe utility to create project output. NMAKE is a 32-bit
tool that builds projects based on commands contained in a description file. You
can create special Makefiles to tell NMAKE how it is supposed to create your final
project output. The contents of these files amount to scripts that let you customize
the final project output so that file and directory locations are fully customizable.
Using NMAKE is great for automated processes that require you to compile Web
Services automatically and then deploy them on a production server without user
intervention.

Upgrading Existing Applications
There is no doubt that Web Services are an exciting technology. Much of the com-
puting industry is now turning its attention to how Web Services could influence
how new technologies emerge and how legacy technologies can benefit from this
promising technology. As you consider Web Services in your organization, you have
to weigh your options.

First, know that the performance of Web Services is not necessarily going to be as
good as that to which you may be accustomed in your existing application frame-
work. If you are in a tightly coupled environment rather than a remote one, the dif-
ference will probably be more dramatic. If you are already in a distributed
environment, the difference may not be as noticeable. Remember that Web Services
are really just Web applications in a different form. You are using remote calls over
HTTP to execute application functionality.

m538292 ch30.qxd 8/18/03 8:45 AM Page 716

717Chapter 30 ✦ Accessing .NET Web Services

Second, recognize that security concerns are different for Web Services than for
non-Web applications. In a tightly coupled scenario, security is also not the same as
for a Web application such as those that host a Web Service. A Web Service is a
remote application where the security on the client is not necessarily the same as
on the server. Using Integrated Windows authentication and impersonation can
make it easier to leverage a user’s credentials on the server automatically.

Third, remember that Web Services are stateless. In a tightly coupled environment, a
component creates an instance of another component and can access its state at
any time. In a Web Service, a client application is really only using an instance of a
proxy class that makes calls to the remote server for the client. State can actually be
retained in a Web Service by passing a cookie in the response headers to the XML
Web service client. This cookie would uniquely identify the session for the client and
allow the client to identify the session for that XML Web service client. In this way,
the client could later access the state of the state of the existing session. This is an
advanced technique and requires a more deft use of the .NET Framework APIs.

Summary
In this chapter, we have taken a look at some of the broader issues you need to con-
sider as you develop and deploy your Web Services. This is exciting technology, but
there is more to the process than just adding methods to a Web Service class and
then running the project. You need to consider security, deployment, and how
client applications will approach the application. You also need to prevent your
Web Service from being compromised or used in a way that you did not anticipate
or approve.

✦ ✦ ✦

m538292 ch30.qxd 8/18/03 8:45 AM Page 717

Building a .NET
Web Services
Client

In previous chapters dealing with Microsoft and Web
Services, we have focused almost entirely on building the

server-side pieces of the distributed application. We have also
explored the various protocols, like SOAP, WSDL, and UDDI,
that make remote Web Service invocation possible. Now,
we need to turn our attention to the client-side part of the
application.

Web Service client applications can take many different forms.
They can be Windows Forms applications, Web applications,
custom components in a class library, a control, a Windows
service, or even another Web Service. There is no way to ade-
quately cover all of these techniques in one chapter. And, the
truth of the matter is that, in great measure, the access
method would be very similar in all cases. The main differ-
ence is that the Web Service is simply being called from a dif-
ferent container, but the way it is called is largely the same.

In this chapter, we will build a couple of client applications to
call a Web Service. Along the way we will explore some of the
techniques and application operations needed to get a client
application off the ground.

Introduction
The advent of Web Services has caused quite a stir in the
development community because of what it promises: the
possibility of allowing client applications to invoke remote
components in a standard way, independent of platform differ-
ences. No remote code is installed on the client application to

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Access methods for
.NET Web Services

Building a Browser
Web Services client

Building a Windows
Web Services client

Creating Mobile
Device Applications

✦ ✦ ✦ ✦

m538292 ch31.qxd 8/18/03 8:45 AM Page 719

720 Part VI ✦ Microsoft .NET and Web Services

invoke such services. Thus, there must be a mechanism in the runtime environment
that makes it possible to invoke calls to the remote service in a way that is similar
to the way a typical client invokes local application functionality. Figure 31-1 shows
the relationship between concepts endemic to any application and how these are
provided by the runtime environment where the application is invoked.

Figure 31-1: Application concepts and how they are provided in Web Services
and the runtime environment

To explain it further, let’s look at the general application concepts (the first column
in Figure 31-1). When a client application uses external application functionality
such as a locally installed component there are certain things that must occur or
must be known. First, the client consumer must have a way to invoke methods in
the server component. It must also know what methods and behaviors are offered
by the server component. Also, the request to the server component’s functionality
must be packaged up in a standard way. Finally, the message sent to the server
component must contain data that the server component can process so a
response can be returned describing the result of the operation.

In Web Services (the second column in Figure 31-1), the same concepts exist, and
they are expressed using specific protocols. The client application communicates
with the remote service and invokes its operations using SOAP. This is the protocol
that both parties use to send request and response messages. The client applica-
tion knows about the methods and behaviors of the Web Service via the XML
description of the Web Service in the WSDL file. The messages passed back and
forth between the client and server applications are structured using XML accord-
ing to a specific schema, and finally, the actual data in the messages is in a struc-
tured XML document.

Application

Data

Schema

Services

Invocation

XML

XSD

WSDL

SOAP

Object

Class

Methods

Calls

Web Service Runtime

Concepts

m538292 ch31.qxd 8/18/03 8:45 AM Page 720

721Chapter 31 ✦ Building a .NET Web Services Client

In the runtime environment, it is best if the client application does not need to
directly contain all of the code to use SOAP, WSDL, XSD, and XML. In other words,
the developer would never get many client applications out the door if it were always
necessary to write the routines to structure the messages in SOAP format and so
forth. It would make more sense if the runtime environment provided class that
abstracted these operations so that a developer can focus on the actual methods
and how to use them, just they way one would with a locally installed component.

The .NET Framework provides those very types of classes so that the actual code in
a client application to invoke remote methods does not reveal whether the calls are
remote or local. In Chapter 29, a Web Service is created to acquire quotes from a
Web Service. In this chapter, we will begin by creating a client application to call the
existing method of that service as well as a new method. Then, we will tear apart
the client-side code and application structure to see how it works.

Browser-Based Client
Thin-client applications are still growing in popularity, and their future is perhaps
going to increase more rapidly as the proliferation of mobile devices continues.
More and more mobile devices are flooding the market, and they are becoming
more affordable. That being so, it is important to create applications that can serve
both workstation users and those who may be using a variety of devices.

The Microsoft .NET Framework includes the ability to create Web applications
using its ASP.NET architecture. We are going to create a browser-based application
that will work both on a regular PC workstation as well as on a PocketPC. We will
then see it work in both environments. The application is a simple Web page that
displays an image. Each time the page refreshes, the same image appears, but its
underlying link is to a different URL. The URL when accessed will return a new
quote from our QuoteService Web Service created in Chapter 29. While the applica-
tion is not terribly unusual, how it is developed is quite uncommon, and it will help
you see how to use XML, Web Services, ASP.NET, and the mobile device extensions
of the .NET Framework to build applications.

First, let’s look at the main page of the Web application. To begin, we create a new
application in Visual Studio.NET, but instead of choosing a typical ASP.NET applica-
tion, we choose an ASP.NET Mobile Application as shown in Figure 31-2.

m538292 ch31.qxd 8/18/03 8:45 AM Page 721

722 Part VI ✦ Microsoft .NET and Web Services

Figure 31-2: Creating an ASP.NET application for a
mobile device

The Web Forms used by ASP.NET Mobile Applications are fundamentally a little dif-
ferent than those created for Web browsers used on a typical computer. The class
used for this form is System.Web.UI.MobileControls.Form, a definite indica-
tion that something is different about this form. The blank form, shown in Figure
31-3, also looks a little different than we have come to expect in a blank Web page.
You notice that this form is sized.

Figure 31-3: A generic ASP.NET form
specifically designed to work with
mobile devices

To make things more interesting, we are going to add a Server Control to the form,
in this case the AdRotator control. This control accesses an XML that contains
information that the control will display or that will control its behavior. To add the
control, we go to the Mobile Web Forms tab of the IDE’s toolbox and drag the
AdRotator control to the form. The result is shown in Figure 31-4.

m538292 ch31.qxd 8/18/03 8:45 AM Page 722

723Chapter 31 ✦ Building a .NET Web Services Client

Figure 31-4: Adding the AdRotator control to the
target form

Now, we need to modify the settings for the control a little so that it knows where
to look for the XML file that will control its behavior. That is done in the HTML
View of the form in the IDE. Listing 31-1 shows that we have added a setting called
AdvertisementFile along with the reference to an XML file. This file is used by the
control so that it knows what URL links to provide on the target Web page. It also
will contain URLs to images that will be displayed on the Web page.

Listing 31-1: Adding the AdvertisementFile Setting to the
AdRotator Control So It Can Access an XML File
That Will Control Its Behavior

<body
Xmlns:mobile=”http://schemas.microsoft.com/Mobile/WebForm”>

<mobile:Form id=”QuoteForm” runat=”server” title=”Quote
Form”>

<mobile:AdRotator id=”AdRotator1” runat=”server”
AdvertisementFile=”Quotes.xml”></mobile:AdRotator>
</mobile:Form>

</body>

The XML file is an important part of the way the AdRotator control works. Listing
31-2 shows the contents of that file. Each “Ad” element contains an element for the
URL of an image that will be shown, what URL will be accessed, the alternate text
that shows as the user hovers over the image, a category name, and impressions or
a numeric value that indicates the likelihood of how often the ad is displayed.

m538292 ch31.qxd 8/18/03 8:45 AM Page 723

724 Part VI ✦ Microsoft .NET and Web Services

Listing 31-2: The Contents of the Quotes.XML File Used by
the AdRotator Control

<?xml version=”1.0” encoding=”utf-8” ?>
<Advertisements>

<Ad>
<ImageUrl>Quotes.gif</ImageUrl>
<NavigateUrl>
http://localhost/ASPQuoteApp/WebForm1.aspx?ID=HNEY-

4TTL7U
</NavigateUrl>
<AlternateText>Get Quote</AlternateText>
<Keyword>Quote</Keyword>
<Impressions>80</Impressions>

</Ad>
<Ad>

<ImageUrl>Quotes.gif</ImageUrl>
<NavigateUrl>
http://localhost/ASPQuoteApp/WebForm1.aspx?ID=HNEY-

5BGJ8R
</NavigateUrl>
<AlternateText>Get Quote</AlternateText>
<Keyword>Quote</Keyword>
<Impressions>80</Impressions>

</Ad>
<Ad>

<ImageUrl>Quotes.gif</ImageUrl>
<NavigateUrl>
http://localhost/ASPQuoteApp/WebForm1.aspx?ID=HNEY-

5BAG9H
</NavigateUrl>
<AlternateText>Get Quote</AlternateText>
<Keyword>Quote</Keyword>
<Impressions>80</Impressions>

</Ad>
</Advertisements>

Now, this file can be stored directly on the server, or it can be dynamically
retrieved. The AdvertisementFile property value is simply the path, either rela-
tive or absolute, to the XML file. In our sample, we are going to download the con-
tents of the file as the page loads. The contents of the file will be retrieved from a
Web Service, then loaded into an instance of the XmlDocument class in .NET. The
Web Service, in our example, will be the QuoteService that we created in Chapter
29, but we are going to add a new method to the class, a GetQuotesXML method.
This method will load the contents of a local XML file and return a string containing
the XML contents of the file. While it is true that we could return the XML docu-
ment itself, we return a string in order to demonstrate a couple extra methods and
properties of the XmlDocument class.

m538292 ch31.qxd 8/18/03 8:45 AM Page 724

725Chapter 31 ✦ Building a .NET Web Services Client

In a more elaborate scenario, we would access a database to retrieve the quotes as
XML. Then we could transform the XML use the XSL capabilities of the .NET
Framework classes and create XML data that match the structure needed by the
AdRotator control. However, in our case, we will simply return the contents of the
pre-rendered XML, already in the condition that the AdRotator control can use. The
code for the new Web Service method is shown in Listing 31-3.

Listing 31-3: Web Service Code for Returning the Contents of
an XML File That Are Needed by the AdRotator
Control in a Client Web Application

<WebMethod()> Public Function GetQuotesXML() As String
Dim oDoc As New Xml.XmlDocument
oDoc.Load(Server.MapPath(“QuotesForAdRotator.xml”))
Dim s As String = oDoc.InnerXml
Return (s)

End Function

To acquire this file, our client Web application will call the method from an instance
of the QuoteService Web Service locally. It will do so in its Page_Load event, and
the code to do so is shown in Listing 31-4.

Listing 31-4: Client-Side Code to Call the Web Service and
Retrieve the File

If Page.IsPostBack Then
Dim oDoc As New System.Xml.XmlDocument
Dim s As String
Dim oSVC As New FileGetter.QuoteService
s = oSVC.GetQuotesXML() ‘
oDoc.LoadXml(s)
oDoc.Save(Server.MapPath(“Quotes.XML”))

End If

Before this code can work, we need to create a Web reference to the QuoteService
Web Service in the client application. This is done by right-clicking on the Web
References folder in the Solution Explorer window (as shown in Figure 31-5). This
brings up a dialog box where you can tell the IDE where to look for the WSDL for
the target Web Service.

m538292 ch31.qxd 8/18/03 8:45 AM Page 725

726 Part VI ✦ Microsoft .NET and Web Services

Figure 31-5: Adding a Web reference
in the Visual Studio.NET IDE

The dialog box shown in Figure 31-6 displays an address bar where you type the
URL to the WSDL file as well as the name of the service as you will use it in your
client application. As you can see in Listing 31-4, we use the name FileGetter for the
name of this local class.

Figure 31-6: Referencing a valid WSDL file when setting up a reference
to a Web Service

m538292 ch31.qxd 8/18/03 8:45 AM Page 726

727Chapter 31 ✦ Building a .NET Web Services Client

After you add the reference to the Web Service, Visual Studio.NET will add some
files to your project. Figure 31-7 shows the highlighted area of these added files in
the Solution Explorer window.

Figure 31-7: Newly added files for a
reference to a Web Service

You can see that the WSDL file that we referenced in the dialog box was copied and
saved locally. Also, a new class was added, contained in the Reference.vb file. This
file contains a proxy class with the name that was specified in the Web Reference
dialog box, in this case “FileGetter.” This class is the one that is actually instanti-
ated in the Page_Load event code shown in Listing 31-4. This local class instance
will then handle sending SOAP requests to the Web Service as well as receiving
responses.

At this point, the client application is ready to use the Web Service. However, there
is one more thing to do. Take another look at Listing 31-2, and carefully note the
NavigateUrl elements in the XML file. They refer to a Web page we have not cre-
ated yet. In fact, the Web page referenced in the XML file is actually an ASP.NET
page that will make a call to the same QuoteService Web Service. However, it will
call a different method, the method created as part of an earlier chapter. The Web
page calls the QuoteFinder method which accepts a key, then searches an XML
file to return a specific quote based on that key. The entire code for the target Web
page is shown in Listing 31-5.

m538292 ch31.qxd 8/18/03 8:45 AM Page 727

728 Part VI ✦ Microsoft .NET and Web Services

Listing 31-5: Code in a Page Load Event for a Web Page
That Calls a Web Service Using a Key Value That
Is Received as a QueryString Parameter

Dim oSVC As New QuoteService.QuoteService
Dim s As String
s = oSVC.QuoteFinder(Request.QueryString(“ID”).ToString)
Response.Write(“” & s & “”)

The Web page passes the necessary key value to the Web Service. However, it
acquires this key value from a QueryString object that is passed to the ASP.NET
Web page. The page calls the service, receives a response, and then posts that
response in a simple tag.

Now that all of the pieces are in place, let’s confirm that it all works. Again, we
could have created much simpler code to acquire the same functional result in our
final application. But the goal of these code samples here is to demonstrate the
capabilities of the underlying classes in a real software design. That said, the final
Web page is shown in Figure 31-8.

Figure 31-8: The final Web page shown using the AdRotator
control

This Web page is displayed in Internet Explorer on a typical PC. The source HTML,
if perused, would reveal that there is nothing unusual about this display. You can
see that the URL for the link is shown in the bottom of the Web browser’s window.
This is the URL loaded by the AdRotator control as it found it in the local XML file
that was downloaded from the Web Service.

m538292 ch31.qxd 8/18/03 8:45 AM Page 728

729Chapter 31 ✦ Building a .NET Web Services Client

Now we want to see this same page on a mobile device, in this case a PocketPC.
Figure 31-9 shows the same page in Internet Explorer on a PocketPC.

Figure 31-9: The final Web page
shown in the Web browser of a
PocketPC

The page functions the same way, and when the image is clicked, the URL for the
quote is accessed from an ASP.NET Web page and returned in the browser, as
shown in Figure 31-10.

Figure 31-10: The results after clicking on
the image provided by the AdRotator control

m538292 ch31.qxd 8/18/03 8:45 AM Page 729

730 Part VI ✦ Microsoft .NET and Web Services

In this sample, we have seen how to fully integrate Web Services to do different
tasks. We have created two clients for the Web Service methods. One is an ASP.NET
Web page that targets mobile controls, and the other is an ASP.NET Web page that
displays results after calling a Web Service. While the final output is not terribly
dazzling, a lot of the features of .NET are demonstrated here, including using the
Mobile Forms in ASP.NET.

Windows-Based Client (PocketPC)
To truly show the variety of Web Service clients you can create, there is perhaps no
better way than to create a Windows Forms client that runs on the PocketPC. The
difference between this sample and the previous one is that this sample runs, not in
the Web browser, but in an actual executable on the device itself. To begin, we need
to create a new type of application. This time, in Visual Studio.NET, we will create a
Smart Device Application, as shown in Figure 31-11.

Figure 31-11: Creating a Smart Device Application in
Visual Studio.NET

When you create this kind of application, Visual Studio.NET targets the .NET
Compact Framework, a subset of the overall Framework that works on mobile
devices. After specifying the location and name of the project, you will be presented
with a dialog like the one shown in Figure 31-12.

This dialog box lets you tell Visual Studio whether you are going to use an actual
PocketPC or the emulator that comes with Visual Studio.NET. In our example, we
will target the emulator, even though an actual hardware device is also installed.

m538292 ch31.qxd 8/18/03 8:45 AM Page 730

731Chapter 31 ✦ Building a .NET Web Services Client

After specifying this information, the development environment will set up and cre-
ate the project files for you.

Figure 31-12: Specifying the target device for the application

At this point, you create an application in much the same way as you would any nor-
mal Windows Forms application. You add controls to the form, reference external
libraries and so forth. Our form is for adding new quotes, and it looks like the one
shown in Figure 31-13. This form has textboxes that will receive the user’s input.

Figure 31-13: PocketPC form for
adding new quotes to the database

m538292 ch31.qxd 8/18/03 8:45 AM Page 731

732 Part VI ✦ Microsoft .NET and Web Services

Behind the scenes, this form is going to collect the user’s input and make a call to a
.NET Web Service that receives the input and returns a Boolean result. The method
we call is a new one added to the QuoteService Web Service created earlier. It
accepts four parameters, all represented by the textboxes on our form. To refer-
ence the Web Service in a mobile application, you follow the exact same steps as
shown previously for referencing a Web Service. The process is identical.
Fortunately, the .NET Compact Framework has built-in support that makes a
PocketPC application a potential SOAP client. The code for actually calling the Web
Service in our PocketPC application is shown in Listing 31-6.

Listing 31-6: Calling a Web Service from a Windows Forms
Application on a PocketPC

Dim oSVC As New AddQuoteService.QuoteService
Dim bln As Boolean = _
oSVC.AddQuote(txtDate.Text, _
txtSource.Text, txtQuote.Text, _
txtQuoteKey.Text)
If bln = True Then

MessageBox.Show(“Quote added”, “Result”, _
MessageBoxButtons.OK, MessageBoxIcon.None, _
MessageBoxDefaultButton.Button1)

Else
MessageBox.Show(“Error in adding quote”, “Result”, _
MessageBoxButtons.OK, MessageBoxIcon.Exclamation, _
MessageBoxDefaultButton.Button1)

End If
Me.Close()
Me.Dispose()

Running the application produces an executable that is installed on the mobile
device. That application, when launched, shows a form as seen in Figure 31-14. The
form is ready to accept user input and then submit the data to a Web service. As
should seem clear by now, the Web service is remote and accepts the data via SOAP
calls over HTTP. Once the data are submitted to the Web service, the Web service
code processes the message and completes its operations, in this case adding a
quote to a database. Then, it sends a response back to the calling application so
that the result of the operations can be known.

Submitting the data on the form shows a result as seen in Figure 31-15. When the
calling application receives a response from the Web service, the client application
can take whatever actions seem useful. Here, a simple message box is posted that
tells the user that the quote was added to the database.

m538292 ch31.qxd 8/18/03 8:45 AM Page 732

733Chapter 31 ✦ Building a .NET Web Services Client

Figure 31-14: The Windows Forms
application running on a PocketPC

Figure 31-15: Results of submitting
data to a Web Service using a
PocketPC client

m538292 ch31.qxd 8/18/03 8:45 AM Page 733

734 Part VI ✦ Microsoft .NET and Web Services

Summary
In this chapter, we have seen that we can create a variety of Web Service clients for
different devices using the .NET Framework. We saw that we can create a browser-
based client where the Web pages call code on the server to access a Web Service.
We also saw that this type of Web application can be designed to work on a mobile
device. Along the way, we explored using a control that is designed to work on a
mobile device in the Web browser.

Taking a more advanced step, we approached Web Service clients in a rather
unique fashion. We built a client application that runs as a Windows Forms exe-
cutable. However, we again targeted a mobile device for the application. Using the
.NET Compact Framework and the built-in classes that let us target smart devices,
we built a Web Services client that runs on a PocketPC and submits new quotes to a
Web Service. Much simpler clients could be developed, but many of the techniques
would remain the same.

✦ ✦ ✦

m538292 ch31.qxd 8/18/03 8:45 AM Page 734

Web Services
and J2EE

Part VII illustrates techniques and tools for building Web
services using J2EE. Examples are illustrated using

open-source Web service Tools for J2EE from IBM, Apache,
Sun, and others. We specifically illustrate Web service devel-
opment with the Sun Java Web services Developer Pack,
which includes all of the tools in the Sun Java XML Pack, plus
a Java Server Pages Standard Tag Library (JSTL), the Java
WSDP Registry Server, a Web Application Deployment Tool,
the Ant Build Tool and the Apache Tomcat container. We also
provide examples of working with the Apache SOAP toolkit,
and the IBM Web services Toolkit. We finish this part of the
book with examples for deploying J2EE Web services and
techniques for accessing J2EE Web services.

✦ ✦ ✦ ✦

In This Part

Chapter 32
Web Service Tools
for J2EE: IBM,
Apache, Sun, and
Others

Chapter 33
Web Services with
the Sun Java Web
Services Developer
Pack

Chapter 34
Apache AXIS

Chapter 35
Accessing Web
Services from Java
Applications

✦ ✦ ✦ ✦

P A R T

VIIVII

n538292 pp07.qxd 8/18/03 8:45 AM Page 735

Web Service
Tools for J2EE:
IBM, Apache,
Sun, and Others

In Chapter 28, we covered the architecture of a J2EE Web
service. In this chapter, we’ll show you some of the tools

that can help you build that architecture. When we introduced
XML tools for J2EE developers in Chapter 14, we mentioned
that core J2EE classes, methods, and properties have abso-
lutely nothing to do with XML or Web services. Fortunately
for J2EE developers, J2EE classes do contain robust and flexi-
ble support for text, and Web services are based on XML, and
XML is text. Web services can be very complicated XML and
XML can be very complicated text, but the base object is
still text.

Fortunately for today’s developers, Java development envi-
ronments have evolved into rock-solid code tools that gener-
ate J2EE code, compile it, and let you test it on the J2EE
application server of your choice. Tools for developing Web
services have evolved as well. Today there are several excel-
lent J2EE code libraries available for free that support Web
service functions such as building SOAP envelopes and gener-
ating J2EE client proxy classes from WSDL files. You can also
generate WSDL from Java classes, as we’ll show you in
Chapter 35. Most libraries even ship with the source code if
you need to customize them for a particular application. In
this chapter we’ll review developer tool offerings from IBM,
Eclipse, Sun, and Apache. There are literally hundreds of
other offerings that come and go over the years, but these
providers offer consistency and reliability in their offerings,
which are pretty good things if you want to base your applica-
tions on them.

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Apache XML
Project - AXIS code
for SOAP
development

IBM AlphaWorks
offerings

The IBM XML
Security Suite

The IBM Emerging
Technologies Toolkit
(ETTK)

Eclipse tools

The Sun Web Service
Developer Pack
(WSDP)

✦ ✦ ✦ ✦

o538292 ch32.qxd 8/18/03 8:45 AM Page 737

738 Part VII ✦ Web Services and J2EE

Tools for Building J2EE Web Services
As we mentioned when we introduced a basic J2EE Web service architecture in
Chapter 28, most J2EE Web service software providers use the latest version of the
Apache software foundation’s AXIS as the core of their offerings. AXIS stands for
“Apache eXtensible Interaction System,” and is a reference implementation of the
latest W3C recommendations for SOAP and WSDL. AXIS code can be implemented
on the client side as proxy classes and on the client side as routers and implemen-
tation classes. We’ll get into the architecture in more details later in this chapter.
For now it’s just important to know that AXIS code is used in most J2EE implemen-
tations where SOAP and WSDL functionality is needed.

Apache Offerings
The Apache Software Foundation is a non-profit consortium that provides organiza-
tional, legal, and financial support for Apache open-source software projects, all of
which can be seen at http://www.apache.org/. These are the same people who
bring you reference implementations of W3C Recommendations. Other prominent
projects include Xerces for DOM parsing, and Xalan for XSLT processing. Apache
project participants provide feedback to the W3C Web Service working groups
regarding implementation issues, based on real-life implementation attempts. For a
full list of Apache Web Service and XML projects, go to http://xml.apache.org/.

Apache Software Foundation code is weaved in to most commercial and non-
commercial J2EE development tools for handling XML and Web services. For
example, IBM and Sun both have features built in to their development tools that
generate a WSDL file from a Java class, and vice versa. These tools are based on
AXIS code that has been integrated into IBM and Sun’s products.

AXIS: The Apache implementation of the W3C SOAP Recommendation
IBM donated the SOAP4J code library to the Apache XML project, where it became
the Apache SOAP project, with a full implementation of the W3C SOAP 1.1
Recommendation. The latest implementation of the Apache SOAP project has been
renamed AXIS, just to keep us on our toes. Axis stands for “Apache eXtensible
Interaction System” but is still based the W3C SOAP Recommendation, with the
equally inscrutable acronym of “Simple Object Access Protocol.” AXIS supports all
of the W3C SOAP 1.1 Recommendation, and most of the SOAP 1.2 Working Draft. It
also contains tools for building and reading WSDL files from J2EE classes, and vice
versa.

The latest version of AXIS source code and binaries, including complete docu-
mentation, can also be downloaded from the AXIS project site, at http://ws.
apache.org/axis. AXIS includes an implementation of a single-thread Web

o538292 ch32.qxd 8/18/03 8:45 AM Page 738

739Chapter 32 ✦ Web Service Tools for J2EE: IBM, Apache, Sun, and Others

service RPC router and server environment, which can be run from a command line
without a J2EE server. The Simple Axis Server is a great tool for testing Web service
code that uses AXIS as for SOAP and WDSL processing. The AXIS project has plans
to implement a standardized SOAP server environment based on AXIS code, but for
now this single-thread implementation is a useful developer testing environment.

SOAP is covered in more detail in Chapters 23 and 24. Apache AXIS code exam-
ples can be found in Chapter 34.

Xindice: A native XML database
Apache Xindice (pronounced zeen-dee-chay) is a database implemented in XML
to store XML data. The idea is that XML data that is already in XML format doesn’t
need to be converted to another format. But it probably does need to be trans-
formed to another XML structure, or parsed into a destination format. Because
Web services transport data in SOAP envelopes, which are XML, the Xindice server
could theoretically server as a Web service data store for SOAP. The Xindice query
language is XPath. The XML:DB (http://www.xmldb.org/xapi/) API is used for
record updates and for Java development. This enables other applications and lan-
guages to access Xindice via XML-RPC. Sun’s JAXR Registry server for UDDI uses
Xindice a repository for UDDI registries and Tmodels.

Web Services Invocation Framework (WSIF)
The Web Services Invocation Framework (WSIF) is a Java API for invoking Web ser-
vices without directly accessing a SOAP API, such as AXIS. WSIF provides the same
kind of functionality that JAXP does for Web parsing. A WSIF interface can be used
on any WDSL-compatible Web service, regardless of the SOAP or WSDL version or
implementation that the service was originally created under. For example, moving
from Apache SOAP classes to Apache AXIS classes does not require any changes to
application code if the WSIF interface is employed. The WSIF implementation code
can be found at http://ws.apache.org/wsif. WSIF implementation code is also
integrated into some application development tools, such as IBM’s WebSphere
application developer and Web Services Toolkit.

Web Services Inspection Language (WSIL)
The Web Services Inspection Language is a standardized way to find out about pub-
lished WSDL without a USDDI server implementation. WSIL also provides rules for
how inspection-related information can be revealed by a site. WS-Inspection docu-
ments point to WSDL and other forms of Web service descriptors. WSIL4J is the
J2EE reference implementation of the WSIL. It can be used to locate and process
WS-Inspection documents. The reference code downloads and additional informa-
tion can be found at http://ws.apache.org/wsif.

Cross-
Reference

o538292 ch32.qxd 8/18/03 8:45 AM Page 739

740 Part VII ✦ Web Services and J2EE

XML Security
Apache has implemented Java reference implementations of the XML-Signature
Syntax and Processing Recommendation, and the XML Encryption Syntax and
Processing. By the time this book is in print, they probably will have finished the
XML Key Management recommendation implementation in Java as well. The Java
and C++ code downloads for XML security implementations can be found at
http://xml.apache.org/security/download.html.

If you’re using JDK 1.4 or higher, check the FAQ associated with the download files
for instructions on setting up a compatible version of Xalan.

Jakarta Tomcat
Tomcat is the official J2EE Reference Implementation for Java Servlet and Java
Server Page technology. The Tomcat J2EE application server also supports SOAP
and WSDL implementations via AXIS classes. This includes an RPC Router, which is
based on the AXIS rpcrouter class. Tomcat can be run on a server or on a devel-
opment workstation as a test server. Tomcat is integrated into Sun ONE developer
studio, and is automatically invoked for servlet or JSP testing and debugging.
You can download Tomcat from http://jakarta.apache.org/tomcat/
index.html.

IBM Offerings
IBM sells one of the most prominent J2EE development tools, WebSphere Studio
Application Developer. IBM also provides a lot of J2EE software for free download
from the AlphaWorks Website. In addition to this, Free XML tutorials, articles and
sample code are available from the IBM DeveloperWorks XML Zone.

WebSphere Studio Application
Developer and Workbench

IBM’s J2EE developer environment is based on the Eclipse platform, and is called
WebSphere Studio. WebSphere Studio is actually the name that is used to describe
several “product configurations” of the base tool. The last time that I checked the
WebSphere Studio Website, there were nine configurations listed, all with similar-
sounding and confusing names, but all starting with the WebSphere Studio prefix.
However, there are really only two configuration options that Web Service develop-
ers need to focus on: WebSphere Studio Application Developer or WebSphere
Studio Workbench.

Note

o538292 ch32.qxd 8/18/03 8:45 AM Page 740

741Chapter 32 ✦ Web Service Tools for J2EE: IBM, Apache, Sun, and Others

The first choice is WebSphere Studio Application Developer (WSAD), which a rich
J2EE developer UI combined with tools and wizards to simplify Web Service devel-
opment tasks. Aside from J2EE, WSAD also supports JavaScript, Dynamic HTML,
and Cascading Style Sheets. It also provides visual layout tools to create dynamic
Websites with Java servlet or Java Server Pages (JSPs). WSAD also includes a built-in
Web services development environment with support for AXIS, including SOAP
envelope design and WSDL and WSDD document construction, among other fea-
tures. WSAD also supports Rational ClearCase LT for software configuration man-
agement. IBM has also published a very good series of free online tutorials that
cover building Web service applications using WebSphere Studio application devel-
oper, which can be found at http://www7b.software.ibm.com/wsdd/
techjournal/0111_lau/lau.html. IBM offers a 60-day trial version of WSAD,
which can be downloaded at the IBM DeveloperWorks WebSphere Studio Zone at
http://www7b.software.ibm.com/wsdd/zones/studio/.

If WebSphere Studio Application Developer is simply too expensive and/or you take
pride in coding your J2EE applications by hand, the second choice is WebSphere
Studio Workbench. IBM has added several plug-ins to the base Eclipse Workbench
platform and re-branded it as WebSphere Studio Workbench, which they offer as a
free download at http://www-3.ibm.com/software/ad/workbench. (A free
registration is required to download the software.) WebSphere Studio Workbench
provides an efficient, if basic, developer UI for J2EE applications. The plug-in archi-
tecture of Eclipse-based products makes the platform easy to upgrade with cus-
tomized tools and interfaces. Based on this architecture, it’s possible to assemble a
reasonable facsimile of WebSphere Studio Application Developer by downloading
code libraries from Apache and SUN and free plug-ins from the Eclipse site. This
approach, however, will take time and patience, and will never be as seamless as
the WebSphere Studio Application Developer. But if you’re a build-it-yourself devel-
oper on a tight budget, WebSphere Studio Workbench may be the way for you to go.

IBM AlphaWorks
IBM AlphaWorks (http://alphaworks.ibm.com) is a very important resource
for anyone who has to code XML or Web service applications in J2EE. For those
unfamiliar with the site, it contains a wealth of free tools and utilities that can be
downloaded and integrated into a Web services developer’s arsenal. The
AlphaWorks site also helps to dispel the notion of free tools as something in which
you get what you pay for, or more specifically, don’t get what you don’t pay for. My
experience to date with the AlphaWorks tools is that they work well in most cases,
and the only thing missing from comparative paid products are documentation,
which is often compensated for with working examples. I’ve listed some of my
favorites below, but there are many more, organized into XML and Web service
subsections.

o538292 ch32.qxd 8/18/03 8:45 AM Page 741

742 Part VII ✦ Web Services and J2EE

XML Security Suite
XML Security Suite adds W3C-defined security features such as digital signature,
encryption, and access control to Web service and XML applications. Security has
always been a challenge for Web service developers, because Web services are
transporting text over standard protocols that don’t support advanced security
features by themselves. The XML Security Suite includes support for the W3C
XML-Signature Syntax and Processing and XML Encryption Syntax and Processing
Recommendations. There is also support for XML Access Control functionality,
partly supported by the W3C Canonical XML Version 1.0 Working Draft. The free
XML Security Suite download includes a .jar file containing supporting classes and a
number of examples of the XML Security Suite code in use. A good introductory
article can be found at the IBM DevleoperWorks XML Zone at http://www-106.
ibm.com/developerworks/security/library/x-xmlsecuritysuite/
?dwzone=security.

The Emerging Technologies Toolkit (ETTK)
The ETTK is a grab-bag of new technologies rolled into J2EE code for developing
and executing autonomic and grid-related technologies. The ETTK also includes
Web service support for these technologies via an Apache AIXIS SOAP engine, and
the Globus Toolkit grid infrastructure. The ETTK is the latest evolution of the very
popular IBM Web Services Toolkit (WSTK). Most of the more stable code has been
siphoned off as core components of IBM’s WebSphere application developer
(WSAD). The rest ended up in the ETTK along with additional related implementa-
tion code from IBM development and research lab projects. The ETTK supports
Windows and Linux. More information is available at http://www.alphaworks.
ibm.com/tech/ettk.

Eclipse Tools
The eclipse.org Website (http://www.eclipse.org) is the center of the Eclipse
consortium. Eclipse is an open source, freely distributable platform for tool integra-
tion. In essence, it provides a “lowest common denominator” for developers to inte-
grate functionality into a development UI. IBM provided most of the code for the
startup, and since then other large players have joined in at the board level, includ-
ing Borland, MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE, and
TogetherSoft. Several other very large players have also joined as non-board mem-
bers, including Sybase, Fujitsu, Hitachi, Oracle, SAP, and the Object Management
Group (OMG).

o538292 ch32.qxd 8/18/03 8:45 AM Page 742

743Chapter 32 ✦ Web Service Tools for J2EE: IBM, Apache, Sun, and Others

Eclipse projects are broken down into three groups:

✦ The Eclipse Project is the original open-source software development project
that is developing open-source developer UI platform.

✦ The Eclipse Tools Project was developed to provide services and support to
tools developers who want to integrate their tools into the Eclipse platform.

✦ The Eclipse Technology Project provides support for Eclipse project
research, incubators, and education. Research projects explore programming
languages, tools, and development environments applicable to the Eclipse
project. Incubators implement new capabilities on the Eclipse platform and
may or may not be based on research. Education projects develop educa-
tional materials, teaching aids, and courseware.

Sun Offerings
Sun owns the Sun ONE Studio and Sun ONE J2EE application server, which is
the biggest competitor to IBM’s WebSphere Studio Application Developer and
WebSphere J2EE Application Server. Like IBM, Sun also provides a huge amount of
J2EE and Web service resources for free download from Sun’s Java site. In addition,
Free XML tutorials, articles, and sample code are available from the Sun Developer
Services Website.

Sun ONE Studio
Sun’s open-source, free distribution offering is based on the former Forte Tools for
Java. As with the IBM WebSphere Studio offerings, the plug-in architecture of Sun
ONE-based products makes the platform easy to customize to a developer’s tastes.
Also like the IBM offering, Sun’s developer tools offer a robust but expensive option
and a simple but free option. The Free Sun ONE Community Edition is the base plat-
form for the very uncheap Sun ONE Enterprise edition. Like WebSphere Studio
Workbench, Sun ONE Community Edition has some very good, if basic, features that
can be updated for dedicated do-it-yourself types. All Sun One products are based
on the open-source but sun-controlled NetBeans platform. Both flavors of Sun ONE
studio can be downloaded from http://www.sun.com/software/sundev.

The Sun Java Web Services Developer Pack
The Java Web Service Developer Pack (WSDP) is downloadable from Sun at
http://java.sun.com/webservices/webservicespack.html. The current
version of the WSDP is compatible with JDK 1.3.1 and higher. Outlined below are
the WSDP APIs and their associated benefits.

o538292 ch32.qxd 8/18/03 8:45 AM Page 743

744 Part VII ✦ Web Services and J2EE

JAXP (Java API for XML Processing)
The Java API for XML Processing (JAXP) supports processing of XML documents,
including WSDL documents, SOAP envelopes, and deployment descriptors. JAXP
supports DOM 1, 2, and some of DOM 3, SAX 1 and 2, and XSLT. JAXP enables appli-
cations to change the processor that is used to parse and transform XML docu-
ments without changing the underlying source code for the application that is
doing the parsing or transformation. JAXP also supports the W3C XML Schema 1.0
Recommendation and an XSLT compiler (XSLTC).

JAXP is covered in more detail in Chapter 17.

JAXB (Java Architecture for XML Binding)
JAXB automates mapping between XML documents and Java objects, making ele-
ments and attributes classes, properties and methods by marshaling and unmar-
shaling them in a customized XML document.

JAXB is covered in more detail in Chapter 17.

JAXM (Java API for XML Messaging)
JAXM provides an Interface for SOAP messages, including SOAP with attachments.
Because JAXM is based on XML, the messaging format can be changed to other
message standards that support XML formats.

JAXM is covered in more detail in Chapter 33.

JSTL (Java Server Pages Standard Tag Library)
JSTL consists of four custom Java Server Page (JSP) tag libraries called the core,
XML, I18N & Formatting, and database access libraries. All are based on the JSP 1.2
API. The core JSP library supports basic HTM page generation features. The XML
library contains support for XML functionality, such as transformations and pars-
ing. The database access library contains support for database access functions,
and the I18N & Formatting library contains functionality for internationalization and
formatting of Web pages.

JSTL is covered in more detail in Chapter 17.Cross-
Reference

Cross-
Reference

Cross-
Reference

Cross-
Reference

o538292 ch32.qxd 8/18/03 8:45 AM Page 744

745Chapter 32 ✦ Web Service Tools for J2EE: IBM, Apache, Sun, and Others

JAX-RPC (Java API for XML-Based RPC)
JAX-RPC provides an interface for XML messages using an RPC transport, including,
but not limited to, SOAP calls over RPC to Web services.

JAX-RPC is covered in more detail in Chapter 33.

JAXR (Java API for XML Registries)
JAXR provides an interface for XML registries, supporting UDDI and OASIS/U.N./
CEFACT ebXML Registry and Repository standards, among others.

JAXR is covered in more detail in Chapter 33.

Java WSDP Registry Server
The Java WSDP Registry Server implements Version 2 of the UDDI (Universal
Description, Discovery and Integration) specification. It provides a registry that is
compatible with JAXR (Java API for XML Registries). The Java WSDP Registry
Server can be used as a standalone UDDI server and also as a testing tool for JAXR
applications.

The Java WSDP Registry Server is covered in more detail in Chapter 33.

SAAJ (SOAP with Attachments API for Java)
SAAJ provides support for producing, sending and receiving SOAP messages
with attachments. Sun’s SAAJ library provides an interface to the features and
capabilities described in the W3C SOAP 1.1 attachment note, which have not
changed much in their current form. The current W3C specification is the
W3C SOAP 1.2 Attachment Feature, currently in the Working Draft stage of the
W3C Recommendation process. The W3C SOAP 1.2 Attachment Feature Working
Draft states that a SOAP message may include attachments directly the W3C SOAP
body structure. The SOAP body and header may contain only XML content. Non-
XML data must be contained in an attachment under the SOAP body. This provides
facilities for providing binary information and non-XML data in a SOAP envelope.

SOAP and SOAP attachments are covered in more detail in Chapters 23 and 24.
SAAJ is covered in more detail in Chapter 33.

Cross-
Reference

Cross-
Reference

Cross-
Reference

Cross-
Reference

o538292 ch32.qxd 8/18/03 8:45 AM Page 745

746 Part VII ✦ Web Services and J2EE

And Others . . .
Most of the tools that we’ve shown here, and many others, are available for down-
load on the Web. A good place to start your search for products appropriate to
your needs is http://www.xmlsoftware.com. In subsequent chapters, we’ll
show examples of the Xerces and Xalan libraries, the IBM XML Toolkit, and the Sun
Web Services Developer Pack.

Summary
In this chapter, you were introduced to Web service tools for J2EE developers:

✦ The Apache XML Project - AXIS code for SOAP development

✦ Other apache offerings

✦ IBM products

✦ IBM AlphaWorks offerings

✦ XML Security Suite

✦ The Emerging Technologies Toolkit (ETTK)

✦ Eclipse offerings

✦ Sun products

✦ The Sun Web Service Developer Pack (WSDP)

In the next few chapters, we’ll be putting many of these tools to use in practical
examples. In Chapter 35 we’ll use WebSphere application developer and integrated
components from the IBM Web Services Developer Kit to build a basic Web service
application. After that we’ll show you how to integrate Web services with popular
RDBMS products and how to secure your Web service applications.

✦ ✦ ✦

o538292 ch32.qxd 8/18/03 8:45 AM Page 746

Web Services
with the Sun
Java Web
Services
Developer Pack

Sun’s Java Web Services Developer Pack (JWSDP) repre-
sents a compilation of Web Service specifications and

reference implementations. It holds all the fundamental pieces
a developer would need to support the consumption, develop-
ment, and deployment of a Web Service. In reality, the JWSDP
is made up of a whole spectrum of tools, some of which aren’t
targeted specifically at Web Service development. In Chapter
17, we looked at the whole range of XML processing tools
(JAXB, JAXP, and so on) that are part of the JWSDP. Here, we
will focus our attention exclusively on those elements of the
JWSDP that are related to Web Service development.

This chapter will explore the Java API for XML Messaging
(JAXM), which provides developers with standard API for
developing message-based solutions that use Web Services
and SOAP as their messaging infrastructure. As part of cover-
ing JAXM, we’ll also briefly touch on Soap with Attachments
API for Java (SAAJ). SAAJ presents developers and vendors
with a standard API for assembling the SOAP messages that
are at the heart of all Web Service interactions.

We’ll also cover the Java API for XML-based RPC (JAX-RPC).
This specification provides developers with a powerful, stan-
dard framework for consuming and developing Web Services.
Later, in Chapter 34, we’ll examine Apache’s Axis, which repre-
sents a complete implementation of the JAX-RPC specification.

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Java API for
XML Messaging

Soap with
Attachments
API for Java

Java API for
XML-based RPC

✦ ✦ ✦ ✦

o538292 ch33.qxd 8/18/03 8:45 AM Page 747

748 Part VII ✦ Web Services and J2EE

Finally, no discussion of Web Services would be complete without taking a peek at
registries. We’ll explore the Java API for XML Registries (JAXR), a specification that
offers developers a single, standard interface for interacting with various registry
technologies.

JWSDP Overview
The JWSDP includes two APIs, JAXM and JAX-RPC, which are focused directly on
developing and consuming Web Services. JAXM is intended to address message-
based solutions, while JAX-RPC introduces the RPC programming model to the Web
Services protocol. Neither of these two APIs is trying to break new conceptual
ground. Programmers of distributed systems have been leveraging these fundamen-
tal technologies for years. JAXM and JAX-RPC simply take these established
paradigms and make them available on the Web Services infrastructure. Certainly,
being based on the Web Service standards enables some new modes of interoper-
ability. However, the mechanics of programming with these APIs still closely con-
form to mold created by their messaging and RPC predecessors. The result is a
simplified, standardized set of APIs that enable programmers to apply well-
understood, proven programming techniques to the world of Web Services.

In addition to providing standards for messaging and RPC, the JWSDP also provides
a standard API for interacting with registries. This specification, JAXR, calls out an
API for interacting with existing registry implementations without having to be
familiar with the specifics of the given registry. This area of the JWSDP is extremely
valuable, since it’s likely there will always be multiple competing registry technolo-
gies, each with its own interface and idiosyncrasies.

The biggest upside of these Web Service APIs is that they insulate developers from
the continually changing world of Web Service protocols and standards. Each of
these APIs makes a distinct effort to remain detached from the specifics of any par-
ticular Web Service implementation. While the APIs defined in the JWSDP try to
maximize flexibility, they also define strict compatibility requirements in an effort
to guarantee that each implementation will offer a standardized set of functionality
that developers can rely upon.

The API Puzzle
At times, the JWSDP can start to taste a bit like alphabet soup. The bundling of all
of these different specifications into one kit, while convenient for distribution and
setup, can make it difficult to determine how and when a developer should apply
each API. The problem is, depending on the requirements of your solution, you may
find yourself leveraging any number of these APIs to build your solution. Since
we’re really focusing exclusively on Web Services for this chapter, our view will be
constrained to just those APIs that play a direct role in the Web Service develop-
ment model. This mostly limits the scope of our chapter to JAXM, JAX-RPC, and

o538292 ch33.qxd 8/18/03 8:45 AM Page 748

749Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

JAXR. We’ll also touch on SAAJ as part of our JAXM discussion (since that’s where
it’s most relevant to developing Web Services). The diagram shown in Figure 33-1
illustrates the intended role for each Java Web Service APIs.

Figure 33-1: Web Service APIs

As you can see, the JAXM and JAX-RPC APIs are targeted at providing an infrastruc-
ture that facilitates building, deploying, and consuming Web Services. JAXR, on the
other hand, supports a separate set of client and service-related features. Each Web
service you create can use JAXR to register itself in a given registry. For clients, they
will use JAXR to look up the list of services that have been published in a registry.

Java API for XML Messaging (JAXM)
Messaging is a concept that’s been around for some time. Vendors have historically
offered a number of proprietary solutions based, in some cases, on proprietary
transports mechanisms. It was only natural for someone to come along and offer up
a solution that married a messaging framework to the Web Services paradigm.
JAXM is just that, an API that provides all the traditional elements of a messaging
API built upon the messaging protocol (SOAP) defined by the Web Service commu-
nity. The result is a clean, simple API that will be easily assimilated by any Java pro-
grammer familiar with message-based programming. The beauty is, in leveraging
SOAP as the message construct, JAXM delivers a message-based solution that
allows your messages to be sent or received by any service that complies with Web
Service standards. This platform neutral level of messaging interoperability opens
the world of messaging to a realm of new possibilities.

The JAXM model is a very simple conceptual model (shown in Figure 33-2). JAXM
Clients (sometimes referred to as applications) create connections, construct

JAXR

Web Service
Registry (UDDI)

Web
Service
Client

Web
ServiceJAXM or JAX-RPC

o538292 ch33.qxd 8/18/03 8:45 AM Page 749

750 Part VII ✦ Web Services and J2EE

messages, and send messages. These clients may, optionally, send their messages
to a message provider that assumes responsibility for any special manipulation of
the message, including routing it to one or more receivers. JAXM servers or ser-
vices receive messages from JAXM clients. In the sections that follow, we’ll discuss
each of these areas of the JAXM framework.

Figure 33-2: Conceptual JAXM view

The JAXM provider model
If you’re going to dig into the JAXM architecture, it actually makes the most sense
to start in the middle, at the message provider layer. This layer is the most funda-
mental building block of the JAXM architecture, enabling much of the architecture’s
depth and flexibility. Message providers are the traffic cops in the message
exchange lifecycle. They intercept messages as they pass from client to service,
inserting additional information into messages, persisting them, routing them, and
adding whatever additional functionality a vendor might choose to include in their
provider implementation. In fact, if you are evaluating JAXM implementations,
you’re going to want to focus your effort on evaluating the robustness and flexibil-
ity of each vendor’s message provider. Through these message providers, vendors
will introduce all the higher end bits of functionality you would expect to find bun-
dled with any commercial grade messaging middleware. Specifically, you should
find most vendors offering options that will improve the reliability of your message
delivery. In most instances, vendors will allow undeliverable messages to be per-
sisted until they can be successfully delivered. JAXM message providers may also
offer some ability to route messages to other message providers.

The truth is, there is no specific set of functionality that is universally included by a
provider. Fortunately, while each vendor’s implementation might vary, the JAXM
architecture hides all these variations from the developer. From the JAXM con-
sumers prospective, all providers are created equal. In fact, the API remains the

Service

Service

Service

Clients

Clients using
Providers

Standalone
Client

M
es

sa
ge

Pr
ov

id
er

Message
Exchange

o538292 ch33.qxd 8/18/03 8:45 AM Page 750

751Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

same for all providers, allowing developers to be freed from the details of how their
message is processed.

Message providers also require a servlet container to function. By using a servlet
container in conjunction with a message provider, JAXM is able to decouple
requests from responses. This opens the door for one-way messaging, where a
client can send a request without immediately receiving a response from the server.

JAXM clients
JAXM clients are responsible for constructing and sending valid SOAP messages to
recipients. JAXM supports two basic types of clients, each with its own behavior.
These two models are described following.

Standalone clients
The “standalone” client, the simplest of the two client models, is typically used in
rare situations where a client requires more of a real-time, request-response model.
This mode of messaging is achieved by bypassing the message provider layer
entirely. Without the provider in the loop, a standalone client must create a syn-
chronous, point-to-point connection where it sends messages directly to a single
Web Service. All standalone client messages must be sent synchronously, where the
client will send a message and block until a response is received.

Clients using providers
While the standalone client is the most conceptually simple model, it is also the
least flexible. This is why, in most cases, developers will choose to employ clients
that use a message provider. In this client model, which creates and maintains a
connection to a provider, the client can send messages both synchronously and
asynchronously. It also offers the option of acting as both a client and a server,
where it can receive messages from other clients.

SOAP messages and SAAJ
Each message that is exchanged between a client and a service is exchanged using
SOAP, the cross-platform standard that is the backbone of Web Service interactions.
JAXM leverages the SAAJ (SOAP with Attachment API for Java) specification, which
provides a standardized API for constructing, validating, and reading SOAP mes-
sages. This API, like JAXM and JAX-RPC, strives to abstract developers away from
the details of SOAP, providing them with simple, intuitive Java interfaces for inter-
acting with SOAP messages. In addition to supporting the standard SOAP compo-
nents (envelope, header, body, and so on), SAAJ provides support for adding
optional attachments to a message. The shape of a SOAP message with attachment
is shown in Figure 33-3.

o538292 ch33.qxd 8/18/03 8:45 AM Page 751

752 Part VII ✦ Web Services and J2EE

Figure 33-3: SOAP message with
attachments

Messages that are exchanged between client and server can be exchanged in syn-
chronous and asynchronous modes. In reality, there are a few variations on these
two modes. The complete list of message exchange modes is as follows:

✦ Asynchronous Inquire: A message is sent and a response must be received
(not immediately, but at some point in the future)

✦ Asynchronous Update with Acknowledgement: A message is sent and a spe-
cific acknowledgement must be received

✦ Synchronous Update: A message is sent and the sender blocks until a
response is received

✦ Synchronous Inquiry: This is the same as Synchronous Update; however, the
response is only needed to unblock the client

✦ Fire and Forget: A message is sent and no response is expected or received

Connections
All messages that are exchanged via JAXM are sent and received via connections.
A connection simply represents any link between a client (a sender) and its corre-
sponding service (a receiver). Based on the type of client you are developing, you

Header

Body

Attachment 1

Attachment 2

Attachment ...

Envelope

SOAP Part

SOAP Message

o538292 ch33.qxd 8/18/03 8:45 AM Page 752

753Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

may choose to connect directly to a service or you may connect to a message
provider, which will route your message to its ultimate destination.

Each connection is created using the typical factory pattern. For example, if you
wanted to create a direct connection to a service, referred to as a point-to-point
connection, you would simply invoke the static SOAPConnectionFactory.
newInstance() method, which would return a SOAPConnection object. You
could then use that connection for all of your synchronous interactions with the
service. For asynchronous messaging, you would create a ProviderConnection
by invoking the ProviderConnectionFactory.newInstance() method. The
interfaces for both of these models are very straightforward.

JAXM package structure
When JAXM was initially introduced, all of it classes and interfaces were contained
in the javax.xml.messaging package. This made perfect sense until JAXM inher-
ited its dependency on SAAJ. Since SAAJ really offers a set of API that can (and do)
exist outside the JAXM domain, it no longer made sense to package it alongside
JAXM. So, to clarify this point and eliminate some unnatural coupling, the elements
of SAAJ were broken out of the JAXM package and made part of the javax.xml.
soap package. JAXM still retains its dependency on the javax.xml.soap pack-
age (as it should), but javax.xml.soap has no dependency on javax.xml.
messaging. This move also freed up the SOAP APIs so it could be more cleanly
referenced by other APIs, most notably the JAX-RPC API. The items shown in Table
33-1 represent some of the key classes and interfaces that appear in these two
packages.

Table 33-1
Axis Package Contents

javax.xml.messaging javax.xml.soap

ProviderConnectionFactory SOAPConnectionFactory

ProviderConnection SOAPConnection

ProviderMetaData SOAPEnvelope

ReqRespListener SOAPHeader

OneWayListener SOAPBody

EndPoint AttachmentPart

JAXMException SOAPFault

o538292 ch33.qxd 8/18/03 8:45 AM Page 753

754 Part VII ✦ Web Services and J2EE

Profiles
Out of the box, JAXM supports the SOAP 1.1 and SOAP with attachments specifica-
tions. However, the JAXM architecture also allows the SOAP model to be extended
to support additional protocols via profiles. These profiles call out additional mes-
saging specifications, which allow messages to conform to any number of new pro-
tocol requirements. So, messages received with a given profile will contain specific
header attributes that are part of the agreed upon protocol for that profile’s specifi-
cation. Each profile will be accompanied by an API that will support the processing
and manipulation of these custom header attributes. In the case of JAXM, APIs are
included for both ebXML and SOAP-RP profiles.

As Web Services gain wider acceptance, we may also see the introduction of new,
more industry-specific profiles. JAXM’s ability to support these profiles so seam-
lessly will put it in a good position to accommodate these continually evolving
specifications.

JAXM versus JMS
At this point, you may be wondering where JAXM fits into the grand messaging
scheme with JMS. It’s true that at some abstract level all of these technologies rep-
resent alternative approaches to messaging. They all seek to provide a reliable
framework for routing and receiving messages. However, even though they share
this higher-level objective, they are still different enough in their execution that
they shouldn’t be seen as being interchangeable.

JMS and JavaMail implementations typically rely on some incarnation of Messaging
Oriented Middleware (MOM) or mail infrastructure to transport and manage their
messages. This is still a perfectly valid model for some problem domains. In fact, it
may be the preferred solution in more controlled development environments
(where both the sending and receiving technology is more under your control).

JAXM is not making any attempt to be a superset of all these message solutions.
Instead, it is focused specifically on being a Web-centric messaging solution,
embracing the Web Service vision of SOAP flowing freely across a multitude of
applications and programming environments. Certainly, given the level of standard-
ization being achieved with the SOAP protocol, JAXM will have clear advantages in
terms of its ability to interoperate with a broad range of technologies.

The JAXM technology does offer a few options that are not available with JMS. In
general, JAXM is viewed as a lighter-weight solution than JMS. Its support for syn-
chronous, point-to-point connections is also not available to JMS developers. These
features, although marginally important, are worth mentioning.

o538292 ch33.qxd 8/18/03 8:45 AM Page 754

755Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Building a client
Now that we’ve covered the fundamental concepts behind JAXM, let’s put them to
work by building some sample clients. Fortunately, with JAXM (and most messaging
APIs), there are very few gory details buried within the API. In fact, as we move
through this example, it should become evident that the JAXM learning curve is
fairly minimal. The steps involved in building our examples, and most JAXM clients,
will typically follow the same basic pattern.

✦ Create a connection from one of JAXM’s connection factories

✦ Construct a message

✦ Populate the content of the message

✦ Add attachments (if you have any) to the message

✦ Send the message

✦ Receive a response

✦ Extract the content from the received message

Building a standalone client
Standalone clients are the simplest to build, so let’s start there. As we mentioned
before, a standalone client does not use a message provider and is constrained to
synchronous communications. In this example, we’ll just send a simple message
directly to a service and receive a response. The first step involved in building our
client is to acquire a connection to the service from a connection factory. The code
to get our connection is shown in Listing 33-1.

Listing 33-1: Getting a Connection

SOAPConnectionFactory connFactory = SOAPConnectionFactory.newInstance();
SOAPConnection conn = connFactory.createConnection();

Whew, that was hard. Our connection object is ready, now we need to construct the
message we want to send to the service. As we saw earlier in our discussion of
JAXM packages, the javax.xml.soap contains all the classes and interfaces we’ll
need to build a SOAP message that we can exchange with a service. In our example,
we’ll send messages to the Cosmic Astrology service, which will take some simple
demographic data points and return a horoscope. The message will be constructed
with the code shown in Listing 33-2.

o538292 ch33.qxd 8/18/03 8:45 AM Page 755

756 Part VII ✦ Web Services and J2EE

Listing 33-2: Constructing a Message

// get the SOAP elements
MessageFactory msgFactory = MessageFactory.newInstance();
SOAPMessage msg = msgFactory.createMessage();
SOAPPart soapPart = msg.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();
SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();
header.detachNode();

// create a name for our service entry point
Name methodName =

envelope.createName(“GetHoroscope”, “ASTRO”, “http://www.astro.com”);
SOAPBodyElement getHoroscope = body.addBodyElement(methodName);

// add parameter birth date
Name dobParamName = envelope.createName(“DateOfBirth”);
SOAPElement dobParam = getHoroscope.addChildElement(dobParamName);
dobParam.addTextNode(“05/03/1964”);

// add parameter for favorite color
Name colorParamName = envelope.createName(“FavoriteColor”);
SOAPElement colorParam = getHoroscope.addChildElement(colorParamName);
colorParam.addTextNode(“Purple”);

This code starts out by getting a message from the MessageFactory. We can then
use this message to pull out all the separate elements of the SOAP message
(SOAPEnvelope, SOAPHeader, and SOAPBody), which will then be used to assem-
ble our service call. In this particular example, we won’t need to have any header
information and, since header information is optional in SOAP message, we’ll
use the detach() method on SOAPHeader to remove the header portion of our
message.

Next, we need to create a Name object that represents the entry point for the opera-
tion (GetHoroscope) we want to call on our service. This is achieved by creating a
Name object with the method name (GetHoroscope), namespace (ASTRO), and URI
(http://www.astro.com). Our constructed Name is then added as a body ele-
ment to the message body.

To round out our message, we need only add the parameters that will be passed
with our call. In this sample, we’ll pass DateOfBirth and FavoriteColor param-
eters to our service. Again, we’ll construct these parameters as Name instances
before adding each one as a child element to the getHoroscope body element that
we have already created.

o538292 ch33.qxd 8/18/03 8:45 AM Page 756

757Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Now, when JAXM sends this message, it will transform it into a valid SOAP message
with each of the data elements we added mapped to the appropriate part of the
message. In this example, the SOAP message shown in Listing 33-3 would be
produced.

Listing 33-3: The SOAP Message

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
<SOAP-ENV:Body>

<ASTRO:GetHoroscope xmlns:ASTRO=”http://www.astro.com”>
<DateOfBirth>05/03/1964</DateOfBirth>
<FavoriteColor>Purple</FavoriteColor>

</ASTRO:GetHoroscope>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There’s only one thing left for us to do — send the message and get our response.
This achieved by constructing an EndPoint and invoking the call() on our con-
nection. Once the call is completed, a SOAPResponse will be returned with your
horoscope. The code for making this call is shown in Listing 33-4.

Listing 33-4: Making the Call

SOAPMessage response = conn.call(msg, endPoint);
conn.close();
System.out.println(“Received reply”);
SOAPPart soapRespPart = response.getSOAPPart();
SOAPEnvelope soapRespEnv = soapRespPart.getEnvelope();
SOAPBody soapRespBody = soapRespEnv.getBody();
Iterator it = soapRespBody.getChildElements();
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String horoscope = bodyElement.getValue();
System.out.println(“Horoscope returned: “ + horoscope);

Alas, we have our horoscope. Now, to get the text of our horoscope, we extract the
SOAPBodyElement from response and display its value. As a matter of housekeep-
ing, we also close the connection to free up the resource.

o538292 ch33.qxd 8/18/03 8:45 AM Page 757

758 Part VII ✦ Web Services and J2EE

Clients with message providers
Building a client that uses a message provider follows much of this same logic as
our standalone client, but it requires a few extra pieces of information to handle
messages. Let’s look at some the nuances that differentiate the clients that leverage
message providers.

When clients wish to use a message provider, they have two options for acquiring
their connection. They can use the ProviderConnectionFactory.
newInstance() mechanism, which will return the default provider. The other
approach would be to use the Java Naming and Directory Interface (JNDI) to look
up a provider based on its name. The following code provides an example of how
this would be executed.

Context jndiContext = new InitialContext();
ProviderConnectionFactory provFactory =

(ProviderConnectionFactory)jndiContext.lookup(“RegisteredProvider1”);
ProviderConnection provConn = provFactory.createConnection();

JAXM also provides a number of different options for constructing messages that
will be routed through a message provider. With a message provider, we may
choose to use a message format that conforms to one of the available message pro-
files (remember, profiles let us include data in the SOAP header that allows a mes-
sage to comply with a given message specification). If we’re planning on using a
message that uses one of these profiles, we’ll need to get a special message factory
type for that profile. This factory is acquired as follows:

MessageFactory ebXMLFactory = provConn.createMessageFactory(“ebxml”);
EbXMLMessageImpl ebXMLMessage = (EbXMLMessageImpl)ebxmlFactory.createMessage();

In this example, we created a message factory that references the ebXML profile and
then uses this factory to create a message. You’ll notice that the value returned
from our createMessage() call must be cast to an instance of an
EbXMLMessageImpl. Now, with the instance of an EbXMLMessageImpl, we can
use this classes’ type-safe interface to set the ebXML compliant header values. Each
provider connection actually maintains a list of all the profiles it supports as part of
its metadata. The following line of code will return an array of strings that represent
the collection of profiles that are supported for the provConn connection instance:

String[] profiles = provConn.getMetaData().getSupportedProfiles();

Naturally, each profile comes with its own set of requirements that will influence
how you’ll go about populating your message. It’s outside the scope of this book to
explore the message requirements for each of these profiles.

That last step is to send the message, which is also slightly different for clients that
use message providers. Instead of using the call() method, the Provider

o538292 ch33.qxd 8/18/03 8:45 AM Page 758

759Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Connection uses send() to initiate the message exchange. The send() message
takes a single parameter, the populated message. You’ll notice that with send() we
were not required to include an endpoint. With message providers, the endpoints
are actually included as part of the deployed configuration for that message
provider, allowing the provider to assume reponsibility for assigning the ultimate
destination for your message. It’s also important to note that the send() method
does not require a response. Once the method is called, control is immediately
returned to the caller.

Handling a SOAPFault
In the JAXM world, error conditions cannot be raised as exceptions. The only data
that passes between sender and receiver is SOAP messages. So, instead of employ-
ing your usual handy try/catch block, you’ll need to peek into SOAP reponses to see
if they include a SOAPFault object. This object defines a standard “exception-like”
interface for setting and retrieving information about a given error condition. The
following snippet of code demonstrates the detection and display of a SOAPFault
condition:

SOAPMessage response = conn.call(messsage, endPointURL);
SOAPBody respBody = response.getSOPAPart().getEnvelope().getBody();
if (respBody.hasFault() == true) {

SOAPFault fault = respBody.getFault();
System.err.println(“Fault Code: “ + fault.getFaultCode() +

“Fault Text: “ + fault.getFaultString());
}

The SOAP 1.1 specification actually calls out each of the attributes of the
SOAPFault and how they must be populated. If you plan on throwing your own
SOAPFault objects, you’ll want to look more closely at this area of the specification.

The Provider Admin tool
The JWSDP includes a utility that is used to manage your message provider configu-
rations. This Web-based application includes tools for adding and editing end-
points, configuring log file options, message retry intervals, and so on. Once you’ve
got Tomcat up and running, you can access this tool by selecting the “Provider
Administration” link on the http://localhost:8080/index.html page.

Java API for XML-Based RPC (JAX-RPC)
In the preceding discussion of JAXM, our emphasis was on broadcasting and receiv-
ing SOAP messages. In fact, it should be clear by now that JAXM and SOAP are
heavily intertwined. Nearly every line of JAXM code you will write will require some

o538292 ch33.qxd 8/18/03 8:45 AM Page 759

760 Part VII ✦ Web Services and J2EE

awareness of the SOAP API. In stark contrast, the JAX-RPC API has the expressed
goal of completely isolating developers from SOAP. How a message is delivered and
how its results are returned should be of little concern to the JAX-RPC developer.
Each JAX-RPC implementation should be measured, to some extent at least, on how
well it executes on this vision. Ideally, building or consuming a Web Service with
JAX-RPC should be as simple as it would be with any other traditional distributed
model.

Part of what makes the JAX-RPC learning curve so minimal is the fact that much of
its approach borrows directly from the existing RMI and RPC models. Developers
who have experience with these technologies should find the transition to JAX-RPC
especially smooth. If we allow some room for over-simplification, in fact, it would
probably be safe to think of JAX-RPC as RMI that swaps out the RMI transport layer
and plugs in standard HTTP and SOAP 1.1 compliant message exchange.

If we look at the diagram shown in Figure 33-4, we’ll see that JAX-RPC clients leverage
generated stubs that then pass off controls to a JAX-RPC run-time layer that takes on
the responsibility for dealing with all the serialization and SOAP message formatting
that’s needed to send our call to a Web Service. On the service side, as you might
expect, the JAX-RPC plumbing listens for incoming service calls, de-serializes the
SOAP messages into Java types, and ends up calling a method on our service.

Now, even though the JAX-RPC API isn’t exactly revolutionary, what it enables for
developers is still significant. With JAX-RPC, developers will be able to build and
consume Web Services relatively easily. And, with SOAP as its underlying protocol,
it opens up a whole new level of interoperability. With a few simple steps, our
clients can reach out across the Web and interact with a broad range of services
developed with any number of different Web Service compliant tools and technolo-
gies. We can also build and deploy our Java classes as Web Services with very little
extra plumbing added to our every day Java classes.

All this talk of the simplicity of JAX-RPC might lead one to overlook its power. Even
though JAX-RPC implementations limit ramp-up time, they also offer a fairly rich set
of more advanced features. The specification calls out mechanisms for mapping
user-defined types, custom message handler chains, embedding documents in your
messages, and so on. The type-mapping system should be of particular interest,
since you’re likely to need to exchange additional data types in your service inter-
faces. We’ll touch on some of these more advanced topics in the sections that follow.

This section provides a general overview of the JAX-RPC specification and the ref-
erence implementation included with the JWSDP. Chapter 34, Apache Axis, pro-
vides a detailed look at a more complete implementation of this specification.

Cross-
Reference

o538292 ch33.qxd 8/18/03 8:45 AM Page 760

761Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Figure 33-4: JAX-RPC overview

WSDL at work
As you begin to work with any JAX-RPC implementation, you’re likely to find that
WSDL (Web Services Description Language) is going to represent the logical start-
ing point for developing any client or service. WSDL is a standardized markup lan-
guage that is used to express the interface contract that is published by any Web
Service. It defines the set of valid operations that are exposed for a given service as
well as any parameters that are included in the signature of these operations.

JAX-RPC takes advantage of this standardized service specification, using it as the
source for generating client and service Java classes that correspond to a service’s
interface (see Figure 33-5).

Client Application

JAX-RPC Stubs

Web Service Clients

JAX-RPC Run-Time

JAX-RPC Run-Time

JAX-RPC Ties

Web Services

Service Endpoint

SO
AP

o538292 ch33.qxd 8/18/03 8:45 AM Page 761

762 Part VII ✦ Web Services and J2EE

Figure 33-5: Leveraging WSDL

From the client side, this is especially useful. If we have access to the WSDL for a
service, it contains all the information we need to construct a set of stubs that give
us a much cleaner, more type-safe mode for calling a service. WSDL is also used to
assist in the generation of the interfaces that will serve as the basis for the imple-
mentation of your service.

Developing clients
The JAX-RPC specification is very specific about its desire to keep clients as
platform/protocol neutral as possible. The JAX-RPC client API, in fact, shields devel-
opers from any awareness of service implementation technologies and transport
protocols. This approach allows JAX-RPC clients to maximize their interoperability
and general flexibility.

The JAX-RPC API calls out three different models for developing Web Service
clients, each with its own pros and cons. The following sections will provide an
overview of each of these client types. In each client example, we’ll invoke a
getPrediction() method on a MagicEightBall service, which will yield a ran-
domized prediction string.

Dynamic Invocation Interface (DII)
DII clients are the most truly “dynamic” of the client options. DII clients require
developers to fully assemble all the elements of a Call before invoking any opera-
tion on a service. Certainly, if you’re looking for maximum run-time flexibility, this
would be your preferred model. However, if you’re at all interested in type-safety
and some degree of ongoing synchronization with your evolving service specifica-
tion, you may want to try one of the other client offerings. Listing 33-5 provides an
example of a DII client.

Web
Service
Client

Web
Service
Endpoint

WSDL

Generate
Stubs

Generate
Interface

Publish

o538292 ch33.qxd 8/18/03 8:45 AM Page 762

763Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Listing 33-5: A DII Client

Public class EightBallDIIClient {
public static void main(String[] args) {

try {
svcFactory = ServiceFactory.newInstance();
Service service =

svcFactory.createService(new QName(eightBallSvcQName));
QName predictionPort = new QName(eightBallPortQName);
Call call = service.createCall(predictionPort);
call.setTargetEndpointAddress(endpointAddress);

call.setProperty(Call.SOAPACTION_USE_PROPERTY,
new Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY, “”);
call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);

call.addParameter(“String_1”, QNAME_TYPE_STRING,
ParameterMode.IN);

call.setReturnType(QNAME_TYPE_STRING);

call.setOperationName(
new QName(BODY_NAMESPACE_VALUE, “getPrediction”));

Object[] inParams = new Object[] {“Does this work?”};
String prediction = (String)call.invoke(inParams);
System.out.println(prediction);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

Now that’s a lot of work for one call. We’re basically using the property interface of
the Call object to construct the entire signature of our method call. It should be
clear that this model is highly sensitive. The slightest change in your WSDL and
you’ll be in here tweaking these options to conform to the new interface. That
doesn’t mean you should never use DII. There may be scenarios where this level
of control is exactly what you’re looking for.

Generated Stubs
If your service interface is fairly stable or you are in a controlled environment, you’re
probably going to prefer the Generated Stubs client model. Clients using this model
use a set of generated “Stub” classes that were generated directly from your service’s
WSDL. These classes provide a more readable, more type-safe mode of interaction
with your service. Listing 33-6 provides an example of a stub-based client.

o538292 ch33.qxd 8/18/03 8:45 AM Page 763

764 Part VII ✦ Web Services and J2EE

Listing 33-6: Generated Stubs Client

public class EightBallStubClient {
public static void main(String[] args) {

try {
EightBallProvider_Stub eightBallStub =

(EightBallProvider_Stub)
(new EightBallService_Impl().getEightBallProviderPort());

eightBallStub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY,
eightBallAddress);

String prediction =
eightBallStub.getPrediction(“Does this work?”);

Sytem.out.println(prediction);
} catch (Exception ex) {

ex.printStackTrace();
}

}
}

Dynamic Proxy
The Dynamic Proxy client is somewhat of a hybrid of the DII and Generated Stub
models. It does not require the client to fully assemble the Call object with all the
pain-staking detail that was required with DII. However, it does not have a static,
pre-generated stub to use either. Instead, it acquires the signature of the service
call at run-time and constructs a proxy that can then be used to call the service. So,
this approach allows us to remain fully dynamic, but eliminates much of the extra
work that went into building our DII client. Listing 33-7 provides a simple example
of a Dynamic Proxy client accessing our MagicEightBall service.

Listing 33-7: A Dynamic Proxy Client

public class EightballDynamicProxyClient {
public static void main(String[] args) {

try {
URL serviceUrl = new URL(UrlString);
ServiceFactory svcFactory = ServiceFactory.newInstance();
QName svcQName = new QName(nameSpaceURI, serviceName);
Service eightBallSvc =

svcFactory.createService(serviceUrl, svcQName);
predictQName = new QName(nameSpaceUri, portName)
EightBallProvider eightBallProv =

(EightBallProvider)eightBallSvc.getPort(predictQName,
EightBallProvider.class);

String prediction =

o538292 ch33.qxd 8/18/03 8:45 AM Page 764

765Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

eightBallProv.getPrediction(“Does this work?”);
System.out.println(prediction);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

As you can see, we passed the ServiceFactory a set of parameters (our service
URL and service name) and it returned our dynamically referenced service. After
that, we requested a reference to the getPrediction() port and executed our
method.

Developing services (endpoints)
Defining a new Web Service, if we stick strictly to the JAX-RPC terminology, is all
about exposing a “service endpoint” definition. Each endpoint represents a visible
method exposed in our service implementation. In our client examples, however,
you’ll notice that each of our service methods was referred to as a “port,” which is
the terminology used within the WSDL specification. For the purposes of our dis-
cussion, you should view ports and endpoints as being synonymous.

So, how do we go about implementing one of these service endpoints? Well, the
first thing we need is an interface that defines the signature of our service. This
interface, which must extend Java’s Remote interface, will contain all of the end-
points that we want to expose. Let’s look at the interface for simple MagicEight
BallService we referenced in our earlier client examples:

import java.rmi.Remote;
import java.rmi.RemoteException;
public interface MagicEightBallProvider extend Remote {

public String getPrediction(String question) throws RemoteException;
}

This interface exposes a single endpoint with its getPrediction() method. You’ll
notice that our method also throws a RemoteException, which is a requirement
for every endpoint you implement with JAX-RPC. Now, with our interface in place,
all that remains is to provide an implementation of this class that contains the code
for our getPrediction() endpoint. The following is an example of how this class
would be constructed:

import java.xml.rpc.server.ServiceLifecycle;

public class MagicEightBallService implements MagicEightBallProvider,
ServiceLifecycle {

o538292 ch33.qxd 8/18/03 8:45 AM Page 765

766 Part VII ✦ Web Services and J2EE

public String getPrediction(String question) throws RemoteException {
try {

//
// TODO: insert your implementation here
//

} catch(Exception e) {
throw new RemoteException(“failed getting prediction”);

}
}

}

After you’ve finished this step, your service is ready to go. To make it available to
clients, it must be deployed into a container that supports the JAX-RPC run-time
(Tomcat, for example). JAX-RPC imposes no limitation on the server container that
can host your service. However, the current examples tend to leverage servlet-
based containers. The wsdeploy tool (discussed later in this chapter) discusses
deployment of your service.

Mapping data types
Every call that is processed by a service must be able to be described within the
context of the WSDL specification. That means every data type that participates in
a service call must, at some point in the process, be transformed into a valid WSDL
data type. In the past, this mapping could represent a sticky subject. The continu-
ally evolving protocols and the variations in Web Service tools meant you were at
the mercy of dealing with a moving target. The JAX-RPC specification attempts to
overcome this issue, explicitly defining the mapping between Java and WSDL
data types. For example, JAX-RPC includes default WSDL mappings for all of the
primitive Java data types, arrays, and standard classes (String, BigInteger,
BigDecimal, Calendar, and Date).

While these mapped types may cover the majority of what you choose to include in
your service interface, you’ll inevitably find yourself in situations where you want
to pass additional types across the wire. JAX-RPC addresses this need, providing
developers with a “pluggable” type mapping framework for serializing and de-
serializing additional data types (including user-defined and collection data types).
This framework uses serializers to map a Java type representation to an XML repre-
sentation. It also includes de-serializers to handle this transformation in the other
direction.

The JAX-RPC specification also introduces the idea of a Type Mapping Registry.
This registry serves as an encoding configuration manager, allowing developers to
define alternate encoding schemes for different system configurations. At the time
of encoding, the JAX-RPC implementation would call the Type Registry, requesting a
serializer or deserializer for a given Java and XML type mapping. The resulting seri-
alizer would then be used to process the mapping.

o538292 ch33.qxd 8/18/03 8:45 AM Page 766

767Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

Even though this custom type mapping system is quite powerful, using it could
come at a cost. First, JAX-RPC vendors may provide varying levels of support for
custom type mapping. Additionally, using anything other the standard WSDL types
in your interface is going to impact the interoperability of your interface. So, while
there are certainly scenarios (especially in controlled environments) where using
custom type mapping would make sense, proceed with caution.

Message handlers
The JAX-RPC specification recognizes the need to allow developers to extend the
message handling model. This advanced functionality permits incoming messages
to be intercepted and manipulated, allowing for the introduction of message
encryption and decryption, logging, and so on. Handlers can also be combined into
“handler chains” where a configuration will define a pipeline of handlers that are
linked together to serve a specific purpose. This message handling framework
brings an additional level of power and flexibility to the JAX-RPC architecture.

Using wscompile and wsdeploy
The JAX-RPC reference implementation provides two tools, wscompile and
wsdeploy, that are used in building and deploying your Web service solutions.
The wscompile utility is used for a variety of purposes, including generating client
stubs, server ties, serializers, and WSDL. This functionality is essential to simplify-
ing the development of Web Service clients and services. The other half of this tan-
dem, wsdeploy, covers the deployment of your Web Service. Before you can use
wsdeploy, you must package your service into a WAR file containing your service
RMI interface and implementation files, along with a jaxrpc-ri.xml that
describes the configuration parameters of your service. This WAR file is fed into
wsdeploy, which invokes wscompile behind the scenes to generate the fully pro-
cessed, ready-to-use WAR file.

The JAX-RPC specification doesn’t actually dictate strict requirements for these
tools. In fact, when we look at Apache’s Axis in Chapter 34, we’ll find that it has its
own twist on how to address this area of functionality.

Java API for XML Registries (JAXR)
So, with all this talk of Web Services one wonders how, in the vast world of the
Internet, we are supposed to know what services are available and what features
are offered by each of these services? We need some universal way to hunt, both
internally and externally, for available services and examine their attributes. That’s
where registries and JAXR come into play.

o538292 ch33.qxd 8/18/03 8:45 AM Page 767

768 Part VII ✦ Web Services and J2EE

A registry is often seen as being the virtual “yellow pages” for Web Services, provid-
ing a centralized location where vendors may publish and discover services. To
date, there are two major players in the continually evolving registry space: UDDI
(Universal, Description, Discovery, and Integration) and ebXML. These two registry
schemes are by far the most popular and most heavily used.

The existence of two competing standards, in some respect, is what created the
need for JAXR. With two standards already in place, both with their own feature set,
it became important for developers to have an API that kept them from being so
tightly coupled to the UDDI or ebXML implementations. Developers really want to
be able to use a registry without concern for whose particular scheme they might
be leveraging behind the scenes. The JAXR API was designed and architected to
address this specific goal. It has the lofty goal of providing developers with a stan-
dard API that is a superset of the functionality offered by both UDDI and ebXML. Its
flexible architecture supports both of these standards and, in doing so, puts in
place a framework that will evolve with these standards and others that may be
introduced in the future.

Capability profiles
JAXR’s challenge of being a true union of the exiting registries required some quick
thinking. UDDI and ebXML both include their own unique sets of functionality. To
address this problem in a generic fashion, JAXR introduced the concept of
Capability Profiles. These profiles are use to determine the level of functionality
that’s available for a given instance of a registry. A profile is arrived at by assigning
a capability level to every method exposed in the JAXR API. The combined view of
all of these levels represents a JAXR provider’s profile in that it defines the set of
operations that are valid for that provider.

Every profile is classified with a certain level of compliance. JAXR defines two spe-
cific levels. At level 0, a profile is said to support all the basic, business-focused reg-
istry functionality. In general, most registry providers should fully support level 0.
At level 1 compliance, a registry would be expected to support a set of more
advanced, more generic registry operations. Naturally, if a registry supports level 1,
it automatically must support level 0.

JAXR architecture
The JAXR architecture is fairly straightforward, following the same familiar
“provider” model that is so pervasive in many of the JWSDP APIs. It should be
noted that, while registries are often thought of as Web-centric tools, the JAXR API
supports clients of all types (applications, browsers, and so on).

The diagram shown in Figure 33-6 illustrates how the JAXR API sits on top of
each of the registry providers. The API is a simple abstraction layer that also

o538292 ch33.qxd 8/18/03 8:45 AM Page 768

769Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

incorporates the Capability Profile functionality described earlier. The real bulk of
the functionality is found in each provider, which assumes responsibility for invok-
ing each operation on the native registries.

Figure 33-6: JAXR architecture

Every provider must implement the APIs from the javax.xml.registry and
javax.xml.registry.infomodel packages. The later of these two is where reg-
istry objects are actually transformed from their native representation into the
JAXR information model. Developers will need to acclimate themselves to this new
model and how it represents each native registry type. If you’re familiar with the
ebXML model, the transitions shouldn’t be that difficult since many of the ebXML
model elements map very directly to their JAXR counterparts.

A few registry scenarios
There is a multitude of operations and uses for JAXR that could vary widely based
on the needs of your specific application. For the purposes of this JAXR overview,
we won’t try to enumerate every possible usage for JAXR. Instead, we’ll cover a few
of the more common scenarios to give you a taste of what the API has to offer.

JAXR API

ebXML
Provider

Other
Provider

UDDI
Provider

UDDI
Registry

ebXML
Registry

Other
Registry

Swing
Client

Other
Client

Browser
Client

JAXR Clients

ebXML/SOAPUDDI/SOAP

o538292 ch33.qxd 8/18/03 8:45 AM Page 769

770 Part VII ✦ Web Services and J2EE

Getting a connection
Before you can start interacting with a registry, you’ll need to get a connection. The
JAXR API uses a property-based approach to acquiring a “configured” connection.
The following code provides a simple example of opening a JAXR connection:

Properties props = new Properties();
props.setProperty(“javax.xml.registry.queryManagerURL”,

“http://uddi.ibm.com/testregistry/inquiryapi”);
props.setProperty(“javax.xml.registry.lifeCycleManagerURL”,

“https://uddi.ibm.com/testregistry/protect/publishapi”);
props.setProperty(“com.sun.xml.registry.http.proxyHost”,

“myhost.mydomain”);
props.setProperty(“com.sun.xml.registry.http.proxyPort”,

“8080”);
ConnectionFactory connFactory = ConnectionFactory.newInstance();
connFactory.setProperties(props);
Connection conn = connFactory.createConnection();

The only real work associated with getting a connection is determining which prop-
erties you might need to set. This example represents the most basic set of options.
You should consult the JAXR specification to determine which options you might
need to set for your solution.

Registry queries
JAXR includes a class, BusinessQueryManager, which provides developers with a
series of methods that are used to search a registry for organizations and their pub-
lished services. Specifically, this class will allow clients to access most of the key
elements of the information model, including the Organization, Service,
ClassificationScheme, and Concept objects. You’ll find that most calls to the
BusinessQueryManager return a BulkResponse object, which is a general-
purpose response object that is, essentially, a collection wrapper class that can
return a list of items. It also includes a collection of any exceptions that may have
occurred during the execution of the called method. The following snippet of code
demonstrates the API calls needed to retrieve a list of Organizations sorted by
their names.

RegistryService rs = conn.getRegistryService();
BusinessQueryManager qm = rs.getBusinessQueryManager();
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
Collection letters = new ArrayList();
letters.add(firstLetterString);
BulkResponse response = qm.findOrganizations(findQualifiers,

letters, null, null, null, null);
Collection organizations = response.getCollection();

o538292 ch33.qxd 8/18/03 8:45 AM Page 770

771Chapter 33 ✦ Web Services with the Sun Java Web Services Developer Pack

In this example, we get an instance of the RegistryService from our connection
which is then used to get an instance of the BusinessQueryManager. We’re now
ready to build and execute our query.

Our query construction begins by building a list of FindQualifiers we want to
use, adding the constants that represent the type of search we want to perform. In
this case, we want a list of organizations sorted by name, so we add the SORT_BY_
NAME_DESC qualifier. Next, we need to create a collection of letters that represent
the first letter of the organization names we want to find. All that remains now is to
invoke the findOrganizations() method on the BusinessQueryManager. We
can then get the collection of matching organizations from the returned
BulkResponse object.

If this approach to finding an Organization is too broad, JAXR provides another
interface that can help you perform a more qualified query. Instead of building a list
of names we want to search for, we can build a list of Classification objects
that represent criteria for the type of organization we want to find. We can then
pass this list as another parameter to the findOrganizations() method. In all
other respects, the process follows the same basic flow. As you can imagine, you
can also mix-and-match these options to perform even more specialized searches.

Services and ServiceBindings for organizations
After you’ve acquired a list organizations via the query mechanism, you can then
use the Organization object’s interface to determine what Services and
ServiceBindings are supported by that Organization. The following code
illustrates how this would be achieved:

Organization org = (Organization)iter.next();
Collection services = org.getServices();
Iterator iter = services.iterator();
while (iter.hasNext()) {

Service service = (Service)iter.next();
Collection serviceBindings = service.getServiceBindings();
Iterator bindIter = serviceBindings.iterator();
while (bindIter.hasNext()) {

ServiceBinding sb = (ServiceBinding)bindIter.next();
}

}

Publishing an organization
Of course, for any of the JAXR query operations to work, an organization must first
publish itself in a registry. This process is very much like any traditional database
operation, requiring developers to populate data structures and submit them to the
registry to be persisted. An organizaiton will need to provide basic demographic
information (name, phone, and so on) along with classifcation data that will help
clients who are searching for organizations that match specific service criteria.

o538292 ch33.qxd 8/18/03 8:45 AM Page 771

772 Part VII ✦ Web Services and J2EE

The following snippet of code illustrates some of the basic steps that are required
to publish an orgranization:

RegistryService rs = conn.getRegistryService();
BusinessLifeCycleManager lm = rs.getBusinessLifeCycleManager();
BusinessQueryManager qm = rs.getBusinessQueryManager();
Organization astroOrg = lm.createOrganization(“Cosmic Astrology”);
astroOrg.setDescription(“Horoscopes for all ocasions!”);
Collection phoneNums = new ArrayList();
phoneNums.add(“555-1212”);
astroOrg.setTelephoneNumbers(phoneNums);
Collection orgList = new ArrayList();
orgList.add(astroOrg);
lm.saveOrganizations(orgList);

This is a simplified example. You’ll want to look at the JAXR information model for
the Organization and all of its related objects that are used to hold the profile of
your organization. Each organization is added to a list, which is then persisted to
the registry via a call to the saveOrganizations() method.

Summary
In this chapter, we touched on all the APIs in the JWSDP that are focused on con-
suming, building, and deploying Web Services. The goal here was to provide an
overview of the role each of these APIs play in the bigger Web Services pictures.
Along the way, we covered the following topics:

✦ Using the JAXM messaging and SAAJ APIs to send message between Web
Services

✦ Building Web Service clients and services (endpoints) using the JAX-RPC API

✦ Leveraging the JAXR API to locate services and examine their published
services

Each of these new Web Service APIs provide developers with a rich set of Web
Service technologies. And, in most cases, they have been able to keep the learning
curve relatively manageable. The APIs also seem to remain true to the Web Service
vision of maximizing the opportunity for interoperability.

✦ ✦ ✦

o538292 ch33.qxd 8/18/03 8:45 AM Page 772

Apache Axis

If you’re going to develop Web Services with Java, you’re
definitely going to want to take a look at leveraging

Apache’s Axis. Axis is a generalized SOAP message-handling
system that is focused on providing developers with a rich set
of tools and infrastructure for developing and consuming Web
Services. This open-source tool contains all the basic ele-
ments a developer would need to rapidly consume, build,
deploy, and host a Web Service. As we will see, Axis strikes a
nice balance between power and complexity, allowing devel-
opers to quickly build Web Services with a relatively short
learning curve while still allowing more advanced customiza-
tion of message processing, type mapping, and so on.

In this chapter, we’ll cover the fundamentals of the Axis archi-
tecture, taking an in-depth look at how the Axis engine pro-
cesses requests and responses. The chapter will examine
some of the goals of the architecture and how these goals
influenced the solution that was ultimately implemented. It
will also discuss each of the deployment models that are sup-
ported by Axis. Specifically, the chapter will look into how
developers can customize their Web Service configuration via
deployment descriptors.

Additionally, this chapter will cover some of the tools that are
provided with Axis. It will provide an overview of how the
Java2WSDL and WSDL2Java tools can be used to generate the
client and Web Service implementation files. We’ll drill down
into the contents of these generated files and explain how
they are processed by the Axis engine. Additionally, the chap-
ter will look at the TCPMON utility and discuss how it can be
used to monitor the flow of messages to and from your Web
Service.

The Axis Evolution
Apache Axis represents the most recent offering of what was
originally known as SOAP4J, which was introduced by IBM.
After being donated by IBM and becoming part of Apache

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Architecture overview

Installing and
running Axis

Building a
simple service

JWS deployment
model

WSDD deployment
model

Java2WSDL and
WSDL2Java

The TCPMON utility

✦ ✦ ✦ ✦

o538292 ch34.qxd 8/18/03 8:45 AM Page 773

774 Part VII ✦ Web Services and J2EE

Software Foundation’s open-source effort in late 2000, SOAP4J became Apache
SOAP and underwent a number of revisions, finally achieving a wide level of accep-
tance with release of Apache SOAP 2.2. Over time, however, it became clear that
this version’s rigid architecture was not prepared to take on the rapid evolving
world of Web Services development. Acknowledging this reality, the Apache
Software Foundation set out to define a next generation version of Apache SOAP
that could overcome its performance issues and position it as a more general-
purpose, more flexible message processing solution, a solution that was no longer
so exclusively linked to the SOAP specification. Naturally, this broader vision for
the product meant that the Apache SOAP name would no longer adequately capture
the true flavor of the product. Thus, the new Apache eXtensible Interaction System,
Axis, was introduced. Now, the reality is, while Axis is a completely new implemen-
tation that opens the door to support alternative transport protocols and message
specifications, its initial focus is still primarily on HTTP and SOAP. The key point
here is that the Axis architecture has been structured to allow for the future intro-
duction of new protocols, messaging specifications, and providers. So, under this
new modular architecture, Axis expects to be able to easily embrace any new speci-
fication that might eventually gain acceptance with the development community.

Axis is certainly still getting its footing and is working toward reaching a point of
real stability. That said, the version 1.1 release (which this chapter is based on) rep-
resents a very complete, ready-to-use implementation. The Axis 1.1 release, in fact,
surpasses Apache SOAP 2.2 in performance, function, and interoperability. The fol-
lowing represents some of the key elements of the new Axis architecture.

Performance enhancements
Performance was one of the most limiting factors of the Apache SOAP implementa-
tion. A key contributor to these performance problems was the system’s XML pro-
cessor, which used the DOM (Document Object Model) for processing the XML
stream. This problem was addressed by making the switch to SAX (Simple API for
XML Parsing), which reduced memory consumption and offered generally faster
parsing of the message stream. This switch alone allows Axis to deliver significantly
better performance.

Flexibility and extensibility
Axis was built from the ground up to be a “pluggable” architecture. This design cre-
ates an opportunity for developers and third-party integrators to provide their own
plug-in components for logging, system management, internationalization, and so
on. By standardizing on a “pluggable API” for the key system components, Axis has
made it much easier for vendors to achieve a significantly tighter, more seamless
integration of the Axis technology into their platforms.

o538292 ch34.qxd 8/18/03 8:45 AM Page 774

775Chapter 34 ✦ Apache Axis

Supporting the SOAP specification
In the current Axis release, the system fully supports the SOAP 1.1 specification and
offers partial support for the SOAP 1.2 specification. For example, the 1.1 release of
Axis does not support envelope versioning or namespaces from the SOAP 1.2 speci-
fication. Full support for the 1.2 specification, however, does appear to be a high-
priority item for the Axis team.

Improved interoperability
One of the goals of the Axis implementation was to provide a higher degree of inter-
operability with other SOAP implementations. This goal is at least partially realized
in the 1.1 release of the product. The introduction of support for untyped parame-
ters certainly opens the door for Axis to more easily interoperate with implementa-
tions from other vendors. The architecture’s modular approach to “providers” also
allows the framework to interoperate additional technologies (COM, EJB, and so on).

Transport independence
The Axis implementation goes out of its way to abstract itself away from any aware-
ness of a given transport protocol. While developers are still likely to use it primar-
ily with HTTP, the underlying design actually allows for supporting alternative
protocols (SMTP, message-oriented-middleware, and so on).

JAX-RPC and SAAJ compliance
In the prior chapter, we talked about JAX-RPC and SAAJ, which are part of the Java
Web Services Development Kit. The Axis implementation aims to fully support both
of these specifications. In fact, in its current form, Axis purports to be 100 percent
JAX-RPC and SAAJ compliant. It is assumed that Axis will always remain tightly
bound to these specifications.

WSDL support
Axis provides support for version 1.1 of the WSDL (Web Service Description
Language) specification. With WSDL support developers are able to leverage and
easily generate stubs for accessing remote services. Additionally, the WSDL sup-
port allows Axis to interrogate a deployed service and view its configuration.

o538292 ch34.qxd 8/18/03 8:45 AM Page 775

776 Part VII ✦ Web Services and J2EE

Architecture Overview
The Axis architecture, in its simplest form, represents a generalized framework for
processing messages. As such, the role of the Axis engine serves a very simple pur-
pose. It must accept incoming SOAP messages from a given transport, validate and
de-serialize that message, route that message to the appropriate service, then con-
struct and serialize a SOAP response for the client. Axis took this basic message
processing model and partitioned it into a series of well-defined layers that maxi-
mize the opportunity for developers to modify and direct messages as they flow
through the system. This modular approach is also at the heart of what allows Axis
to evolve and support the introduction of new transports, message protocols, and
so on.

To better understand each of the distinct steps in the lifecycle of a message, let’s
look into the details of how the Axis engine processes each incoming server mes-
sage (see Figure 34-1). As a message arrives at the Axis server, it is initially pro-
cessed by the Transport Listener, which assumes responsibility for creating a valid
Message object and placing that message into a Message Context. This Message
Context will hold both the request and response messages, along with any addi-
tional properties that are associated with these messages. Message Context proper-
ties are examined by the Axis engine as it moves the data through each message
processing layer, and, in many cases, these properties will end up directly influenc-
ing how messages flow through the system.

Figure 34-1: Processing server messages

Ultimately, the message context will arrive at a provider, which will invoke an oper-
ation on the target service. This stage, where the request reaches the provider and
begins the transition to processing the response, is referred to as the “pivot.” Any

Request

Target
Service

Pr
ov

id
er

 (P
iv

ot
)

Service

Response

Request

Global

Axis Engine

Response

Request

Listener

Transport

Response

Sender

o538292 ch34.qxd 8/18/03 8:45 AM Page 776

777Chapter 34 ✦ Apache Axis

results that are returned from the service are then handed back to the provider and
placed into the response portion of the Message Context (services are not required
to return a response). The response is then sent back out through each of the
pipeline processors (in the reverse order of the incoming request). Each step along
the response path also provides the opportunity for the engine to modify or inter-
act with the contents of the response.

The client implementation, as expected, processes messages in the reverse order of
the server example. The client message processing model employs all the same
mechanisms that are part of the server-side implementation, including both request
and response message paths. The client begins by invoking the service handler
before optionally handing off control to the global request chain, and, finally, con-
trol is passed to the transport handler. A Transport Sender performs the last step in
the client process, transforming the message into a valid SOAP message. If the call
from the client returns any results, they will be passed back through the response
message path where it too can be processed by the same series of handlers.

Message handlers and message chains
Each message that is encountered by Axis is processed by a Message Handler.
These handlers represent the smallest unit of processing that can be applied to a
message. They are then linked together to address a given message’s processing
objective. The resulting “pipeline” of linked handlers is referred to as a Handler
Chain. This mechanism is very much modeled after the Chain of Responsibility
design pattern, where a collection of objects is assembled into a chain. Each object
in that chain may handle a message or just forward the message along to the next
handler in the chain.

The Axis architecture supports three specific types, each representing different
stages in the message processing flow. In any one Handler Chain, there may be a
transport, global, and service handler that represents a path for processing a spe-
cific service call. Each of these handler types can be applied to the request or
response stream in the Axis engine. The following is an explanation of each of these
individual handler types:

✦ Transport Handlers: These handlers, as their name implies, are responsible
for performing transport specific operations on requests and responses. Each
individual transport (HTTP, SMTP, etc.) has a corresponding transport han-
dler that provides the basic message formatting according to the require-
ments of that transport’s specification.

✦ Global Handlers: A global handler does not play any specific role in terms of
processing messages. It exists primarily to allow developers an opportunity to
introduce any general-purpose message handling. While the transport handler
that is invoked will vary based on the transport that is being used, global han-
dlers are always invoked for every message that is handled by the Axis engine.

o538292 ch34.qxd 8/18/03 8:45 AM Page 777

778 Part VII ✦ Web Services and J2EE

✦ Service Handlers: Service handlers are directed at processing incoming mes-
sages and routing the actual implementation of an operation on a Web
Service. As part of processing a message, each service handler constructs
request and response chains that are responsible for processing the target
Web Service operation.

Message Chains are configured and deployed as part of the Axis configuration file.
Developers may build their own custom message handlers, assemble them into
chains, and deploy them. Once a chain has been deployed and is “live,” the Axis
engine does not allow for any dynamic modification addition of new handlers to
that chain. This ability to build and easily deploy specialized handlers represents
one of the clear architectural strengths of the Axis engine.

Subsystem overview
The Axis architecture is conceptually divided into a distinct set of subsystems. The
goal here, as it is with any architecture, is to isolate and compartmentalize each log-
ical area of the implementation. Ideally, this will prevent any one subsystem from
being too tightly coupled to another. The diagram shown in Figure 34-2 represents
all the subsystems that are employed by the Axis engine. The following sections
provide a brief explanation of the role each of the subsystems plays in the Axis
implementation.

Figure 34-2: Axis subsystems

Message flow subsystem
As you might expect, the Message Flow subsystem is at the heart of Axis architec-
ture. It is responsible for providing all the system’s basic message-handling infra-
structure. Specifically, it includes all the Message Handlers, Message Chains, and
fault processing employed by the engine.

SOAP

Admin

SOAP

XML-RPC EJB

Service

SOAP

JMS

Provider

SOAP

COM SMTP

Transport Encoding Message
Model

Message Flow Subsystem

o538292 ch34.qxd 8/18/03 8:45 AM Page 778

779Chapter 34 ✦ Apache Axis

Administration subsystem
The Administration subsystem supports the administration and configuration of
the Axis engine. It is this system that assumes responsibility for instantiating each
message-handling pipeline based on the descriptions provided in the configuration
file. Global configuration options are also loaded and set by this subsystem. This
configuration can be loaded dynamically or it can be brought in from a WSDD (Web
Service Deployment Descriptor). Both of these configuration mechanisms are cov-
ered later in this chapter.

Provider subsystem
Within the Axis architecture, a provider represents the point at which a message
will be turned into an actual call to a Web Service. The Provider subsystem is
responsible for providing a generic, technology-independent solution for achieving
this task. The abstraction of this layer allows Axis to support a variety of technolo-
gies at the provider level. The configuration of each service simply specifies a
provider type (RPC, EJB, and so on), and this parameter will determine how to pro-
cess the message and invoke the service. The flexibility of this mechanism, where
providers can be introduced in such isolation, means Axis will be able to support
current and future mechanisms for accessing a given service implementation.

Transport subsystem
The Transport subsystem is responsible for providing the framework for process-
ing any and all transport protocols. This is actually a byproduct of complying with
the JAX-RPC specification, which requires implementers to abstract their solutions
away from reliance on any specific transport protocol. Architecturally, Axis has
achieved this. However, as it stands, the current release only supports the HTTP
protocol.

Encoding subsystem
As data moves through the system, it must be able to translate Java data types into
generic XML data types and vice versa. This transformation, which is typically
referred to as “serialization” and “de-serialization,” is managed by the Encoding
subsystem. The Axis engine uses the JAX-RPC mapping model as the basis for its
type-mapping implementation.

Message model subsystem
The Message Model subsystem has the responsibility of parsing the stream and
constructing valid SOAP messages, which consist of an envelope, a header, and a
body. This particular area, which leverages the SAX parser, has been optimized to
limit memory consumption and parse the stream as efficiently as it can.

o538292 ch34.qxd 8/18/03 8:45 AM Page 779

780 Part VII ✦ Web Services and J2EE

Type mappings
Every time a method is invoked on a Web Service from Java, the Axis engine must
transform the signature of that native Java call into a valid SOAP message. A big
part of this translation involves the mapping of each of the incoming Java data
types to a standard SOAP representation of that type. The Axis implementation sup-
ports all the mappings that are called out in the JAX-RPC specification.

You should pay special attention to type mappings, since each type that is refer-
enced in your service interface becomes part of your contract with the outside
world. Clients of your service, which may use one of many available programming
languages, will need to conform to this contract. The more basic types you select,
the better chance you have of achieving interoperability. Table 34-1 illustrates the
mapping between the fundamental WSDL data types and their corresponding Java
data type.

Table 34-1
Axis Type Mappings

WSDL Type Java Type

xsd:base64Binary byte[]

xsd:Boolean boolean

xsd:byte byte

xsd:dateTime java.util.Calendar

xsd:decimal java.math.BigDecimal

xsd:double double

xsd:float float

xsd:hexBinary byte[]

xsd:int int

xsd:integer java.math.BigInteger

xsd:long long

xsd:Qname java.xml.namespace.QName

xsd:short short

xsd:string java.lang.String

In looking at this table, it’s clear that, for the most part, WSDL data types have a
fairly clean mapping to Java data types. However, it’s important to note that a user-
defined Java object may not have any direct mapping to a WSDL data type. While a

o538292 ch34.qxd 8/18/03 8:45 AM Page 780

781Chapter 34 ✦ Apache Axis

user-defined Java object may provide its own serialization, this serialization can
only be brokered in environments where both client and server are written in Java.
In order for Axis to be able to handle user-defined types, these types must be regis-
tered with the Axis serializer. This is achieved by implementing your class using the
JavaBean pattern and registering it with the Axis BeanSerializer.

To make matters simpler for Java developers, Axis does provide a serializer for
many of the common Java collection classes. You can take advantage of these seri-
alizers; however, you should be aware of the fact that using these types will impact
your interoperability with other implementations. The SOAP specification does not
currently cover complex object types.

The SOAP and JAX-RPC specifications do not allow for remote references being
passed between client and server.

Installing and Running Axis
The installation process for Axis is relatively straightforward. Before you can get
under way with the install process, though, you’ll need to make sure that you have
an application server installed. For the purposes of our discussion here, we’ll
assume that you are going to be using Axis with the Jakarta Tomcat server (version
4.1.x). Axis will actually work with other servers, as long as they support version
2.2 or higher of the servlet API.

Axis distribution files
Once you’ve gotten your application server setup squared away, you’ll need to
download the distribution archive from the Apache Axis Website. Within this
archive you’ll find the following items:

✦ A series of JAR files that represent the Axis implementation, most significant
of which is axis.jar. Accompanying the JAR are jaxrpc.jar and saaj.
jar, which are used to reference the APIs from these two specifications.
There are also JAR files included to support logging (commons-logging.jar
and log4j-core.jar).

✦ WSDL tools, WSDL2Java and Java2WSDL, that are used for processing and
generating WSDL (wsdl4j.jar).

✦ HTML documentation covering the Axis APIs.

✦ A collection of sample programs that demonstrate some simple scenarios for
building and deploying Web services.

Note

o538292 ch34.qxd 8/18/03 8:45 AM Page 781

782 Part VII ✦ Web Services and J2EE

Copying WEBAPPS and LIB files
Before you can fire up Apache Axis, you’ll still need to move a few files into the
appropriate Tomcat directories. Within the Axis distribution package, you’ll find a
WEBAPPS\AXIS directory, which contains Axis configuration files, samples, and
JARs. This Axis directory needs to be copied to the WEBAPPS directory of your
Tomcat installation.

The last piece in the puzzle is to copy a few JARs to the Tomcat COMMOM\LIB
directory. First, you’ll need a JAXP 1.1 compliant parser (Axis recommends using
Xerces). Download this parser and its corresponding JARs and place them in
Tomcat’s COMMON\LIB directory. Then we need to move one of the Axis JARs,
jaxrpc.jar, to this same COMMON\LIB directory. This file contains classes that
are part of the java.* and javax.* packages, which violates a Tomcat constraint
that prohibits the loading of any class from these packages if they are deployed in
the WEBINF\LIB directory.

Starting the server
All the pieces are now in place. Simply bring up the Tomcat server and go to the
Axis start page in your browser. Assuming you’re running the browser on the same
computer as the server, you can access this page via http://localhost/axis/.
If you’ve successfully started the server, a screen similar to the one shown in Figure
34-3 will be displayed.

Figure 34-3: Axis start page

o538292 ch34.qxd 8/18/03 8:45 AM Page 782

783Chapter 34 ✦ Apache Axis

The Axis start page provides a very simple set of operations that will allow you to
evaluate the basic state of your Axis installation. The most significant option
offered on this page, at least at this initial stage, is the “Validate” option, which,
when selected, will validate the state of your Axis installation. Upon selecting this
link, you’ll be presented with the Happiness Page. It should be similar to the one
shown in Figure 34-4.

Figure 34-4: Validating your Axis installation

You should inspect the contents of the validation screen carefully. It will highlight
any issues that might exist with your installation, including situations where
required and optional JARs cannot be located, among other things. You may want
to consider incorporating this validation mechanism into your automated testing
environment, where it can continually validate the state of your Axis server.

Back on the start page, there are a few other options worth mentioning. The “View”
option is used to interrogate the Axis server and return a list of services that are
deployed on the server. With each service listed, there will also be a corresponding
WSDL link that will allow you to access and review the WSDL for that service. The
screen shown in Figure 34-5 provides an example of the service list view.

o538292 ch34.qxd 8/18/03 8:45 AM Page 783

784 Part VII ✦ Web Services and J2EE

Figure 34-5: Service list

There’s also a “Call a local endpoint” option on the start page. This option will make
a call to the Axis Server to get a list of the HTTP headers for the caller.

One would expect that, as Axis matures, this administration area will be enhanced
significantly to provide developers with additional management, deployment, and
inspection functionality. As it stands right now, this startup page really offers a
fairly minimal set of administration options.

Building and Consuming a
Simple Web Service

While it’s nice to understand all the underpinnings of the technology that’s at play
in the engine, it’s also comforting to know that the Axis implementation has done
an excellent job hiding most of these details from your day-to-day existence. The
truth is, if you’re just after getting a basic Web Service up –and running, then Axis is
the tool for you. In fact, for Java developers familiar with RMI development, this
transition should be especially smooth, since the Axis (JAX-RPC) implementation
borrows heavily from the RMI model.

To demonstrate the simplicity of the Axis technology, let’s go ahead a build our-
selves a basic Web Service and make ourselves a client to consume that service.

o538292 ch34.qxd 8/18/03 8:45 AM Page 784

785Chapter 34 ✦ Apache Axis

Setting up your environment
Before you can begin to develop with Axis, you’ll need to set up your CLASSPATH.
Axis requires the following items to be added to your CLASSPATH:

<axis directory>\lib\axis.jar
<axis directory>\lib\jaxrpc.jar
<axis directory>\lib\saaj.jar
<axis directory>\lib\common-logging.jar
<axis directory>\lib\common-discovery.jar
<axis directory>\lib\wsdl4j.jar
<your Xerces path>xerces.jar (or another JAXP 1.1 compliant parser)

Creating a service
For our example, we’ll build a MagicEightBall service, which takes a question
and returns a random answer. The code for our service, shown in Listing 34-1,
doesn’t look any different than any other Java class you might write. In fact, if your
service’s interface were to limit its interface to simple data types, its implementa-
tion and deployment would remain fairly simple. The complexity of developing and
deploying your service will typically vary based on the complexity of the types that
it references.

Listing 34-1: MagicEightBall Web Service

import java.util.Random;
import java.util.Date;

public class MagicEightBallService {
private static String[] predictions = {“Possibly”,

“It could happen”,
“Unlikely”,
“Try again later”,
“The prospects seem good”,
“Definitely not”,
“It’s a definite maybe”,
“Odds are favorable”};

private static Random randGenerator =
new Random((new Date()).getTime());

public String getPrediction(String question) {
int rndIdx = randGenerator.nextInt(predictions.length);
return predictions[rndIdx];

}
}

o538292 ch34.qxd 8/18/03 8:45 AM Page 785

786 Part VII ✦ Web Services and J2EE

This service implementation contains a random list of responses and exposes a sin-
gle service operation, getPrediction(). Each time the service is called, it gets a
random index into the list of responses and returns a string containing the
response. The only step left to make this class available as a service is to deploy it
using one of the deployment techniques described later in this chapter.

Building the client
Oddly, developing the client for your Web Service actually requires more explain-
ing. First, developers have a choice of developing dynamic or static clients. These
two models take very different approaches to how they interact with the server.
The following section explains these two client types.

Dynamic invocation
Dynamic clients follow a late-bound model, in which the clients use a general pur-
pose interface to locate services and construct method calls (Listing 34–2). This
generality comes at a cost of complexity and readability, though.

Listing 34-2: TestDynamicClient.java

import org.apache.axis.AxisFault;
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import org.apache.axis.encoding.XMLType;
import org.apache.axis.utils.Options;

import javax.xml.namespace.QName;
import javax.xml.rpc.ParameterMode;
import java.net.URL;

public class TestDynamicClient {

public String getAnswer(String question) {
String answer = “Failure”;
try {

URL server_url = new
URL(“http://localhost:8080/axis/MagicEightBallService.jws”);

Service service = new Service();
Call call = (Call)service.createCall();
call.setTargetEndpointAddress(server_url);
call.setOperationName(new QName(“”, “getPrediction”));
call.addParameter(“question”,

XMLType.XSD_STRING,
ParameterMode.IN);

call.setReturnType(XMLType.XSD_STRING);

o538292 ch34.qxd 8/18/03 8:45 AM Page 786

787Chapter 34 ✦ Apache Axis

Object ret = call.invoke(new Object[]{question});
answer = (String)ret;

} catch(Exception e) {
e.printStackTrace();

}

return answer;
}

public static void main(String args[]) {
try {

TestDynamicClient client = new TestDynamicClient();
String response = client.getAnswer(“Do dynamic clients work?”);
System.out.println(response);

} catch(Exception e) {
e.printStackTrace();

}
}

};

This client acquires a Call object using the URL of our Web Service, configures the
operation, and invokes it. It should be clear there’s almost no type-safety in this
client model, which makes it fragile. The slightest mistake in a parameter type,
operation name, or return type and your client will be very unhappy.

Static invocation
Thankfully, Axis offers an alternative to the dynamic model. The static model, the
preferred client model, represents a more intuitive, type-safe approach to develop-
ing your Web Service clients. The static model uses generated stubs that wrap up
all the details of connecting to and invoking operations on your service. These
stubs are created with the WSDL2Java tool described later in this chapter. The
client for the static model is shown in Listing 34-3.

Listing 34-3: TestStaticClient.java

import MagicEightBall.*;

public class TestStaticClient {
public static void main(String args[]) {

try {
MagicEightBallServiceServiceLocator svcLocator =

new MagicEightBallServiceServiceLocator();
MagicEightBallService svc =

svcLocator.getMagicEightBallService();

Continued

o538292 ch34.qxd 8/18/03 8:45 AM Page 787

788 Part VII ✦ Web Services and J2EE

Listing 34-3 (continued)

String response = svc.getPrediction(“Do static clients work?”);
System.out.println(response);

} catch (Exception e) {
System.out.println(“failure” + e);

}
}

}

Deployment
Once you’ve gotten your Web Service built, the last thing you need to do to make it
available to the world is to deploy it. Axis provides a few different models for
deploying your service, each with its own pros and cons. The next two sections
explore these models.

Dynamic deployment (JWS)
Dynamic deployment, which is sometimes referred to as Java Web Service (JWS)
deployment, is one of the nicest features of the Axis implementation. It provides
developers with a very simple approach to deploying an existing Java class as a
service.

So, let’s say you’ve just completed development of your new service (we’ll call it
SampleService for the purpose of this explanation), which is implemented in the
file SampleService.java. In order to make this service available to clients, you
need only perform the following two steps:

✦ Copy your SampleService.java file to Tomcat’s WEB-INF\axis directory.

✦ Rename your SampleService.java file to SampleService.jws.

That’s it. Your service is now officially online and accessible. Clients may invoke the
operations on your service by accessing the following URL similar to the following
(this will change based on your server name, port, and so on):

http://localhost:8080/axis/SampleService.jws

Once the service is online, we can also view the WSDL for the service by appending
a WSDL parameter to the URL as follows:

http://localhost:8080/axis/SampleService.jws?WSDL

o538292 ch34.qxd 8/18/03 8:45 AM Page 788

789Chapter 34 ✦ Apache Axis

In many respects, this model is very much like the JSP model, where the extension
on the file name triggers the server to perform special processing of that file. With
Axis, when a client accesses a JWS service that has been deployed in the Axis con-
text, the system will call the AxisServlet. This servlet will then assume responsi-
bility for locating the file, compiling it, and transforming the incoming SOAP
message into a valid Java invocation on the service.

Of course, this simplified deployment scheme comes at a cost. First, this model
should really be constrained to fairly simple services. You really wouldn’t want Axis
attempting to compile complex services. Also, there are some limitations to what
Axis developers can do with a dynamically deployed service. Here’s a list of some
of the constraints that are applied to a JWS deployment:

✦ Security: Services cannot support any level of authentication if they are
deployed with the JWS model.

✦ Type Mapping: Dynamically deployed services do not allow developers to
define custom type mappings. These services can only reference basic data
types in their interface. So, if you want to pass around any of your own cus-
tom data types, this model is certainly not for you.

✦ Method Visibility: JWS deployments do not provide any mechanism for con-
trolling which methods of your service are exposed to clients.

✦ Custom Handlers: Because JWS deployments cannot be configured by the
server, they cannot make use of any of the Axis custom message-handling
framework.

Given this set of limitations, it’s clear that the JWS model is really targeted at small,
simple services. The idea of deploying your native Java files and compiling them on
the fly simply isn’t practical for services of any real size or complexity.

WSDD deployment
If you think about it, what the JWS model achieves is quite impressive. The ability
to take a plain Java file and have it transformed into a Web Service with such ease
represents a significant accomplishment. Eventually, though, you’re going to get to
a point where you’re going to want more control over how your service is deployed,
how it maps types, and how messages are processed. That’s where the WSDD (Web
Service Deployment Descriptor) deployment comes in. With WSDD we overcome all
those limitations that we encountered with the JWS model, opening the door to all
the power and flexibility offered by the Axis implementation.

Working with WSDD files to configure your service can be a little time-consuming
when you’re ramping up on all the configuration options. Specifically, you’ll need to
learn to work through all the idiosyncrasies associated with type mapping. There’s
plenty of opportunity to introduce small problems in your WSDD file that aren’t

o538292 ch34.qxd 8/18/03 8:45 AM Page 789

790 Part VII ✦ Web Services and J2EE

handled all that gracefully by the Axis WSDD deployment tools. That said, once you
have worked though most of the common scenarios, this problem tends to fade to
the background.

So, let’s build a sample service that we can deploy using the WSDD model and see
how the configuration file influences the shape of our service. In our example, we’ll
create a loan amortization service that will take the basic loan parameters and
return an amortization schedule with a simple list of each payment and the balance
remaining after that payment. For the purpose of our sample, we’ll keep this very
simple. Listing 34-4 is a listing of our AmortizationManager service.

Listing 34-4: AmortizationManager Service

package myservices.amortization;

public class AmortizationManager {
public ScheduleItem[] getSchedule(double loanAmount,

double interestRate,
int duration) {

ScheduleItem[] paymentList = new ScheduleItem[duration];
int paymentNumber = 1;
double totalLoan = loanAmount + (loanAmount / interestRate);
double balance = totalLoan;
double monthlyPayment = 0;

while(balance > 0) {
monthlyPayment = totalLoan / duration;
if (balance < monthlyPayment) {

monthlyPayment = balance;
balance = 0;

} else {
balance -= monthlyPayment;

}
paymentList[paymentNumber-1] =

new ScheduleItem(paymentNumber, monthlyPayment, balance);
paymentNumber++;

}

return paymentList;
}

}

From our listing, you can see that our service supports one operation,
getSchedule(), which returns an array of ScheduleItem objects. It’s this return
type, the array of ScheduleItems, that will force us to define a mapping in our

o538292 ch34.qxd 8/18/03 8:45 AM Page 790

791Chapter 34 ✦ Apache Axis

WSDD file that describes how Axis should map this data type during serialization
and de-serialization. The ScheduleItem class is defined as shown in Listing 34-5.

Listing 34-5: The ScheduleItem Class

package myservices.amortization;

public class ScheduleItem implements java.io.Serializable {
int paymentNumber = 0;
double paymentAmount = 0;
double balanceRemaining = 0;

public ScheduleItem() {}

public ScheduleItem(int paymentNumber,
double paymentAmount,
double balanceRemaining) {

this.paymentNumber = paymentNumber;
this.paymentAmount = paymentAmount;
this.balanceRemaining = balanceRemaining;

}

public int getPaymentNumber() {
return this.paymentNumber;

}

public double getPaymentAmount() {
return this.paymentAmount;

}

public double getBalanceRemaining() {
return this.balanceRemaining;

}

public void setPaymentNumber(int paymentNumber) {
this.paymentNumber = paymentNumber;

}

public void getPaymentAmount(double paymentAmount) {
this.paymentAmount = paymentAmount;

}

public void getBalanceRemaining(double balanceRemaining) {
this.balanceRemaining = balanceRemaining;

}
}

o538292 ch34.qxd 8/18/03 8:45 AM Page 791

792 Part VII ✦ Web Services and J2EE

This class is a simple bean implementation that wraps up each of the data elements
that are associated with a given payment. It conforms to the bean model and imple-
ments the serializable interface, allowing it to be handled by the bean serializer pro-
vided by Axis. In many instances, you’ll package your own objects (that need to
pass to and from the service) using this same approach.

Now we have our service implementation ready to go, but we need to put together
the WSDD file that will be used to deploy the service. WSDD files are simply XML
files that have a specific grammar for describing the configuration of your service.
The configuration for our service is shown in Listing 34-6.

Listing 34-6: AmortizationManager.wsdd

<deployment name=”test” xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”
xmlns:xsd=”http://www.w3.org/2000/10/XMLSchema”
xmlns:xsi=”http://www.w3.org/2000/10/XMLSchema-instance”>

<service name=”AmortizationService” provider=”java:RPC”>
<parameter name=”className” value=”AmortizationManager” />
<parameter name=”allowedMethods” value=”getSchedule” />
<parameter name=”scope” value=”Application” />

<beanMapping qname=”ns1:ScheduleItem”
xmlns:ns1=”urn:AmortizationScheduleType”

languageSpecificType=”java:myservices.amortization.ScheduleItem”/>

<typeMapping qname=”ns1:ArrayOfScheduleItem”
xmlns:ns1=”urn:AmortizationScheduleType”
type=”java:myservices.amortization.ScheduleItem[]”
serializer=”org.apache.axis.encoding.ser.ArraySerializerFactory”

deserializer=”org.apache.axis.encoding.ser.ArrayDeserializerFactory”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</service>
</deployment>

Our WSDD file is broken into a few key sections. The first portion of the file calls out
some global settings for our service, including its name, provider type, exposed
methods, and scope. Scoping is of particular interest, since it determines when new
instances of the service will be created. Axis supports three scoping options:
request, session, and application. The request scope will cause Axis to create a new
instance of the service for every request that is received. With session scoping,
Axis will produce a single instance that will be used throughout the life of a client’s
session. Finally, selecting an application scope means there will only be a single

o538292 ch34.qxd 8/18/03 8:45 AM Page 792

793Chapter 34 ✦ Apache Axis

instance of the service for all clients. Which scope you choose depends entirely
upon the state requirements of your service.

The next two sections of the WSDD file are required to describe our
ScheduleItem[] data type, which is returned by our service. First, we must
describe the ScheduleItem class itself, so we can tell Axis how it is serialized. We
achieve this by specifying the BeanMapping section of the WSDD, which will
employ the bean interface to access and serialize/de-serialize the object’s contents.
The BeanMapping tag in the WSDD is basically a specialization of the
TypeMapping tag that uses the BeanSerializer in place of the usual serializers.
With the BeanMapping set up, all that remains is to set up the TypeMapping set-
tings to describe the array of ScheduleItems.

Deploying with AdminClient
The final step in WSDD deployment is to register our WSDD service configuration
with the Axis server. Axis provides a command-line administration utility,
AdminClient, which will take our WSDD file and deploy its service configuration
data to the global Axis configuration file. So, to deploy our Amortization sample to
the Axis server, we would invoke the AdminClient as follows:

javac org.apache.axis.utils.client.AdminClient AmortizationManager.wsdd

After successfully completing this step, you should be able to peek into the Axis
configuration file and see that your service’s configuration options have been
inserted into the file. Ideally, this would be the last step, but we still have one more
key task to complete before we can say the deployment is done. We need to copy
our actual compiled file(s) to the Axis classes directory. In our example, we would
have two class files (myservice\amortization*.class) that would need to be
copied to the <Tomcat dir>\axis\webapps\WEB-INF\axis\classes directory.

At last, we’re done. Well, kind of. Tomcat won’t immediately load and publish the
existence of our new service. The server must be stopped and restarted before our
service will be available to clients. Once you’ve restarted the server, you’ll be able
to bring up the Axis administration page and view the list of deployed services,
which will include our AmortizationService.

Remote administration
Via the WSDD, Axis allows each service to enable and disable support for remote
administration. This is achieved by adding another parameter setting to your
WSDD file.

<paramater name=”enableRemoteAdmin” value=”true”>

Adding this option now means that administration options can be invoked from
machines other than the server where the service is deployed. Naturally, there are

o538292 ch34.qxd 8/18/03 8:45 AM Page 793

794 Part VII ✦ Web Services and J2EE

certain security issues that are associated with opening your service up to remote
administration. Typically, this option is left disabled and, in fact, if this parameter is
not included with your configuration, remote administration will automatically be
disabled.

WSDL Tools
WSDL (Web Service Description Language) is a technology-independent XML
markup specification that is used to express the characteristics of your Web
Service. As such, a WSDL file can be used by both client and service developers in
the creation of code that will comply with a service’s interface specification. Given
the information that can be expressed in a WSDL file, it’s only nature that Axis
would leverage this information to help simplify the Web Service development
cycle. The Java2WSDL and WSDL2Java utilities provided with Axis are both targeted
at just this purpose. These two utilities work in concert, allowing developers to
easily move back and forth between WSDL and Java.

WSDL2Java
WSDL2Java is a very useful tool that will take an incoming WSDL file and generate
Java classes that are derived directly from signature of the operations and data
types expressed in that file. In a simple scenario, this transformation is relatively
straightforward. Essentially, the WSDL2Java tool generates Java classes for each of
the data types along with a binding impl class that has methods for each of the
operations on the service. Let’s look at an example of WSDL for a simple Order ser-
vice where we have one operation on the service, getOrder(), that looks up an
Order by its ID and returns it in an Order object. Let’s look at some snippets from
the WSDL file for our service, as shown in Listing 34-7.

Listing 34-7: Order Service WSDL

...
<!-- type defs -->
<xsd:complexType name=”order”>

<xsd:all>
<xsd:element name=”orderId” type=”xsd:int”/>
<xsd:element name=”description” type=”xsd:string”/>

</xsd:all>
</xsd:complexType>

<!-- message declns -->
<message name=”GetOrderRequest”>

<part name=”orderId” type=”xsd:int”/>

o538292 ch34.qxd 8/18/03 8:45 AM Page 794

795Chapter 34 ✦ Apache Axis

</message>

<message name=”GetOrderResponse”>
<part name=”order” type=”typens:order”/>

</message>

<!-- port type declns -->
<portType name=”OrderManager”>

<operation name=”getOrder”>
<input message=”tns:GetOrderRequest”/>
<output message=”tns:GetOrderResponse”/>

</operation>
</portType>

Now, to generate the Java for this WSDL, we will invoke the WSDL2Java utility, pass-
ing in our WSDL file. The generated code will appear as shown in Listing 34-8.

Listing 34-8: Order Service Generated Java

package orderGrabber2;
public class Order implements java.io.serializable {

private int orderId;
private java.lang.String description;

public Order() {...}
public int getOrderId() {...}
public void setOrderId(int orderId) {...}
public java.lang.String getDescription() {...}
public void setDescription(java.lang.String description) {...}

}
...
public class OrderManagerSOAPBindingStub extends org.apache.axis.client.Stub
implements OrderGrabber2.OrderManager {

...

...

public OrderGrabber2.Order getOrder(int orderId) throws
java.rmi.RemoteException {

if (super.cachedEndpoint == null) {
throw new org.apache.axis.NoEndPointException();

}
org.apache.axis.client.Call _call = createCall();
_call.setOperation(_operations[0]);
_call.setUseSOAPAction(true);
_call.setSOAPActionURI(“”);
_call.setSOAPVersion(org.apache.axis.soap.SOAPConstants.SOAP11_CONSTANTS);

Continued

o538292 ch34.qxd 8/18/03 8:45 AM Page 795

796 Part VII ✦ Web Services and J2EE

Listing 34-8 (continued)

_call.setOperationName(new javax.xml.namespace.QName(“urn:
OrderGrabber2”, “getOrder”));

setRequestHeaders(_call);
setAttachments(_call);
java.lang.Object _resp = _call.invoke(new java.lang.Object[] {new

java.lang.Integer(orderId)});

if (_resp instanceof java.rmi.RemoteException) {
throw (java.rmi.RemoteException)_resp;

}
else {

getResponseHeaders(_call);
extractAttachments(_call);
try {

return (OrderGrabber2.Order) _resp;
} catch (java.lang.Exception _exception) {

return (OrderGrabber2.Order) org.apache.axis.utils.JavaUtils.
convert(_resp, OrderGrabber2.Order.class);

}
}

}
}

Out of this process we received a series of files. However, in Listing 34-8, we focus
on two key classes that are of particular interest. The first class, Order, is a bean
compliant objects that wrappers all the data elements of our Order. It will be serial-
ized and returned with each call to the getOrder() operation on the
OrderManager service. While WSDL2Java generated a bean in this sample, the tool
does not always yield a bean. The other class you see here is our binding object,
which has a method that corresponds to the one operation supported by our ser-
vice. WSDL2Java took care of filling this method in with all the details that are
required to call our service.

While this translation was pretty simple, there are plenty of examples where a valid
WSDL file cannot be turned directly into Java. For example, if one of the elements in
your WSDL had a name that conflicted with a Java keyword, this would cause the
generated Java to be invalid. To get around this problem, the WSDL2Java can refer-
ence metadata with mappings that will be used to resolve these translation issues.

So, how do we use this generated code? Listing 34-9 shows a simple client example
that would use the generated classes to interact with our service.

o538292 ch34.qxd 8/18/03 8:45 AM Page 796

797Chapter 34 ✦ Apache Axis

Listing 34-9: Using the Generated Classes

public class TestOrderService {
public static void main(String args[]) {

try {
OrderProcessingServiceLocator svcLocator =

new OrderProcessingServiceLocator();
OrderManager orderMgr = svcLocator.getOrderManager();
Order order = orderMgr.getOrder(123);

} catch (Exception e) {
System.out.println(“failure” + e);

}
}

}

This class uses the OrderProcessingServiceLocator, which provides a
method to retrieve an instance of the OrderManager class. Once we are able to
retrieve this service reference, we can begin to make calls on the service that corre-
spond to each of the operations appearing in the WSDL specification. The result is a
very intuitive, very natural mode of interaction with your service. In reality, the
WSDL2Java generated classes are so simple that you barely know you’re working
with a remote service.

Additional generation options
In this example, we focused our attention on generating a set of client-side classes
to simplify the implementation of our client. However, WSDL2Java actually offers a
series of options that can be selected to generate additional classes for use on
server side. In fact, you should look over all the options to see what additional
WSDL2Java features you might want to leverage.

Java2WSDL
Java2WSDL, as you might suspect, allows developers to generate a WSDL file from
any existing Java class or interface. The WSDL generated by Java2WSDL contains all
the appropriate WSDL types, messages, portType, bindings, and services descrip-
tions that are required to conform with the SOAP specification. There are two pri-
mary uses for the resulting WSDL file. You could use it to publish the specifications
of your interface to external consumers of your service. Or, you could use the
WSDL as input into WSDL2Java to generate client stubs (as we did in our example
above) that would simplify your client development.

o538292 ch34.qxd 8/18/03 8:45 AM Page 797

798 Part VII ✦ Web Services and J2EE

Monitor SOAP Message with TCPMON
Debugging your Web Service can be challenging, especially since each message
handled by Axis undergoes so much transformation. To assist in this area, Axis
comes packaged with a utility, TCPMON, that can be used to monitor each SOAP
request and response in its raw form.

There’s actually nothing specific to Axis in the TCPMON tool. It is implemented as a
simple proxy that sits between the client and the Axis server. TCPMON receives
each request, extracts the request contest, then forwards the request along to the
Axis server. When a response is generated, the response is intercepted by TCPMON
where its contents are also extracted before forwarding the response to the client.

As you can see, this solution allows us to intercept and record the contents of
every request and response exchanged between the client and Axis server. So, as
you’re debugging your Web Service, you’ll be able to inspect each of your SOAP
messages to see if they contain what you expect them to contain.

TCPMON setup
Before we can start sniffing messages, we need to bring up the TCPMON utility and
add a monitor. TCPMON is started as follows:

java org.apache.axis.utils.tcpmon

This will bring up the TCPMON screen (shown in Figure 34-6), where we can add
monitors for each server we want to monitor. For each monitor we add we need to
specify the port that TCPMON is going to be running on, the IP address of the Axis
server, and the port the Axis server is running on. If we just provide this basic infor-
mation and press the Add button, TCPMON will add another tab to our screen con-
figured with the supplied parameters.

Monitoring messages
Now, with the monitor added, you must use the monitor port number to access
your Web Service. This will redirect each of your messages to TCPMON, which will
then forward the request to the Axis port that was provided when you set up the
monitor. As each of these messages is processed, they are added to the list of mes-
sages near the top of the monitor tab. Now, just select any message in this list and
the request and response will be displayed in the bottom portion of the screen (as
show in Figure 34-7).

o538292 ch34.qxd 8/18/03 8:45 AM Page 798

799Chapter 34 ✦ Apache Axis

Figure 34-6: The TCPMON Admin screen

Figure 34-7: TCPMON messages

o538292 ch34.qxd 8/18/03 8:45 AM Page 799

800 Part VII ✦ Web Services and J2EE

There are a few other options supported within the monitor tab, the most signifi-
cant being the ability to resend a message directly from TCPMON. TCPMON will
also allow you to add multiple monitors, where each monitor might represent the
message activity of a given Axis server.

Summary
This chapter provided a glimpse into the functionality that is offered by Apache’s
Axis. The chapter covered the following topics:

✦ An overview of the Axis architecture, examining all the major subsystems that
are part of the Axis implementation

✦ An example of a simple Web Service

✦ The JWS and WSDD deployment models

✦ The use of WSDL tools to simplify the development of Web Service clients

✦ Using the TCPMON utility to monitor message exchanges

As you begin to work with Axis, you’re likely to find yourself digging into even more
advanced topics that are outside the scope of this book. You should be able to see,
however, that Axis is also relatively easy to get started with, allowing developers to
ease their way into the subtle details that will likely influence how they build,
deploy, and consume Web Services.

✦ ✦ ✦

o538292 ch34.qxd 8/18/03 8:45 AM Page 800

Accessing
Web Services
from Java
Applications

After the last few chapters, you should have a good idea
of what a good J2EE Web service architecture should

look like (Chapter 28). You should also be familiar with the
tools that are used to build J2EE Web service applications
using Apache AXIS (Chapter 34). In Chapter 21 we showed you
how to convert a J2EE application into a multi-tier J2EE appli-
cation. That application used servlets to serve MS SQL data to
a J2EE client application. The connection between the client
application and the servlet was made possible by an
ObjectInputStream on the client side communicating with
an ObjectOutputStream from the servlet.

In this chapter we’ve rewritten the servlet code that we devel-
oped for Chapter 21. It’s a common task for a developer these
days to upgrade a servlet-based application to a Web service
application. By showing you how to adapt the code from
Chapter 21, you get to see how to set up a Web service, and
also how to convert servlets to Web services.

Instead of a servlet-to-J2EE client connection this time, we use
Apache AXIS on the client side to create a SOAP envelope that
is sent to the server. On the “server” (really just my worksta-
tion), we’re using the Apache AXIS Simple Server, which is a
very handy tool for developing and testing Web services.

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Options for serving
Web services in
J2EE applications

Prerequisites for
developing J2EE
Web services

A multi-tier system
combining a Java
applications, servlet,
Web services, and
JDBC

Deploying Web
Service Class, WSDL,
and WSDD files on a
J2EE server

Prerequisites for
developing servlets
that serve Web
services

Under the hood of a
multi-tier Web service
application

✦ ✦ ✦ ✦

o538292 ch35.qxd 8/18/03 8:45 AM Page 801

802 Part VII ✦ Web Services and J2EE

All of the examples contained in this book can be downloaded from the
XMLProgrammingBible.com Website, in the Downloads section. Please see the
Website for installation Instructions.

When NOT to Use J2EE Web Services
In this chapter my example will show you how to serve Web services through a
third-party application server such as WebSphere or Tomcat. On the client side we
use a Java application as an example.

There is a lot of recent hype surrounding Web services. Quite often we see Web ser-
vices oversold in boardrooms and in the press as the cure for all IT problems.
However, despite the fact that Web services are a great solution for many problems,
there are times when the application overhead of dealing with Web services is not
worth the potential benefits. It’s important to note that we don’t show you how
to serve Web services directly to a Web browser client. The reason for this is that
Web service architectures are best suited to a multi-tier application environment
that serves data to either a smart client or a portal. If you plan to just serve a SOAP
envelope to a browser, and have the SOAP parsed and transformed directly to
HTML, then Web service architecture is probably not the right choice. SOAP
envelopes can be bulky and bandwidth-intensive to transport. Also, extracting data
from a SOAP envelope and transforming it to HTML involves a lot of processor over-
head. In this situation, we would either send the data from a servlet to the screen as
HTML, or send a lightweight XML document format to a client or portal processor
to be transformed.

Example: A Three-Tier System
Combining Java Applications,
Web Services, and Relational Data

In this section we’ll convert the multi-tier J2EE servlet application that we created
in Chapter 21 into a Web services application. The first Tier is the J2EE application,
which provides the user interface. The next tier is made up of four J2EE Web ser-
vices, which handle requests for data from the J2EE client application and retrieve
data from the third-tier, which is the MS SQL Server and its associated databases.
The connection between the Web services and SQL Server data is handled by JDBC.

o538292 ch35.qxd 8/18/03 8:45 AM Page 802

803Chapter 35 ✦ Accessing Web Services from Java Applications

Separating the user interface from the
data access processes
The Java Application, called XMLPBWSApp.java, is based on the Swing UI classes
and the AWT event classes. To the user, the application looks the same as the appli-
cation in Chapter 21, but this time instead of running all the Java code on the client
and accessing SQL Server data over the network or via servlets, the J2EE applica-
tion makes calls to Web services on a J2EE server. This means that the J2EE client
does not have to have access to .jar files for JDBC or servlets. This also means that
the application handles client-side functionality only, and does not have to handle
intensive data processing functions, such as generating XML documents from JDBC
result sets. This division of processing makes each side of the application perform
better than single-tier solution, and the addition of Web services adds another layer
of flexibility in the application.

Prerequisites for Developing
J2EE Web Services

Because you’re developing Web services on a J2EE server for this example, there is
a little work to be done in setting up the application. Before you get into application
development, let’s review some of the prerequisites for making this application run.

Downloading and installing AXIS
The first thing you need to do for this example is to install the latest implementa-
tion of the Apache SOAP toolkit, which has been renamed AXIS to keep us on our
toes. Axis stands for Apache eXtensible Interaction System but is still based on the
W3C SOAP Recommendation, with the equally inscrutable acronym of “Simple
Object Access Protocol.” The entire library can be downloaded from
http://xml.apache.org as a .zip or .tar file and installed on the file system.

If you’re running a J2EE application server, the axis subdirectory should be moved
to the WEB-INF or WebApps directory, depending on the server. After that the
server usually needs to be restarted.

If you want to test the application developed in this chapter without running an
application server, the latest version of AXIS comes with a client-side server tool
that can be used for testing Web services on a server or a development worksta-
tion. We’ll show you how to use this in a later section of this chapter.

Tip

o538292 ch35.qxd 8/18/03 8:45 AM Page 803

804 Part VII ✦ Web Services and J2EE

Once AXIS is downloaded and installed, edits are needed on the system CLASSPATH
for the AXIS RPC router to function correctly. Please refer to the AXIS installation
instructions for the latest details.

Deploying Web service class, WSDL, and WSDD files
The example in this chapter uses four Web services:

✦ XMLPBWSServletGetAuthorList gets a list of unique quote authors for dis-
play in the J2EE Application.

✦ XMLPBWSServletGetSingleAuthorList gets a list of quotes for a single author.

✦ XMLPBWSServletBuildElementXML returns a quotation in element-based
XML format.

✦ XMLPBWSServletBuildAttributeXML returns a quotation in attribute-based
XML format.

Each Web service is associated with a Web Service Description Language (WSDL)
file and a Web Service Deployment Descriptor (WSDD) file. Each associated file has
the same name as the Web service class file. We’ll cover what each of these file
types does later in the chapter. For now, you just need to know enough about them
to set them up.

All the Web services in this example and associated files can be downloaded from
the XMLProgrammingBible.com Website, in the Downloads section.

Running Web services on a J2EE application server
After downloading all related Web Service files from the XMLProgrammingBible.com
Website, copy the Class files and the Web Service Deployment Descriptor (WSDD)
files to the AXIS\class directory on the J2EE server or the Development workstation.
In a J2EE server environment, the WSDD Files can be locate elsewhere if your organi-
zation has rules against loading WSDD files in the class directory.

After copying the files, consult the J2EE application server’s documentation for
instructions on deploying Web services and editing the WSDD files with any
required server-specific variables.

Running the Web services without a J2EE server
The latest version of AXIS contains an implementation of a simple Web services
RPC router and server environment, called the Simple Server. The Simple Server
can be run from a command line without installing a J2EE server, so it’s easy to set

o538292 ch35.qxd 8/18/03 8:45 AM Page 804

805Chapter 35 ✦ Accessing Web Services from Java Applications

up and maintain on most computers. The server is single threaded, which makes it
great for testing, but not appropriate for a production environment.

Run the AXIS simple SOAP server
Once AXIS is downloaded, installed, and configured, open a command window and
type the following command at the prompt:

java org.apache.axis.transport.http.SimpleAxisServer -p 8080

You should get a message that says:

- SimpleAxisServer starting up on port 8080.

This indicates that the server has started. There is no confirmation message; this is
the last message that runs in the DOS Prompt widow.

The prompt window needs to be kept open for the Simple AXIS Server to run.

Deploying the Web services to the AXIS simple SOAP server
After loading the AXIS Simple SOAP Server, the Java class files need to be deployed
and registered on the server. The WSDD files handle the details of setting this up on
a J2EE application server or the AXIS simple server. If you’re using a J2EE server,
refer to that server’s documentation for Web service deployment instructions. If
you’re using the AXIS simple server, open a second command window and go to the
AXIS/Class directory where the Java class and WSDD files should be located. Type
the following four commands:

java org.apache.axis.client.AdminClient
deployXMLPBWSServletGetAuthorList.wsdd

java org.apache.axis.client.AdminClient
deployXMLPBWSServletGetSingleAuthorList.wsdd

java org.apache.axis.client.AdminClient
deployXMLPBWSServletBuildElementXML.wsdd

java org.apache.axis.client.AdminClient
deployXMLPBWSServletBuildAttributeXML.wsdd

We’ll discus the contents of the WSDD files a bit later, for now you just need to
know that these commands load the Java class files into the server and establish
rules for running and accessing the Web services.

Note

o538292 ch35.qxd 8/18/03 8:45 AM Page 805

806 Part VII ✦ Web Services and J2EE

Testing the server status and deployment
To test the server implementation and ensure that the Web services are deployed,
open a Web browser window and type the following URL, substituting the IP
address if necessary:

http://127.0.0.1:8080/axis

You should get a basic HTML Web page that looks like this:

Content-Type: text/html; charset=utf-8 Content-Length: 977
And now... Some Services
AdminService (wsdl)
AdminService
XMLPBWSServletBuildAttributeXML (wsdl)
GetSingleQuoteAttribute
XMLPBWSServletBuildElementXML (wsdl)
GetSingleQuoteElement
XMLPBWSServletGetAuthorList (wsdl)
GetAuthorList
XMLPBWSServletGetSingleAuthorList (wsdl)
GetSingleAuthorList
Version (wsdl)
getVersion

This page confirms that the Web services have been deployed. There are two sys-
tem Web services at the top and bottom of the page, and the rest of the service
listed are your Web service classes that were deployed by your prompt commands.
Each service is followed by a single method name for each class, which is regis-
tered on the server by the WSDD file.

If there is an error on this screen, or not all of the classes and methods are
installed, the first place to check is the AXIS CLASSPATH settings. If the CLASSPATH
is set up okay, then check the location of the class and WSDD files.

Installing the XMLPBWSApp J2EE application
The XMLPBWSApp.class file should be installed in a directory of a workstation that
is accessible to the Java JDK.

The XMLPBWSApp application and all of the Web service files can be downloaded
from the XMLProgrammingBible.com Website, in the Downloads section.

Installing the WSDL files
The WSDL files should be loaded on the same J2EE server as the Java class files.
They don’t have anything to do with the functionality of the Web service, but the
WSDL files should be located in the HTML directory of the J2EE application server

Tip

o538292 ch35.qxd 8/18/03 8:45 AM Page 806

807Chapter 35 ✦ Accessing Web Services from Java Applications

in a production environment. If any UDDI entries refer to the Web service, the dis-
covery URL for the WSDL file should be published in the UDDI entry or other refer-
ences to the Service, such as an entry at Xmethods.com.

Running the Web service client
Once the application is downloaded and all of the installation steps have been com-
pleted, run the application by typing “java XMLPBWSApp” from a command prompt
or the Windows “Run” menu option. The application will appear on the screen in its
own Java window.

Developing Web Services
As we’ve mentioned a few times in this chapter, the Quote XML Generator – Web
Service Edition application is an adaptation of the servlet-based multi-tier applica-
tion in Chapter 21. In this section we’ll take you “under the hood” of one of the four
Web services to show you how the Java class file, the J2EE, and the WSDL files all
work together to create a Web service.

Inside the XMLPBWSServletGetAuthorList
Web service
The code in Listing 35-1 shows a Web service that returns a unique listing of quote
authors from a MS SQL Server database via JDBC. The class starts by making a
JDBC connection to the MS SQL server XMLProgrammingBible database. Next, an
MS SQL Server JDBC driver instance is created. A connection is defined to the SQL
Server instance. In this case, we’re running the SQL Server instance and the J2EE
application on the same machine, so the IP address is the home IP address of the
machine - 127.0.0.1. The JDBC user and password for the database are set up in
the connection string. Because the XMLProgrammingBible database is specified in
the connection string, we don’t need to explicitly name the database in my SQL
server query.

A JDBC result set object is created, which is the result of the query string passed to
the SQL server. An array is built from the result set with the buildArray class, which
we’ll show you in the next listing. Once the result set is processed, the connection
and the result set are dropped. The contents of the author list object are created by
the array and passed to the application window.

The SQL command, select AuthorName from Authors, selects all of the values
in the AuthorName column of the Authors table. The buildArray class that is used
by the GetAuthorList and GetSingleAuthorList classes to build an array
from an SQL Server JDBC result set. An ArrayList is created, which is an imple-
mentation of the List interface. The most important feature of ArrayLists for the

o538292 ch35.qxd 8/18/03 8:45 AM Page 807

808 Part VII ✦ Web Services and J2EE

purposes of this code is that they are automatically resizable, via the add()
method.

We have explicitly specified java.util.List because the java.awt package
also has a List interface.

The JDBC specification contains a .toArray() method for result sets, which
would be great for this purpose. However, not all JDBC drivers implement a com-
plete set of methods for JDBC classes. The code in the buildArray class can be
used when the toArray() method is not supported, as is the case with the MS SQL
Server JDBC driver, or when you want all JDBC result set array output to be the
same regardless of driver-specific formatting.

An SQL Server result set is passed from the calling object and an ArrayList is
defined called arrayResults. The code loops through the result set and retrieves
the current result set row value as a string. SQL Server result set values returned by
the SQL Server JDBC driver sometimes contain leading and trailing blanks, so the
trim() method is sued to trim spaces off the string as it is created. The string is
added to the arrayResults object using the ArrayList.add() method. Next, a
string array called sarray is created, and the value of the ArrayList is passed to
the string array using the ArrayList.toArray() method.

The buildArray class creates a string array from the JDBC result set, which is
passed to the J2EE application that called the Web service via a SOAP envelope.

Listing 35-1: The XMLPBWSServletGetAuthorList
Web Service Code

import java.util.*;
import java.io.*;
import java.sql.*;

public class XMLPBWSServletGetAuthorList {

public String [] GetAuthorList() {
String authorList [] = null;
String sql = “select AuthorName from Authors”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn = DriverManager.getConnection
(“jdbc:microsoft:sqlserver://127.0.0.1:1433;
User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);

Note

o538292 ch35.qxd 8/18/03 8:45 AM Page 808

809Chapter 35 ✦ Accessing Web Services from Java Applications

Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);

authorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return authorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

Next, we’ll show you how the WSDL and WSDD files work together with the Java
class to make a Web service.

The XMLPBWSServletGetAuthorList WSDL and WSDD files
Each Web service in the Quote XML Generator – Web Service Edition application has
two files associated with it — :a Web Services Description Language (WSDL) file and
a Web Service Deployment Descriptor (WSDD) file. We’ll explain the files associated
with the XMLPBWSServletGetAuthorList class as a guide for all four Web services.
Each WSDL and WSDD file is virtually the same as its counterparts, except for the
names of the classes, the names of the methods, and the data types returned. Listing
35-2 shows the WSDD file associated with the XMLPBWSServletGetAuthorList Web
service.

o538292 ch35.qxd 8/18/03 8:45 AM Page 809

810 Part VII ✦ Web Services and J2EE

Deployment descriptors are well-formed XML documents that control Web service
deployment, security, and administration. The deployment descriptor declares the
name of the Web service and two XML namespaces. Next, the Service data-binding
format is defined as Java remote procedure calls (RPC). The RPC router on the
server parses incoming SOAP RPC requests and extracts data from a SOAP enve-
lope. Responses from the Web service are wrapped in a response SOAP envelope by
the same RPC router.

Next, the service’s class name is defined as XMLPBWSServletGetAuthorList.
Access to all methods contained in the Web service is permitted by the wildcard
character (*) in the allowedMethods parameter.

Listing 35-2: The XMLPBWSServletGetAuthorList WSDD File

<deployment
xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<!-- Services from XMLPBWSServletGetAuthorListService WSDL service -->
<service name=”XMLPBWSServletGetAuthorList” provider=”java:RPC”>

<parameter name=”wsdlTargetNamespace”
value=”http://www.xmlprogrammingbible.com/wsdl/default/”/>
<parameter name=”wsdlServiceElement”
value=”XMLPBWSServletGetAuthorListService”/>
<parameter name=”wsdlServicePort”
value=”XMLPBWSServletGetAuthorList”/>
<parameter name=”className”
value=”com.xmlprogrammingbible.www.
XMLPBWSServletGetAuthorListSoapBindingSkeleton”/>
<parameter name=”wsdlPortType” value=”XMLPBWSServletGetAuthorList”/>
<parameter name=”allowedMethods” value=”*”/>
<typeMapping xmlns:ns=
“http://www.xmlprogrammingbible.com/wsdl/default/”
qname=”ns:ArrayOf_soapenc_string”
type=”java:java.lang.String[]”
serializer=”org.apache.axis.encoding.ser.ArraySerializerFactory”
deserializer=”org.apache.axis.encoding.ser.
ArrayDeserializerFactory”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

/>
</service>

</deployment>

The deployment descriptor describes a Web service from a J2EE server point of
view. A WSDL file describes the same Web service from a client point of view. As
mentioned in Chapter 25, reading a WSDL file can be a daunting task, but it’s best to

o538292 ch35.qxd 8/18/03 8:45 AM Page 810

811Chapter 35 ✦ Accessing Web Services from Java Applications

keep in mind that if everything goes well, humans should rarely have to read a
WSDL file themselves. WSDL files are a way of defining a Web service interface pro-
grammatically to another Web service, smart client, or portal. Listing 35-3 shows
the WSDL interface for the XMLPBWSServletGetAuthorList Web service.

The WSDL file declares several XML namespaces, which are used to define WSDL
structure and SOAP data types. Next, data types are defined as parts of call and
response messages. The messages become part of ports, which become part of
operations. The Web service is defined as one or more operation. Last, the end-
point address for the Web service is specified in the location attribute of the
wsdlsoap:address element.

Listing 35-3: The XMLPBWSServletGetAuthorList WSDL File

<wsdl:definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://www.xmlprogrammingbible.com/wsdl/default/-impl”
xmlns:intf=”http://www.xmlprogrammingbible.com/wsdl/default/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.xmlprogrammingbible.com/wsdl/default/”>

<wsdl:types>
<schema targetNamespace=”http://www.xmlprogrammingbible.com
/wsdl/default/” xmlns=”http://www.w3.org/2001/XMLSchema”>

<import namespace=”http://schemas.xmlsoap.org
/soap/encoding/”/>
<complexType name=”ArrayOf_soapenc_string”>

<complexContent>
<restriction base=”soapenc:Array”>

<attribute ref= “soapenc:arrayType”
wsdl:arrayType=”soapenc:string[]”/>

</restriction>
</complexContent>

</complexType>
<element name=”ArrayOf_soapenc_string” nillable=”true”
type=”intf:ArrayOf_soapenc_string”/>

</schema>
</wsdl:types>
<wsdl:message name=”GetAuthorListResponse”>

<wsdl:part name=”return” type=”intf:ArrayOf_soapenc_string”/>
</wsdl:message>
<wsdl:message name=”GetAuthorListRequest”>

</wsdl:message>
<wsdl:portType name=”XMLPBWSServletGetAuthorList”>

Continued

o538292 ch35.qxd 8/18/03 8:45 AM Page 811

812 Part VII ✦ Web Services and J2EE

Listing 35-3 (continued)

<wsdl:operation name=”GetAuthorList”>
<wsdl:input name=”GetAuthorListRequest”
message=”intf:GetAuthorListRequest”/>
<wsdl:output name=”GetAuthorListResponse”
message=”intf:GetAuthorListResponse”/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”XMLPBWSServletGetAuthorListSoapBinding”
type=”intf:XMLPBWSServletGetAuthorList”>
<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name=”GetAuthorList”>

<wsdlsoap:operation/>
<wsdl:input>

<wsdlsoap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://www.xmlprogrammingbible.com/wsdl/default/”/>

</wsdl:input>
<wsdl:output>

<wsdlsoap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://www.xmlprogrammingbible.com/wsdl/default/”/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”XMLPBWSServletGetAuthorListService”>

<wsdl:port name=”XMLPBWSServletGetAuthorList”
binding=”intf:XMLPBWSServletGetAuthorListSoapBinding”>
<wsdlsoap:address location=”http://127.0.0.1/
XMLPBWSServletGetAuthorList”/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Putting the WSDD, Class, WSDL, and SOAP together
So far this may look like much more work than the application and servlet examples
in Chapter 21. Keep in mind that each interface plays an important role in dividing
the labor of each component of the application. This separation of functionality
also adds flexibility to the application. For example, the deployment descriptor can
be used to redirect calls to another Java class file or another platform entirely with-
out having to change the name, location, or functionality of the Web service.

o538292 ch35.qxd 8/18/03 8:45 AM Page 812

813Chapter 35 ✦ Accessing Web Services from Java Applications

As we mentioned earlier, the Web service WSDL file is not important for the day-to-
day functionality of the Web service. However, the WSDL file is very useful for speci-
fying the format for SOAP call and response related to the Web service. Many Web
service clients can read the WSDL file for a Web service and dynamically adapt the
calling agent interface to the serving agent.

Listing 35-4 shows a sample SOAP envelope contents that is generated by the
XMLPBWSServletGetAuthorList WSDL file. The Method name in the SOAP call
maps directly to the incoming message in the WSDL file. The GetAuthorList
method call maps to the WSDL GetAuthorList operation.

Listing 35-4: A Sample XMLPBWSServletGetAuthorList
SOAP Call

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/
soap/envelope/” xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/
encoding/” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<SOAP-ENV:Body>
<m:GetAuthorList
xmlns:m=”http://www.xmlprogrammingbible.com
/wsdl/default/” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/
soap/encoding/”/>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XMLPBWSServletGetSingleAuthorList Web service
The XMLPBWSServletGetSingleAuthorList Web service is called when a user clicks
on a quote author in the J2EE client application. The CategoryName parameter is
passed to the Web service in the SOAP request envelope. This triggers a JDBC
query on the Authors and Quotations tables in the XMLProgrammingBible
database. The buildArray class builds an array from the JDBC result set.

The Web service returns an array of quotes for the author back to the J2EE client
application in a SOAP response envelope. The RPC router on the server converts
the string array to an XML-based SOAP string array format. Listing 35-5 shows the
XMLPBWSServletGetSingleAuthorList code.

o538292 ch35.qxd 8/18/03 8:45 AM Page 813

814 Part VII ✦ Web Services and J2EE

Listing 35-5: The XMLPBWSServletGetSingleAuthorList Web
Service Code

import java.util.*;
import java.io.*;
import java.sql.*;

public class XMLPBWSServletGetSingleAuthorList {

public String [] GetSingleAuthorList(String CategoryName) {
String singleauthorList [] = null;
String sql = “SELECT dbo.Quotations.Quotation FROM dbo.Quotations
INNER JOIN dbo.Authors ON dbo.Quotations.AuthorID
= dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Authors.AuthorName = ‘“+CategoryName+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
singleauthorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return singleauthorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

o538292 ch35.qxd 8/18/03 8:45 AM Page 814

815Chapter 35 ✦ Accessing Web Services from Java Applications

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

The XMLPBWSServletBuildElementXML Web service
The code in Listing 35-6 is called when a quote is selected by a user and the output
option is set to “Element XML (Table=Root, Field Name=Element)”. A
string containing the quote formatted as an XML document is passed from the
GetSingleQuoteElement class back to the Web service as a string. Previous
examples returned arrays of strings representing quote authors or a list of quotes
for a single author.

The buildElementXML class generates custom element-based XML document for
the SQL Server output. The first thing the buildElementXML class does is create a
new StringBuffer in which to store the XML document. An XML document decla-
ration is sent to the StringBuffer, along with a root element, called resultset.
Next, an element called sql is created, which contains the SQL Server query that
was used to generate the result set. The code also retrieves the JDBC result set
metadata into the XML document. This information can be used by applications to
parse the XML values by data type and column name. We also use the metadata col-
umn name to name the elements that represent columns in the XML document.

Rows of data are returned as children of a records element. Because the result of a
query is always a single row, a single record element contains the column values.
Column values are stored in text data, and column names are represented as ele-
ment names. The entityRefs and StringReplace classes work together to con-
vert illegal XML characters in the text data (&, ‘, >, <, and “) into legal entity
reference values.

The buildElementXML class retrieves the XML document from the
StringBuffer and returns the XML document to the calling object as a string. The
XML output string is passed back to the RPC Router on the server, which passes
the result back to the Java application inside a SOAP response envelope.

o538292 ch35.qxd 8/18/03 8:45 AM Page 815

816 Part VII ✦ Web Services and J2EE

Listing 35-6: The XMLPBWSServletBuildElementXML Web
Service Code

import java.sql.*;
import java.util.*;
import java.io.*;

public class XMLPBWSServletBuildElementXML {

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name]
FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID
INNER JOIN dbo.Sources ON dbo.Quotations.SourceID =
dbo.Sources.SourceID WHERE (dbo.Quotations.Quotation =
‘“+PassedQuote+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildElementXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

String buildElementXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);
ResultSetMetaData rsMetadata = rs.getMetaData();

o538292 ch35.qxd 8/18/03 8:45 AM Page 816

817Chapter 35 ✦ Accessing Web Services from Java Applications

int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;
while(rs.next()) {

rownumber++;
strResults.append(“<record
rownumber=\””+rownumber+”\”>\r\n”);
for(int i =1; i <= intFields; i++) {

strResults.append(“<” + rsMetadata.getColumnName(i) +
“>” + entityRefs(rs.getString(i).trim()) +
“</”+rsMetadata.getColumnName(i) +”>\r\n”);

}
strResults.append(“</record>\r\n”);

}
}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring, String
xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position = stringtofix.indexOf(textstring,position+
xmlstring.length());

}
return stringtofix;

}

}

o538292 ch35.qxd 8/18/03 8:45 AM Page 817

818 Part VII ✦ Web Services and J2EE

The XMLPBWSServletBuildAttributeXML Web service
The code in Listing 35-7 is called when a quote is selected by a user and the output
option is set to “Attribute XML (Table=Root, Field Name=Attribute)”.
The buildAttributeXML class is used to create a custom attribute-based XML
document for the SQL Server output. It’s very similar to the buildElementXML
class, but this time the code produces row data as attributes of a single element,
instead of multiple nested elements under a records element.

The first thing the buildAttributeXML class does is create a new StringBuffer
in which to store the XML document. An XML document declaration is sent to the
StringBuffer, along with a root element, called resultset. Next, an element
called sql is created, which contains the SQL Server query that was used to gener-
ate the result set. Metadata is also retrieved into the XML document, which can be
used by applications XML result values by data type and column name. We also use
the metadata column name to name the elements that represent columns in the
XML document.

Row data is returned as a child of the records element. Because the results con-
tain a single row, a single record element contains all of the column values as
attributes. Column values are stored in text data, and column names are repre-
sented as element names. The entityRefs class converts any illegal XML charac-
ters in the text data (&, ‘, >, <, and “) into legal entity references for those values.

The buildAttributeXML class retrieves the XML document from the
StringBuffer and returns the XML document to the calling object as a string. The
XML output string is passed back to the RPC Router on the server, which passes
the result back to the Java application inside a SOAP response envelope.

Listing 35-7: The XMLPBWSServletBuildAttributeXML Web
Service Code

import java.util.*;
import java.io.*;
import java.sql.*;

public class XMLPBWSServletBuildAttributeXML {

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

String sql = “SELECT dbo.Quotations.Quotation,
dbo.Authors.AuthorName, dbo.Sources.[Source Name]
FROM dbo.Quotations INNER JOIN dbo.Authors
ON dbo.Quotations.AuthorID = dbo.Authors.AuthorID
INNER JOIN dbo.Sources ON dbo.Quotations.SourceID =
dbo.Sources.SourceID WHERE (dbo.Quotations.Quotation =
‘“+PassedQuote.trim()+”’)”;
String fromrow=”1”;

o538292 ch35.qxd 8/18/03 8:45 AM Page 818

819Chapter 35 ✦ Accessing Web Services from Java Applications

String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);
Connection conn =
DriverManager.getConnection(“jdbc:microsoft:sqlserver:
//127.0.0.1:1433;User=jdbcUser;Password=jdbcUser;
DatabaseName=XMLProgrammingBible”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
XMLDoc = buildAttributeXML(rs, sql);

rs.close();
conn.close();

} catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

String buildAttributeXML(ResultSet rs, String sql) {
StringBuffer strResults = new StringBuffer(“<?xml version=\”1.0\”
encoding=\”UTF-8\”?>\r\n<resultset>\r\n”);
try {

strResults.append(“<sql>” + sql +” </sql>\r\n”);

ResultSetMetaData rsMetadata = rs.getMetaData();
int intFields = rsMetadata.getColumnCount();
strResults.append(“<metadata>\r\n”);
for(int h =1; h <= intFields; h++) {

strResults.append(“<field name=\”” +
rsMetadata.getColumnName(h) + “\” datatype=\”” +
rsMetadata.getColumnTypeName(h) + “\”/>\r\n”);

}
strResults.append(“</metadata>\r\n<records>\r\n”);

int rownumber= 0;

while(rs.next()) {
rownumber++;
strResults.append(“<record rownumber=\””+rownumber+”\””);
for(int i =1; i <= intFields; i++) {

strResults.append(“ “+rsMetadata.getColumnName(i) + “ =
\”” + entityRefs(rs.getString(i).trim()) + “\””);

}
strResults.append(“/>\r\n”);

}

Continued

o538292 ch35.qxd 8/18/03 8:45 AM Page 819

820 Part VII ✦ Web Services and J2EE

Listing 35-7 (continued)

}catch(Exception e) {}
strResults.append(“</records>\r\n</resultset>”);
System.out.println(strResults.toString());
return strResults.toString();

}

String entityRefs(String XMLString) {
String[] before = {“&”,”\’”,”>”,”<”,”\””};
String[] after = {“&”,”'”,”>”,”<”,”"”};
if(XMLString!=null) {

for(int i=0;i<before.length;i++) {
XMLString = stringReplace(XMLString, before[i], after[i]);

}
}else {XMLString=””;}
return XMLString;

}

String stringReplace(String stringtofix, String textstring, String
xmlstring) {

int position = stringtofix.indexOf(textstring);
while (position > -1) {

stringtofix = stringtofix.substring(0,position) + xmlstring +
stringtofix.substring(position+textstring.length());
position =
stringtofix.indexOf(textstring,position+xmlstring.length());

}
return stringtofix;

}

}

Inside the XMLPBWSApp J2EE
Client Application

The XMLPBWSApp J2EE client application is a fully functional Java Application that
uses Swing Classes and AWT events to generate a UI. The J2EE client makes SOAP
calls to Web services, which connect to relational data on MS SQL server using
JDBC. The Web services manipulate the JDBC query result sets and return
responses to the J2EE client application.

o538292 ch35.qxd 8/18/03 8:45 AM Page 820

821Chapter 35 ✦ Accessing Web Services from Java Applications

How the application works
When the application window is opened, a Web service is called that retrieves a list
of unique quote authors. The Web service retrieves data from the Authors table of
the XMLProgrammingBible database on SQL Server. The connection from the Web
service to the SQL Server databases is made via JDBC. The application then draws
the various Swing panels on the page and attaches AWT events to the panels. Users
can scroll up and down the list of quote authors in the author List panel, and select
a single author by clicking on it in the list.

Clicking on an author name triggers another call to another Web service. That Web
service query to retrieve all the quotes attributed to the selected author. The
quotes are displayed in the quote list panel on the top right of the screen.

When a user clicks on one of the quotes in the quote list panel, another J2EE Web
service is called to generate XML document output for the selected quote and dis-
play it in the output panel in the lower half of the application window. In the middle
of the screen is a combo box that can be used to select output format options.
Table 35-1 lists the four options and what they produce:

Table 35-1
Quote Output Formatting Options

Just the Quote Generates plain quote text in the output window.

Element XML (Table=Root, JDBC metadata and columns of a table
Field Name=Element) represented as elements nested in a parent

record element.

Attribute XML (Table=Element, JDBC metadata and columns of a table
Field Name=Attribute) represented as attributes in a record element.

Aside from being a good J2EE Web Services application prototype, the Quote XML
Web Service application is also a good example of applying a user interface to SQL
Server data. It’s also a good prototype for any application that uses Web services,
JDBC, and Java GUI classes. The application contains examples of accessing and
displaying SQL Server data in several different ways, including strings, arrays, and
XML documents.

About the example SQL Server data
In this chapter we’re reusing tables from the XMLProgrammingBible SQL Server
database. Setup instructions for the database can be found in Chapter 18.

o538292 ch35.qxd 8/18/03 8:45 AM Page 821

822 Part VII ✦ Web Services and J2EE

Creating the Java Application User Interface
We have broken down the source code into segments that relate to a specific
topic, rather than showing the source code in its entirety on the pages. All of
the examples contained in this chapter can be downloaded from the XML
ProgrammingBible.com Website, in the Downloads section. Please see the
Website for installation Instructions.

Defining public variables and the application window
Let’s look under the hood of the Java Application by breaking down the Java
Application source code into topical sections with detailed explanations of the
code, starting with the introductory application setup in Listing 35-8.

The J2EE client application imports the java.io classes for writing to the screen,
javax.swing classes to handle UI features and selected java.awt classes to man-
age action events. The org.apache.axis and java.rmi classes are used to cre-
ate SOAP envelopes and make calls to Web services.

The beginning of the code sets up a Jframe window, which becomes the applica-
tion window, and creates an instance of an actionlistener to watch for the win-
dow to be closed. When the window is closed, the application exits.

Listing 35-8: Defining the Public Variables and the
Application Window

import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import org.apache.axis.*;
import org.apache.axis.client.*;
import java.rmi.*;
import org.apache.axis.encoding.*;
import org.apache.axis.utils.*;

public class XMLPBWSApp extends JPanel {
JTextArea output;
JList authorList;
JList QuoteList;
ListSelectionModel authorListSelectionModel;
ListSelectionModel QuotelistSelectionModel;

o538292 ch35.qxd 8/18/03 8:45 AM Page 822

823Chapter 35 ✦ Accessing Web Services from Java Applications

public String[] listData;
JComboBox comboBox;

public static void main(String[] args) {
JFrame frame = new JFrame(“Quote XML Generator - Web Service
Edition”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

frame.setContentPane(new XMLPBWSApp());
frame.pack();
frame.setVisible(true);

}

Setting objects in the window and
implementing ActionListeners
Listing 35-9 shows the code that is used to define the main UI on top of the applica-
tion window. The first task is to retrieve a unique list of quote authors from the SQL
Server Authors table calling the GetAuthorList() class, which I will cover a bit
later.

Once this is done, the AuthorList object is created, and an AuthorList
SelectionHandler object is attached to the list. When users click on a quote
author, the AuthorListSelectionHandler class is called to handle the action.
Next, a JscrollPane called SourcePane is created for the list object, and the
pane is placed in the top left of the application window.

The instantiation steps are repeated for the QuoteList object, which will be used
to display quotes for a selected author on the top right of the application window. A
QuoteListSelectionHandler object is attached to the quote list.

Next, a drop-down combo box containing the application output options is created,
which will be located in the center of the application window, just below the author
list and quote list panes. The hard-coded output options are defined and the default
is set to the first object.

A JtextArea object is defined and placed in the bottom half of the application win-
dow. This is where the XML and text output is sent when a user selects a quote
from the quote list.

o538292 ch35.qxd 8/18/03 8:45 AM Page 823

824 Part VII ✦ Web Services and J2EE

The balance of the code in Listing 35-9 is Swing and AWT class housekeeping to cre-
ate the details of the layout that the user interface needs.

Listing 35-9: Setting Objects in the Window and
Implementing ActionListeners

public XMLPBWSApp() {
super(new BorderLayout());

listData = GetAuthorList();
String[] WelcomeMessage={“Click on a Source in the Left Pane to
Retrieve Quotes”};

authorList = new JList(listData);

authorListSelectionModel = authorList.getSelectionModel();
authorListSelectionModel.addListSelectionListener(
new authorListSelectionHandler());
JScrollPane SourcePane = new JScrollPane(authorList);

QuoteList = new JList(WelcomeMessage);
QuotelistSelectionModel = QuoteList.getSelectionModel();
QuotelistSelectionModel.addListSelectionListener(
new QuoteListSelectionHandler());
JScrollPane QuotePane = new JScrollPane(QuoteList);

JPanel OutputSelectionPane = new JPanel();
String[] OutputFormats = { “Just the Quote”, “Element XML
(Table=Root, Field Name=Element)”,
“Attribute XML (Table=Element, Field Name=Attribute)”};

comboBox = new JComboBox(OutputFormats);
comboBox.setSelectedIndex(0);
OutputSelectionPane.add(new JLabel(“Select an output Format:”));
OutputSelectionPane.add(comboBox);

output = new JTextArea(1, 10);
output.setEditable(false);
output.setLineWrap(true);
JScrollPane outputPane = new JScrollPane(output,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
add(splitPane, BorderLayout.CENTER);

JPanel TopPanel = new JPanel();
TopPanel.setLayout(new BoxLayout(TopPanel, BoxLayout.X_AXIS));
JPanel SourceContainer = new JPanel(new GridLayout(1,1));
SourceContainer.setBorder(BorderFactory.createTitledBorder(

o538292 ch35.qxd 8/18/03 8:45 AM Page 824

825Chapter 35 ✦ Accessing Web Services from Java Applications

“Source List”));
SourceContainer.add(SourcePane);
SourcePane.setPreferredSize(new Dimension(300, 100));
JPanel QuoteContainer = new JPanel(new GridLayout(1,1));
QuoteContainer.setBorder(BorderFactory.createTitledBorder(
“Quote List”));
QuoteContainer.add(QuotePane);
QuotePane.setPreferredSize(new Dimension(300, 500));
TopPanel.setBorder(BorderFactory.createEmptyBorder(5,5,0,5));
TopPanel.add(SourceContainer);
TopPanel.add(QuoteContainer);

TopPanel.setMinimumSize(new Dimension(400, 50));
TopPanel.setPreferredSize(new Dimension(400, 300));
splitPane.add(TopPanel);

JPanel BottomPanel = new JPanel(new BorderLayout());
BottomPanel.add(OutputSelectionPane, BorderLayout.NORTH);
BottomPanel.add(outputPane, BorderLayout.CENTER);
BottomPanel.setMinimumSize(new Dimension(400, 50));
BottomPanel.setPreferredSize(new Dimension(800, 400));
splitPane.add(BottomPanel);

}

Listings 35-10 and 35-11 show the AWT Class ActionListeners, which facilitate
the UI functionality in the application.

Defining the action for the Author list
Listing 35-10 shows the code that is called when a user clicks on a quote author.
When the ActionListener detects that the user has selected a quote author, the
GetSingleAuthorList class is called, which returns a single-column listing of
quotes for that author. The quotes are displayed in the quote list object on the top
right of the application window.

Listing 35-10: Defining the Action for the Author List

class authorListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent se) {

ListSelectionModel slsm = (ListSelectionModel)se.getSource();
String [] s = GetSingleAuthorList(authorList.getSelectedValue()
.toString());
QuoteList.setListData(s);

}
}

o538292 ch35.qxd 8/18/03 8:45 AM Page 825

826 Part VII ✦ Web Services and J2EE

Defining the action for the Quote list
When a user selects a quote by clicking on a selection in the quote list, the code in
Listing 35-11 is called. When the ActionListener detects that the user has
selected a Quote, the QuoteListSelectionHandler checks the combo box to
see which output format is selected by the user.

If “Just the Quote” is selected, the quote is sent to the output object as text. If
the “Element XML (Table=Root, Field Name=Element)” option is chosen,
the GetSingleQuoteElement class is called to generate Custom XML for the out-
put, with SQL Server table column values formatted as elements in the XML docu-
ment. If “Attribute XML (Table=Element, Field Name=Attribute)” is
chosen, the GetSingleQuoteAttribute is called to generate result set table col-
umn values as attributes.

Listing 35-11: Defining the Actions for the Quote List

class QuoteListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent qe) {

ListSelectionModel qlsm = (ListSelectionModel)qe.getSource();
String OutputFormatChoice = (String)comboBox.getSelectedItem();

if (OutputFormatChoice.equals(“Just the Quote”)) {
output.setText(QuoteList.getSelectedValue().toString());

}

else if (OutputFormatChoice.equals(“Element XML (Table=Root,
Field Name=Element)”)) {

output.setText(GetSingleQuoteElement
(QuoteList.getSelectedValue().toString(
))); }

else if (OutputFormatChoice.equals(“Attribute XML
(Table=Element, Field Name=Attribute)”)) {

output.setText(GetSingleQuoteAttribute
(QuoteList.getSelectedValue().toString()));}

else {
output.setText(QuoteList.getSelectedValue().toString());

}

}
}

Retrieving a list of authors by calling a Web service
The code in Listing 35-12 returns a unique listing of quote authors by calling the
XMLPBWSServletGetAuthorList Web service. A new instance of a SOAP call is

o538292 ch35.qxd 8/18/03 8:45 AM Page 826

827Chapter 35 ✦ Accessing Web Services from Java Applications

created and assigned a Web service target endpoint of http://127.0.0.1:8080/
axis/servlet/AxisServlet. This endpoint accesses the AXIS Simple Server,
which contains an RPC router. The RPC router parses the SOAP envelope and the
HTTP POST Header, extracts a request object from the SOAP envelope, and routes
the request to the appropriate Web service class. The routing of the request object
is based on the current deployment descriptor configuration.

The GetAuthorList class in the XMLPBWSServletGetAuthorList Web service
processes a JDBC query against the SQL server database and returns a result set. A
new instance of a string array is created using standard SOAP encoding of data type
ArrayOf_xsd_string. Converting data types from their native types to SOAP or
other types of encoding is an integral part of Web services, and allows typed data to
flow between platforms and operating systems by being serialized and de-serialized
on sending and delivery of the SOAP envelope. The string array is passed back to
the RPC router. The RPC router then wraps the response object in a SOAP response
envelope and sends the response back to the J2EE client application. The string
array result is extracted from the SOAP response envelope by the AXIS call object.
The response is assigned to the AuthorList string array variable, which is passed
back to the application for display in the UI.

Listing 35-12: Retrieving a List of Authors from the
SQL Server Authors Table

public String [] GetAuthorList() {
String AuthorList [] = null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/AxisServlet”)
);
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSServletGetAuthorList”,
“GetAuthorList”));
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “ArrayOf_xsd_string”));
AuthorList = (String []) call.invoke(new Object[] {});

}

catch(Exception e) {
e.printStackTrace();

}
return AuthorList ;

}

o538292 ch35.qxd 8/18/03 8:45 AM Page 827

828 Part VII ✦ Web Services and J2EE

Retrieving a list of quotes from a selected author
When a user clicks on a quote author, the ActionListener for the author list
object passes the author name as a string value to the GetSingleAuthorList
Class, shown in Listing 35-13. This class uses the passed value, called Category
Name, to retrieve all the quotes for an author using an SQL query passed to the
server via JDBC.

The GetSingleAuthorList class is similar to the GetAuthorList class.
GetSingleAuthorList in the XMLPBWSServletGetSingleAuthorList Web
service passes a parameter value to a JDBC query against the SQL server database
and returns a result set. A new instance of a string array is created using standard
SOAP encoding of data type ArrayOf_xsd_string. The string array is passed
back to the RPC router. The RPC router then wraps the response object in a SOAP
response envelope and sends the response back to the J2EE client application. The
string array result is extracted from the SOAP response envelope by the AXIS call
object. The response is assigned to the singleAuthorList string array variable,
which is passed back to the application for display in the UI. The contents of the
quote list object are then created by the array and the quote list object is displayed
in the upper-right panel of the application window.

Listing 35-13: Retrieving Quotes for an Author

public String [] GetSingleAuthorList(String CategoryName) {
String singleAuthorList [] = null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/AxisServlet”)
);
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSServletGetSingleAuthorList”,
“GetSingleAuthorList”));
call.addParameter(“CategoryName”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “ArrayOf_xsd_string”));
singleAuthorList = (String []) call.invoke(new Object[]
{CategoryName});

}

catch(Exception e) {
e.printStackTrace();

}

o538292 ch35.qxd 8/18/03 8:45 AM Page 828

829Chapter 35 ✦ Accessing Web Services from Java Applications

return singleAuthorList ;

}

Generating Custom XML Output
When a user clicks on a quote, a call is triggered to the QuoteListSelection
Handler, which is outlined in Listing 35-11. This triggers one of three actions,
depending on the output format chosen in the combo box. The first action is to
send the plain text directly to the output object. The code in Listing 35-14 is
called when a quote is selected in the quote list object and the Element XML
(Table=Root, Field Name=Element) option is chosen from the output format
combo box. The quote text is passed to the GetSingleQuoteElement class. This
class calls a Web service to retrieve the quote from SQL Server and format the XML
as an element-based XML document.

The GetSingleQuoteElement class in the XMLPBWSServletBuildElementXML
Web service passes a parameter value containing a quotation to a JDBC query. The
JDBC query returns a result set. A new instance of a string is created using standard
SOAP encoding of data type xsd_string. The string is formatted as an element-
based XML document and passed back to the RPC router. The RPC router then
wraps the response object in a SOAP response envelope and sends the response
back to the J2EE client application. The string result is extracted from the SOAP
response envelope by the AXIS call object. The response is assigned to the XMLDoc
string variable, which is passed back to the application for display in the UI. The
contents of the string are displayed in the lower panel of the application.

Listing 35-14: Retrieving Custom XML from a Web Service

public String GetSingleQuoteElement(String PassedQuote) {
String XMLDoc=null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/
AxisServlet”));
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSServletBuildElementXML”,
“GetSingleQuoteElement”));

Continued

o538292 ch35.qxd 8/18/03 8:45 AM Page 829

830 Part VII ✦ Web Services and J2EE

Listing 35-14 (continued)

call.addParameter(“PassedQuote”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “string”));
XMLDoc = (String) call.invoke(new Object[] {PassedQuote});

}

catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

Listing 35-15 shows a typical element-based XML document that is returned by the
XMLPBWSServletBuildElementXML Web service.

Listing 35-15: Custom XML Output Generated by the
XMLPBWSServletBuildElementXML Web Service

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<sql>SELECT dbo.Quotations.Quotation, dbo.Authors.AuthorName,
dbo.Sources.[Source Name] FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘When the hurlyburlys done, When the battles
lost and won.’) </sql>
<metadata>

<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”Source Name” datatype=”char”/>

</metadata>
<records>

<record rownumber=”1”>
<Quotation>When the hurlyburlys done, When the battles lost and
won.</Quotation>
<AuthorName>Shakespeare, William</AuthorName>
<SourceName>Macbeth</SourceName>

</record>
</records>

</

o538292 ch35.qxd 8/18/03 8:45 AM Page 830

831Chapter 35 ✦ Accessing Web Services from Java Applications

The GetSingleQuoteAttribute class in the XMLPBWSServletBuild
AtrtributeXML Web service also passes a parameter value containing a quotation
to a JDBC query. The JDBC query returns a result set and a new instance of a string
is created using standard SOAP encoding of data type xsd_string. The string is
formatted as an attribute-based XML document and passed back to the RPC router.
The RPC router then wraps the response object in a SOAP response envelope and
sends the response back to the J2EE client application. The string result is
extracted from the SOAP response envelope by the AXIS call object. The response
is assigned to the XMLDoc string variable, which is passed back to the application
for display in the UI. The contents of the string are displayed in the lower panel of
the application. Listing 35-16 shows the code for the GetSingleQuoteAttribute
class in the J2EE client application.

Listing 35-16: Custom XML Output Generated by the
XMLPBWSServletBuildAttributeXML Web Service

public String GetSingleQuoteAttribute(String PassedQuote) {
String XMLDoc=null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/AxisServlet”)
);
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSServletBuildAttributeXML”,
“GetSingleQuoteAttribute”));
call.addParameter(“PassedQuote”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com
/wsdl/default/”, “string”));
XMLDoc = (String) call.invoke(new Object[] {PassedQuote});

}

catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

Listing 35-17 shows an example of an Attribute-based XML document created by the
XMLPBWSServletBuildAttributeXML Web service.

o538292 ch35.qxd 8/18/03 8:45 AM Page 831

832 Part VII ✦ Web Services and J2EE

Listing 35-17: Custom XML Output Generated by the
GetSingleQuoteAttribute Class

<?xml version=”1.0” encoding=”UTF-8”?>
<resultset>

<sql>SELECT dbo.Quotations.Quotation, dbo.Authors.AuthorName,
dbo.Sources.[Source Name] FROM dbo.Quotations INNER JOIN dbo.Authors ON
dbo.Quotations.AuthorID = dbo.Authors.AuthorID INNER JOIN dbo.Sources ON
dbo.Quotations.SourceID = dbo.Sources.SourceID WHERE
(dbo.Quotations.Quotation = ‘When the hurlyburlys done, When the battles
lost and won.’) </sql>
<metadata>

<field name=”Quotation” datatype=”char”/>
<field name=”AuthorName” datatype=”char”/>
<field name=”Source Name” datatype=”char”/>

</metadata>
<records>

<record rownumber=”1” Quotation=”When the hurlyburlys done, When the
battles lost and won.” AuthorName=”Shakespeare, William”
SourceName=”Macbeth”/>

</records>
</resultset>

Summary
In this chapter we’ve provided an example of a multi-tier J2EE Web Service applica-
tion that works with XML documents and relational data. We showed you how to
implement the server solution suing SXIS, WSDL, and WSDD documents. We also
showed you how to create a J2EE client application to access Web service data.

✦ A multi-tier J2EE Web service application

✦ Using JDBC with Web service applications

✦ Controlling custom XML formats using Web services

✦ A Three-tier J2EE application combining Java applications, servlets, and JDBC

✦ Accessing Web services from a J2EE application

The next two chapters delve much deeper into Web service architectures. We’ll
cover XML and Web service transactions and how to handle Web service security
and authentication, among other things.

✦ ✦ ✦

o538292 ch35.qxd 8/18/03 8:45 AM Page 832

Advanced Web
Services

Part VIII covers RDBMS support for Web services. We
also delve into the developing standards associated

with Web service security. Standards-based options for Web
service encryption, signatures, and authentication are dis-
cussed in detail in Chapter 37.

✦ ✦ ✦ ✦

In This Part

Chapter 36
Accessing Relational
Data via Web
Services

Chapter 37
Authentication and
Security for Web
Services

✦ ✦ ✦ ✦

P A R T

VIIIVIII

p538292 pp08.qxd 8/18/03 8:45 AM Page 833

Accessing
Relational Data
via Web Services

Relational database vendors have not ignored Web ser-
vices. Most RDBMS vendors have added features to

their database products that handle WSDL and SOAP. In most
cases, the Web service features are an extension of XML fea-
tures in the same product.

In this chapter we’ll cover the ways that MS SQL Server, IBM
DB2, and Oracle databases support Web services. We’ll out-
line each vendor’s methods for Web service support. We’ll
show examples of setting up a SQL Server Web service using
IIS and SQLXML. We’ll discuss implementation of Web services
on Oracle9iAs Application Server. We’ll also introduce you to
DB2 Web service features, including the Web services Object
Runtime Framework (WORF). WORF and Document Access
Definition Extension (DADX) files. We’ll finish off the chapter
by showing you an example that uses a DB2 Web service in a
multi-tier J2EE Web service environment.

MS SQL Server and Web services
MS SQL Server provides Web service support via SQLXML and
the MS Internet Information Server (IIS) HTTP server. Before
you can create Web services that access SQL Server data, IIS
must be running on the same machine as the SQL Server
instance. You also have to download and install SQLXML 3.0
or higher and set up a virtual HTTP server root that is
enabled for SOAP. If you already are running a version of
SQLXML that is older than version 3.0, you will have to down-
load and install the latest version to support SOAP functional-
ity. At the time that we are writing this chapter, the current
version is SQLXML 3.0 SP1. You can download the latest ver-
sion of SQLXML from http://www.microsoft.com/sql/
techinfo/xml/default.asp.

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Options for RDBMS
Web services

Web services support
in Oracle, DB2, and
MS SQL Server

Data compatibility
issues with MS SQL
Server Web services
and other Web
services

Working with the
DB2 Web Services
Object Runtime
Framework (WORF)

An example of DB2
and J2EE Web
services working
together

✦ ✦ ✦ ✦

q538292 ch36.qxd 8/18/03 8:45 AM Page 835

836 Part VIII ✦ Advanced Web Services

Installing and configuring SQLXML
Once SQLXML is downloaded and installed, applications can make SOAP calls to
SQL Server stored procedures and User-Defined Functions (UDFs). Microsoft
Internet Information Server (IIS) provides the services that convert SOAP requests
to stored procedure or UDF calls.

The IIS Virtual Directory Management for SQL Server utility can be accessed by
selecting “Configure SQLXML Support in IIS” from the SQL Server start menu
options. The utility creates an association between a virtual directory on the IIS
server and SQL Server data. A URL containing the IIS server address, the virtual
directory, and an SQL expression can be passed from a Web browser or an applica-
tion over HTTP to the IIS server. The IIS server will route the request to the SQL
server based on the virtual directory name. Security and port information that is
preconfigured in the virtual directory connects the request to a database for execu-
tion. The help associated with the IIS configuration tool covers all of the setup
details. We do, however, have a few additional tidbits that may be useful for the
setup:

✦ TCPIP must be enabled via the network utility, and the port must be config-
ured to port 1433.

✦ Windows and SQL server login support must be enabled (the default is
“Windows Only”).

✦ A version of SQLXML must be loaded and installed. For the examples in this
chapter, SQLXML 3.0 SP1 should be installed. The examples may work with
older SQLXML installations, but have not been tested with anything other
than the most recent version.

Configuring IIS Virtual Directory
Management Web Services
The current IIS configuration tool help is a little coy when defining settings for SQL
Server Web services, so we’ve provided the following example to take you though
the steps.

Open the IIS configuration tool by choosing the “Configure IIS Support” option from
the SQLXML menu.

Create a new virtual directory under the default directory by right-clicking on the
Default Website, and choosing New➪Virtual Directory from the pop-up menu.

Under the general tab, choose a name for the new virtual directory. We name mine
XMLPBWS (XML Programming Bible Web Services). Create a new folder with the
path from the wwwroot directory:

C:\Inetpub\wwwroot\XMLPBWS

q538292 ch36.qxd 8/18/03 8:45 AM Page 836

837Chapter 36 ✦ Accessing Relational Data via Web Services

We always create new directory for Web services versus other SQLXML functions
such as templates. This splits the security away from the regular SQL functions. It
also makes it less confusing to find and maintain WSDL files, templates, etc.

Under the Security Tab, choose “Use Windows Integrated Authentication” if you’re
working on the same machine as the SQL Server instance (recommended).
Otherwise, provide the connection info to the server.

Under the Data Source tab, choose the server name or (local). Select the default
database for login. Define the database later in your UDF or stored procedure if
you’re not accessing the default database.

Under the settings tab, select Allow POST. Web service request envelopes are sent
over HTTP as a POST.

Under the virtual names tab, create the name of the Web service. If you want to
make it confusing, you can use something other than the name of the virtual direc-
tory. We use the same name (XMLPBWS). For the type, choose SOAP so that SOAP
envelopes can be sent and received. Use the same path as specified for the virtual
directory:

C:\Inetpub\wwwroot\XMLPBWS

Figure 36-1 shows the Virtual Names tab of the XMLPBWS Web service.

Figure 36-1: The Virtual Names tab for an
SQL Server Web service

Note

q538292 ch36.qxd 8/18/03 8:45 AM Page 837

838 Part VIII ✦ Advanced Web Services

Now you have a Web service set up with a name of XMLPBWS, but the Web service
doesn’t actually do anything yet. Next, you have to add methods that the Web ser-
vice will use. Web services refer to these methods as actions. To do this, select the
XMLPBWS virtual name from the Virtual Names tab. Click on the “Configure” button
on the lower-right side of the dialog box. Create a method name for the Web ser-
vice, and link it to a stored procedure or a user-defined function. We use the same
name for the stored procedure and the Web service to avoid confusion in the
future. Set up the output formatting according to your needs (output formatting is
covered in the help, and We will discuss it later in this chapter). Repeat this step for
each method that should be part of the Web service.

Figure 36-2 shows the GetAuthorList method of the XMLPBWS Web service. This
method namemaps to the GetAuthorList stored procedure in the XMLPBWS
database.

Figure 36-2: The GetAuthorList method of
the XMLPBWS Web service

Below is the GetAuthorList stored procedure. As you can see here, GetAuthor
List contains a very simple query that returns all of the column values from the
Authors table.

CREATE PROCEDURE GetAuthorList AS select * from Authors
GO

q538292 ch36.qxd 8/18/03 8:45 AM Page 838

839Chapter 36 ✦ Accessing Relational Data via Web Services

Handling Microsoft Web service data
in other platforms
So far we have created a Web service and added a method. When the XMLPBWS Web
service is defined, a new, blank WSDL file is created. Each time a new Web service
method is added using the “Configure” button of the Virtual Names tab, a new Web
service operation is added into the WSDL file with the same name. The WSDL file is
located in the virtual directory that you specified when you set up the Web service.
Web service clients can now read the WSDL file and call the Web service using a
SOAP envelope with no parameters. The body of the envelope looks like this:

<SOAP-ENV:Body>
<m:GetAuthorList xmlns:m=”http://LAPTOP2/XMLPBWS/XMLPBWS”/>

</SOAP-ENV:Body>

A Web service client calls the Web service using its URL. The element name contains
the name of the method to use (GetAuthorList). The URL maps to the stored pro-
cedure using the methods defined in the virtual names tab. A W3C standard SOAP
request envelope containing the above envelope body is sent to the Web service. A
response envelope is returned. That’s where things get tricky with MS Web services.
Some readers may have heard about incompatibilities between MS SOAP envelopes
and other kinds of SOAP envelopes. This is very true at the API level.

Most software platforms have developed a way of reading WSDL files and generat-
ing object code that can access Web services. Microsoft provides APIs for this func-
tionality through the .NET framework and the MS SOAP toolkit. Java developers can
use the Apache AXIS and the WSDL2Java class to generate Java objects from WSDL.
Both APIs function well on Web services that restrict them selves to the W3C SOAP
data types and W3C Schema data types. This includes simple data types by them-
selves, and complex data types that are derived from simple data types.

For more information on the WSDL2Java class and its use, please refer to Chapter 34.

Microsoft has chosen to provide complex data type names on their return data that
are incompatible with anything described in the W3C schema or SOAP recommen-
dations. These data types are specifically named, but not specifically defined.
Following is a sample response body of the SQLXML response that is generated by
the GetAuthorList Web service. For this example, the GetAuthorList method
has been configured to return “XML Objects” in the IIS configuration tool. The
result is broken into two data types. The AuthorListResult is an SqlResult
Stream, and the contents of the result stream is SqlXml. These are not W3C stan-
dard data types. The content in the result, however, does not consist of anything
that could not be a W3C standard data type. Also, the content of a dynamic data
type such as SqlXml cannot be specifically defined, because the contents differ for
each Web service and method that uses this data type.

Cross-
Reference

q538292 ch36.qxd 8/18/03 8:45 AM Page 839

840 Part VIII ✦ Advanced Web Services

MS SOAP toolkit and .NET applications read and accept these data types without
the user having to code custom data types into their Web service client applica-
tions. MS applications also fully support W3C Web services and standard data
types. Developers can work with objects that are created, rather than having to
hand-code object handlers that map to XML elements. However, the use of these
data types means that other APIs, such as the Apache AXIS WDSL2Java class, can-
not create objects based on these data types. Instead, a J2EE has to hand-code a
class with methods that define and accept the SqlXml data type, and parse the
data into something useful to Java.

<SOAP-ENV:Body>
<tns:GetAuthorListResponse>

<tns:GetAuthorListResult xsi:type=”sqlresultstream:SqlResultStream”>
<sqlresultstream:SqlXml xsi:type=”sqltypes:SqlXml”
sqltypes:IsNested=”false”>
<SqlXml>

<row>
<AuthorID>1001</AuthorID>
<AuthorName>Shakespeare, William</AuthorName>

</row>
<row>

<AuthorID>1002</AuthorID>
<AuthorName>Joyce, James</AuthorName>

</row>
</SqlXml>

</sqlresultstream:SqlXml>
<sqlresultstream:SqlResultCode xsi:type=”sqltypes:SqlResultCode”
sqltypes:IsNested=”false”>0</sqlresultstream:SqlResultCode>

</tns:GetAuthorListResult>
</tns:GetAuthorListResponse>

</SOAP-ENV:Body>

By contrast, Oracle and DB2 Web services return W3C standard data types for row
data. In DB2, you also have the option of just passing XML in the envelope body,
without data type definitions. We’ll show you an example of a DB2 Web service later
in this chapter.

Oracle’s application server now has a set of classes that reads and manages MS
Web service data types. This feature is implemented in the latest version of the
Oracle 9i Application Server (Oracle9iAS).

The MS DataSet data type is even more complex, though it does contain some use-
ful information. For this example, the GetAuthorList method has been configured
to return “DataSet Objects” in the IIS configuration tool. The data that is returned in
a DataSet is preceded by a W3C schema. The schema contains metadata describing
the structure of the data and the W3C data types for each data element in the result
envelope. This is similar to JDBC result sets, which provide optional metadata for
results. The metadata can be used by the receiving application to analyze and

Note

q538292 ch36.qxd 8/18/03 8:45 AM Page 840

841Chapter 36 ✦ Accessing Relational Data via Web Services

manipulate the data in the result set. Unfortunately, the data is wrapped in a non-
W3C standard SqlRowSet data type, which only MS .NET and SOAP toolkit applica-
tions can handle. MS and .NET Web services use the provided schema to create
objects, therefore dynamically defining the previously indefinable SqlRowSet data
type. If there were an option for omitting the sqlResultStream and SqlRowSet
data types from the Web service definitions, other platforms could work with MS
Web services in the same way. However, non-MS developers are once again left on
their own to manually read the result envelope and develop handler classes to
extract and parse the data from within the SqlRowSet data type.

<SOAP-ENV:Body>
<tns:GetAuthorListResponse>

<tns:GetAuthorListResult xsi:type=”sqlresultstream:SqlResultStream”>
<sqlresultstream:SqlRowSet
xmlns:sqlresultstream=”http://schemas.microsoft.com/
SQLServer/2001/12/SOAP/types/SqlResultStream”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:type=”sqltypes:SqlRowSet” sqltypes:IsNested=”false”>
<xsd:schema id=”Schema1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft.com:xml-msdata”>
<xsd:element name=”rowset” msdata:IsDataSet=”true”>

<xsd:complexType>
<xsd:choice maxOccurs=”unbounded”>

<xsd:element name=”row”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”AuthorID” minOccurs=”0”
type=”xsd:int”/>
<xsd:element name=”AuthorName” minOccurs=”0”
type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>
</xsd:element>

</xsd:schema>
<diffgr:diffgram xmlns:msdata=”urn:schemas-microsoft-com:xml-

msdata” xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-
v1”>
<rowset>

<row>
<AuthorID>1001</AuthorID>
<AuthorName>Shakespeare, William</AuthorName>

</row>
<row>

<AuthorID>1002</AuthorID>
<AuthorName>Joyce, James</AuthorName>

</row>

q538292 ch36.qxd 8/18/03 8:45 AM Page 841

842 Part VIII ✦ Advanced Web Services

</rowset>
</diffgr:diffgram>

</sqlresultstream:SqlRowSet>
<sqlresultstream:SqlResultCode xsi:type=”sqltypes:SqlResultCode”
sqltypes:IsNested=”false”>0</sqlresultstream:SqlResultCode>

</tns:GetAuthorListResult>
</tns:GetAuthorListResponse>

</SOAP-ENV:Body>

As you can see from these examples, the current crop of MS Web service tools are
great for consuming Web services, but not so great for providing universal multi-
platform Web services. Consequently, many Web service providers are creating
non-MS Web service providers, or routing the SOAP envelope though an application
server, where the SOAP contents are parsed and reformatted.

MS tools are great for quickly creating smart Web service clients. We hope that
someday they will be as good at providing smart Web services to any client applica-
tion. In the meantime, other vendors are adapting in the name of cross-platform
compatibility. The most recent release of Oracle’s jDeveloper includes a feature
called “.NET Web services interoperability,” which handles dynamic MS data types
such as SqlRowSet and SqlXml as part of J2EE applications.

Oracle and Web services
Oracle has implemented Web service provider functionality through the Oracle 9i
Application server (Oracle9iAS). Oracle9i Web services rely on J2EE connections
such as JDBC and JMS to make the connection between the Oracle database and
the Oracle application server. The application server receives SOAP requests and
translated the request into a database connection. When the database returns a
response, the application server repackages the response as SOAP and sends it
back to the calling agent.

Because the Oracle9iAS is a J2EE application server, you can use regular J2EE Web
service packages such as Apache AXIS. However, most of Oracle’s Web service and
XML packages are based on (Java Community Process) JCP JSRs, but are developed
in-house. Oracle9iAS also supports JAXB standards for binding WSDL to Java
objects. Oracle also supports its own UDDI server that is compatible with IBM and
MS UDDI browser applications.

The Oracle9iAS and the jDeveloper development tool add several customized facili-
ties for Web services on top of the standard J2EE functionality. One unique feature
is that Oracle9iAS applications can access .Net Web services that use MS dynamic
data types. This provides the ability for J2EE Web service clients to handle regular
SOAP and schema data types and MS dynamic data types at the object level like an
MS Web service client.

q538292 ch36.qxd 8/18/03 8:45 AM Page 842

843Chapter 36 ✦ Accessing Relational Data via Web Services

Oracle can expose servlets, EJBs, and Java classes on the Oracle9iAS, and PL/SQL
or Java stored procedures on the database server. It supports dynamic generation
of these objects when they are registered as Web services. Web services are regis-
tered and described on an Oracle9iAS server via config.xml files.

The only Web service functionality that is not part of Oracle9iAs is consuming Web
services from an Oracle application. For this, an optional SOAP client can be set up
as part of an Oracle9i database server’s JVM. The Database server can then run
triggers or scheduled batch jobs that pull data in from external Web services into
Oracle tables.

Oracle has also created a portal server called OmniPortlet. OmniPortlet features
allow end-users to select and configure a customized portal page that supports
dynamic Web service client generation along with other data delivery and display
formats.

Most of the example DB2 multi-tier J2EE application that we show you later in this
chapter could be easily adapted for the Oracle9iAs and Oracle databases. We’ll point
out the places where changes need to be made as we go though those examples.

DB2 and Web services
DB2 can act as a Web service consumer and provider with the addition of the Web
services Object Runtime Framework (WORF). WORF uses a Document Access
Definition Extension (DADX) file to define SQL queries. DADX files are XML docu-
ments that map SQL, stored procedure, and XML collection expressions to one or
more Web service operations. SQL queries can use the <query> and <update> ele-
ments, and stored procedures can use the <call> element. XML collection expres-
sions can use the <retrieveXML> and <storeXML> elements in conjunction with
WORF .jar files to manipulate SQL results as XML collections.

If you use WebSphere Studio Application developer (WSAD), WORF tools for creat-
ing WSDL files, deployment descriptors. You can also generate DADX files from SQL
queries in WSAD.

If you don’t use WSAD, you have to hand-code the DADX files, but WSDL and deploy-
ment descriptor files can be generated via URLs and Java command-line calls.

The following example uses the DB2 JDBC driver and a DB2 Web service using
WORF as part of a multi-tier J2EE Web service application.

q538292 ch36.qxd 8/18/03 8:45 AM Page 843

844 Part VIII ✦ Advanced Web Services

Example: A Multi-Tier Web Service
Using J2EE and DB2

In this section we’ll adapt the multi-tier J2EE Web service application that we cre-
ated in Chapter 33 to use a DB2 Web service. Instead of a JDBC call to DB2 that
returns XML, we’ve set up a Web service that creates an XML. The XML file is
passed from DB2 to a servlet via a SOAP envelope, rather than a JDBC result set.

Readers who followed through the example in Chapter 35 will find much of this
application repeats the same code. Instead of making you wade through all of the
code again, we’ll list the changes here, and you can probably skip over the rest.

You should read over the “Prerequisites for Developing J2EE and DB2 Web
Services” section to familiarize yourself with the process of creating a DB2 Web
service using WORF. We removed the two servlets that created Chapter 35’s XML
results and replaced them with a single servlet called GetSingleQuoteDB2
Format. This servlet makes a Web service call using AXIS and returns XML results
that are formatted by DB2. In the remaining servlets, we replaced the SQL server
JDBC connection string with a DB2 JDBC connection string, and edited the queries
for DB2. In the client application, we removed references to the deleted JDBC
servlets and added a reference to the new GetSingleQuoteDB2 servlet.

The first tier of the J2EE application provides the user interface to the data. The
application connects to servlets on a J2EE application server. The middle tier is
made up of two servlets that make JDBC connections to DB2 data and one Web ser-
vice requestor that calls DB2 data via a Web service. The JDBC servlets connect to
connect to a DB2 database that contains quote, source, and author information.
The Web service servlet returns quotations from the database. This is a good illus-
tration not only of when to use Web services, but also when not to use Web ser-
vices. When the application makes a request to retrieve a list of authors or
quotations for an author, a single column of data is returned that could potentially
contain hundreds or thousands of values. Packaging requests that return a single
but large column of data as a Web service would be inefficient from a bandwidth
point of view, and performance would be poor because of SOAP envelope wrapping
and unwrapping. Also, because the data does not require a hierarchical structure,
XML is not really necessary for handling the result sets. For these reasons, it was
easier and more efficient to go with a regular JDBC call. The other two actions in
the application return a single row of data with three or four values in it. The end
result is formatted as XML. Because of the relatively small result size and the hier-
archical structure of the data that is returned, XML is a good format for delivery,
and a Web service is a natural choice of delivery method.

Note

q538292 ch36.qxd 8/18/03 8:45 AM Page 844

845Chapter 36 ✦ Accessing Relational Data via Web Services

Separating the user interface from the data access processes
The Java Application, called XMLPBWSMTApp.java, is based on the Swing UI
classes and the AWT event classes. To the user, the application looks the same as
the application in Chapters 21 and 35, but this time instead of running all the Java
code on the client and accessing SQL Server data over the network or via servlets,
the J2EE application makes calls to Web services on a J2EE server. This means that
the J2EE client does not have to have access to .jar files for JDBC or servlets. This
also means that the application handles client-side functionality only, and does not
have to handle intensive data processing functions, such as generating XML docu-
ments from JDBC result sets. This division of processing makes each side of the
application perform better that single-tier solution, and the addition of Web ser-
vices adds another layer of flexibility in the application.

Prerequisites for Developing
J2EE and DB2 Web Services

Because you’re developing Web services on a J2EE server for this example, there is
a little work to be done in setting up the application and the DB2 server. This sec-
tion will take you through the setup and configuration for AXIS and DB2 Web ser-
vices and the client application.

Downloading and installing the DB2 JDBC driver
The latest version of the JDBC driver is part of the DB2 UDB installation. The
db2jcc.jar is located in the default Java directory of your DB2 installation. This
is usually located on a Windows server at C:\Program Files\ibm\SQLLIB\
java\ db2jcc.jar. A reference to the file needs to be added to your system
CLASSPATH. You can optionally add sqlj.zip to your system CLASSPATH if you
intend to use SQLJ connectivity. The DB2 JDBC driver requires a minimum of JRE
1.3.1. Updates to the DB2 JDBC driver can be found in at http://www-3.ibm.
com/software/data/db2/udb.

If you have more than one JDBC driver installed and referenced in your CLASS-
PATH, you may have conflicts when referencing the java.sql.* package classes
in your import statement. Most J2EE IDES have a way to specify a CLASSPATH for
a project. If yours does not, you’ll have to rearrange the JDBC driver references in
your system CLASSPATH so the one that you need is in front of all of the others.

Tip

q538292 ch36.qxd 8/18/03 8:45 AM Page 845

846 Part VIII ✦ Advanced Web Services

Downloading and installing WORF
The DB2 Web services Object Runtime Framework (WORF) comes as part of DB2
UDB 8.1 and higher and WebSphere Studio Application Developer 5 and up. DB2 ver-
sion 7 and higher can also use WORF. The latest version can be downloaded from
http://www-3.ibm.com/software/data/db2/udb. The file comes in a com-
pressed format and contains a few samples, but no documentation to speak of. The
best place for WORF documentation is the Document Access Definition Extension
(DADX) specification, which can be found at ftp://ftp.software.ibm.com/
ps/products/db2extenders/software/xmlext/docs/v72wrk/webserv/
dadxspec/dadx.html.

Once the file is downloaded and decompressed, you need to reference worf.jar in
your system CLASSPATH. See the readme file in the installation files for more
details.

Creating and deploying a DADX file
The first thing to do for DB2 Web service enablement is create a DADX file. There
are two ways to create a DADX file to work with your Web service. If you use
WebSphere Studio Application Developer, you can use a wizard to create DADX
files, based on SQL statements. Otherwise, you’ll have to hand-code your DAD files.
Below is an example of a DADX file that returns quotations from the XMLPB
database. The operation name is defined as GetDB2XML. A parameter named
PassedQuote is used to pass a string containing a quotation to the Web service.
The query in the <query> element uses the passed parameter to create a query. The
query returns the author name from the AUTHORS table, the source name from the
SOURCES table, and the quotation from the QUOTATIONS table. The DADX is called
GetDB2XML.dadx.

For a complete listing of the DB2 tables and their columns and data types, please
refer to Chapter 20.

<?xml version=”1.0” encoding=”UTF-8”?>
<DADX xmlns=”http://schemas.ibm.com/db2/dxx/dadx”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:documentation>XML Programming Bible example - Returns a DB2-
formatted XML document</wsdl:documentation>

<operation name=”GetDB2XML”>
<dadx:parameter name=”PassedQuote” type=”xsd:string”/>

<query>SELECT ALL Quotations.Quotation, Authors.AuthorName,
Sources.SourceName FROM Quotations INNER JOIN Authors ON
Quotations.AuthorID = Authors.AuthorID INNER JOIN Sources ON
Quotations.SourceID = Sources.SourceID WHERE
Quotations.Quotation = :PassedQuote;

</query>
</operation>

</DADX>

Cross-
Reference

q538292 ch36.qxd 8/18/03 8:45 AM Page 846

847Chapter 36 ✦ Accessing Relational Data via Web Services

The DADX file is deployed on a J2EE application server in the CLASSES directory
under the WEB-INF directory. For example, on Apache Tomcat the reference should
be located in WEB-INF/classes/GetDB2XML.dadx.

To test the DADX-based Web service on a J2EE application server, type the follow-
ing URL for the DADX file:

http://localhost:8080/XMLPB/GetDB2XML.dadx/TEST

You should get an automatically generated documentation and test page if the
DADX file is deployed correctly.

Downloading and installing AXIS
The first thing you need to do for this example is to install the latest implementa-
tion of the Apache SOAP toolkit, which has been renamed AXIS to keep us on our
toes. Axis stands for “Apache eXtensible Interaction System” but is still based on
the W3C SOAP Recommendation, with the equally inscrutable acronym of “Simple
Object Access Protocol.” The entire library can be downloaded from http://xml.
apache.org as a .zip or .tar file and installed on the file system.

If you’re running a J2EE application server, the axis subdirectory should be moved
to the WEB-INF or WebApps directory, depending on the server. After that the
server usually needs to be restarted.

If you want to test the application developed in this chapter without running an
application server, the latest version of AXIS comes with a client-side server tool
that can be used for testing Web services on a server or a development worksta-
tion. We’ll show you how to use this in a later section of this chapter.

Once AXIS is downloaded and installed, edits are needed on the system CLASSPATH
for the AXIS RPC router to function correctly. Please refer to the AXIS installation
instructions for the latest details.

Deploying Web service class, WSDL, and WSDD files
The example in this chapter uses two AXIS-based Web services and one DB2-based
Web service. The XMLPBWSMTServletGetAuthorList gets a list of unique quote
authors for display in the J2EE Application. The XMLPBWSMTServletGetSingle
AuthorList gets a list of quotes for a single author. Each of the AXIS-based Web
services listed here is associated with a WSDL (Web Service Description Language)
file and a Web Service Deployment Descriptor (WSDD) file. Each file has the same
name as the Web service class file. We’ll cover what each of these file types does
later in the chapter. The DB2 Web service does not use a deployment descriptor.
The J2EE code reference points to the DADX file instead of the object in the AXIS
server. The DADX file needs to be located as described in the previous section.

Tip

q538292 ch36.qxd 8/18/03 8:45 AM Page 847

848 Part VIII ✦ Advanced Web Services

All the Web services in this example and associated files can be downloaded from
the XMLProgrammingBible.com Website, in the Downloads section.

Running Web services on a J2EE application server
After downloading all related Web service files from the XMLProgrammingBible.com
Website, copy the Class files and the Web Service Deployment Descriptor (WSDD) files
to the AXIS\class directory on the J2EE server or the development workstation.
After copying the files, consult the J2EE application server’s documentation for
instructions on deploying Web services and editing the WSDD files with any required
server-specific variables.

Running the Web services without a J2EE server
The latest version of AXIS contains an implementation of a simple Web services
RPC router and server environment, called the Simple Server. The Simple Server
can be run from a command line without installing a J2EE server, so it’s easy to set
up and maintain on most computers. The server is single threaded, which makes it
great for testing, but not appropriate for a production environment.

Run the AXIS Simple SOAP Server
Once AXIS is downloaded, installed, and configured, open a command window and
type the following command at the prompt:

java org.apache.axis.transport.http.SimpleAxisServer -p 8080

You should get a message that says:

- SimpleAxisServer starting up on port 8080.

This indicates that the server has started. There is no confirmation message; this is
the last message that runs in the DOS Prompt widow.

The prompt window needs to be kept open for the Simple AXIS Server to run.

Deploying the Web services to the AXIS Simple SOAP Server
After loading the AXIS Simple SOAP Server, the Java class files need to be deployed
and registered on the server. The WSDD files handle the details of setting this up on
a J2EE application server or the AXIS simple server. If you’re using a J2EE server,
refer to that server’s documentation for Web service deployment instructions. If
you’re using the AXIS simple server, open a second command window and go to the
AXIS/Class directory where the Java class and WSDD files should be located. Type
the following four commands:

Note

q538292 ch36.qxd 8/18/03 8:45 AM Page 848

849Chapter 36 ✦ Accessing Relational Data via Web Services

java org.apache.axis.client.AdminClient
deployXMLPBWSMTServletGetAuthorList.wsdd

java org.apache.axis.client.AdminClient
deployXMLPBWSMTServletGetSingleAuthorList.wsdd

We’ll discuss the contents of the WSDD files a bit later, for now you just need to
know that these commands load the Java class files into the server and establish
rules for running and accessing the Web services.

Testing the server status and deployment
To test the server implementation and ensure that the Web services are deployed,
open a Web browser window and type the following URL, substituting the IP
address if necessary:

http://127.0.0.1:8080/axis

You should get a basic HTML Web page that looks like this:

Content-Type: text/html; charset=utf-8 Content-Length: 977
And now... Some Services
AdminService (wsdl)
AdminService
XMLPBWSMTServletGetAuthorList (wsdl)
GetAuthorList
XMLPBWSMTServletGetSingleAuthorList (wsdl)
GetSingleAuthorList
Version (wsdl)
getVersion

This page confirms that the Web services have been deployed. There are two sys-
tem Web services at the top and bottom of the page, and the rest of the services
listed are your Web service classes that were deployed by your prompt commands.
Each service is followed by a single method name for each class, which is regis-
tered on the server by the WSDD file.

If there is an error on this screen, or not all of the classes and methods are
installed, the first place to check is the AXIS CLASSPATH settings. If the CLASSPATH
is set up OK, then check the location of the class and WSDD files.

Installing the XMLPBWSMTApp J2EE application
The XMLPBWSMTApp.class file should be installed in a directory of a workstation
that is accessible to the Java JDK.

The XMLPBWSMTApp application and all of the Web service files can be down-
loaded from the XMLProgrammingBible.com Website, in the Downloads section.

Tip

q538292 ch36.qxd 8/18/03 8:45 AM Page 849

850 Part VIII ✦ Advanced Web Services

Installing the WSDL files
The WSDL files should be loaded on the same J2EE server as the Java class files.
They don’t have anything to do with the functionality of the Web service, but the
WSDL files should be located in the HTML directory of the J2EE application server
in a production environment. If any UDDI entries refer to the Web service, the dis-
covery URL for the WSDL file should be published in the UDDI entry or other refer-
ences to the service, such as an entry at Xmethods.com.

Running the Web service client
Once the application is downloaded and all of the installation steps have been com-
pleted, run the application by typing java XMLPBWSMTApp from a command
prompt or the Windows “Run” menu option. The application will appear on the
screen in its own Java window.

Developing Web Services
As we mentioned earlier in this chapter, The Quote Generator – DB2 Web Service
Edition application is an adaptation of the multi-tier Web service application in
Chapter 35. In this section we’ll take you “under the hood” of one of the four Web
services to show you how the Java class file, the J2EE and the WSDL files all work
together to create a Web service.

Inside the XMLPBWSMTServletGetAuthorList
Web service
The code in Listing 36-1 shows a Web service that returns a unique listing of quote
authors from a DB2 database via JDBC. The class starts by making a JDBC connec-
tion to the DB2XMLPB database. Next, a DB2 JDBC driver instance is created. A con-
nection is defined to the DB2 instance. In this case, we’re running the DB2 instance
and the J2EE application on the same machine, so the IP address is the home IP
address of the machine - 127.0.0.1. The JDBC user and password for the
database are set up in the connection string. Because the XMLPB database is speci-
fied in the connection string, we don’t need to explicitly name the database in our
DB2 query.

A JDBC result set object is created, which is the result of the query string passed to
the SQL server. An array is built from the result set with the buildArray class, which
we’ll show you in the next listing. Once the result set is processed, the connection
and the result set are dropped. The contents of the author list object are created by
the array and passed to the application window.

q538292 ch36.qxd 8/18/03 8:45 AM Page 850

851Chapter 36 ✦ Accessing Relational Data via Web Services

The SQL command, select AuthorName from Authors, selects all of the values
in the AuthorName column of the Authors table. The buildArray class that is used
by the GetAuthorList and GetSingleAuthorList classes to build an array from an
DB2JDBC result set. An ArrayList is created, which is an implementation of the
List interface. The most important feature of ArrayLists for the purposes of this
code is that they are automatically resizable, via the add() method.

We have explicitly specified java.util.List because the java.awt package
also has a List interface.

The JDBC specification contains a .toArray() method for result sets, which
would be great for this purpose. However, not all JDBC drivers implement a com-
plete set of methods for JDBC classes. The code in the buildArray class can be
used when the toArray() method is not supported, as is the case with the
DB2JDBC driver, or when you want all JDBC result set array output to be the same
regardless of driver-specific formatting.

A DB2result set is passed from the calling object and an ArrayList is defined
called arrayResults. The code loops through the result set and retrieves the cur-
rent result set row value as a string. DB2result set values returned by the DB2JDBC
driver sometimes contain leading and trailing blanks, so the trim() method is sued
to trim spaces off the string as it is created. The string is added to the array
Results object using the ArrayList.add() method. Next, a string array called
sarray is created, and the value of the ArrayList is passed to the string array
using the ArrayList.toArray() method.

The buildArray class creates a string array from the JDBC result set, which is
passed to the J2EE application that called the Web service via a SOAP envelope
(Listing 36-1).

Listing 36-1: The XMLPBWSMTServletGetAuthorList Web
Service Code

import java.util.*;
import java.io.*;
import java.sql.*;

public class XMLPBWSMTServletGetAuthorList {

public String [] GetAuthorList() {
String authorList [] = null;
String sql = “select AuthorName from Authors”;

try {

Continued

Note

q538292 ch36.qxd 8/18/03 8:45 AM Page 851

852 Part VIII ✦ Advanced Web Services

Listing 36-1 (continued)

Class.forName(“com.ibm.db2.jcc.DB2Driver”);
Connection conn = DriverManager.getConnection
(“jdbc:db2://127.0.0.1:7778/XMLPB,
User=jdbcUser,Password=jdbcUser”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);

authorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return authorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

Next, we’ll show you how the WSDL and WSDD files work together with the Java
class to make a Web service.

The XMLPBWSMTServletGetAuthorList WSDL and WSDD files
Each Web service in the Quote XML Generator – Web Service Edition application
has two files associated with it, a Web Services Description Language (WSDL) file
and a Web Service Deployment Descriptor (WSDD) file. We’ll explain the files associ-
ated with the XMLPBWSMTServletGetAuthorList class as a guide for all four
Web services. Each WSDL and WSDD file is virtually the same as its counterparts,

q538292 ch36.qxd 8/18/03 8:45 AM Page 852

853Chapter 36 ✦ Accessing Relational Data via Web Services

except for the names of the classes, the names of the methods, and the data types
returned. Listing 36-2 shows the WSDD File associated with the XMLPBWSMT
ServletGetAuthorList Web service.

Deployment descriptors are well-formed XML documents that control Web service
deployment, security, and administration. The deployment descriptor declares the
name of the Web service and two XML namespaces. Next, the Service data-binding
format is defined as Java remote procedure calls (RPC). The RPC router on the
server parses incoming SOAP RPC requests and extracts data from a SOAP enve-
lope. Responses from the Web service are wrapped in a response SOAP envelope by
the same RPC router.

Next, the service’s class name is defined as XMLPBWSMTServletGetAuthorList,
as shown in Listing 36-2. Access to all methods contained in the Web service is per-
mitted by the wildcard character (*) in the allowedMethods parameter.

Listing 36-2: The XMLPBWSMTServletGetAuthorList
WSDD File

<deployment
xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<!-- Services from XMLPBWSMTServletGetAuthorListService WSDL service -->
<service name=”XMLPBWSMTServletGetAuthorList” provider=”java:RPC”>

<parameter name=”wsdlTargetNamespace”
value=”http://www.xmlprogrammingbible.com/wsdl/default/”/>
<parameter name=”wsdlServiceElement”
value=”XMLPBWSMTServletGetAuthorListService”/>
<parameter name=”wsdlServicePort”
value=”XMLPBWSMTServletGetAuthorList”/>
<parameter name=”className”
value=”com.xmlprogrammingbible.www.
XMLPBWSMTServletGetAuthorListSoapBindingSkeleton”/>
<parameter name=”wsdlPortType” value=”XMLPBWSMTServletGetAuthorList”/>
<parameter name=”allowedMethods” value=”*”/>

<typeMapping
xmlns:ns=”http://www.xmlprogrammingbible.com/wsdl/default/”
qname=”ns:ArrayOf_soapenc_string”
type=”java:java.lang.String[]”
serializer=”org.apache.axis.encoding.ser.ArraySerializerFactory”
deserializer=”org.apache.axis.encoding.ser.
ArrayDeserializerFactory”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

/>
</service>

</deployment>

q538292 ch36.qxd 8/18/03 8:45 AM Page 853

854 Part VIII ✦ Advanced Web Services

The deployment descriptor describes a Web service from a J2EE server point of
view. A WSDL file describes the same Web service from a client point of view. As
mentioned in Chapter 25, reading a WSDL file can be a daunting task, but it’s best to
keep in mind that if everything goes well, humans should rarely have to read a
WSDL file themselves. WSDL files are a way of defining a Web service interface pro-
grammatically to another Web service, smart client, or portal. Listing 36-3 shows
the WSDL interface for the XMLPBWSMTServletGetAuthorList Web service.

The WSDL file declares several XML namespaces, which are used to define WSDL
structure and SOAP data types (Listing 36-3). Next, data types are defined as parts
of call and response messages. The messages become part of ports, which become
part of operations. The Web service is defined of one or more operation. Last, the
endpoint address for the Web service is specified in the location attribute of the
wsdlsoap:address element.

Listing 36-3: The XMLPBWSMTServletGetAuthorList WSDL File

<wsdl:definitions xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:apachesoap=”http://xml.apache.org/xml-soap”
xmlns:impl=”http://www.xmlprogrammingbible.com/wsdl/default/-impl”
xmlns:intf=”http://www.xmlprogrammingbible.com/wsdl/default/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.xmlprogrammingbible.com/wsdl/default/”>

<wsdl:types>
<schema targetNamespace=”http://www.xmlprogrammingbible.com
/wsdl/default/” xmlns=”http://www.w3.org/2001/XMLSchema”>

<import namespace=”http://schemas.xmlsoap.org
/soap/encoding/”/>
<complexType name=”ArrayOf_soapenc_string”>

<complexContent>
<restriction base=”soapenc:Array”>

<attribute ref= “soapenc:arrayType”
wsdl:arrayType=”soapenc:string[]”/>

</restriction>
</complexContent>

</complexType>
<element name=”ArrayOf_soapenc_string” nillable=”true”
type=”intf:ArrayOf_soapenc_string”/>

</schema>
</wsdl:types>
<wsdl:message name=”GetAuthorListResponse”>

<wsdl:part name=”return” type=”intf:ArrayOf_soapenc_string”/>
</wsdl:message>
<wsdl:message name=”GetAuthorListRequest”>

q538292 ch36.qxd 8/18/03 8:45 AM Page 854

855Chapter 36 ✦ Accessing Relational Data via Web Services

</wsdl:message>
<wsdl:portType name=”XMLPBWSMTServletGetAuthorList”>

<wsdl:operation name=”GetAuthorList”>
<wsdl:input name=”GetAuthorListRequest”
message=”intf:GetAuthorListRequest”/>
<wsdl:output name=”GetAuthorListResponse”
message=”intf:GetAuthorListResponse”/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”XMLPBWSMTServletGetAuthorListSoapBinding”
type=”intf:XMLPBWSMTServletGetAuthorList”>
<wsdlsoap:binding style=”rpc”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name=”GetAuthorList”>

<wsdlsoap:operation/>
<wsdl:input>

<wsdlsoap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://www.xmlprogrammingbible.com/wsdl/default/”/>

</wsdl:input>
<wsdl:output>

<wsdlsoap:body use=”encoded”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
namespace=”http://www.xmlprogrammingbible.com/wsdl/default/”/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”XMLPBWSMTServletGetAuthorListService”>

<wsdl:port name=”XMLPBWSMTServletGetAuthorList”
binding=”intf:XMLPBWSMTServletGetAuthorListSoapBinding”>
<wsdlsoap:address location=”http://127.0.0.1/
XMLPBWSMTServletGetAuthorList”/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Putting the WSDD, Class, WSDL, and SOAP together
Keep in mind that each interface plays an important role in dividing the labor of
each component of the application. This separation of functionality also adds flexi-
bility to the application. For example, the deployment descriptor can be used to
redirect calls to another Java class file or another platform entirely without having
to change the name, location, or functionality of the Web service.

As we mentioned earlier, the Web service WSDL file is not important for the day-to-
day functionality of the Web service. However, the WSDL file is very useful for speci-
fying the format for SOAP call and response related to the Web service. Many Web
service clients can read the WSDL file for a Web service and dynamically adapt the
calling agent interface to the serving agent.

q538292 ch36.qxd 8/18/03 8:45 AM Page 855

856 Part VIII ✦ Advanced Web Services

Listing 36-4 shows a sample SOAP envelope contents that is generated by the
XMLPBWSMTServletGetAuthorList WSDL file. The Method name in the SOAP
call maps directly to the incoming message in the WSDL file. The GetAuthorList
method call maps to the WSDL GetAuthorList operation.

Listing 36-4: A Sample XMLPBWSMTServletGetAuthorList
SOAP Call

<SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/
soap/envelope/” xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/
encoding/” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<SOAP-ENV:Body>
<m:GetAuthorList
xmlns:m=”http://www.xmlprogrammingbible.com
/wsdl/default/” SOAP-
ENV:encodingStyle=”http://schemas.xmlsoap.org/
soap/encoding/”/>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The XMLPBWSMTServletGetSingleAuthorList
Web service
The XMLPBWSMTServletGetSingleAuthorList Web service is called when a
user clicks on a quote author in the J2EE client application. The CategoryName
parameter is passed to the Web service in the SOAP request envelope. This triggers
a JDBC query on the Authors and Quotations tables in the XMLPB database. The
buildArray class builds an array from the JDBC result set.

The Web service returns an array of quotes for the author back to the J2EE client
application in a SOAP response envelope. The RPC router on the server converts
the string array to an XML-based SOAP string array format. Listing 36-5 shows the
XMLPBWSMTServletGetSingleAuthorList code.

Listing 36-5: The XMLPBWSMTServletGetSingleAuthorList
Web Service Code

import java.util.*;
import java.io.*;
import java.sql.*;

q538292 ch36.qxd 8/18/03 8:45 AM Page 856

857Chapter 36 ✦ Accessing Relational Data via Web Services

public class XMLPBWSMTServletGetSingleAuthorList {

public String [] GetSingleAuthorList(String CategoryName) {
String singleauthorList [] = null;
String sql = “SELECT Quotations.Quotation FROM Quotations INNER
JOIN Authors ON Quotations.AuthorID = Authors.AuthorID INNER JOIN
Sources ON Quotations.SourceID = Sources.SourceID WHERE
(Authors.AuthorName = ‘“+CategoryName+”’)”;
String fromrow=”1”;
String torow=”50”;
String threshold=”50”;

try {

Class.forName(“com.ibm.db2.jcc.DB2Driver”);
Connection conn = DriverManager.getConnection
(“jdbc:db2://127.0.0.1:7778/XMLPB,
User=jdbcUser,Password=jdbcUser”);
Statement s = conn.createStatement();
ResultSet rs = s.executeQuery(sql);
singleauthorList = buildArray(rs);

rs.close();
conn.close();

}catch(Exception e) {
e.printStackTrace();

}

return singleauthorList ;

}

String[] buildArray(ResultSet rs) {
java.util.List arrayResults = new ArrayList();
try {

int rownumber= 0;
String rowvalue = new String();
while(rs.next()) {

rownumber++;
rowvalue = rs.getString(rownumber++);
arrayResults.add(rowvalue.trim());

}
}catch(Exception e) {}
String[] sarray = (String[]) arrayResults.toArray(new
String[arrayResults.size()]);
return sarray;

}

}

q538292 ch36.qxd 8/18/03 8:45 AM Page 857

858 Part VIII ✦ Advanced Web Services

The XMLPBMTWSServletDB2Format Web service
The code in Listing 36-6 is called when a quote is selected by a user and the output
option is set to “DB2 XML”. A string containing the quote formatted as an XML
document is passed from the GetSingleQuoteDb2 class back to the Web service
as a string. The code is nice and short in this class because AXIS and DB2 do most
of the work in retrieving and formatting the XML.

Rows of data are returned as children of a GetDB2XMLResult element. The result
of a query is always a single row. A single GetDB2XMLRow element contains the DB2
column values. Column values are stored in text data, and column names are repre-
sented as element names. These element names are based on the Web service oper-
ation name, GetDB2XML (Listing 36-6).

Listing 36-6: The XMLPBWSMTServletDB2Format Web
Service Code

import org.apache.axis.*;
import org.apache.axis.client.*;
import java.rmi.*;
import org.apache.axis.encoding.*;
import org.apache.axis.utils.*;

public class XMLPBMTWSServletDB2Format {

public String GetSingleQuoteDB2(String PassedQuote) {
String XMLDoc=null;

try {

Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/
XMLPB/GetDB2XML.dadx/GetDB2XML”));
call.addParameter(“PassedQuote”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new javax.xml.namespace.QName
(“http://www.xmlprogrammingbible.com/wsdl/default/”,
“string”));
XMLDoc = (String) call.invoke(new Object[] {PassedQuote});

} catch(Exception e) {
e.printStackTrace();

}

q538292 ch36.qxd 8/18/03 8:45 AM Page 858

859Chapter 36 ✦ Accessing Relational Data via Web Services

return XMLDoc ;

}

}

Listing 36-7 shows the result of the GetDB2XML Operation.

Listing 36-7: The XML Returned as a Result of the GetDB2XML
Operation

<?xml version=”1.0” encoding=”UTF-8”?>
<ns1:GetDB2XMLResponse xmlns:ns1=”urn:/XMLPB/GetDB2XML.dadx”
xmlns:xsd=”http://www.w3.org/1999/XMLSchema”
xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”>

<return>
<xsd1:GetDB2XMLResult xmlns=”http://127.0.0.1:8080/
XMLPB/GetDB2XML.dadx/GetDB2XML/XSD”
xmlns:xsd1=”http://127.0.0.1:8080/XMLPB/
GetDB2XML.dadx/GetDB2XML/XSD”>
<GetDB2XMLRow>

<QUOTATION>When the hurlyburlys done, When the battles lost and
won.</QUOTATION>
<AUTHORNAME>Shakespeare, William</AUTHORNAME>
<SOURCENAME>Macbeth</SOURCENAME>

</GetDB2XMLRow>
</xsd1:GetDB2XMLResult>

</return>
</ns1:GetDB2XMLResponse>

Inside the XMLPBWSMTApp J2EE
Client Application

The XMLPBWSMTApp J2EE client application is a fully functional Java Application
that uses Swing Classes and AWT events to generate a UI. The J2EE client makes
SOAP calls to Web services, which connect to relational data on DB2using JDBC.
The Web services manipulate the JDBC query result sets and return responses to
the J2EE client application.

q538292 ch36.qxd 8/18/03 8:45 AM Page 859

860 Part VIII ✦ Advanced Web Services

How the application works
When the application window is opened, a Web service is called that retrieves a list
of unique quote authors. The Web service retrieves data from the Authors table of
the XMLPB database on DB2. The connection from the Web service to the DB2
databases is made via JDBC. The application then draws the various Swing panels
on the page and attaches AWT events to the panels. Users can scroll up and down
the list of quote authors in the author List panel, and select a single author by click-
ing on it in the list.

Clicking on an author name triggers another call to another Web service. That Web
service query is to retrieve all the quotes attributed to the selected author. The
quotes are displayed in the quote list panel on the top right of the screen.

When a user clicks on one of the quotes in the quote list panel, another J2EE Web
service is called to generate XML document output for the selected quote and dis-
play it in the output panel in the lower half of the application window. In the middle
of the screen is a combo box that can be used to select output format options.
The options are Just the Text, which just returns the quote as text, or DB2 XML,
which returns the XML output shown in Listing 36-7, which is generated by the
XMLPBWSMTServletDB2Format Web service. Aside from being a good J2EE Web
services application prototype, the Quote XML Web service application is also a
good example of applying a user interface to DB2 data. It’s also a good prototype
from any application that uses Web services, JDBC, and Java GUI classes. The appli-
cation contains examples of accessing and displaying DB2 data in several different
ways, including strings, arrays, and XML documents.

About the example DB2 data
In this chapter we’re reusing tables from the XMLPB SQL Server database. Setup
instructions for the database can be found in Chapter 20.

Creating the Java Application User Interface
We have broken down the source code into segments that relate to a specific
topic, rather than showing the source code in its entirety on the pages. All of
the examples contained in this chapter can be downloaded from the XML
ProgrammingBible.com Website, in the Downloads section. Please see the
Website for installation Instructions.

Defining public variables and the application window
Let’s look under the hood of the Java Application by breaking down the Java
Application source code into topical sections with detailed explanations of the
code, starting with the introductory application setup in Listing 36-8.

q538292 ch36.qxd 8/18/03 8:45 AM Page 860

861Chapter 36 ✦ Accessing Relational Data via Web Services

The J2EE client application imports the java.io classes for writing to the screen,
javax.swing classes to handle UI features, and selected java.awt classes to
manage action events. The org.apache.axis and java.rmi classes are used to
create SOAP envelopes and make calls to Web services.

The beginning of the code sets up a Jframe window, which becomes the applica-
tion window, and creates an instance of an actionlistener to watch for the win-
dow to be closed. When the window is closed, the application exits.

Listing 36-8: Defining the Public Variables and the
Application Window

import javax.swing.*;
import javax.swing.event.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;
import org.apache.axis.*;
import org.apache.axis.client.*;
import java.rmi.*;
import org.apache.axis.encoding.*;
import org.apache.axis.utils.*;

public class XMLPBWSMTApp extends JPanel {
JTextArea output;
JList authorList;
JList QuoteList;
ListSelectionModel authorListSelectionModel;
ListSelectionModel QuotelistSelectionModel;
public String[] listData;
JComboBox comboBox;

public static void main(String[] args) {
JFrame frame = new JFrame(“Quote XML Generator - DB2 Web Service
Edition”);
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

frame.setContentPane(new XMLPBWSMTApp());
frame.pack();
frame.setVisible(true);

}

q538292 ch36.qxd 8/18/03 8:45 AM Page 861

862 Part VIII ✦ Advanced Web Services

Setting objects in the window and implementing
ActionListeners
Listing 36-9 shows the code that is used to define the main UI on top of the applica-
tion Window. The first task is to retrieve a unique list of quote authors from the DB2
Authors table calling the GetAuthorList() class, which we will cover a bit later.

Once this is done, the AuthorList object is created, and an AuthorList
SelectionHandler object is attached to the list. When users click on a quote
author, the AuthorListSelectionHandler class is called to handle the action.
Next, a JscrollPane called SourcePane is created for the list object, and the
pane is placed in the top left of the application window.

The instantiation steps are repeated for the QuoteList object, which will be used
to display quotes for a selected author on the top right of the application window. A
QuoteListSelectionHandler object is attached to the quote list.

Next, a drop-down combo box containing the application output options is created,
which will be located in the center of the Application window, just below the author
list and quote list panes. The hard-coded output options are defined and the default
is set to the first object.

A JtextArea object is defined and placed in the bottom half of the application win-
dow. This is where the XML and text output is sent when a user selects a quote
from the quote list.

The balance of the code in Listing 36-9 is Swing and AWT class housekeeping to cre-
ate the details of the layout that the user interface needs.

Listing 36-9: Setting Objects in the Window and
Implementing ActionListeners

public XMLPBWSMTApp() {
super(new BorderLayout());

listData = GetAuthorList();
String[] WelcomeMessage={“Click on a Source in the Left Pane to
Retrieve Quotes”};

authorList = new JList(listData);

authorListSelectionModel = authorList.getSelectionModel();
authorListSelectionModel.addListSelectionListener(
new authorListSelectionHandler());
JScrollPane SourcePane = new JScrollPane(authorList);

q538292 ch36.qxd 8/18/03 8:45 AM Page 862

863Chapter 36 ✦ Accessing Relational Data via Web Services

QuoteList = new JList(WelcomeMessage);
QuotelistSelectionModel = QuoteList.getSelectionModel();
QuotelistSelectionModel.addListSelectionListener(
new QuoteListSelectionHandler());
JScrollPane QuotePane = new JScrollPane(QuoteList);

JPanel OutputSelectionPane = new JPanel();
String[] OutputFormats = { “Just the Quote”, “ DB2 XML”};

comboBox = new JComboBox(OutputFormats);
comboBox.setSelectedIndex(0);
OutputSelectionPane.add(new JLabel(“Select an output Format:”));
OutputSelectionPane.add(comboBox);

output = new JTextArea(1, 10);
output.setEditable(false);
output.setLineWrap(true);
JScrollPane outputPane = new JScrollPane(output,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED);

JSplitPane splitPane = new JSplitPane(JSplitPane.VERTICAL_SPLIT);
add(splitPane, BorderLayout.CENTER);

JPanel TopPanel = new JPanel();
TopPanel.setLayout(new BoxLayout(TopPanel, BoxLayout.X_AXIS));
JPanel SourceContainer = new JPanel(new GridLayout(1,1));
SourceContainer.setBorder(BorderFactory.createTitledBorder(
“Source List”));
SourceContainer.add(SourcePane);
SourcePane.setPreferredSize(new Dimension(300, 100));
JPanel QuoteContainer = new JPanel(new GridLayout(1,1));
QuoteContainer.setBorder(BorderFactory.createTitledBorder(
“Quote List”));
QuoteContainer.add(QuotePane);
QuotePane.setPreferredSize(new Dimension(300, 500));
TopPanel.setBorder(BorderFactory.createEmptyBorder(5,5,0,5));
TopPanel.add(SourceContainer);
TopPanel.add(QuoteContainer);

TopPanel.setMinimumSize(new Dimension(400, 50));
TopPanel.setPreferredSize(new Dimension(400, 300));
splitPane.add(TopPanel);

JPanel BottomPanel = new JPanel(new BorderLayout());
BottomPanel.add(OutputSelectionPane, BorderLayout.NORTH);
BottomPanel.add(outputPane, BorderLayout.CENTER);
BottomPanel.setMinimumSize(new Dimension(400, 50));
BottomPanel.setPreferredSize(new Dimension(800, 400));
splitPane.add(BottomPanel);

}

q538292 ch36.qxd 8/18/03 8:45 AM Page 863

864 Part VIII ✦ Advanced Web Services

Listing 36-10 and 36-11 show the AWT Class ActionListeners, which facilitate the
UI functionality in the application.

Defining the action for the author list
Listing 36-10 shows the code that is called when a user clicks on a quote author.
When the ActionListener detects that the user has selected a quote author, the
GetSingleAuthorList class is called, which returns a single-column listing of
quotes for that author. The quotes are displayed in the quote list object on the top
right of the application window.

Listing 36-10: Defining the Action for the Author List

class authorListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent se) {

ListSelectionModel slsm = (ListSelectionModel)se.getSource();
String [] s = GetSingleAuthorList(authorList.getSelectedValue()
.toString());
QuoteList.setListData(s);

}
}

Defining the action for the quote list
When a user selects a quote by clicking on a selection in the quote list, the code in
Listing 36-11 is called. When the ActionListener detects that the user has
selected a Quote, the QuoteListSelectionHandler checks the combo box to
see which output format is selected by the user.

If “Just the Quote” is selected, the quote is sent to the output object as text. If
the “DB2 XML” option is chosen, the GetSingleQuoteDB2 class is called to gener-
ate DB2-generated XML for the output, with DB2 table column values formatted as
elements in the XML document.

Listing 36-11: Defining the Actions for the Quote List

class QuoteListSelectionHandler implements ListSelectionListener {
public void valueChanged(ListSelectionEvent qe) {

ListSelectionModel qlsm = (ListSelectionModel)qe.getSource();

q538292 ch36.qxd 8/18/03 8:45 AM Page 864

865Chapter 36 ✦ Accessing Relational Data via Web Services

String OutputFormatChoice = (String)comboBox.getSelectedItem();

if (OutputFormatChoice.equals(“Just the Quote”)) {
output.setText(QuoteList.getSelectedValue().toString());

}
else if (OutputFormatChoice.equals(“DB2 XML”)) {

output.setText(GetSingleQuoteDB2
(QuoteList.getSelectedValue().toString(
))); }

else {
output.setText(QuoteList.getSelectedValue().toString());

}

}
}

Retrieving a list of authors by calling a Web service
The code in Listing 36-12 returns a unique listing of quote authors by calling the
XMLPBWSMTServletGetAuthorList Web service. A new instance of a SOAP call is
created and assigned a Web service target endpoint of http://127.0.0.1:8080/
axis/servlet/AxisServlet. This endpoint accesses the AXIS Simple Server,
which contains an RPC router. The RPC router parses the SOAP envelope and the
HTTP POST Header, extracts a request object from the SOAP envelope, and routes
the request to the appropriate Web service class. The routing of the request object
is based on the current deployment descriptor configuration.

The GetAuthorList class in the XMLPBWSMTServletGetAuthorList Web ser-
vice processes a JDBC query against the DB2 database and returns a result set. A
new instance of a string array is created using standard SOAP encoding of data type
ArrayOf_xsd_string. Converting data types from their native types to SOAP or
other types of encoding is an integral part of Web services, and allows typed data
to flow between platforms and operating systems by being serialized and de-serial-
ized on sending and delivery of the SOAP envelope. The string array is passed back
to the RPC router. The RPC router then wraps the response object in a SOAP
response envelope and sends the response back to the J2EE client application. The
string array result is extracted from the SOAP response envelope by the AXIS call
object. The response is assigned to the AuthorList string array variable, which is
passed back to the application for display in the UI.

q538292 ch36.qxd 8/18/03 8:45 AM Page 865

866 Part VIII ✦ Advanced Web Services

Listing 36-12: Retrieving a List of Authors from the DB2
Authors Table

public String [] GetAuthorList() {
String AuthorList [] = null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/AxisServlet”)
);
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSMTServletGetAuthorList”,
“GetAuthorList”));
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “ArrayOf_xsd_string”));
AuthorList = (String []) call.invoke(new Object[] {});

}

catch(Exception e) {
e.printStackTrace();

}
return AuthorList ;

}

Retrieving a list of quotes from a selected author
When a user clicks on a quote author, the ActionListener for the author list
object passes the author name as a string value to the GetSingleAuthorList
Class, shown in Listing 36-13. This class uses the passed value, called Category
Name, to retrieve all the quotes for an author using an SQL query passed to the
server via JDBC.

The GetSingleAuthorList class is similar to the GetAuthorList class.
GetSingleAuthorList in the XMLPBWSMTServletGetSingleAuthorList Web
service passes a parameter value to a JDBC query against the DB2 database and
returns a result set. A new instance of a string array is created using standard SOAP
encoding of data type ArrayOf_xsd_string. The string array is passed back to
the RPC router. The RPC router then wraps the response object in a SOAP response
envelope and sends the response back to the J2EE client application. The string
array result is extracted from the SOAP response envelope by the AXIS call object.

q538292 ch36.qxd 8/18/03 8:45 AM Page 866

867Chapter 36 ✦ Accessing Relational Data via Web Services

The response is assigned to the singleAuthorList string array variable, which is
passed back to the application for display in the UI. The contents of the quote list
object are then created by the array and the quote list object is displayed in the
upper-right panel of the application window.

Listing 36-13: Retrieving Quotes for an Author

public String [] GetSingleAuthorList(String CategoryName) {
String singleAuthorList [] = null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/AxisServlet”)
);
call.setOperationName(new javax.xml.namespace.QName
(“XMLPBWSMTServletGetSingleAuthorList”,
“GetSingleAuthorList”));
call.addParameter(“CategoryName”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “ArrayOf_xsd_string”));
singleAuthorList = (String []) call.invoke(new Object[]
{CategoryName});

}

catch(Exception e) {
e.printStackTrace();

}

return singleAuthorList ;

}

Generating DB2 XML Output
When a user clicks on a quote, a call is triggered to the QuoteListSelection
Handler, which is outlined previously in Listing 36-11. This triggers one of three
actions, depending on the output format chosen in the combo box. The first action
is to send the plain text directly to the output object. The code in Listing 36-14 is
called when a quote is selected in the quote list object and the DB2 XML option is

q538292 ch36.qxd 8/18/03 8:45 AM Page 867

868 Part VIII ✦ Advanced Web Services

chosen from the output format combo box. The quote text is passed to the
GetSingleQuoteDB2 class. This class calls a Web service to retrieve the quote
from DB2 and format the XML as an element-based XML document.

The GetSingleQuoteDB2 class in the XMLPBWSMTServletDB2Format Web ser-
vice passes a parameter value containing a quotation to a second Web service. The
Web service returns a result set based on a DB2 DADX document. A new instance of
a string is created using standard SOAP encoding of data type xsd_string. The
string is formatted as an element-based XML document and passed back to the RPC
router. The RPC router then wraps the response object in a SOAP response enve-
lope and sends the response back to the J2EE client application. The string result is
extracted from the SOAP response envelope by the AXIS call object. The response
is assigned to the XMLDoc string variable, which is passed back to the application
for display in the UI. The contents of the string are displayed in the lower panel of
the application.

Listing 36-14: Retrieving DB2 XML from a Web Service

public String GetSingleQuoteDB2(String PassedQuote) {
String XMLDoc=null;

try{
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new
java.net.URL(“http://127.0.0.1:8080/axis/servlet/
AxisServlet”));
call.setOperationName(new
javax.xml.namespace.QName(“XMLPBWSMTServletDB2Format”,
“GetSingleQuoteDB2”));
call.addParameter(“PassedQuote”, XMLType.XSD_STRING,
javax.xml.rpc.ParameterMode.IN);
call.setReturnType(new
javax.xml.namespace.QName(“http://www.xmlprogrammingbible.com/
wsdl/default/”, “string”));
XMLDoc = (String) call.invoke(new Object[] {PassedQuote});

}

catch(Exception e) {
e.printStackTrace();

}

return XMLDoc ;

}

q538292 ch36.qxd 8/18/03 8:45 AM Page 868

869Chapter 36 ✦ Accessing Relational Data via Web Services

Summary
In this chapter, we’ve outlined techniques for combining Web services with rela-
tional data. We reviewed Web service features in MS SQL Server, Oracle, and DB2.
We also showed you how to retrieve XML data from a DB2 Web service in a multi-
tier J2EE Web service application infrastructure:

✦ Options for RDBMS Web services

✦ Web services support in Oracle, DB2, and MS SQL Server

✦ Data compatibility issues with MS SQL Server Web services and other Web
services

✦ Working with the DB2 Web Services Object Runtime Framework (WORF)

✦ An example of DB2 and J2EE Web services working together

In the next chapter, we’ll wrap up the book by covering the brave, new, bleeding
edge world of Web service authentication, security, and transactions.

✦ ✦ ✦

q538292 ch36.qxd 8/18/03 8:45 AM Page 869

Authentication
and Security for
Web Services

Web services are often described as having “industry
buy-in.” In most cases, it’s the software “industry”

that has bought in to Web services. For other industries to
“buy in” to Web services, they have to be secure and reliable.
Several projects are under way to meet the needs of industry
strength solutions. For Web services, this means security and
authentication. There are several groups working together to
form standards around Web service security.

Web services also need a way to interact with other Web ser-
vices and applications as a single, seamless process. Efforts
are being made to develop standards that manage groupings
of Web services as a single transaction, with full commit and
rollback functionality, among other features.

The individuals and groups that are organizing these projects
come from many different backgrounds. The W3C, the WS-I,
and OASIS all have their hands in one or more of these pro-
jects. Some standards are competing, and some are comple-
mentary. In this chapter, we sort through the options and help
you define the current projects, the problem that a project is
trying to solve, and where overlap between projects occurs.

The standards described in this chapter are evolving.
We’ll be updating this chapter on-line at http://www.
XMLProgrammingBIble.com as things change, so
check there for updates.

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Web service security
scenarios

Transport-layer
authentication

W3C Web
service security
recommendations

XML encryption and
XML signature

OASIS web service
security specifications

WS-Security, SAML,
and XACML

Web service
security JSRs

The Microsoft
.NET WSE

BPEL4WS

WSCI and BPML

✦ ✦ ✦ ✦

q538292 ch37.qxd 8/18/03 8:45 AM Page 871

872 Part VIII ✦ Advanced Web Services

Secure, Reliable Web Service Requirements
Many Web services are completely open and available, acting as conduits between
Web service consumers and unsecured data on a back-end system. Many more Web
services require registration to be able to use their Web service. Web service
providers that require registration and an identity check for consumers can use
simple authentication, such as an unencrypted, pre-assigned ID. They can also use
more sophisticated methods, such as ID and password combinations that are
encrypted in transit using SSL, or some sort of certificate authority scheme such as
X.509 certificates. Authentication can be taken another step further by using new
XML security and authentication standards. Current standards are supported
through libraries such as IBM’s XML Security Suite and the Apache XML Security
Library in Java. The Web Services Enhancements 1.0 for Microsoft .NET (WSE) pro-
vides similar capabilities for .NET applications.

Aside from basic authentication, there are times when systems need to pass authen-
tication from one Web service to another, so that a Web service consumer does not
need to re-authenticate with every new Web service that is needed to perform a
task. In order to facilitate this, some sort of single sign-on feature is required that
can pass authentication data from one service to another, and perhaps also to back-
end systems that are accessed by Web services. This data should also be encrypted
so that it is not intercepted and duplicated as it passes through a network.

Web services may also share data with other Web services without having access to
their security and authentication data. In this case, data that is passed between sys-
tems, usually in the form of a token, has to be compatible with other types of secu-
rity and authentication schemes. It also has to be compatible with other types of
encryption, or at least be able to successfully translate authentication credentials
from one format to another and back again.

On top of security and authentication issues, a group of Web services should be
able to maintain user preferences and pass them to other Web services and applica-
tions. They also need to be able to communicate roles and procedures.

Web services also need to be able to record transactions in a way that all parties
are satisfied with. In Europe, merchants once used “tally sticks” to manage negoti-
ated agreements. A tally stick was a piece of a tree that was marked with notches
that represented a number of goods for payment rendered. Once an agreement was
made, the stick was marked and split in two. One half would go to the buyer, and
the other half to the seller. When goods arrived at the buyer, tally sticks would be
compared to ensure that an agreement was honored.

Today, a buyer that uses a vendor’s Website does not have an independent way of
tracking and verifying a purchase. On the Web, there is no “tally stick” — the vendor
holds all the cards. When a buyer orders 100 widgets and agrees to a price, what

q538292 ch37.qxd 8/18/03 8:45 AM Page 872

873Chapter 37 ✦ Authentication and Security for Web Services

proof does the buyer hold that this transaction will be fulfilled as agreed, other
than the vendor’s Website, which a buyer has no control over? In the past, this
functionality was provided by mailed or faxed documents, but this approach slows
down the frictionless transaction speed of the Web. Web services and new transac-
tion standards provide the other part of the equation for many B2B transactions.
Web services can track buyer and vendor records for a transaction on the buyer
and seller’s own systems, thus providing even more security than the traditional
“tally stick” approach.

In a perfect world, Web service security, authentication, transaction tracking, and
encryption tools would be designed to be compatible across all platforms, based on
universally decreed standards. Of course, this is not a perfect world. Compatible
tools and platforms have to be determined when designing a secure, reliable Web
service platform, and when deciding how your Web services will interact with other
Web services and applications. So what does the current crop of Web service secu-
rity tools offer?

Current Web Service Standards for
Security and Authentication

There are several recently defined Web service security standards that have either
made it to specification (or in the case of the W3C, Recommendation) status, or are
in the process of being completed. These are all, however, early-stage, version 1.0
specifications, and are most definitely subject to change and development in the
marketplace. The current specifications are based on the three most popular secu-
rity models: transport-layer security, Public Key Infrastructure (PKI), and the
Kerberos model.

Transport-Layer Security
Without using the new security standards and toolkits, SOAP envelopes can be
encrypted using Secure Sockets Layer (SSL). Web service consumers can be
authenticated by a provider using pre-assigned IDs and/or passwords. The advan-
tage of this approach is that existing transport-layer security features that ship with
most Web browsers can be used. This is referred to as transport-layer security.
However, SSL is only effective between two points, and cannot be interconnected
between more than one Web service consumer and provider. For more than two
points of contact, you need to make use of some of the new recommendations pro-
vided by the W3C and/or the specifications provided by OASIS.

q538292 ch37.qxd 8/18/03 8:45 AM Page 873

874 Part VIII ✦ Advanced Web Services

Public key infrastructure (PKI)
PKI requires a central public key administrator (called a certificate authority) to
issue certificates. These certificates contain public keys, which can be shared, and
private keys, which cannot. When PKI authentication takes place, a shared public
key token is compared with a private key token. If the two tokens are compatible,
authentication is completed. The advantage in this approach is that the certificate
authority has to issue a key, and the public and private parts of that key have to be
physically present on the machines that are processing security and authentica-
tion. In transport-layer security, user IDs and passwords can be intercepted and
reused for impersonation. With PKI, an impersonator would also have to acquire a
user’s private key. Most private keys are encrypted with a password, making this
even more difficult.

Kerberos
Kerberos authentication takes the PKI model one step further by defining a central
location where private and public key tokens are compared. The central location
where authentication takes place is called a Key Distribution Center (KDC). The
KDC performs authentication and passes authenticated and verified tokens to par-
ties that require them. This approach reduces the possibility that a private or pub-
lic key could be “spoofed” by another system by providing a central (theoretically),
secure location for authentication.

W3C Recommendations
The W3C has developed two XML specifications for making Web services more
secure: XML Signature and XML Encryption. As the titles indicate, these recommen-
dations apply to any XML document, though they probably will find their most prac-
tical use as part of Web services, when applied to SOAP envelopes. Remember, SOAP
is just XML, so security that applies to SOAP applies to any XML and vice versa.

XML Signature and XML Encryption
XML Signature is a W3C recommendation. This standard provides the ability to
“sign” an XML document. This provides insurance that a document is derived from
a trusted source, and that it has not been altered since it was sent from that source.
Multiple signatures can be contained in a single XML document, and each signature
can be assigned to one or more elements in the document. The capability for multi-
ple signatures provides the “tally stick” verification facility described earlier in this
chapter, between two or more entities. You can find more information about XML
Signature at http://www.w3.org/Signature.

q538292 ch37.qxd 8/18/03 8:45 AM Page 874

875Chapter 37 ✦ Authentication and Security for Web Services

XML Encryption is another W3C recommendation. Like signatures, all or part of an
XML document can be encrypted, and multiple encryption keys can be specified on
a document. Encryption can be managed though standard public key algorithms
such as X.509/PKIX, SPKI, or PGP. For more information about XML Encryption, refer
to the W3C Recommendation page at http://www.w3.org/Encryption/2001.

The W3C has also published a note that is related to the XML signature recommen-
dation. The XML Key Management Specification (XKMS) provides a way to dis-
tribute and register public keys that are used for signatures and encryption. There
are two parts: the XML Key Information Service Specification (X-KISS) and the XML
Key Registration Service Specification (X-KRSS). X-KISS manages private key infor-
mation and authenticates between a key provider and a consumer. X-KRSS specifies
a standard way to register and manage public key information. VeriSign and Entrust
have developed XKMS toolkits in Java, and Microsoft provides an XKML toolkit for
.NET as part of the Web Services Enhancements (WSE) for Microsoft .NET. For more
information about XKMS, refer to the W3C Website for XKMS at http://www.w3.
org/2001/XKMS.

OASIS Security and Authentication
Specifications

Several new and advanced Web service specifications are in development from
Microsoft, IBM, BEA Systems, RSA, SAP, and VeriSign, under the auspices of the
Organization for the Advancement of Structured Information Standards (OASIS),
a consortium of software and hardware companies and organizations. OASIS
supports Technical Committees (TCs) that create and maintain OASIS specifica-
tions. Whenever possible, the OASIS TCs base their specifications on W3C
Recommendations. The fruits of labor for OASIS XML TCs are usually specification
documents backed up by one or more W3C schema. The schemas can be used to
validate XML documents that have been created using the specification. The OASIS
WS-Security, WS-License, and WS-Policy specifications are gathering industry sup-
port as they are developed. Other OASIS implementation projects such as Secure
Assertion Markup Language (SAML) and XML Access Control Markup Language
(XACML) specifications are also in development. Implementation of these specifica-
tions is intended to be included in most enterprise application frameworks, starting
with IBM, BEA, and Microsoft.

WS-Security
WS-Security is an OASIS specification that uses SOAP extensions to provide encryp-
tion and security specifically to SOAP envelopes. Signature and encryption meth-
ods are based on the W3C XML signature and XML encryption recommendations.

q538292 ch37.qxd 8/18/03 8:45 AM Page 875

876 Part VIII ✦ Advanced Web Services

WS-Security describes binary token encoding and attachment methods for standard
security tokens, such as X.509 certificates and Kerberos tickets. This provides a
good starting point for developers who want to create standardized SOAP envelope
security based on the W3C XML signature and encryption recommendations. The
SOAP encryption and security extensions provide a method to pass credentials
between two or more Web services and other applications using W3C security stan-
dards. More information can be found at http://msdn.microsoft.com/
library/en-us/dnglobspec/html/wssecurspecindex.asp or http://
www-106.ibm.com/developerworks/webservices/library/ws-secure.

WS-Policy framework
WS-Policy is another OASIS specification that will describe how Web service
providers can specify their requirements and capabilities. A policy is a generalized
way of describing a set of characteristics about a Web service. For example, a Web
service provider may create a security description using the preceding WS-security
specification. They can communicate that specification as a WS-Policy document.
The WS-Policy document would contain a description of the Web service’s security
policies using a related specification called Web Services Security Policy Language
(WS-SecurityPolicy), which we describe in more detail later in this chapter.

The WS-Policy specification does not describe how policies are discovered or
attached to a Web service. It just describes how to format policies according to the
WS-Policy specification.

WS-Policy can be used to describe Web service policies, including security policies,
trust policies between two or more parties, privacy policies, and authentication
policies. Many OASIS specifications contain a WS-Policy component, including WS-
Security, WS-Trust, and WS-SecureConversation. More information about WS-Policy
can be found at http://msdn.microsoft.com/ws/2002/12/Policy or
http://www-106.ibm.com/developerworks/library/ws-polfram.

Web Services Policy Assertions Language
(WS-PolicyAssertions)
WS-PolicyAssertions specifies metadata for WS-Policy. It provides an inventory of
policies that are present for a Web service. Policy document references are defined
using XPath, as a relative path from the WS-PolicyAssertions document for a Web
service. More information can be found at http://msdn.microsoft.com/ws/
2002/12/PolicyAssertions or http://www-106.ibm.com/developer
works/library/ws-polas.

Note

q538292 ch37.qxd 8/18/03 8:45 AM Page 876

877Chapter 37 ✦ Authentication and Security for Web Services

Web Services Policy Attachment
(WS-PolicyAttachment)
This describes the method for attaching policies to WSDL definitions, WSDL
PortTypes, and UDDI entities. More information can be found at http://msdn.
microsoft.com/ws/2002/12/PolicyAttachment or http://www-106.ibm.
com/developerworks/library/ws-polatt.

Web Services Security Policy Language
(WS-SecurityPolicy)
WS-SecurityPolicy is described as an “addendum” to WS-Security. It specifies the
methods for providing policy assertions about a Web service’s security implemen-
tation. This is because policy assertions were developed after WS-Security was
defined. In the rest of the specifications listed following, the policy assertions
are included in the specification documents. More information can be found at
http://msdn.microsoft.com/ws/2002/12/ws-security-policy or
http://www-106.ibm.com/developerworks/library/ws-secpol.

WS-Trust
WS-Trust describes a model for trust relationships. Trust relationships are terms
that two or more parties have agreed upon. Trusts include identity and authentica-
tion. Trust can be established directly between two or more parties, or indepen-
dently verified using a third party. Trust is established between Web services using
security tokens. WS-Trust describes the methods for requesting and providing a
token, including token keys and encryption requirements. This helps two Web ser-
vices negotiate a connection based on standardized methods of identity verifica-
tion. More information can be found at http://msdn.microsoft.com/ws/
2002/12/ws-trust or http://www-106.ibm.com/developerworks/
library/ws-trust.

WS-SecureConversation
WS-SecureConversation uses WS-Security and WS-Trust in SOAP envelopes to man-
age security beyond standard authentication encryption. This means that some
parts of a Web service can be secure, while others are available to the public. For
example, WS-Trust establishes identity for access to a provider’s Web service, but
does not dictate which actions are available to a specific requestor or class of
requestors. WS-Security establishes available and valid encryption methods, but
doesn’t establish the data in Web services on which a specific encryption method
should be used. A WS-SecureConversation implementation can be compared to a
storefront Website, where most of the site is available for viewing, but purchasing

q538292 ch37.qxd 8/18/03 8:45 AM Page 877

878 Part VIII ✦ Advanced Web Services

items requires registration and encryption. Shoppers require no encryption and no
identity verification. Purchasers require encryption to protect personal informa-
tion, and authentication to establish the identity of the purchaser. Using WS-
SecureConversation, developers can describe a token for a session, part of a session,
or a one-time use token for a specific message. More information can be found at
http://msdn.microsoft.com/ws/2002/12/ws-secure-conversation or
http://www-106.ibm.com/developerworks/library/ws-secon.

Secure Assertion Markup Language (SAML)
Secure Assertion Markup Language (SAML) can be used for sign-on among non-
adjacent Web services and applications. SAML is similar to the W3C XML Key
Management Specification (XKMS). It provides a method for managing tokens in
SOAP messages. SAML uses WS-Security standards for encryption and signatures,
and ID made up of tags that define credential keys using elements.

You can find more information about WS-Security and SAML at http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=security.

XML Access Control Markup Language (XACML)
XML Access Control Markup Language (XACML) is another OASIS group specifica-
tion. XACML defines credentials in a standardized XML tag format. It can be used
for authorization and for passing one or more authorization credentials from one
Web service or system to another. More information is available at http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml. Sun has
implemented a Java reference version of XACML, which can be downloaded from
http://sunxacml.sourceforge.net.

Web Service Security and
Authentication in Java

Sun has provided Java language reference implementations of several key W3C rec-
ommendation and OASIS specification features as part of Java Community
Processes (JCPs). The output of JCPs are implemented as a result of a Java Service
Request (JSR). JSRs provide a tracking number for the final product. Much of the
code from the JSR implementations is in the Apache XML security library. IBM also
provides reference implementation code for Java via the IBM XML Security suite.

q538292 ch37.qxd 8/18/03 8:45 AM Page 878

879Chapter 37 ✦ Authentication and Security for Web Services

Java community process initiatives for
Web service security
Sun is providing several Web service security implementations as Java Service
Request (JSR) implementations, which are part of the Java Community Process
(JCP). The full list of XML JSRs, including Web service JSRs, can be found at
http://www.jcp.org/en/jsr/tech?listBy=1&listByType=tech.

For more information about the Java Community Process and JSRs, please refer to
Chapter 17.

JSR number 104 defines an XML Trust Service API. A trust service provides a way of
abstracting XML signatures by providing a token that compatible APIs can read,
instead of re-authenticating from a source. This provides single sign-on capabilities
and permits disparate security systems to act as a single unit. JSR 105 defines a
standard API for XML digital signatures as defined by the W3C XML Signature
Recommendation. JSR 106 defines a standard set of APIs for XML digital encryption
services, also based on the W3C implementation of XML encryption. JSR 155 adds
Secure Assertion Markup Language (SAML) assertions to Java, including creden-
tials, authentication, sessions, and user preferences, profiles, and roles.

Apache XML Security
Apache has implemented Java reference implementations of the XML-Signature Syntax
and Processing and the XML Encryption Syntax and Processing Recommendations.
By the time this book is in print, they probably will have finished the XML Key
Management recommendation implementation in Java as well. You can find the
Java and C++ code downloads for XML security implementations at http://xml.
apache.org/security/download.html.

If you’re using JDK 1.4 or higher, check the FAQ associated with the download files
for instructions on setting up a compatible version of Xalan.

IBM XML Security Suite
The IBM XML Security Suite Adds W3C-defined security features such as digital
signature, encryption, and access control to Web service and XML applications.
Security has always been a challenge for Web service developers, because Web
services are transporting text over standard protocols that don’t support advanced
security features by themselves. The XML Security Suite includes support for the
W3C XML-Signature Syntax and Processing and XML Encryption Syntax and Processing
Recommendations. There is also support for XML Access Control functionality,
partly supported by the W3C Canonical XML Version 1.0 Working Draft. The free
XML Security Suite download includes a .jar file containing supporting classes and a

Note

Cross-
Reference

q538292 ch37.qxd 8/18/03 8:45 AM Page 879

880 Part VIII ✦ Advanced Web Services

number of examples of the XML Security Suite code in use. A good introductory
article can be found at the IBM DeveloperWorks XML Zone at http://www-106.
ibm.com/developerworks/security/library/x-xmlsecuritysuite/
?dwzone=security.

Web Service Security and
Authentication in Microsoft .NET

All implementation of Web service security standards for the .NET platform is
implemented in the Web Services Enhancements 1.0 for Microsoft .NET (WSE).
Standards supported include digital signature and encryption, message routing,
and SOAP attachments based on the OASIS WS-Security specification, with some
extra Microsoft specifications called WS-Routing, WS-Attachments, and Direct
Internet Message Encapsulation (DIME). WS-Routing describes a stateless, asyn-
chronous method for SOAP message routing. The WS-Attachment specification
describes Microsoft’s way of attaching non-XML data to SOAP envelopes. DIME
describes a way to include SOAP attachments and other non-XML data in XML doc-
uments, not just SOAP envelopes. The WCE is based on the Microsoft Global XML
Architecture (GXA). GXA is a set of tools that provide protocols for Web services,
applications, and the connections in between. You can find more information about
the WSE and related standards as well as the WSE download files, at http://
msdn.microsoft.com/webservices/building/wse/default.aspx.

Web Service Transactions:
BPEL4WS and WSCI

Sorting through the current offerings and “standards” for Web service transactions
can be a daunting task. In the middle of the confusion is the W3C WS-Choreography
working group. WS-Choreography is actually a great name for unintended reasons;
currently the WS-Choreography group is working hard to choreograph two groups
that are trying to make their specification an accepted standard. On one side is the
Web Services Choreography Interface (WSCI), pronounced “whiskey,” as in “You may
want to have one after you hear about these competing standards.” WSCI is a neat
specification (sorry, had to say it), but has been put on the rocks (sorry again) by a
competing standard, the Business Process Execution Language for Web Services
(BPEL4WS).

q538292 ch37.qxd 8/18/03 8:45 AM Page 880

881Chapter 37 ✦ Authentication and Security for Web Services

Web Services Choreography Interface (WSCI)
WSCI has the support of the W3C WS-Choreography working group, by virtue of the
fact that it was first to submit its standard to the W3C. The proposed WSCI specifi-
cation can be reviewed at http://www.w3.org/TR/wsci.

WSCI’s goal is to describe how a grouping of Web services could work together. It
does this by working with a WSDL document to specify how a Web service works
with other Web services, and what WSCI-specified features are supported by the
Web service. However, WSCI does not address how Web services are supposed to
interact, just how to describe a Web service’s interactive characteristics.

Sun Microsystems is the major supporter of WSCI. The Business Process
Management Initiative (BPMI) actually submitted the standard to the W3C and is
supporting ongoing development. Members of the BPMI WSCI specification devel-
opment team include Commerce One, Fujitsu, IONA, Oracle, SAP, Sun Microsystems,
and BEA. BPMI has also developed a competing standard to BPEL4WS, called the
Business Process Modeling Language (BPML). BPML is a meta-language for the
modeling of business processes, including the choreography of Web services.

You can find more information about BPMI, BPML, and WSCI at http://
www.bpmi.org.

BPEL4WS
BPEL4WS is a business process and choreography specification created by IBM,
Microsoft, and BEA, and supported by many other companies. Not to be outdone
by the WSCI team, the BPEL4WS team has submitted their specification to the
Organization for the Advancement of Structured Information Standards (OASIS).
OASIS formed the Web Services Business Process Execution Language Technical
Committee (WSBPEL TC) to develop the BPEL4WS specification. IBM, Microsoft
BEA, and Sun Microsystems are the four most prominent players in the WSBPEL TC.

The BPEL4WS specification describes a workflow language that identifies Web ser-
vices as part of a business process. Each Web service can be defined individually,
and the order of execution and data that each Web service supports is described in
BPEL4WS documents. BPEL4WS also defines how to send and receive XML mes-
sages, manage specific events, and trap errors and exceptions. For example, parts
of a Web service grouping can be identified as critical, and if one of the Web ser-
vices in the grouping fails, steps can be specified to roll back the process to a previ-
ous step. BPEL4WS is based on SOAP, WSDL, and XML Schema.

You can find more information about OASIS and BPEL4WS at http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

q538292 ch37.qxd 8/18/03 8:45 AM Page 881

882 Part VIII ✦ Advanced Web Services

BPEL4WS, BPML, and WSCI working together
As you can see, there appear to be two competing standards for specifying how a
Web service transaction will take place between more than one Web service con-
sumer and provider. Both have their merits. BPEL4WS is backed by industry heavy-
weights in the OASIS group, and WSCI is supported by the group that brings us all
of the other XML and Web service standards: the W3C. So how can this situation be
resolved? Well, the actual outcome is anyone’s guess, so in the meantime, here’s the
way we see things playing out.

One of the confusing things you may have noticed in the preceding specifications
descriptions is that Sun Microsystems and BEA are members of the specification
development groups for WSCI, BPML, and BPEL4WS. So far, there have been several
APIs developed as reference implementations for BPEL4WS. Microsoft’s Web
Services Enhancements for Microsoft .NET (WSE), IBM’s Business Process
Execution Language for Web Services Java Run Time (BPWS4J), and BEA’s WebLogic
application server BPEL4WS implementation already support developers who want
to code transactional Web service solutions. On the other hand, there are no refer-
ence implementations of WSCI to date. That is not to say that WSCI is unsupported.
It contains most of the functionality needed to describe Web service interaction,
but not the processes that make Web services interact.

The submission of the process-heavy BPEL4WS specification to OASIS, which sup-
ports business specifications related to technology, makes sense. The submission
of the tag-based WSCI specification to the W3C, which supports technology specifi-
cations, not business specifications, also makes sense. We predict that a compro-
mise is found between the process parts of BPML and BPEL4WS (which support
much the same thing, but with different technical terms and approaches) in the
next year or so, and a complementary single standard based on the best of WSCI
and the best of BPEL4WS is published.

Tools for transactional Web services
In the meantime, as the standards gurus duke it out, until the final specification is in
place, there are several tools you can use to develop transactional Web services
now. Microsoft’s Web Services Enhancements for Microsoft .NET (WSE) includes an
implementation of BPEL4WS. IBM has developed the Business Process Execution
Language for Web Services Java Run Time (BPWS4J) and has integrated BPEL4WS
functionality into its WebSphere Application Server. BEA’s WebLogic application
server also supports BPEL4WS functionality and has integrated its transactional
Web service functionality with Siebel System’s Universal Application Network (UAN).

Microsoft’s Web Services Enhancements for Microsoft .NET (WSE)
The latest version of Microsoft’s Web Services Enhancements for Microsoft .NET
(WSE) includes support for BPEL4WS specifications. For more information and
downloads, go to http://msdn.microsoft.com/webservices/building/
wse/default.aspx.

q538292 ch37.qxd 8/18/03 8:45 AM Page 882

883Chapter 37 ✦ Authentication and Security for Web Services

IBM’s Business Process Execution Language for
Web Services Java Run Time (BPWS4J)
Version 1.1 of IBM’s Business Process Execution Language for Web Services Java
Run Time (BPWS4J) includes a J2EE reference implementation of the BPEL4WS stan-
dard, documentation, and samples. BPWS4J also includes an eclipse plug-in and a
BPEL4WS document validator. It can be downloaded for free from IBM AlphaWorks
at http://alphaworks.ibm.com/tech/bpws4j. IBM has also bundled BPWS4J
into the Emerging Technologies Toolkit (ETTK), which can be downloaded at
http://alphaworks.ibm.com/tech/webservicestoolkit. IBM’s WebSphere
Studio Application Developer, including BPWS4J, is supported by the WebSphere
Application Server via the WebSphere SDK for Web services (WSDK).

BEA WebLogic Workshop
BEA WebLogic Workshop also supports BPEL4WS. Applications developed with the
BPEL4WS-supported features of Workshop run on Bea WebLogic servers and
Siebel’s Universal Application Network (UAN) via Web services.

Summary
In this chapter, we’ve covered some of the newer and developing parts of Web
services technology. Security, authentication, and transactional management will
provide the means to make Web services as secure and reliable as any other IT
process.

✦ Web service security and authentication scenarios

✦ Web service security offerings from the W3C: XML Signature and XML
Encryption

✦ Web service security offerings from OASIS: WS-Security, WS-Policy, and others.

✦ OASIS reference implementations, SAML, and XACML

✦ Web service security development tools for Java

✦ Web service security development tools for .NET

✦ Web service choreography: BPEL4WS, BPML, and WSCI

That’s it for this chapter and the book. We hope you’ve found this book educational
and occasionally entertaining. (In other words, we hope that my occasional jokes
weren’t too bad....) Please check the XML Programming Bible Website (http://
www.XMLProgrammingBible.com) for book updates and more information.

✦ ✦ ✦

q538292 ch37.qxd 8/18/03 8:45 AM Page 883

SYMBOLS
& (ampersand)

entity reference prefix, 22, 24
SQL Server query URL separator, 437
text, including in, 24, 37

&# (ampersand, pound sign) entity reference prefix, 22
&#x (ampersand, pound sign, x) hexadecimal

character reference, 22
&& (ampersands) JSP logical AND operator, 394
* (asterisk)

wildcard operator, 200
XPath location operator, 184

@author (at sign, author) XPath reference
expression, 225

@mp (at sign, mp) OPENXML metaproperty prefix, 453
@source (at sign, source) XPath reference

expression, 225
@ (at sign) XPath location operator, 184
| (bar)

DTD or operator, 17
element choice list separator, 55, 59

|| (bars) JSP logical OR operator, 394
, (comma) element list separator, 54, 55
${ (dollar sign, parenthesis) EL expression prefix, 393
= (equals sign) JSP variable assignment operator, 394
== (equals signs) JSP not equal operator, 394
!boolean (exclamation mark, boolean) JSP Reverse

Boolean reference operator, 394
! (exclamation mark) DTD element prefix, 53
!= (exclamation mark, equals sign) JSP not equal

operator, 394
() (parentheses) JSP grouping operator, 394
} (parenthesis) EL expression suffix, 393
. (period)

JSP property value operator, 394
XPath location operator, 184

.. (periods) XPath location operator, 184
+ (plus sign) cardinality operator, 55
? (question mark)

cardinality operator, 61
wildcard character, 714

“ ” (quotation marks)
attribute name delimiters, 12
MSXML processing instruction, including in, 246
text, including in, 34

; (semicolon) character reference suffix, 22, 24
/ (slash) XPath location operator, 184
// (slashes) XPath location operator, 184

A
Abstract Window Toolkit. See AWT
Access

Application object, 278
data source

export operation, specifying in, 279
import operation, specifying in, 287

exporting XML from
ASP file, to, 274, 275, 280
automating programmatically, 278–283
BizTalk Server process, to, 283
component application, to, 283
DAP information, including, 279
data source, specifying, 279
data target, specifying, 279
datasheet data, 273
destination location, 272–273
encoding, 277, 279
Excel, to, 281–283
form data, 273
image, 279
index, 280
key, primary, 280
location of generated file, 272, 277
manual, 272–278
naming generated file, 273, 274
object information, specifying, 279
presentation information, 279
query data, 273
report data, 273, 280
Schema information, including, 273–275,

279–280
table data, 272–273, 274–275
Visio, to, 283
Web server, posting to, 273
Web Service, to, 283
XSD information, 273–275
XSLT, formatting output using, 273, 274–277,

280, 281–283
ExportXML method, 278–281
Import dialog box, 285–286
importing XML into

automating programmatically, 286–288
data source, specifying, 287
data structure considerations, 284
error handling, 284–285
manual, 284–286

Continued

Index

r538292 Index.qxd 8/18/03 8:45 AM Page 885

886 Index ✦ A

Access (continued)
namespace considerations, 288
Schema information, including, 284
table, appending data to, 286
table, inserting data in, 284–285, 286
table, overwriting, 287
table structure only, 286
tables, to multiple, 286
XSLT, applying to incoming data, 287–288

ImportXML method, 286–288
overview of XML support, 271–272
version described in this book, 271
XML Spreadsheet Add-In, 282
XSLT

export data, formatting using, 273, 274–277,
280, 281–283

import data, formatting using, 287–288
AcExportXMLObjectType constant, 279
ActionListener object, 544, 545–547, 822, 823–825,

862–864
Active Server Page, Access XML export to. See ASP,

Access XML export to
add method, 549, 550, 851
addAttribute method, 147, 159, 164
AdminClient utility, 793
Administration subsystem, 779. See also AXIS (Apache

eXtensible Interaction System)
ADO (ActiveX Data Object)

Oracle, connecting to using ADO string, 489
SQL Server OPENXML feature, integrating with, 451

AdRotator control, 722–725, 728–729. See also
ASP.NET

after element, 469, 470
agent, Web service

calling, 631
introduced, 629
serving, 631

all element, 66
AlphaWorks

utility suite, 693, 741–742, 883
Web site, 87

Altova XMLSpy
DB2, working with using, 526
downloading, 49
DTD, working with using, 49, 53–54, 62
Enterprise edition, 49
Oracle, working with using, 489–491
Schema, generating using, 72
SQL Server, working with using, 460, 461, 462
Stylesheet Designer, 212, 220
trial version, 49
WSDL, working with using, 652

Amazon.com Web site, 29–37
AmazonListings table, 433, 497–498, 510–511
AmazonListingsSchemaTable.xsd file, 497–498
AmazonListings.xsd file, 443
AmazonMacbethSpanish.dtd file, 49–51
AmazonMacbethSpanishforxsl.xml file, 350–351
AmazonMacbethSpanish1.xml file, 387
AmazonMacbethSpanishwithDTDref.xml file, 49
AmazonMacbethSpanishwithinternalDTD.xml

file, 53
AmazonMacbethSpanishwithXSDref.xml file,

68–71
AmazonMacbethSpanish.xml file, 192–194, 220,

380–382, 409, 417
AmazonMacbethSpanish.xsd file, 373–375, 378,

379–380
AmazonType class, 379
AmortizationManager service, 790
AmortizationManager.wsdd file, 792
ampersand (&)

entity reference prefix, 22, 24
SQL Server query URL separator, 437
text, including in, 24, 37

ampersand, pound sign (&#) entity reference prefix, 22
ampersand, pound sign, x (&#x) hexadecimal

character reference, 22
ampersands (&&) JSP logical AND operator, 394
ancestor XPath node axis, 184
ancestor-or-self XPath node axis, 184
and JSP logical AND operator, 394
annotation element, 66
any element, 66
anyAttribute element, 66
anyURI data type, 65
Apache resources. See also AXIS (Apache eXtensible

Interaction System)
FOP server, 219, 319
SOAP Toolkit, 847
Software Foundation, 323, 691, 738
Tomcat Server

AXIS installation, 781–782, 783
downloading, 740
Java Servlet comment generation by, 411, 420
Java Servlet, official J2EE Reference

Implementation for, 692
JSP, official J2EE Reference Implementation

for, 692
SOAP support, 740
WSDL support, 740

WSIF, 691, 739
WSIL, 691, 739

r538292 Index.qxd 8/18/03 8:45 AM Page 886

887Index ✦ A

Xalan
C++ version, 341
class, creating, 350
component overview, 342
documentation, 342
DOM, passing output to, 351–356
DOM support, 319, 341
downloading, 342
error handling, 348–349
event handling, 358
HTML, transforming XML to, 351, 352
installing, 342
Java version, 341
Javax stream, 350
JAXP, using with, 365–367, 370
LotusXSL engine, relation to, 174
output document location, specifying, 348
sample source code, 342
SAX, passing output to, 351, 356–358
SAX, use of, 319, 341
screen, sending transformation output to,

349–351
source document, specifying, 348, 350
streaming input, 350
streaming output, 348, 350, 355
stylesheet, using, 345–346, 348, 349, 350–351
Transformer Factory, 348, 350, 355, 358
TRAX implementation, 341
WSAD support, 313
XML-Signature Syntax and Processing

compatibility, 740
XPath support, 341
XSLT implementation classes, 341, 342

Xerces
AXIS, using with, 782
class, creating, 329
class, importing, 329
component overview, 324–325
described, 323
DOM implementation, 323
DOM parsing, 87, 89, 92, 325–333
downloading, 323, 324
error handling, 330
event handling, 329, 336
installing, 324–325
JAXP, using with, 324
J2EE, included with, 324
licensing, 323
node existence, checking, 330, 333
node map, working with, 332
node output, sending to screen, 332
node, reading, 330
node value, assigning, 331

nodes, iterating through, 330
org.apache.xerces classes, 336, 368
org.xml.sax classes, 329
SAX parsing, 87, 325, 334–339
source code, 323, 324
source document, specifying, 330
URI prefix mapping, 338
validation, 320
WSAD support, 313
XML4J, relation to, 314, 320, 324

Xindice, 320, 739
XML Project, 323, 341

appendChild method, 104, 253
appendData method, 118, 119
Application

JSP variable, 391
object, 278

application server
Bea WebLogic, 397, 560, 694
Java Servlet, 559, 560
J2EE, 560, 688, 689–690, 804, 848
Oracle, 840, 842–843
Sun ONE, 317, 694, 743
WebSphere, 560

applicationScope JSP implicit object, 397
apply-imports element, 180
apply-templates element, 181, 188, 200, 206, 215
array, sending JDBC query result to

ArrayOf_xsd_string data type, using, 827
buildArray class, using, 549–550, 576, 808, 813,

850–851
GetSingleAuthorList class operation, in,

549–550, 569
ArrayList object, 549, 807–808
arrayResults object, 550, 851
Asin class, 379
.asmx file, 715
ASP (Active Server Page), Access XML export to, 274,

275, 280
ASP.NET

AdRotator control, 722–725, 728–729
application, creating mobile browser-based,

721–730
event handling, 725, 727
form, creating, 722–723
IIS, loading by, 712
.NET Web service, security role in, 711–712
QueryString object, passing to Web page, 728
Server Control, adding, 722
SOAP messaging, 712, 727
Web site, 700
WSDL file, referencing, 725–727

r538292 Index.qxd 8/18/03 8:45 AM Page 887

888 Index ✦ A

asterisk (*)
wildcard operator, 200
XPath location operator, 184

at sign, author (@author) XPath reference
expression, 225

at sign, mp (@mp) OPENXML metaproperty prefix, 453
at sign, source (@source) XPath reference

expression, 225
at sign (@) XPath location operator, 184
AttachmentPart class, 753
ATTLIST

data type, 58
element, 17, 53

Attr data type, 97, 99, 116–117
attribute. See also specific attribute

constraint, referencing for, 66
data type, 57–59, 65, 147
data vehicle, using as, 33
DB2

element attribute set, returning, 514, 517–518
grouping, 520
ordering, 520
updating attribute, 527–528

declaring, 17, 53, 56–59
DOM

attribute node, creating, 109
attribute node, removing, 116
attribute node, returning, 115
element of attribute, returning, 117
existence of attribute, checking, 104, 115
name of attribute, returning, 117
removing attribute, 113–114, 116
value of attribute, returning, 115, 117
value of attribute, setting, 116
value of attribute, updating, 116

DTD, declaring in, 56–59
element

nesting level, describing in attribute, 12, 21,
177–178

relation to, 11, 33
transforming attribute to using XSLT, 178

index, 147
JDBC, building in, 556–558, 572–575, 583–585,

818, 831
key, 66
MSXML DOM, creating attribute in, 253
namespace

returning, 147
setting, 148

naming, 8, 12, 45–46, 148
.NET Web service, 703–705

Oracle
creating attribute in, 484–485
element attribute set, returning, 480, 483–484

position attribute, 17
requiring, 20
SAX

definition of attribute, checking, 129, 161, 164,
165

list, 128, 141, 159–160, 164, 167–168
syntax, 8, 17
type, returning, 147
unique at nesting level, defining as, 67
XPath node axis, treatment in, 185
XSLT

element declaration, passing name of attribute
node to, 185

mandatory attributes, 176
output, adding to, 182
transforming attribute to element using, 178

attribute element, 66, 182
attributeDecl method, 161, 165
attributeGroup element, 66
AttributeList SAX interface, 128, 141
AttributeListImpl class, 159–160
ATTRIBUTE_NODE constant, 100, 101
Attributes SAX interface, 84, 128, 139–141
attribute-set element, 182
AttributesImpl class, 146–148
attributestoelements.xsl file, 176
Attributes2 SAX interface, 129, 160–161
Attributes2Impl class, 164–165
authentication

Java environment, in, 878–880
Kerberos, 874
Microsoft Passport, using, 712
PKI, 874
SOAP

header, passing authentication information
in, 640

message authentication, 629
Web service authentication, 711–713, 872, 874
Web.Config file, role in, 713–714

Author class, 379
AuthorList object, 823, 827, 862
AuthorListResult object, 839
AuthorListSelectionHandler object, 823, 862
Authors table, 433, 511, 846
Availability

class, 379
element, 528

AWT (Abstract Window Toolkit), 820–821, 822

r538292 Index.qxd 8/18/03 8:45 AM Page 888

889Index ✦ A–B

AXIS (Apache eXtensible Interaction System)
AdminClient utility, 793
administration, remote, 793–794
Administration subsystem, 779
architecture, 776–779
background, historical, 773–774
CLASSPATH environment variable, 785, 849
client, 690, 786–788, 807, 820–821, 850
configuration options, global, 779
data type mapping, 780–781, 789
data-binding format, declaring, 810
distribution files, 781
documentation, 738, 781
downloading, 738, 803
Encoding subsystem, 779
ETTK, use by, 742
installing, 781–782, 783, 803–804
interoperability, 775
Java class, accepting as input, 689
Java2WSDL utility, 797
JAXM Axis package, 753
JAX-RPC compliance, 779
JDBC data, working with

attribute, building, 818, 831
element, building, 815, 830–831
entity reference handling, 815, 818
query, passing parameter to, 828
query result, buffering, 815, 818
query result, displaying using Servlet, 829–832
query result, passing to RPC Router, 815
query result, sending to array of type

ArrayOf_xsd_string, 827
query result, sending to array using

buildArray class, 808, 813, 850–851
SQL Server connection, 807, 821
swing class, using, 803, 820–822, 824
user input, handling, 823–825
user interface, creating, 822–829
variable, defining public, 822–823

Message Flow subsystem, 778
Message Model subsystem, 779
parser, recommended, 782
plug-in support, 774
Provider subsystem, 779
RPC Router support, 691, 810
SAAJ support, 775
SAX parser, use of, 774
security, 789
serialization, 781
server, starting, 782–784
Simple SOAP Server, 739, 804–806, 848–849, 865

SOAP messaging
chaining, 777–778
client message processing, 777
context, 776, 777
deserialization, 776
handler, 777–778, 789
incoming message, 776
lifecycle of message, 776
Message Flow subsystem, 778
Message Model subsystem, 779
monitoring, 798–800
pivot, 776
response, 776, 777, 810
routing message, 776, 827
specification implementation, 319–320, 738–739,

773–774, 775
validation, 776

SOAP4J, relation to, 773–774
source code, 738
SQL Server connection, 807, 821
start page, 782–784
Tomcat installation, 781–782, 783
transport independence, 775
Transport subsystem, 779
user interface, 822–829, 860–867
variable, defining public, 822–823, 861
version described in this book, 774
Web service

creating, 785–786
deploying, 788–794, 804, 805, 848–849
testing, 739

WSDD files, 789–793, 804, 809, 847, 852–853
WSDL

deploying, 804, 806–807, 847, 852–853
generating WSDL from Java, 689, 797
Java, generating from WSDL, 794–797, 839
support, 775

Xerces, using with, 782
axis.jar file, 781

B
bar (|)

DTD or operator, 17
element choice list separator, 55, 59

bars (||) JSP logical OR operator, 394
base64Binary data type, 65, 780
Bea WebLogic resources

Application Server, 397, 560, 694
WebLogic Workshop, 883

BeanMapping tag, 793
bibliographic data, representing, 36, 38–39
Binding class, 379
BizTalk Server process, exporting Access XML to, 283

r538292 Index.qxd 8/18/03 8:45 AM Page 889

890 Index ✦ B–C

block element, 222
BodyContent interface, 412, 421
body-content JSTL tag, 402
Boolean

data type, 65, 186, 780
function, 186

BPEL4WS (Business Process Execution Language for
Web Service), 630, 633, 881–883

BPMI (Business Process Management Initiative), 881
BPML (Business Process Modeling Language), 881, 882
BPWS4J (Business Process Execution Language for

Web Services Java Run Time), 883
buildArray class, 549–550, 576, 808, 813, 850–851
buildAttributeXML class, 556–558, 572, 818
buildElementXML class, 552–554, 815
BULK INSERT SQL Server command, 469
Bulk Load, 451, 467–469. See also SQL Server
BulkResponse object, 771
Business Process Execution Language for Web Service.

See BPEL4WS
Business Process Execution Language for Web

Services Java Run Time. See BPWS4J
Business Process Management Initiative. See BPMI
Business Process Modeling Language. See BPML
businessEntity UDDI identification type, 658
BusinessQueryManager class, 770, 771
businessService UDDI identification type, 658–659
byte data type, 64, 780
ByteArrayAttachment30 class, 667

C
CAB File for Redistribution package, 237–238. See also

MSXML (Microsoft XML) parser
Call object, 763
callback methods, 336
call-template element, 181
Cape Clear 4 suite, 652–653
cardinality, 55–56, 60–61
Cascading Style Sheets. See CSS
CatalogType class, 379
CategoryName object, 550
cdata

data type, 56–57, 162, 166
element, 448
event, 162, 163, 166

CDATASection data type, 97, 99, 109, 118–119
CDATA_SECTION_NODE constant, 100, 101
cDoc variable, 457
ceiling function, 186
character

DOM interface, character data representation in, 97
line-end, 26–27

reference, 22–24, 34
requiring character data, 56
SAX character event handling, 136, 137, 146,

149, 154
set, XML 1.1, 25–26

Character data type. See cdata, data type
Character Large Object. See CLOB
Character Model. See CHARMOD
CharacterData

DOM data type, 117–118
DOM interface, 97

characters

event, 84
method, 136, 137, 146, 149, 154

CHARMOD (Character Model), 25–26
child XPath node axis, 184
choice

element, 66
Schema element restriction, 67

choose

element, 181
JSTL tag, 402

class. See also specific class
AXIS input, accepting Java class as, 689
handler class, 378, 823
jasper run-time classes, 410, 418
Java Servlet, 559
java.awt classes, 544, 803, 820–822
java.io classes, 544, 822, 861
java.rmi classes, 822
java.sql classes, 540, 544
java.util classes, 395–396, 544, 550
javax.servlet.jsp classes, 401
javax.sql classes, 540
javax.swing classes, 544, 861
javax.xml.transform classes, 350, 366
JAXB

compiling, 376–377
documentation, generating, 377–378, 379
handler class, 378
Schema, generating class set from, 371, 373, 376

JAX-RPC class generation, 761, 763–764
JDBC

driver support, 550
importing class, 544
package storage in, 539–540
query result, passing to class, 551–552, 555–556
swing class, using, 542, 544, 803, 820–822, 824

JSTL
implementation classes, 418
importing when parsing XML, 418
.jar file, mapping tag to class in, 402

r538292 Index.qxd 8/18/03 8:45 AM Page 890

891Index ✦ C

sharing class between tags, 402
validation class, specifying, 401–402

Microsoft SOAP Toolkit, 667–668
MSXML, 236, 240, 243
.NET class library, 432, 701, 703–705, 708
org.apache.axis classes, 822
org.apache.jsp classes, 410, 418
org.apache.xerces classes, 336, 368
org.xml.sax classes, 329
SQLXML managed class, 432
Stub classes, 763–764
swing class

javax.swing, 544, 861
JDBC/AXIS environment, using in, 803, 820–822,

824
UDDI SDK classes, 664
Web service, creating wrapper class for, 677–678
Xalan, creating in, 350
Xerces

creating, 329
importing, 329
org.apache.xerces classes, 336, 368
org.xml.sax classes, 329

Classification object, 771
ClassificationScheme object, 770
CLASSPATH environment variable

Apache SOAP toolkit, configuring for, 847
AXIS, configuring for, 785, 849
JAXB, configuring for, 372–373
JDBC, configuring for, 541, 845
JSP, configuring for, 398
JWSDP, configuring for, 372–373

clear method, 148, 159
client, smart, 684–685, 686
CLOB (Character Large Object)

DB2
returning XML from, 524
storing XML as, 509, 514, 516, 527
transforming XML to using XSLT, 601–602,

605–606
Oracle, returning in, 500, 502, 503

cloneNode method, 104
closeContext function, 500, 503
CLR (Common Language Runtime), 701, 705. See also

.NET Framework
comma (,) element list separator, 54, 55
comment

data type, 97, 99, 109, 117–118
DOM node data type, 97, 99, 109, 117–118
element, 182
method, 162, 165
SAX comment event handling, 162, 165

Schema comment, 66, 72
syntax, 12
XSLT output, adding to, 182

COMMENT_NODE constant, 100, 101
Common Language Runtime. See CLR
commons-logging.jar file, 781
complexContent element, 66
complexType element, 66
concat function, 187
Concept object, 770
config JSP variable, 391
ConfigureMenus function, 264–266
config.xml file, 843
contains function, 187
content model

mixed, 55
text-only, 54, 67

ContentHandler SAX interface, 127, 135–137,
336–337, 358

ConText search engine, 473. See also Oracle
convert function, 500
cookie implicit object, 395
copy element, 181
copy-of element, 181, 194–198
Core Services (MSXML parser)

ANSI support, 240
API, relation to, 242
CAB File for Redistribution package, 237–238
class, 236, 240, 243
component, referencing, 240–241
data island, using in MSXML environment, 612–619
documentation, 237
DOM

Attr data type support, 117
Attr node support, 99
attribute, creating, 253
CDATASection data type support, 119
CDATASection node support, 99
CharacterData data type support, 117–118
class access, 243
Comment data type support, 117–118
Comment node support, 99
Document data type support, 107–111
Document node support, 95, 98
DocumentFragment node support, 98
DocumentType data type support, 111
DocumentType node support, 98
DOMImplementation Interface support, 106
element data type support, 114–116
Element node support, 98
element, returning, 253

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 891

892 Index ✦ C–D

Core Services (MSXML parser) (continued)
entity data type support, 120
Entity node support, 99
EntityReference node support, 99
error handling, 95, 96, 244–245, 252–253
event handling, 254
extension, 95
interface, 96–97, 106, 243
loading XML content, 253, 254–257
menu, building dynamic using, 263–268
method, 253–254
namedNodeMap data type support, 113–114
node child, appending, 253
node child existence, checking, 253
node child, removing, 253
node child, returning, 253
node collection, returning, 253
node constant support, 101
node, creating, 253
node property support, 101–103
node, selecting, 254, 257–260, 266
node text, returning, 253
node, transforming using XSLT, 254, 260–263
node type, returning, 253
node value, returning, 253
node XML, returning, 253
nodeList data type support, 112
nodeTypeString property, 100–101
Notation data type support, 120
Notation node support, 99
parent document, returning, 253
processing instruction, creating, 253
ProcessingInstruction data type

support, 107
ProcessingInstruction node support, 98
property, 252–253
root object, 242–243, 252
saving XML content to file, 253
SAX, sending content to DOM from, 246–247
Text data type support, 119
Text node support, 99

DOMDocument object, 169, 238, 240, 242–243
downloading, 88, 126, 237
error handling, 244–245
functionality provided by, 236, 241–242
HTML, outputting, 248–249
installing, 236–237
interface, 242–243
Internet Explorer, integration with, 239
Microsoft SOAP Toolkit reliance on, 667
.NET platform, core component of, 174
object instance, creating, 238–239

SAX parsing, 88, 125–130, 236, 241–242, 246–247
Schema support, 241
SDK, 237
SQL Server Bulk Load, use of, 467
system requirement, 236
version considerations, 238–239
XML, outputting, 248
XSL support, 247

count function, 186
createAttribute method, 253
createDocument method, 106
createDocumentType method, 106
createElement method, 253
createFormat function, 497–498
createNode method, 253
createProcessingInstruction method, 253
createQuoteType method, 386
createTextNode method, 253
createXML function, 499
createXMLReader method, 144
createXMLReaderFactory method, 144
CSS (Cascading Style Sheets)

WSAD support, 741
W3C DOM Level 2 Style Recommendation, 93

current function, 187

D
DAD (Document Access Definition), 523, 525, 528–536
DADX (Document Access Definition Extension), 843,

846–847, 868
DAP (Data Access Page), 279
data island

browser considerations, 611
creating, 614–615
described, 611
document

loading, 616
size considerations, 613

HTML page element, linking to, 619
JavaScript, working with using, 611, 614–616,

619–621
MSXML environment, in, 612–619
sorting, 619–621
table, parsing into, 618–619
XSLT applying to data destined for, 613–618

data source
Access

export operation, specifying in, 279
import operation, specifying in, 287

attribute, using as data vehicle, 33
Excel import operation, specifying in, 292

r538292 Index.qxd 8/18/03 8:45 AM Page 892

893Index ✦ D

formatting, maintaining using xml:space
attribute, 39–40

layout, maintaining using xml:space attribute,
39–40

SQL Server, specifying in, 837
text value, loading data from using, 34

data type. See also specific type
attribute, of, 57–59, 65, 147
AXIS type mapping, 780–781, 789
complex, 73, 75–76
constraint, 67
DB2, 516, 524, 840
element, contained in, 65
Excel XML import, preserving during, 302
facet property, 67
JAX-RPC type mapping, 760, 766–767
Oracle, 840
returning, 111
Schema types, 62–65, 67–68, 72–74, 840
specifying, 111
SQL Server, 839–841
WSDL type mapping, 766, 780
XPath support, 186

Data Type Definition. See DTD (Data Type Definition)
database, working with. See specific language, protocol

and tool
DataSet

class, 432
data type, 840

datatype SQL Server edge table column, 455
date data type, 63
dateTime data type, 63, 780
DBMS_XDB Resource API for PL/SQL, 499
DBMS_XDBT Resource API for PL/SQL, 499
DBMS_XDB_VERSION Resource API for PL/SQL, 499
DBMS_XMLDOM PL/SQL DOM Parser, 499
DBMS_XMLGEN

function, 478, 479, 598
package, 499–504

DBMS_XMLGENEXAMPLE.xml file, 504
DBMS_XMLGen.setRowsetTag function, 504
DBMS_XSLPROCESSOR XSLT processor, 499
DB2

Administration Wizard, 526
aggregating separate objects into single XML

document, 514, 515, 518–519
attribute

element attribute set, returning, 514, 517–518
grouping, 520
ordering, 520
updating attribute, 527–528

CLOB
returning XML from, 524
storing XML as, 509, 514, 516, 527
transforming XML to using XSLT, 601–602,

605–606
COLATTVAL function, 513
collection RDB node mapping, 531–535
column

logging, 525
mapping, 524–531, 532
retrieving data from, 523–524
XML document fragment containing element for

each column, creating, 513, 514–516
XML document, storing in, 523, 527

concatenating objects into a single XML document,
515, 518

connecting to database, 521, 526
DAD, 523, 525, 528–536
data type, 516, 524, 840
developer version, 509
document declaration, 519–520
downloading, 509
DTD, 521, 525–526, 529, 531, 536
element

attribute set of, returning, 514, 517–518
column, mapping to, 524–531, 532
expression, hard-coding element name in,

514, 516
grouping, 520
location, defining using XPath expression, 525
ordering, 520
root element, 515, 516–517
row element, 516–517
updating, 527–528
XML document fragment containing element for

each column, creating, 513, 514–516
enabling database, 521, 527
entity reference conversion, 514
error handling, 516
Fixpack, 509
forest, 513
function overview, 513–521
importing XML, 527
installing, 509–510
JDBC driver, 845
logging, 525
REC2XML function, 513, 514–516
row

aggregating multiple rows into single XML
document, 514, 515, 518–519

element, specifying, 516–517
Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 893

894 Index ✦ D

DB2 (continued)
Schema, 521, 526
Servlet, using with, 844–845
side table, 523
table, storing XSL stylesheet in, 602–605
UDB XML Extender

Administration Wizard, 526
binding database, 521–522
Command Line processor, 521
connecting to database, 521, 526
DAD, 523, 525, 528–536
disconnecting from database, 522
downloading, 509
DTD, 521, 525–526
dvalidate function, 513, 531
dxxDisableCollection procedure, 536
dxxEnableCollection procedure, 536
dxxGenXML procedure, 536
dxxInsertXML procedure, 536
dxxRetrieveXML procedure, 536
dxxShredXML procedure, 536
enabling database, 521, 527
extractChar function, 528
extractCLOB function, 528
extractDate function, 528
extractDouble function, 528
extractInteger function, 528
extractReal function, 528
extractSmallint function, 528
extractTime function, 528
extractTimestamp function, 528
extractVarchar function, 528
function, cast, 523–524
function, user-defined, 524
installing, 509–510
Schema repository, 521
svalidate function, 513, 531
XMLCLOB function, 524
XMLCLOBFromFile function, 513, 524
XMLFILE function, 524
XMLFileFromCLOB function, 513, 524
XMLFileFromVarchar function, 513, 524
XMLVARCHAR function, 524
XMLVarcharFromFile function, 513, 524

validation, 529, 531, 535
version described in this book, 509
Web service, database access via, 843–850
WORF, using with, 843
XMLAGG function, 513, 514, 518–519, 520–521, 601
XMLATTRIBUTES function, 513, 514, 517–518
XMLELEMENT function, 513, 514, 516–517, 601
XML2CLOB function, 514, 516

XPath, working with
element location, defining using XPath

expression, 525
value returned by XPath expression,

returning, 528
XSLT operation, 601–606

db2jcc.jar file, 845
Dburl attribute, 499
decimal data type, 64, 780
decimal-format element, 182
declaration

attribute, 17, 53, 56–59
AXIS data-binding format, 810
DB2 document, 519–520
DTD, 53–62
element, 7–8, 65–67, 185
entity reference, 53
JSP

declaration scripting element, 390
version, 400, 402

language, 37–39, 60–61, 72
namespace

deployment descriptor, by, 810, 853
WSDL namespace, 14, 648–649
XSL stylesheet namespace, 179, 195, 205–206
XSL:FO namespace, 221

node subset declaration, returning internal, 111
SAX notation, 142, 150, 156
Schema, 18
SOAP HTTP

method, 638
protocol version, 638

XML version, 25
XSLT

element, 185
href, 176
medium, 176
MIME type, 176
namespace, 179, 195, 205–206
output encoding, 179, 195
stylesheet encoding, 176

declarePrefix method, 152
DeclHandler SAX interface, 129, 161
defaultConnection method, 507
DefaultHandler class, 148–150, 336
DefaultHandler2 class, 165–166
deleteData method, 118, 119
deployment descriptor

JAXP support, 744
namespace, declared by, 810, 853
RPC Router use of, 688, 689
WSDD, 789–793, 804, 809, 847, 852–853

r538292 Index.qxd 8/18/03 8:45 AM Page 894

895Index ✦ D

descendant XPath node axis, 184
descendant-or-self XPath node axis, 184
description JSTL tag, 401, 402
detach method, 756
DeveloperWorks XML Zone, 740, 741, 742
DII (Dynamic Invocation Interface) client, 762–763
DIME (Direct Internet Message Encapsulation), 880
disco.exe file, 628
display-name JSTL tag, 401
doctype element, 51–53, 529, 532
document

data type, 98, 103, 107–111
download, asynchronous, 107, 109
DTD, including, 52–53
element nesting, representing document structure

in, 33
forest document grouping, 478
formatting, enforcing using validation, 47
function, 188
root element, returning, 107
SAX document event, 135–138, 145, 149, 153, 336
SAX document handler

returning, 131, 154, 157
setting, 132, 155, 158

SAX document input source, 132, 134, 144, 155, 158
SAX document location, associating event with, 127
SAX document locator

event, returning for, 151
setting using ContentHandler interface

method, 135, 137
setting using DefaultHandler class method,

150
setting using DocumentHandler interface

method, 138
setting using XMLFilterImpl class method,

154
setting using XMLReaderAdapter class

method, 146
Schema, referencing, 71
section, associating namespace with, 43, 44
size considerations when parsing, 89, 90
standalone, 52–53
state, returning, 108
syntax, 12
type, declaring, 51
URL

DOM parsing by document URL, 110
DOM parsing, returning document URL during,

109
SAX parsing by document URL, 132

validity, 15

Xalan
output document location, specifying, 348
source document, specifying, 348

Xerces source document, specifying, 330
Document Access Definition. See DAD
Document Access Definition Extension. See DADX
Document Object Model. See DOM
Document Style Semantics and Specification Language.

See DSSSL
Document Type Declaration. See DTD (Document Type

Declaration)
Document Type Definition. See DTD (Document Type

Definition)
documentation

AXIS, 738, 781
JAXB, 377–378, 379
Microsoft SOAP Toolkit, 666
MSXML parser, 237
OPENXML, 451
Oracle, 478, 499
SQLXML, 443
WSDL, 646
Xalan, 342

DocumentFragment data type, 98, 99, 109
DOCUMENT_FRAGMENT_NODE constant, 100, 101
DocumentHandler SAX interface, 127, 137–138
DOCUMENT_NODE constant, 100, 101
DocumentType data type, 98, 106, 111
DOCUMENT_TYPE_NODE constant, 100, 101
dollar sign, parenthesis (${) EL expression prefix, 393
DOM (Document Object Model)

background, historical, 92–94
character data representation, 97
compatibility, backward, 82–83
described, 80
Excel XML export operation, in, 307
feature

set, returning, 106
support, checking, 96

implementation for document, returning, 108
interface, 95–97, 106
Level 1, 82–83, 92–93
Level 3, 82–83, 93–94
Level 2, 82–83, 93
memory, resident in, 80, 92
namespace

node attribute with specified namespace,
removing, 113–114

node namespace prefix, returning, 102
node namespace URI, returning, 102
node with specified namespace, returning, 113
support, 83

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 895

896 Index ✦ D

DOM (Document Object Model) (continued)
node

appending, 104, 253
Attr data type, of, 97, 99, 116–117
attribute element, returning, 117
attribute existence, checking, 104, 115
attribute name, returning, 117
attribute node, creating, 109
attribute node, removing, 116
attribute node, returning, 115
attribute, removing, 113–114, 116
attribute value, returning, 115, 117
attribute value, setting, 116
attribute value, updating, 116
CDATASection data type, of, 97, 99, 109,

118–119
CharacterData data type, of, 117–118
child existence, checking, 104, 253, 330, 333
child, removing, 105, 253
child, replacing, 105
child, returning, 102, 253
collection, returning, 253
Comment data type, of, 97, 99, 109, 117–118
concatenating, 105, 115
constant, 100, 101
copying, 104
creating, 109, 253
data type, returning, 111
data type, specifying, 111
Document data type, of, 98, 103, 107–111
DocumentFragment data type, of, 98, 99, 109
DocumentType data type, of, 98, 106, 111
DOMSelection, 97, 99–100
element collection, returning, 110, 115
Element data type, of, 80–81, 98, 110,

114–116, 332
element, returning, 253
Entity data type, of, 99, 120
entity public identifier, returning, 111, 120
entity system identifier, returning, 111, 120
EntityReference data type, of, 99, 110
ID, returning by, 111
importing, 110
index number, 97, 103
inserting, 104
interface, relation to, 95
interface, representation in, 96–97
introduced, 79
key value, adding to in XSLT, 180
leaf node, 92
list, working with, 97, 102, 105, 112

map, working with, 97, 99, 102, 112–114, 332
method, 104–105
name property, 81, 95, 102, 113
name, retrieving by, 97
namedNodeMap data type, of, 111, 112–114
namespace prefix, returning, 102
namespace, removing attribute with specified,

113–114
namespace, returning node with specified, 113
namespace URI, returning, 102
nodeList data type, of, 112
normalizing, 115
Notation data type, of, 99, 120
parent, returning, 103
parsing status, returning, 103
ProcessingInstruction data type, of,

98, 107
root node, 80, 92
screen, sending node output information to,

332, 355
selecting, 254, 257–260, 266
sibling, returning, 102, 103
string operation in, 118–119
subset declaration, returning internal, 111
support by parser, checking, 104
text content, returning, 253
Text data type, of, 97, 99, 110, 118–119
type property, 81, 100, 101–103
type, returning, 253
value, assigning in Xerces, 331
value property, 81, 100, 103
value, returning, 253
Xerces, assigning node value in, 331
Xerces, checking node existence in, 330, 333
Xerces, iterating through nodes in, 330
Xerces, reading in, 330
Xerces, sending node output information to

screen, 332
Xerces, working with node map in, 332
XML content of, returning, 253
XPath expression, checking for node returned

by, 479
XPath expression, returning node produced by,

97, 105
XPath key value, adding to node in XSLT, 180
XPath node axis, 184–186
XSLT event handling, 108
XSLT result on, passing to specified object, 105
XSLT result on, returning, 105
XSLT, transforming using, 254, 260–263

Oracle support, 473–474, 499

r538292 Index.qxd 8/18/03 8:45 AM Page 896

897Index ✦ D

parsing
Attr data type support, 117
Attr node support, 99
attribute, creating, 253
CDATASection data type support, 119
CDATASection node support, 99
CharacterData data type support, 117–118
class access, 243
Comment data type support, 117–118
Comment node support, 99
Document data type support, 107–111
Document node support, 95, 98
document size considerations, 89, 90
DocumentFragment node support, 98
DocumentType data type support, 111
DocumentType node support, 98
DOMImplementation Interface support, 106
element data type support, 114–116
Element node support, 98
element, returning, 253
entity data type support, 120
Entity node support, 99
EntityReference node support, 99
error handling, 95, 96, 244–245, 252–253, 330
event handling, 94, 104, 106, 108, 254
introduced, 79
JAXP, using, 87–88, 317, 363
loading document as string, 111
loading document from URL, 110
loading XML content, 253, 254–257
namedNodeMap data type support, 113–114
node child, appending, 253
node child existence, checking, 253
node child, removing, 253
node child, returning, 253
node collection, returning, 253
node constant, 100, 101
node, creating, 253
node parsing status, returning, 103
node property support, 101–103
node, selecting, 254, 257–260, 266
node text content, returning, 253
node, transforming using XSLT, 254, 260–263
node type, returning, 253
node value, returning, 253
node XML, returning, 253
nodeList data type support, 112
nodeTypeString property, 100–101
Notation data type support, 120
Notation node support, 99
Oracle, in, 499, 504
parent document, returning, 253

passing instruction to processor outside parser
environment, 107

saving XML document to specified object, 111
SAX parsing, combining with, 125
SAX parsing compared, 88–90, 123
URL, loading document from, 110
URL of document, returning during, 109
validation, checking for, 109
whitespace, preserving during, 108

ProcessingInstruction

data type support, 107
node support, 98

reference code library, 323
root object, 242–243, 252
SAX

combining with DOM parsing, 125
compared, 88–90, 123
content, sending to DOM from, 246–247

Schema collection, 97
Text

data type support, 119
node support, 99

tree structure
introduced, 80
viewing, 81–82

utilities for working with, 81
version, 91, 106
W3C recommendation, 80, 82, 89, 92–94
Xalan

output, passing to DOM, 351–356
support, 319, 341

DOMDocument object, 169, 238, 240, 242–243
DOMDocument40 MSXML interface, 240, 242–244
DOMException DOM interface, 95, 96
DOMImplementation DOM interface, 96, 106
DOMParseError object, 108
DOMResult object, 355
DOMSchemaCollection DOM interface, 97, 99–100
DOMSelection DOM node, 97, 99–100
doStartTag method, 412, 421
double data type, 64, 780
downloading

Apache SOAP Toolkit, 847
AXIS, 738, 803
BPWS4J, 883
DB2, 509
document download, asynchronous, 107, 109
JAXB, 372
JDBC, 540
JSTL, 398
Microsoft SOAP Toolkit, 666

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 897

898 Index ✦ D–E

downloading (continued)
MSXML, 88, 126, 237
Office XP Web Services Toolkit, 676
Oracle, 477
SAX, 83, 84, 125
SQL Server, 435
SQLXML, 435, 835
Sun ONE Studio, 317
Tomcat, 740
UDB XML Extender, 509
UDDI

API, 661
SDK, 656

WebSphere Studio Workbench, 313
WORF, 846
WSAD, 313
WSDP, 317, 363
WSE, 882
Xalan, 342
Xerces, 323, 324
XML Notepad, 81
XML Security Suite, 742
XML Spreadsheet Add-In, 282
XML4J, 87
XMLSpy, 49

DSSSL (Document Style Semantics and Specification
Language), 173, 218

DTD (Data Type Definition)
applying, 51–53
attribute, declaring in, 56–59
creating manually, 49
DB2, 521, 525–526, 529, 531, 536
declaring, 53–62
document, including in, 52–53
Document Type Declaration

compared, 51
including DTD in, 52–53

generating using specialized software, 49, 53–54
HTML, 49
JSTL DTD, 400
NewsML DTDs, 15, 48
referencing external data in, 53
SAX parsing

declaration value, returning, 161, 165
entity reference container, using DTD as, 142
event handling, 162, 165–166
handler interface, 128, 142
handler, returning, 131, 154, 157
handler, setting, 132, 134, 145, 155, 158

Schema
reference, including in same document with

DTD, 15–16
versus, 18

SGML, 49
structure, 53
syntax, 53
UDB XML Extender, 521, 525–526
URL, referencing, 53
validation, DTD-based, 14–18, 48, 52, 60–62, 125
XML.org registry, 48

DTD (Document Type Declaration), 51–53
DTD (Document Type Definition), 473
DTDHandler SAX interface, 128, 129, 131, 142, 336
dtdid element, 529
duration data type, 64
dvalidate function, 513, 531
dxxDisableCollection procedure, 536
dxxEnableCollection procedure, 536
dxxGenXML procedure, 536
dxxInsertXML procedure, 536
dxxRetrieveXML procedure, 536
dxxShredXML procedure, 536
Dynamic Invocation Interface client. See DII client

E
ebXML profile, 754, 758, 768. See also JAXM (Java API

for XML Messaging)
Eclipse Modeling Framework. See EMF
Eclipse resources, 315–316, 742–743
ECMAScript language, 393
edge table, 451–456. See also SQL Server
El Corte Ingles Web site, 29, 37, 191
EL (Expression Language), 392, 393–397
ElcorteinglesListings table, 434, 511–512
ElcorteinglesType class, 379
element. See also specific element

attribute
nesting level of element, describing in, 12, 21,

177–178
node attribute, returning element from, 117
relation to, 11, 33
transforming to element using XSLT, 178

cardinality, 55–56, 60–61
closing, 7, 12
collection, returning from node, 110, 115
complex, 66, 73, 75–76
constraint, referencing for, 66
content model

mixed, 55
text-only, 54, 67

data type, 80–81, 98, 110, 114–116
DB2

attribute set of, returning, 514, 517–518
column, mapping to, 524–531, 532
expression, hard-coding element name in,

514, 516

r538292 Index.qxd 8/18/03 8:45 AM Page 898

899Index ✦ E

grouping, 520
location, defining using XPath expression, 525
ordering, 520
root element, 515, 516–517
row element, 516–517
updating, 527–528
XML document fragment containing element for

each column, creating, 513, 514–516
declaring, 7–8, 65–67, 185
empty, 8, 36, 54
FOR XML statement ELEMENTS option, 445–446
JDBC

building in, 552, 569–572, 580–583, 815, 830–831
SQL Server query, containing in, 553

key, 66
list

choice list, 55, 59, 61, 66
node, returning from, 115
sequence list, 55

naming, 7–8, 11, 12, 45–46
nesting

attribute, describing nesting level in, 12, 21,
177–178

document structure, representing in, 33
opening, 7
Oracle

attribute set of element, returning, 480, 483–484
column, returning element from, 479, 488
creating element in, 484–485
expression, hard-coding element name in, 480
root element, defining, 482–483, 504
XML document fragment containing element for

each column, creating, 480
order, 11, 17, 66, 67
root

document root, returning, 107
introduced, 10–11
MSXML, accessing in, 252
Oracle, defining root element in, 482–483, 504
Schema, 67
SOAP envelope root, 639
SQL Server query result root element,

specifying in URL, 438
WSDL root definition element, 646
XSL stylesheet root, 180
XSL:FO root, 222

SAX element event handling
end event, 136, 137, 145, 149, 154
start event, 136, 138, 145, 149, 153

Schema element, 65–68, 76
sequence, 55, 67
SQL Server template element, 439–440

syntax, 7, 10–11, 12, 17
unique at nesting level, defining as, 67
XSLT

attribute node name, passing to element
declaration, 185

attribute, transforming to element, 178
listing of XSLT elements, 179–183
name, replacing using variable, 198, 201
output, adding element to, 182

element element, 53, 54–56, 66, 181, 448
element-available function, 188
elementDecl method, 161, 165
ELEMENT_NODE constant, 100, 101
Emerging Technologies Toolkit. See ETTK
EMF (Eclipse Modeling Framework), 316, 693–694
EMF.Codegen utility, 316, 694
EMF.Edit utility, 316, 693
empty JSP null/empty operator, 394
enclTag attribute, 498
encoding

Access export to XML, specifying during, 277, 279
AXIS Encoding subsystem, 779
character reference, 22–24, 34
character, special, 22–24, 34, 37
default, 32
ISO standards, 10, 32, 39
language code, 38
line-end, 26–27
Oracle, working with character escape in, 500
SAX parsing, returning entity character encoding

during, 129, 163, 167
SOAP serialization, 628, 636
SQL Server query result encoding, specifying in

URL, 438
supplemental, 22
Unicode, 10, 22, 38
UTF, 10, 32
XSLT

output encoding, declaring, 179, 195
processor support, 195
stylesheet encoding, declaring, 176

Encoding subsystem, 779. See also AXIS (Apache
eXtensible Interaction System)

encryption
SOAP, 630, 873, 876
SSL, 873
WS-SecureConversation environment, in, 877–878
WS-Security specification, 875–876, 880
XML Encryption recommendation, 875
XML Encryption Syntax and Processing, 692, 740,

879
Encuadernacion class, 380

r538292 Index.qxd 8/18/03 8:45 AM Page 899

900 Index ✦ E

endCDATA method, 162, 166
EndDocument

event, 124
method, 136, 137, 145, 149, 153

endDTD method, 162, 166
endElement

event, 84
method, 136, 137, 145, 149, 154

endEntity method, 163, 166
EndPoint class, 753
endPrefixMapping method, 136, 145, 149, 154
Enterprise Manager (Oracle), 491–492
ENTITIES data type, 58
entity

node
Entity data type, of, 99, 120
EntityReference data type, of, 99, 110
public identifier of entity, returning, 111, 120
system identifier of entity, returning, 111, 120

reference
character, hex, 39
character, reserved, 24
character, special, 22–24, 34, 37
DB2, conversion in, 514
declaring, 53
JDBC handling of, 553–555, 557, 572, 815, 818
JSTL, working with in, 403, 405
syntax, 22
variable, using as, 23–24
XSL:FO, working with in, 223

SAX entity resolving
character encoding, returning, 163, 167
character encoding, setting, 163, 167
DTD, using as entity reference container, 142
external entity, 142, 156, 161, 165, 166
interface, extension, 129
interface, main, 128, 142
returning resolver, 131, 154, 158
setting resolver, 132, 134, 145, 155, 158
skipped entity, 137, 146, 150, 154, 338
tracking, 129
version of entity XML, returning, 163
version of entity XML, setting, 167

ENTITY

data type, 58, 99, 120
element, 53

ENTITY_NODE constant, 100, 101
EntityReference data type, 99, 110
ENTITY_REFERENCE_NODE constant, 100, 101
entityRefs class, 553, 554–555, 557, 572, 818
EntityResolver SAX interface, 128, 142, 336
EntityResolver2 SAX interface, 129, 162

eq JSP equal operator, 394
equals sign (=) JSP variable assignment operator, 394
equals signs (==) JSP not equal operator, 394
ERCIM (European Research Consortium for

Informatics and Mathematics), 10
error handling

Access XML import operation, 284–285
DB2, 516
DOM parsing, 95, 96, 244–245, 252–253, 330
ioException error, 336
JAXB, 385, 386, 387
JAXM exception, 753, 759
JAX-RPC exception, 765
JSP, 416, 428
MSXML, 244–245
Oracle, 503
RemoteException exception, 765
SAX

ErrorHandler SAX interface, 128, 143, 336
fatal error, 143, 150, 157
interface, 128
ioException error, 336
locale, 134, 145
recoverable error, 143, 150, 156
returning handler, 131, 154, 158
setting handler, 132, 134, 145, 155, 158
warning event, 143, 150, 157

SQL Server Bulk Load procedure, 468
Xalan, 348–349
Xerces, 330

error method, 143, 150, 156
ETTK (Emerging Technologies Toolkit), 742, 883
European Research Consortium for Informatics and

Mathematics. See ERCIM
event handling

ASP.NET, 725, 727
AWT event, 820–821, 822
DOM parsing, 94, 104, 106, 108, 254
JDBC, 544, 545–547
MSXML DOM, 254
SAX

CDATA event, 162, 163, 166
character event, 136, 137, 146, 149, 154
comment event, 162, 165
document event, 135–138, 145, 149, 153, 336
document location, associating event with, 127
document locator for event, returning, 151
DTD event, 162, 165–166
element end event, 136, 137, 145, 149, 154
element start event, 136, 138, 145, 149, 153
entity end event, 163, 166
entity skipped event, 137, 146, 150, 154, 338

r538292 Index.qxd 8/18/03 8:45 AM Page 900

901Index ✦ E

entity start event, 163, 166
entity unparsed declaration event, 142
error event, 143, 150
lexical event, 129, 162–163
namespace event, 154
notation declaration, 142, 150, 156
processing instruction event,

ContentHandler interface, 137
processing instruction event,

DefaultHandler class, 149
processing instruction event,

DocumentHandler interface, 138
processing instruction event, Xerces

parsing, 337
processing instruction event, XMLFilterImpl

class, 154
processing instruction event,

XMLReaderAdapter class, 146
public ID of event, returning, 139
system ID of event, returning, 139
Xalan transformation, in, 358
Xerces parsing, in, 336

Web service event chaining, 629
W3C DOM recommendations, related, 93, 94
Xalan, 358
Xerces, 329, 336

Excel
exporting XML from

DOM, 307
range, 306–307
saving XML file, via, 304
Web query data, 304, 305–306

External Data Range Properties dialog box, 299
Flattener, 292–293
Import Data dialog box, 299
importing XML into

automating programmatically, 295, 303–304
data source, 292
data type, preserving, 302
flattening data to two-dimensional spreadsheet,

292–293
formula, preserving, 302
manual, 292–295
opening XML file, 293, 295
range, external, 299
range, extracting, 296
Web query, using, 296–304
XSLT, formatting incoming data using, 293–295

Open method, 293
OpenXML method, 293, 295, 296
Range object, 291, 295–296, 299, 306–307
report writing medium, as, 291

support for XML, native, 291, 304
version described in this book, 291
Web query

exporting Web query data to XML, 304, 305–306
importing XML into Excel using, 296–304

XSLT, formatting data for Excel using, 281–283,
293–295

exclamation mark, boolean (!boolean) JSP Reverse
Boolean reference operator, 394

exclamation mark (!) DTD element prefix, 53
exclamation mark, equals sign (!=) JSP not equal

operator, 394
EXISTSNODE function, 479, 494–495
export operations

Access, XML from
ASP file, to, 274, 275, 280
automating programmatically, 278–283
BizTalk Server process, to, 283
component application, to, 283
DAP information, including, 279
data source, specifying, 279
data target, specifying, 279
datasheet data, 273
destination location, 272–273
encoding, 277, 279
Excel, to, 281–283
form data, 273
image, 279
index, 280
key, primary, 280
location of generated file, 272, 277
manual, 272–278
naming generated file, 273, 274
object information, specifying, 279
presentation information, 279
query data, 273
report data, 273, 280
Schema information, including, 273–275,

279–280
table data, 272–273, 274–275
Visio, to, 283
Web server, posting to, 273
Web Service, to, 283
XSD information, 273–275
XSL, formatting output using, 273, 274–277, 280,

281–283
Excel, XML from

DOM, 307
range, 306–307
saving XML file, via, 304
Web query data, 304, 305–306

ExportXML method, 278–281

r538292 Index.qxd 8/18/03 8:45 AM Page 901

902 Index ✦ E–G

Expression Language. See EL
ExprTag class, 424, 425, 426
EXSLT.org Web site, 189, 204, 206
eXtended Satellite Transport Protocol. See XSTP
extensibility, 5
eXtensible Hypertext Markup Language. See XHTML
Extensible Stylesheet Language. See XSL
extension element, 66
extension-element-prefixes element, 205–206
External Data Range Properties dialog box (Excel), 299
external object data type, 186
externalEntityDecl method, 161, 165
external-graphic element, 231
EXTRACT function, 479, 494–495
extractChar function, 528
extractCLOB function, 528
extractDate function, 528
extractDouble function, 528
extractInteger function, 528
extractReal function, 528
extractSmallint function, 528
extractTime function, 528
extractTimestamp function, 528
ExtractValue function, 479, 494
extractVarchar function, 528

F
facet data type property, 67
fallback element, 182, 206
false function, 186
fatalError method, 143, 150, 157
feature flag, SAX, 131, 133, 155, 156, 158
FechaDePublicacion class, 380
field element, 66
FileAttachment30 class, 667
FileGetter class, 726
FileInputStream object, 385
findOrganizations method, 771
Flattener (Excel), 292–293
float data type, 64, 780
floor function, 186
flow element, 222
following XPath node axis, 184
following-sibling XPath node axis, 184
FOP (Formatting Objects Processor) server, 219, 319
for-each element, 181, 200, 207, 223, 226
forEach JSTL tag, 404, 417, 423, 424
ForEachTag class, 423
forest XML document grouping

DB2, 513
Oracle, 478, 480–481

form, creating in ASP.NET application, 722–723

format-number function, 187
Formatting Objects Processor server. See FOP server
fractionDigits Schema element restriction, 67
function. See specific function
function-available function, 188

G
gDay data type, 63
generate-id function, 188
generateSchema package, 489
GET method, 638
GetAmazonListings.java file, 506–507
getAssociatedStylesheet method, 350–351
getAttribute method, 115
getAttributeNode method, 115
getAttributeNodeNS method, 115
getAttributeNS method, 115
getAuthor method, 385
GetAuthorList

class, 545, 549, 566, 823, 827
method, 838, 840
procedure, 838

getChildNodes method, 330
getColumnNumber method, 138, 151
getContentHandler method, 131, 154, 157
GetDB2XML.dadx file, 846
GetDB2XMLResult element, 858
GetDB2XMLRow element, 858
getDeclaredPrefixes method, 152
getDTDHandler method, 131, 154, 157
getElementsByTagName method, 115, 253
getElementsByTagNameNS method, 115
getEncoding method, 163, 167
getEntityResolver method, 131, 154, 158
getErrorHandler method, 131, 154, 158
getExternalSubset method, 162, 166
getFeature method, 131, 155, 158
getIndex method, 139, 147
getIndexFromName method, 139, 140
getIndexFromQName method, 139, 140
getLength method, 139, 140, 141, 147, 159
getLineNumber method, 138, 151
getLocalName method, 140, 147
GetMenuItem function, 266
getName method, 141, 159
getNamedItem method, 113
getNode method, 355
getNumRowsProcessed function, 500
getOrder method, 796
getParent method, 135, 156
getPrediction method, 762, 765
getPrefix method, 152

r538292 Index.qxd 8/18/03 8:45 AM Page 902

903Index ✦ G–I

getPrefixes method, 152
getProperty method, 132, 155
getPublicId method, 139, 151
getQName method, 140, 147
getQualifiedItem method, 113
getQuote method, 385, 639, 645
getSchedule method, 790
GetSingleAuthorList class

query, passing parameter to using, 828
query result, returning using, 547, 825, 864
query result, sending to array using, 549–550, 569
value, passing to, 866

GetSingleQuoteAttribute class, 548, 555, 556,
558, 831

GetSingleQuoteDb2 class, 858, 868
GetSingleQuoteDB2Format Servlet, 844
GetSingleQuoteElement class, 548, 551–552, 555,

572, 829
getSource method, 385
getStringVal method, 601
getSystemId method, 139, 151
GetTransformed function, 266–268
getTransformedXML function, 614
getType method, 139, 140, 141, 147, 159–160
getTypeFromName method, 140
getTypeFromQName method, 140
getURI method, 140, 147, 152
getValue method, 139, 140–141, 147, 160, 385
getValueFromName method, 141
getValueFromQName method, 141
getXML function, 500, 502
getXMLString method, 508
getXMLVersion method, 163, 167
Global XML Architecture. See GXA
gMonth data type, 63
gMonthDay data type, 63
GotDotNet Web site, 700
GROUP BY SQL statement, 520
group element, 66
GXA (Global XML Architecture), 880
gYear data type, 64
gYearMonth data type, 64

H
hasAttribute method, 114, 115
hasAttributeNS method, 115
hasAttributes method, 104
hasChildNodes method, 104, 253
hasFeature method, 104, 106
header

object, implicit, 395
SOAP header, 636, 637–638, 640–641, 705
SQL Server element, 439

headerValues implicit object, 396
hexBinary data type, 65, 780
hide element, 448
HTML (Hypertext Markup Language)

data island, linking to HTML page element
from, 619

described, 4
DTD, 49
menu, HTML content of dynamic, 263–264
MSXML, outputting from, 248–249
SGML, relation to, 4
W3C DOM Level 2 HTML Recommendation, 93
XML

parsing as HTML, 6
relation to HTML, 4–5, 6

XSLT, transforming XML to HTML using
DB2 environment, in, 603–604
JDBC environment, in, 606–611
Oracle environment, in, 599–600
overview, 212–215
SQL Server environment, in, 593–596
Xalan environment, in, 351

HTTP (Hypertext Transfer Protocol)
GET method, 638
JDBC request handling using Servlet,

559–561, 566
JSP

request/response handling, 391, 395–397
session object, 391, 396

Microsoft SOAP Toolkit connector, 668
POST method, 636, 638, 689
RPC transport protocol, as, 635
SOAP transport option, as

header, 636, 637–638, 640–641, 705
introduced, 628
method, declaring, 638
protocol version, declaring, 638
request URI, 638

SQL Server request/response handling, 437
SQL Server XML query support, 435, 436–444
SQLXML support, 435

HttpConnector30 class, 667
HttpJspBase class, 418
HTTPServlet class, 559
HttpSession object, 396, 419
Hypertext Markup Language. See HTML
Hypertext Transfer Protocol. See HTTP

I
IANA (Internet Assigned Numbers Authority), 10, 38
IBM DB2 ➪ Command Line Tools ➪ Command Line

Processor, 521

r538292 Index.qxd 8/18/03 8:45 AM Page 903

904 Index ✦ I

IBM resources
AlphaWorks utility suite, 693, 741–742, 883
BPWS4J, 883
code sample download, 740
DeveloperWorks XML Zone, 740, 741, 742
ETTK, 742
tutorial, online, 740
WAS, 560, 692
WebSphere Portal Server, 692
WebSphere Studio Workbench

cost, 313
downloading, 313
plug-in support, 313, 741
WSAD compared, 313, 741

WSAD
AXIS support, 741
cost, 313
CSS support, 741
DHTML support, 741
downloading, 313
introduced, 312–313
JavaScript support, 741
JSP support, 741
Rational ClearCase LT support, 313, 741
SOAP support, 741
Studio Workbench compared, 313, 741
trial version, 741
tutorial, online, 313, 741
Xalan support, 313
Xerces support, 313
XML Toolkit, 314

WS-Policy specification, 876
WS-PolicyAssertions specification, 876
WS-PolicyAttachment specification, 877
WS-SecureConversation specification, 878
WS-SecurityPolicy specification, 877
WS-Trust specification, 877
XML Security Suite, 314–315, 742, 879–880

ID

data type, 59
element, 448
function, 187
SQL Server edge table column, 454

identification type. See also UDDI (Universal
Description, Discovery, and Integration)

businessEntity, 658
businessService, 658–659
publisherAssertion, 657
tModels, 659–661

IDL (Interface Definition Language), 91–92
iDoc variable, 452, 453, 457

IDREF

data type, 59
element, 448

IDREFS

data type, 59
element, 448

I18N (Internationalization) tag library, 364, 392, 393.
See also JSTL (Java Server Pages Standard
Tag Library)

If

element, 181, 201
JSTL tag, 403–404

iFS (Internet File System), 473, 474. See also Oracle
ignorableWarning method, 143
ignorableWhitespace method, 136, 137, 146,

149, 154
IIS (Internet Information Server)

ASP.NET loading, 712
directory, managing virtual, 435, 436–437, 836–838
Microsoft SOAP Toolkit IIS requirement, 667
.NET Web service

IIS requirement, 699
security role in, 711–712

SQL Server support, 436–437, 835, 836
SQLXML IIS requirement, 435, 835

image

JAXB class, 380
XSL:FO, referencing external image in, 231

Imagen class, 380
impl class, 794
implicit object. See also JSP (Java Server Page)

applicationScope, 397
cookie, 395
header, 395
headerValues, 396
initParam, 396
pageContext, 397
pageScope, 397
param, 396
paramValues, 396
requestScope, 397
sessionScope, 397

Import Data dialog box (Excel), 299
Import dialog box (Access), 285–286
import element, 66, 180, 206
import operations

Access, XML into
automating programmatically, 286–288
data source, specifying, 287
data structure considerations, 284
error handling, 284–285

r538292 Index.qxd 8/18/03 8:45 AM Page 904

905Index ✦ I–J

manual, 284–286
namespace considerations, 288
Schema information, including, 284
table, appending data to, 286
table, inserting data in, 284–285, 286
table, overwriting, 287
table structure only, 286
tables, to multiple, 286
XSL, applying to incoming data, 287–288

DB2, XML into, 527
DOM node, 110
Excel, XML into

automating programmatically, 295, 303–304
data source, 292
data type, preserving, 302
flattening data to two-dimensional spreadsheet,

292–293
formula, preserving, 302
manual, 292–295
opening XML file, 293, 295
range, external, 299
range, extracting, 296
Web query, using, 296–304
XSLT, formatting incoming data using, 293–295

JDBC class, 544
JSP, in, 410, 412, 413–414
JSTL, 398, 418, 421
Schema, 66, 72
Xerces, importing class into, 329
XSL stylesheet, 180

ImportErrors Access table, 284–285
ImportTag class, 412, 413–414, 421
ImportXML method, 286–288
IMXAttributes SAX interface, 130, 167–168
IMXSchemaDeclHandler SAX interface, 130, 168–169
IMXWriter SAX interface, 125, 130, 169–170
INCITS (International Committee for Information

Technology Standards), 431, 478, 513
Include element, 66, 181
initParam implicit object, 396
inline font-size element, 223
INSERT SQL Server command, 457–458, 493–494
insertBefore method, 104
insertData method, 118, 119
installation

AXIS, 781–782, 783, 803–804
DB2, 509–510
JAXB, 372–373
JDBC driver, 541
JSTL, 397–398
Microsoft SOAP Toolkit, 667, 669
MSXML, 236–237

SQLXML, 435, 836
UDB XML Extender, 509–510
WSDL file, 806–807, 850
Xalan, 342
Xerces, 324–325
XMLPBServletApp.java application, 575–576
XMLPBWSMTApp application, 849

int data type, 64, 780
integer data type, 64, 780
Interface Definition Language. See IDL
internalEntityDecl method, 161, 165
International Committee for Information Technology

Standards. See INCITS
International Organization for Standardization. See ISO
International Press Telecommunications Council.

See IPTC
Internationalization (I18N) tag library, 364, 392, 393.

See also JSTL (Java Server Pages Standard
Tag Library)

Internet Assigned Numbers Authority. See IANA
Internet File System. See iFS
Internet Information Server. See IIS
ioException error, 330, 336
IPTC (International Press Telecommunications

Council), 15
ISAPI (Internet Server API), 669–670, 674
ISAXXMLReader Sax interface, 126, 249
Isbn class, 380
isDeclared method, 161, 164
isNamespaceDeclUris method, 152
ISO (International Organization for Standardization)

country code, 38
encoding standards, 10, 32, 39
language code, 38
SGML standard, 3–4

isSpecified method, 161, 164
isSupported method, 104
IStream object, 130, 169
Item method, 112, 113
IXMLDOMDocument MSXML interface, 252
IXMLDOMDocumentNode node, 95
IXMLDOMNamedNodeMap MSXML interface, 243
IXMLDOMNode

class, 616
MSXML interface, 243

IXMLDOMNodeList MSXML interface, 243

J
Jakarta Tomcat Server

AXIS installation, 781–782, 783
downloading, 740

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 905

906 Index ✦ J

Jakarta Tomcat Server (continued)
Java Servlet comment generation by, 411, 420
Java Servlet, official J2EE Reference

Implementation for, 692
JSP, official J2EE Reference Implementation for, 692
SOAP support, 740
WSDL support, 740

.jar file
JAXB, using with, 371, 384
JSTL

native .jar files, 392
tag, mapping to class in, 402

jasper run-time classes, 410, 418
Java API for XML Messaging. See JAXM
Java API for XML Processing. See JAXP
Java API for XML Registries. See JAXR
Java API for XML-Based RPC. See JAX-RPC
Java Architecture for XML Binding. See JAXB
Java Community Process. See JCP
Java Database Connectivity. See JDBC
Java Development Kit. See JDK
Java language specification development, 362–363
Java Message Service. See JMS
Java Naming and Directory Interface. See JNDI
Java Server Page. See JSP
Java Server Pages Standard Tag Library. See JSTL
Java Servlet

applet compared, 558–559
Application server, 559, 560
class, 559
comment generation by Apache TomCat, 411, 420
context, 391, 410
DB2, using with, 844–845
described, 559
generating in JSP, 389
GetSingleQuoteDB2Format, 844
initializing, 410
JDBC, working with in

HTTP request handling using Servlet, 559–561,
566

query result, displaying using Servlet, 569–575,
829–832

query result, retrieving using Servlet, 564–569
JSDK, 559
Oracle support, 843
parsing XML, Servlet object setup in, 419
request/response handling, 559–561, 566
SOAP, passing database XML to Servlet using, 844
specification, 559
SQL Server data, working with, 559, 561
threading, 411, 419

tiers, comprising multiple, 576, 586, 802–803,
844–845

Tomcat Server official J2EE Reference
Implementation for, 692

user interface, separating from data access
process, 803, 845

XMLPBAppServletBuildAttributeXML, 561,
583–585

XMLPBAppServletBuildElementXML, 561,
580–583

XMLPBAppServletGetAuthorList, 561, 576–578
XMLPBAppServletGetSingleAuthorList, 561,

578–580
XMLPBServletApp, 561, 575–576, 586–589
XMLPBWebServletAppGetSingleAuthorList,

566–569
XMLPBWebServletBuildAttributeXML, 561,

569, 572–575
XMLPBWebServletBuildElementXML, 561,

569–572
XMLPBWebServletGetAuthorList, 561–562,

564–566
XMLPBWebServletGetSingleAuthorList, 561,

562–563
XSQL, 504, 505–506, 596

Java Servlet Development Kit. See JSDK
Java Specification Request. See JSR
Java 2 Platform Enterprise Edition. See J2EE
Java Web Service. See JWS
Java Web Services Developer Pack. See JWSDP
Java XML Pack. See WSDP
java.awt classes, 544, 803, 820–822
javadoc API, 377, 378, 379
JAVA_HOME environment variable, 369
java.io classes, 544, 822, 861
java.lang.String data type, 780
java.math.BigDecimal data type, 780
java.math.BigInteger data type, 780
java.rmi classes, 822
JavaScript

data island, working with using, 611, 614–616,
619–621

menu, creating dynamic using, 264–266
java.sql classes, 540, 544
java.sun.com Web site, 540
Java2WSDL utility, 797
java.util classes, 395–396, 544, 550
java.util.Calendar data type, 780
java.util.List package, 808, 851
java.xml.namespace.QName data type, 780
javax.servlet.jsp classes, 401
javax.sql classes, 540

r538292 Index.qxd 8/18/03 8:45 AM Page 906

907Index ✦ J

javax.swing classes, 544, 861
javax.xml.messaging package, 753
javax.xml.registry package, 769
javax.xml.registry.infomodel package, 769
javax.xml.soap package, 753, 755
javax.xml.transform classes, 350, 366
JAXB (Java Architecture for XML Binding)

batch file, 376
class

compiling, 376–377
compressing into .jar file for distribution, 384
documentation, generating, 377–378, 379
handler class, 378, 823
Schema, generating class set from, 371, 373, 376

CLASSPATH environment variable, 372–373
context object, 385
data binding, enabling, 371
described, 318, 363, 744
documentation, 372, 377–378, 379
downloading, 372
environment variable base directory,

referencing, 372
error handling, 385, 386, 387
flexibility of, 371
formatting output, 387
installing, 372–373
.jar file, using with, 371, 384
javadoc API, using with, 377, 378, 379
list, working with, 384, 385–386
marshalling, 371, 387
Oracle support, 842
streaming input, 385
unmarshalling, 371, 385–386
validating XML using, 383–387
WSDP, included with, 372
xml: prefix recognition, 373

JAXBContext object, 385
JAXBExample class, 385
JAXBExample.java file, 383–384, 387–389
JAXBException error, 387
Jaxen JSTL library, 393
jaxen-full.jar file, 393, 398
JAXM (Java API for XML Messaging)

Asynchronous Inquire exchange mode, 752
Asynchronous Update with Acknowledgement

exchange mode, 752
Axis package, 753
client

architecture of JAXM, place in, 749–750
creating, 755
provider, relation to, 751, 758–759

standalone, 751, 755–757
connection, 749, 752–753, 755, 758
described, 318, 364, 744
ebXML profile, 754, 758
exception handling, 753, 759
Fire and Forget exchange mode, 752
JMS versus, 754
JWSDP, role in, 748
package structure, 753
profile, 754, 758
provider, 750–751, 753, 758–759
Provider Admin tool, 759
SAAJ, use of, 751–752, 753
Servlet container, 751
SOAP

attachment support, 754
connection object, 753
messaging, 749–752, 755–759
package, 753
RP profile, 754

Synchronous Inquiry exchange mode, 752
Synchronous Update exchange mode, 752

JAXMException exception, 753
JAXP (Java API for XML Processing)

deployment descriptor support, 744
DOM parsing, 87–88, 317, 363
front-end for other parser, using as, 86, 87–88
interface, as pluggable, 320, 324, 365
JAVA_HOME environment variable, 369
JDK compatibility, 365
parser, swapping, 367–370
processor, swapping, 320, 367–370
SAX parsing, 363
Schema support, 317, 744
SOAP envelope support, 744
source document, specifying, 367
specification, 367–368
streaming output, 366
system property

changing, 369–370
referencing, 369
specifying, 368

template object, 367
transformation processor, as, 365–367
Transformer Factory, 365–367, 368, 370
WSIF compared, 739
Xalan, using with, 365–367, 370
Xerces, using with, 324
XML4J JAXP support, 87, 314
XSLT processor, as, 365–367

jaxp-api.jar file, 370

r538292 Index.qxd 8/18/03 8:45 AM Page 907

908 Index ✦ J

JAXR (Java API for XML Registries)
API implementation, 769
architecture, 768–769
Capability profile, 768
connection, 770
described, 318, 364, 745
ebXML profile, 768
JWSDP, place in, 748–749
organization

binding, 771
publishing, 771–772

provider, 768–769
query mechanism, 770–771
UDDI registry scheme compared, 768

JAX-RPC (Java API for XML-Based RPC)
architecture, 761
AXIS JAX-RPC compliance, 779
class generation, 761, 763–764
client

DII client, 762–763
Dynamic Proxy client, 764–765
Generated Stubs client, 763–764, 767
platform neutrality, 762
protocol neutrality, 762

data type mapping, 760, 766–767
described, 318, 364, 745
endpoint, 765–766
exception handling, 765
JWSDP, role in, 748
learning curve, 760
listening, 760
messaging, 767
RMI, relation to, 760
run-time layer, 760
serializer, generating, 767
server

container, 766
tie, generating, 767

SOAP, role in isolating application from, 760
specification, 760
Type Mapping Registry, 766
Web service

defining, 765–766
deploying, 767

wscompile utility, 767
wsdeploy utility, 767
WSDL, use of, 761–762, 766

jaxrpc.jar file, 781
JCP (Java Community Process), 362–363, 367–368, 392,

539, 879

JDBC (Java Database Connectivity)
array, sending query result to

ArrayOf_xsd_string data type, using, 827
buildArray class, using, 549–550, 576, 808,

813, 850–851
GetSingleAuthorList class operation, in,

549–550, 569
attribute, building, 556–558, 572–575, 583–585, 818,

831
authentication, 541, 548–549, 850
AXIS, working with JDBC data in

attribute, building, 818, 831
element, building, 815, 830–831
entity reference handling, 815, 818
query, passing parameter to, 828
query result, buffering, 815, 818
query result, displaying using Servlet,

829–832
query result, passing to RPC Router, 815
query result, sending to array of type

ArrayOf_xsd_string, 827
query result, sending to array using

buildArray class, 808, 813, 850–851
SQL Server connection, 807, 821
swing class, using, 803, 820–822, 824
user input, handling, 823–825
user interface, creating, 822–829
variable, defining public, 822–823

class
driver support, 550
importing, 544
package storage in, 539–540
query result, passing to, 551–552, 555–556

CLASSPATH environment variable, 541, 845
connection

Oracle, 507
SQL Server, 807, 821
URL connection object, 589

downloading, 540
driver

bridge functionality of, 540
class support, 550
CLASSPATH, referencing in, 845
client installation, avoiding, 560, 586
conflict, 845
DB2 JDBC driver, 845
downloading, 540, 541
installing, 541
third party, 540
type described in this book, 541

r538292 Index.qxd 8/18/03 8:45 AM Page 908

909Index ✦ J

element
building, 552, 569–572, 580–583, 815, 830–831
SQL Server query, containing in, 553

entity reference handling, 553–555, 557, 572, 815, 818
event handling, 544, 545–547
HTTP request handling using Servlet, 559–561, 566
JCP, relation to, 539
JDK, bundled with, 540
list, retrieving from table, 548–551
login, 541, 548–549, 850
metadata, working with, 553
ODBC, relation to, 540
Oracle connection, 507
query

array, sending result to, 549–550, 566, 569,
807–808, 813

buffering result, 553, 557, 815, 818
class, passing result to, 551–552, 555–556
element, containing SQL Server query in, 553
hard-coding, 548
parameter, passing to, 828
RPC Router, passing query result to, 815
Servlet, displaying query result using, 569–575,

829–832
Servlet, retrieving query result using, 564–569
space, trimming from result, 550, 851
SQL Server, passing query to, 549, 550
SQL Server query result, passing from calling

object, 550
URL, assigning to result, 566

screen, writing to, 544
Servlet, working with in

HTTP request handling using Servlet,
559–561, 566

query result, displaying using Servlet, 569–575,
829–832

query result, retrieving using Servlet, 564–569
specification, 539
SQL Server

connection, 548–549, 807, 821
query, containing in element, 553
query, passing to SQL Server, 549, 550
query result, passing from calling object, 550
support, 541

streaming
input, 589
output, 578, 580

TCPIP, configuring, 541
URL

connection object, 589
query result, assigning to, 566

user input, handling, 547–548, 551, 555, 823–825
user interface, creating, 543–551, 822–829
variable, defining public, 544, 822–823
window, managing, 544–547
X/Open SQL CLI, based on, 540
XSLT operation, 606–611

JDBCXMLtoDIV stylesheet, 617
jDeveloper utility, 842
JDK (Java Development Kit)

javadoc API, 377, 378, 379
JAXP compatibility, 365
JDBC bundled with, 540
WSDP compatibility, 363

Jframe window, 822, 861
JMS (Java Message Service), 754
JNDI (Java Naming and Directory Interface), 758
JscrollPane object, 545, 862
JSDK (Java Servlet Development Kit), 559
JSP (Java Server Page)

buffering, 391
CLASSPATH environment variable, 398
container, 397
context, 391, 396, 410, 416, 419
declaration scripting element, 390
described, 389
directive, 390
EL, 392, 393–397
error handling, 416, 428
expression, 390, 394
factory object, 410, 419
HTTP

request/response handling, 391, 395–397
session object, 391, 396

import operation, 410, 412, 413–414
initialization parameter

java.util.map representation of, 396
server instance, passing from, 395

JSTL
declaring JSP version in, 400, 402
tag library, referencing, 399–400

meta-language, as, 389
object, implicit, 394–395, 397
operators, 394
Oracle support, 505
parsing XML using JSTL and JSP

class, importing, 418
core library, defining, 417
entity resolution, 405
error handling, 428
HTML table, defining, 417, 423

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 909

910 Index ✦ J

JSP (Java Server Page) (continued)
importing source document, 421
initialization parameter handling, 419
JspWriter, sending select result to, 419–420,

424–426
looping through document, 417
page context, 419, 428
SAX filter, applying, 405
scope, 405
screen, sending output to, 419, 420, 424
Servlet object setup, 419
Servlet threading, 419
session tracking, 419
source document, specifying, 405
string, converting document to be parsed to, 421
tag, evaluating, 422, 424
tag, loading/unloading, 421–422
variable, assigning to document, 417, 421
XML processing tag library, defining, 417

placeholder, 391
RT tag format, 392
scope, 396, 397
scriptlet, 390
Servlet

context, 391, 410
generating, 389
initializing, 410
threading, 411, 419

specification, 392
syntax, 389–390
tag format, 390
TLD file, 392–393
Tomcat Server official J2EE Reference

Implementation for, 692
variable

page request variable, 395–396
predefined variables, 391

XSLT output, working with, 409–417
XSQL Pages Publishing Framework, 505, 596

JspFactory object, 410, 419
jsp-version JSTL tag, 400
JspWriter object, 391, 403, 411, 419–420, 424–426
JSR (Java Specification Request), 362–363, 559, 842,

878–879
JSTL (Java Server Pages Standard Tag Library)

body content tag, 402
class

implementation classes, 418
importing when parsing XML, 418
.jar file, mapping tag to class in, 402
sharing class between tags, 402
validation class, specifying, 401–402

conditional expression, 402, 403–405, 408
core tag library, 364, 392, 393, 417
database access tag library, 364, 392, 393
described, 389
documenting tag library, 401, 402
downloading, 398
DTD, 400
EL, using with, 393–397
entity reference, 403, 405
error handling when parsing XML, 428
formatting tag library, 364
HTML table, defining when parsing XML, 417, 423
I18N (Internationalization) tag library, 364, 392, 393
implementation classes, 418
import operations, 398, 418, 421
initialization parameter handling when parsing

XML, 419
installing, 397–398
.jar file

native .jar files, 392
tag, mapping to class in, 402

Jaxen library, 393
JSP

tag library, referencing in, 399–400
version, declaring, 400, 402
version 1.2 API, based on, 744

JspWriter object, sending output to, 391, 403,
411, 419–420, 424–426

J2EE server instance support, 398–399
looping through document when parsing XML, 417
naming tag library, 401
page context when parsing XML, 419, 428
SAX filter, applying when parsing XML, 405
Saxpath library, 393
scope when parsing XML, 405
screen, sending output to when parsing XML, 419,

420, 424
Servlet

context, 391, 410
generating, 389
initializing, 410
parsing XML, Servlet object setup in, 419
threading, 411, 419

session tracking when parsing XML, 419
source document, specifying when parsing

XML, 405
specification, 418
string, converting document to for parsing, 421
tag

class, sharing between tags, 402
evaluating when parsing XML, 422, 424
loading/unloading when parsing XML, 421–422

r538292 Index.qxd 8/18/03 8:45 AM Page 910

911Index ✦ J–M

TLD files, 392, 393, 400
URI parameter, specifying, 400
validation class, specifying, 401–402
variable

document, assigning to when parsing XML,
417, 421

expression result, assigning to, 406–407
version described in this book, 392
XML

declaration, 400
processing tag library, 364, 392, 400–408, 417

XPath expression result nodes, looping
through, 404

XSL stylesheet, passing parameter to, 405
XSLT operation, performing, 407, 409–417

jstl.jar file, 393, 398
JtextArea object, 823
J2EE (Java 2 Platform Enterprise Edition). See also

specific language, protocol and API
application

multi-tier, 687, 690, 802–803
server, 560, 688, 689–690, 804, 848

background, historical, 311–312
case sensitivity, 561
client

AXIS implementation, client-side, 690
multi-tier, 687, 690
thin, 687, 690

code, canned, 323
described, 683
development tool overview, 311–320
portal, 685–686, 687–688
software support, 690
text support, 311
Web service

architecture, 687–690
choosing as Web service platform, 802
client, AXIS implementation, 690
client, multi-tier, 687, 690
client, thin, 687, 690
.NET Web service versus, 683–686
portal, 685–686, 687–688
software support, 690
tool overview, 691–695, 737–746

Xerces included with, 324
JWS (Java Web Service), 788–789
JWSDP (Java Web Services Developer Pack). See also

WSDP (Web Services Developer Pack);
specific JWSDP API

API overview, 748–749
CLASSPATH environment variable, 372–373

K
KDC (Key Distribution Center), 874
Kerberos authentication, 874
key

element, 66, 180
function, 187

keyref element, 66, 462

L
lang function, 188
language

data type, 63
declaring, 37–39, 60–61, 72
document, using multiple in same, 60–61, 73–74
IANA registered name, 38
ISO code, 38
parsing, 79
XSLT, checking in, 188, 207

last function, 188
length Schema element restriction, 67
LexicalHandler SAX interface, 129, 162–163
Librourl class, 380
line-end character, 26–27
list element, 66
ListPrice class, 380
load method, 253, 254–257
loadXML method, 253, 254–257
local-name function, 187
localname SQL Server edge table column, 455
Locator SAX interface, 127, 136, 137, 138–139
LocatorImpl class, 150–151
Locator2 SAX interface, 129, 163
Locator2Impl class, 166–167
log4j-core.jar file, 781
long data type, 64, 780
LotusXSL transformation engine, 174

M
MagicEightBall service, 762, 785
makeParser method, 159
mapping-schema element, 440
maxExclusive Schema element restriction, 68
maxInclusive Schema element restriction, 68
maxLength Schema element restriction, 68
memory, DOM resident in, 80, 92
menu, creating dynamic, 263–268
menuitems.xml file, 263
menus.xml file, 263, 265
MEP (message exchange pattern), 629
message element, 182

r538292 Index.qxd 8/18/03 8:45 AM Page 911

912 Index ✦ M

Message Flow subsystem, 778. See also AXIS (Apache
eXtensible Interaction System)

Message Model subsystem, 779. See also AXIS (Apache
eXtensible Interaction System)

MessageFactory object, 756
Messaging Oriented Middleware. See MOM
metaproperty, OPENXML, 453. See also SQL Server
Microsoft Intermediate Language. See MSIL
Microsoft Management Console SQL Server snap-in.

See MMC SQL Server snap-in
Microsoft SOAP Toolkit

attachment to Web service, sending, 667–668
class, 667–668
component library, 667–668
described, 666–667
directory structure, 666
documentation, 666
downloading, 666
exposing service, 668–669, 671–672
function definition, 666
HTTP connector, 668
IIS requirement, 667
include file, 666
installing, 667, 669
ISAPI handler, 669–670, 674
MsSOAPT3.exe utility, 680
MSXML, reliance on, 667
namespace, 672
output file location, specifying, 673
programming

client-side, 667, 675–679
server-side, 667, 668–674

request/response handling, 667
serialization, 668
SOAPVDIR.CMD utility, 680
SQL Server data type support, 840
stream

reading as attachment to Web service, 667
sending as attachment to Web service, 668

Windows registry key, 669–670
Windows requirement, 667
WSDL Generator, 670–671, 673
wsdlgen3.dll utility, 680
XML parsing, 667

Microsoft SQL Server XML Technology Preview, 431
Microsoft Web site

JDBC driver download, 541
MSDN, 237, 282, 541, 876–877, 880
MSXML download, 88, 126, 237
.NET resources, 700
Office XP Web Services Toolkit download, 676
SQL Server download, 435

SQLXML download, 435, 835
UDDI SDK download, 656
WS-Policy specification resources, 876
WS-PolicyAssertions specification resources, 876
WS-PolicyAttachment specification resources, 877
WS-SecureConversation specification resources,

878
WS-SecurityPolicy specification resources, 877
WS-Trust specification resources, 877
XML Notepad download, 81
XML Spreadsheet Add-In download, 282

Microsoft XML parser. See MSXML parser
MIME (Multipurpose Internet Mail Extension)

SQL Server query result MIME type, specifying in
URL, 438

XSLT, declaring MIME type in, 176
minExclusive Schema element restriction, 68
minInclusive Schema element restriction, 68
minLength Schema element restriction, 68
MMC (Microsoft Management Console) SQL Server

snap-in, 436
MOM (Messaging Oriented Middleware), 754
msbase.jar file, 541
MSDN Web site, 237, 282, 541, 876–877, 880
MSIL (Microsoft Intermediate Language), 701, 705. See

also .NET Framework
MsSOAPT3.exe utility, 680
mssqlserver.jar file, 541
msutil.jar file, 541
MSXML (Microsoft XML) parser

ANSI support, 240
API, relation to, 242
CAB File for Redistribution package, 237–238
class, 236, 240, 243
component, referencing, 240–241
data island, using in MSXML environment, 612–619
documentation, 237
DOM

Attr data type support, 117
Attr node support, 99
attribute, creating, 253
CDATASection data type support, 119
CDATASection node support, 99
CharacterData data type support, 117–118
class access, 243
Comment data type support, 117–118
Comment node support, 99
Document data type support, 107–111
Document node support, 95, 98
DocumentFragment node support, 98
DocumentType data type support, 111
DocumentType node support, 98

r538292 Index.qxd 8/18/03 8:45 AM Page 912

913Index ✦ M–N

DOMImplementation Interface support, 106
element data type support, 114–116
Element node support, 98
element, returning, 253
entity data type support, 120
Entity node support, 99
EntityReference node support, 99
error handling, 95, 96, 244–245, 252–253
event handling, 254
extension, 95
interface, 96–97, 106, 243
loading XML content, 253, 254–257
menu, building dynamic using, 263–268
method, 253–254
namedNodeMap data type support, 113–114
node child, appending, 253
node child existence, checking, 253
node child, removing, 253
node child, returning, 253
node collection, returning, 253
node constant support, 101
node, creating, 253
node property support, 101–103
node, selecting, 254, 257–260, 266
node text, returning, 253
node, transforming using XSLT, 254, 260–263
node type, returning, 253
node value, returning, 253
node XML, returning, 253
nodeList data type support, 112
nodeTypeString property, 100–101
Notation data type support, 120
Notation node support, 99
parent document, returning, 253
processing instruction, creating, 253
ProcessingInstruction data type

support, 107
ProcessingInstruction node support, 98
property, 252–253
saving XML content to file, 253
SAX, sending content to DOM from, 246–247
Text data type support, 119
Text node support, 99

DOMDocument object, 169, 238, 240, 242–243
downloading, 88, 126, 237
error handling, 244–245
functionality provided by, 236, 241–242
HTML, outputting, 248–249
installing, 236–237
interface, 242–243
Internet Explorer, integration with, 239
Microsoft SOAP Toolkit reliance on, 667

.NET platform, core component of, 174
object instance, creating, 238–239
SAX parsing, 88, 125–130, 236, 241–242, 246–247
Schema support, 241
SDK, 237
SQL Server Bulk Load, use of, 467
system requirement, 236
version considerations, 238–239
XML, outputting, 248
XSL support, 247

msxml.dll file, 238
msxml4a.dll file, 240
msxml4.dll file, 238, 240
Multipurpose Internet Mail Extension. See MIME
MultiQueryExample1.xml file, 438, 440
MultiQueryExample2.xml file, 449–450, 468
MXHTMLWriter object, 247, 248–249
MXNamespace object, 247
MXNamespaceManager object, 247
MXXMLWriter class, 247–248, 708

N
NAICS (North American Industry Classification

System), 656
name

data type, 63
element, 448
function, 185–186, 187, 201
object, 756

NamedNodeMap

DOM data type, 111, 112–114
DOM interface, 97, 99, 102, 332

namespace
Access, considerations when importing XML

from, 288
alias, 180
attribute namespace

returning, 147
setting, 148

deployment descriptor, declared by, 810, 853
described, 13, 40
document section, associating with, 43, 44
DOM

node attribute with specified namespace,
removing, 113–114

node namespace prefix, returning, 102
node namespace URI, returning, 102
node with specified namespace, returning, 113
support, 83

Microsoft SOAP Toolkit, 672
.NET Web service, 703, 704, 708

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 913

914 Index ✦ N

namespace (continued)
parsing, 44
SAX

event handling, 154
support, 152–153

Schema, 14, 18, 68, 72
SOAP, 14, 636, 641–642, 672
SQL Server OPENXML query, node namespace

in, 455
undeclaring, 27
URI, referencing, 44–45
URL, referencing, 14, 43, 44–45
URN, referencing, 44–45
use, appropriate, 14, 44
version 1.1 namespace, 26–27
WSDL namespace declaration, 14, 648–649
W3C Working Draft, 45, 94
XPath node axis, treatment in, 184, 185
XSL:FO namespace, declaring, 221
XSLT namespace

alias, 180
declaring, 179, 195, 205–206
output, assigning to, 207–208
variable, assigning to, 207

namespace-alias element, 180
NamespaceSupport class, 152–153
namespace-uri function, 187
namespaceuri SQL Server edge table column, 455
naming

Access, XML file exported from, 273, 274
attribute, 8, 12, 45–46, 148
element, 7–8, 11, 12, 45–46
JNDI, 758
JSTL tag library, 401
Web service, 837

NCName data type, 63
ne JSP not equal operator, 394
negativeInteger data type, 64
.NET 247 Web site, 700
.NET Framework

adoption cycle, 665, 716–717
API, 700
ASP.NET application, creating mobile browser-

based, 721–730
class library, 432, 701, 703–705, 708
client, smart, 684–685, 686
CLR, 701, 705
compatibility considerations, 666
compiling application, 706
described, 700–702
language support, 700–701, 702, 705–707
migrating to, 665, 716–717

MSIL, use of, 701, 705
MSXML core component of, 174
namespace, 703, 704, 708
parsing, 80
PocketPC application, creating, 730–733
runtime environment, 700–701, 719–721
security, 711–714
service file, 707
SQL Server in .NET environment, 432
Visual Studio .NET, developing using, 705–707,

715–716, 726–727, 730–732
Web service

attribute, 703–705
authentication, 711–713
call, remote, 720
class library, 703–705, 708
client, browser-based, 721–730
client, Windows-based, 730–733
CLR, 701, 705
compiling, 706, 715
creating, 703–704, 706–707
deploying, 715–716
IIS requirement, 699
introduced, 665–666
J2EE Web service versus, 683–686
language support, 700–701, 702, 705–707
MSIL, 701, 705
namespace, 703, 704, 708
outputting XML, 709
PocketPC application, creating, 730–733
production server, copying/pasting to, 715–716
query using XPath expression, 708–709
Schema definition, editing, 708
security, 711–714, 880
service file, 707
SOAP messaging, 703, 704–705, 707, 720
Visual Studio .NET, developing using, 705–707,

715–716, 726–727, 730–732
XML, using in, 707–709
XSLT operation, 708

WSE, 880, 882
XKMS toolkit, 875

New ➪ Virtual Directory, 836
newContext function, 500, 503
newInstance method, 753, 758
NewsML

described, 48
DTDs, 15, 48
validation standard, as, 14, 15, 48

nextNode method, 112
NMTOKEN data type, 57
Node DOM interface, 96

r538292 Index.qxd 8/18/03 8:45 AM Page 914

915Index ✦ N–O

NodeList

DOM data type, 112
DOM interface, 97, 99–100

nodeList data type, 112
NodeReader class, 330, 355
node-set data type, 186
nodetype SQL Server edge table column, 454
nodeTypeString MSXML DOM property, 100–101
nonNegativeInteger data type, 64
nonPositiveInteger data type, 64
normalize method, 105, 115
normalizedString data type, 63
normalize-space function, 187, 209, 210
North American Industry Classification System. See

NAICS
not function, 186
notation

data type, 58, 99, 120
declaration event, 142, 150, 156
element, 53, 66

notationDecl method, 142, 150, 156
NOTATION_NODE constant, 100, 101
number

data type, 64, 186
element, 182
function, 186

O
OASIS (Organization for the Advancement of

Structured Information Standards), 628, 873,
875–878, 880, 881

object, implicit. See also JSP (Java Server Page)
applicationScope, 397
cookie, 395
header, 395
headerValues, 396
initParam, 396
pageContext, 397
pageScope, 397
param, 396
paramValues, 396
requestScope, 397
sessionScope, 397

Object Linking and Embedding. See OLE
ObjectFactory class, 379, 386
ObjectInputStream class, 578, 589
ObjectOutputStream object, 578, 580
ODBC (Open Database Connectivity)

JDBC, relation to, 540
SQL Server ODBC driver, 436
SQLXML use of, 436

Office XP Web Services Toolkit, 676–679
OLE (Object Linking and Embedding), 460
OmniOpera utility, 652
OmniPortlet server, 843. See also Oracle
ondataavailable event, 108, 254
OneWayListener interface, 753
onreadystatechanged event, 254
ontransformnode event, 108
Open Database Connectivity. See ODBC
Open Directory Project, 174
Open Group Web site, 540
Open method, 293
openConnection method, 589
OPENXML method, 293, 295, 296
OPENXMLExample1.sql file, 452
OPENXMLExample3.sql file, 458–459
OPENXMLExample2.sql file, 456–457
or JSP logical OR operator, 394
Oracle

ADO string, connecting to using, 489
aggregating separate objects into single XML

document, 480, 485–487
application server, 840, 842–843
attribute

creating attribute in, 484–485
element attribute set, returning, 480, 483–484

character escape, working with, 500
CLOB object, returning, 500, 502, 503
closeContext function, 500, 503
column

element, returning from, 479, 488
XML document fragment containing element for

each column, creating, 480
XMLType column, 487, 494–495

concatenating objects into a single XML document,
480, 481

context, opening/closing, 500, 503
ConText search engine, 473
convert function, 500
createFormat function, 497–498
createXML function, 499
data type, 840
DBMS_XMLGEN

function, 478, 479, 598
package, 499–504

DBMS_XMLGen.setRowsetTag function, 504
documentation, 478, 499
DOM support, 473–474, 499
downloading, 477
DTD, 473

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 915

916 Index ✦ O

Oracle (continued)
element

attribute set for, returning, 480, 483–484
column, returning from, 479, 488
creating, 484–485
expression, hard-coding element name in, 480
root element, defining, 482–483, 504
XML document fragment containing element for

each column, creating, 480
Enterprise Manager, 491–492
error handling, 503
EXISTSNODE function, 479, 494–495
EXTRACT function, 479, 494–495
ExtractValue function, 479, 494
forest, 478, 480–481
formatting XML, 497–499
function overview, 478–485
getNumRowsProcessed function, 500
getXML function, 500
IFs, 473, 474
INSERT command, 493–494
JAXB support, 842
JDBC connection, 507
JSP support, 505
JSR support, 842
J2EE environment, in, 505–508
newContext function, 500, 503
node returned by XPath expression, checking for,

479, 494–495
OmniPortlet server, 843
Pages Publishing Framework, 505, 596
parsing XML, 473, 479, 499, 504–505
PL/SQL support, 499–500
reference cursor, accepting as SQL query

parameter, 503
restartQUERY function, 500
row

aggregating multiple rows into single XML
document, 480, 485–487

SQL query, limiting number of rows returned
by, 500, 502

SQL query, returning number of rows returned
by, 500

SQL query, skipping in, 500, 502–503
XML document, parsing into, 479
XML document, returning from, 479, 481–482

SAX support, 473, 504
Schema

name considerations, 493
W3C Schema, generating from Oracle Schema,

489–491
W3C Schema, mapping view to, 495–496

W3C Schema, registering, 491–493
XMLFormat Schema, 498–499

Servlet support, 843
setConvertSpecialChars function, 500
setMaxRows function, 500
setRowSetTag function, 500
setRowTag function, 500
setSkipRows function, 500, 502–503
SOAP support, 842, 843
SQL query, generating XML from, 479, 500–504
SQLJ support, 505
SQL*Plus code, 478, 492
SYS_XMLAGG function, 479, 481–482
SYS_XMLGEN function, 479, 488–489, 498
table

XML document, storing in, 493
XSL stylesheet, storing in, 597–600

TransX Utility, 504
UDDI support, 842
UPDATEXML function, 479, 495
useItemTagsForColl function, 500
Utl_File.FClose function, 503
Utl_File.FOpen function, 503
value, selecting data based on, 494–495
version

Enterprise Edition, 473
Oracle9i standard edition, 473–474, 478
trial version, 477

view, 495–497
XDK, 477–478, 499, 502, 504–508
XML DB repository

extension, 478
function overview, 478–485
functionality, structured/unstructured, 473–474
rows, aggregating using, 485–487
XMLType object, managing using, 497

XMLAGG function, 480, 485–486
XMLATTRIBUTES function, 480, 483–484, 486
XMLCOLATTVAL function, 480, 484–485
XMLCOMMATTVAL function, 487
XMLCONCAT function, 480
XMLELEMENT function, 480, 482–483, 485–486,

597–600
XMLFOREST function, 478, 480–481, 485–486,

597–600
XMLFormat object, 497–499
XMLSEQUENCE function, 479
XMLTRANSFORM function, 479, 596, 600–601
XPath, working with

node returned by XPath expression, checking
for, 479

query using XPath expression, 494–495

r538292 Index.qxd 8/18/03 8:45 AM Page 916

917Index ✦ O–P

scalar value, returning from, 479
XML document fragment, returning from, 479

XSLT operation, 479, 499, 596–601
XSQL Servlet, 504, 505–506, 596
XSU, 505, 506–508

OracleDriver class, 507
OracleXMlElement.xslt file, 598
ORDER BY SQL statement, 520
Order class, 796
OrderManager

class, 797
service, 796

Organization for the Advancement of Structured
Information Standards. See OASIS

organization object, 770, 771–772
org.apache.axis classes, 822
org.apache.jsp classes, 410, 418
org.apache.xerces classes, 336, 368
org.xml.sax classes, 329
otherwise

element, 181, 201
JSTL tag, 404–405

out

JSP variable, 391
JSTL tag, 402

output element, 180, 206

P
page JSP variable, 391
pageContext

JSP implicit object, 397
JSP variable, 391

PageContext object, 416
Page_Load event, 725, 727
Pages Publishing Framework, 505, 596. See also XSQL

Servlet
pageScope JSP implicit object, 397
param

element, 181, 439
JSTL tag, 405
object, implicit, 396

paramValues implicit object, 396
parent

element, 447
XPath node axis, 184

parented SQL Server edge table column, 454
parentheses () JSP grouping operator, 394
parenthesis (}) EL expression suffix, 393
Parse

JSTL tag, 405–406, 417
method

parser class, 330
parser interface, 134

ParserAdapter class, 158
XMLFilterImpl class, 155
XMLReader interface, 132
XMLReaderAdapter class, 144

Parsed Character data type. See PCDATA data type
parseError object, 244
Parser

class, 84, 330
SAX interface, 127, 134

ParserAdapter class, 157–158
ParserFactory class, 158–159
ParseTag class, 422
parseURL method, 132
parsing WSDL, 628
parsing XML

browser, parser implementation on, 86
choosing parser, 86–90, 320
described, 79
document size considerations, 89, 90
engine, 86
HTML, parsing XML as, 6
JAXB unmarshalling versus, 371
JAXP parser, swapping, 367–370
language, of, 79
namespace, 44
.NET parsing, 80
Schema, 21
text formatting, 40
transformation processing, 86
validation performed during, 15, 49, 86, 88–89, 109

parsing XML, DOM-based
Attr data type support, 117
Attr node support, 99
attribute, creating, 253
CDATASection

data type support, 119
node support, 99

CharacterData data type support, 117–118
class access, 243
Comment

data type support, 117–118
node support, 99

Document

data type support, 107–111
node support, 95, 98

document size considerations, 89, 90
DocumentFragment node support, 98
DocumentType

data type support, 111
node support, 98

DOMImplementation Interface support, 106
Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 917

918 Index ✦ P

parsing XML, DOM-based (continued)
element

data type support, 114–116
node support, 98
returning, 253

entity

data type support, 120
node support, 99

EntityReference node support, 99
error handling, 95, 96, 244–245, 252–253, 330
event handling, 94, 104, 106, 108, 254
introduced, 79
JAXP, using, 87–88, 317, 363
loading document

string, as, 111
URL, from, 110

loading XML content, 253, 254–257
namedNodeMap data type support, 113–114
node

child, appending, 253
child existence, checking, 253
child, removing, 253
child, returning, 253
collection, returning, 253
constant, 100, 101
creating, 253
parsing status, returning, 103
property support, 101–103
selecting, 254, 257–260, 266
text content, returning, 253
transforming using XSLT, 254, 260–263
type, returning, 253
value, returning, 253
XML, returning from, 253

nodeList data type support, 112
nodeTypeString property, 100–101
Notation

data type support, 120
node support, 99

Oracle, in, 499, 504
parent document, returning, 253
passing instruction to processor outside parser

environment, 107
saving XML document to specified object, 111
SAX parsing

combining with, 125
compared, 88–90, 123

URL
document URL, by, 110
document URL, returning, 109

validation, checking for, 109
whitespace, preserving during, 108

parsing XML in Microsoft SOAP Toolkit environment,
667

parsing XML using JAXP
DOM-based, 87–88, 317, 363
SAX-based, 363

parsing XML using JSTL and JSP
class, importing, 418
core library, defining, 417
entity resolution, 405
error handling, 428
HTML table, defining, 417, 423
importing source document, 421
initialization parameter handling, 419
JspWriter, sending select result to, 419–420,

424–426
looping through document, 417
page context, 419, 428
SAX filter, applying, 405
scope, 405
screen, sending output to, 419, 420, 424
Servlet

object setup, 419
threading, 419

session tracking, 419
source document, specifying, 405
string, converting document to be parsed to, 421
tag

evaluating, 422, 424
loading/unloading, 421–422

variable, assigning to document, 417, 421
XML processing tag library, defining, 417

parsing XML using MSXML
Attr data type support, 117
Attr node support, 99
attribute, creating, 253
CDATASection

data type support, 119
node support, 99

CharacterData data type support, 117–118
class

access, 243
library, 236
referencing, 240, 243

Comment

data type support, 117–118
node support, 99

component, referencing, 240–241
Document

data type support, 107–111
node support, 95, 98

DocumentFragment node support, 98

r538292 Index.qxd 8/18/03 8:45 AM Page 918

919Index ✦ P

DocumentType

data type support, 111
node support, 98

DOMImplementation Interface support, 106
element

data type support, 114–116
node support, 98
returning, 253

entity

data type support, 120
node support, 99

EntityReference node support, 99
error handling, 95, 96, 244–245, 252–253
event handling, 254
HTML, outputting, 248–249
loading XML content, 253, 254–257
node

child, appending, 253
child existence, checking, 253
child, removing, 253
child, returning, 253
collection, returning, 253
constant, 100, 101
creating, 253
property support, 101–103
selecting, 254, 257–260, 266
text content, returning, 253
transforming using XSLT, 254, 260–263
type, returning, 253
value, returning, 253
XML, returning, 253

nodeList data type support, 112
Notation data type support, 120
Notation node support, 99
object instance, creating, 238–239
overview, 241–246, 251
parent document, returning, 253
ProcessingInstruction

data type support, 107
node support, 98

root object, 242–243, 252
saving XML content to file, 253
SAX parsing, 88, 125–130, 236, 241–242, 246–247
SQL Server Bulk Load, use of, 467
Text

data type support, 119
node support, 99

version considerations, 238–239
XSL support, 247

parsing XML using Oracle, 473, 479, 499, 504–505
parsing XML using SAX. See SAX
pattern Schema element restriction, 68

PCDATA (Parsed Character Data) data type, 54, 61
PDF (Portable Document Format)

described, 218
XSL:FO converting XML to PDF using

content, static, 222
font, 223
footer, 222
header, 222
page setup, 221–222
table, 223–231
title, 223

period (.)
JSP property value operator, 394
XPath location operator, 184

periods (..) XPath location operator, 184
pivot, 776. See also SOAP (Simple Object Access

Protocol)
PKI (Public key infrastructure), 874
PL/SQL, Oracle support for, 499–500
plus sign (+) cardinality operator, 55
PocketPC .NET application, creating, 730–733
popBody method, 413, 422
popContext method, 153
Portable Document Format. See PDF
portal, 685–686, 687–688. See also J2EE (Java 2

Platform Enterprise Edition)
Portal Server, 692
portType WSDL description, 646, 649
position function, 187
positiveInteger data type, 64
POST method, 636, 638, 689
preceding XPath node axis, 185
preceding-sibling XPath node axis, 185
Precio class, 380
prefix SQL Server edge table column, 455
preserve-space element, 180, 209, 210
prev SQL Server edge table column, 455
printClobOut procedure, 502, 503
PrintWriter object, 391, 566
procedure

dxxDisableCollection, 536
dxxEnableCollection, 536
dxxGenXML, 536
dxxInsertXML, 536
dxxRetrieveXML, 536
dxxShredXML, 536
printClobOut, 502, 503
sp_xml_preparedocument, 452–453, 457
sp_xml_removedocument, 453
URL, mapping to, 839

processingIns attribute, 499

r538292 Index.qxd 8/18/03 8:45 AM Page 919

920 Index ✦ P–R

ProcessingInstruction

data type, 98, 107
method, 137, 138, 146, 149, 154

processing-instruction element, 182
PROCESSING_INSTRUCTION_NODE constant, 100
processName method, 152
PRODUCT element, 598
PRODUCTID element, 529
ProductType class, 380
ProgID (Program ID), 238, 240
prolog element, 529, 532
provConn connection instance, 758
Provider subsystem, 779. See also AXIS (Apache

eXtensible Interaction System)
ProviderConnection

interface, 753
object, 753

ProviderConnectionFactory class, 753, 758
ProviderMetaData interface, 753
PUBLIC DTD source, 52
Public key infrastructure. See PKI
publisherAssertion UDDI identification type, 657
pushBody method, 413, 421
pushContext method, 153
putFeature method, 133
putProperty method, 133

Q
QName data type, 63, 780
query element, 440
QueryString object, 728
question mark (?)

cardinality operator, 61
wildcard character, 714

quotation marks (“ ”)
attribute name delimiters, 12
MSXML processing instruction, including in, 246
text, including in, 34

Quotations table, 434, 512, 846
quote element, 223
Quotedoc class, 380
QuotedocType class, 380
QuoteEntry element, 617
QuoteList object, 823, 862
QuoteListSelectionHandler object, 547, 823, 826,

829, 862
QuotelistType class, 380, 385
QuoteType class, 380, 385, 386

R
Range object, 291, 295–296, 299, 306–307
ranking

class, 380
element, 529, 533

RDB_node element, 532
ReceivedAttachments30 class, 667
record element, 818
REC2XML function, 513, 514–516
REF CURSOR (reference cursor), 503
RegistryService object, 771
ReleaseDate class, 380
Remote interface, 765
Remote Method Invocation. See RMI
Remote Procedure Call. See RPC
RemoteException exception, 765
removeAttribute method, 116, 148, 160, 164
removeAttributeNode method, 114, 116
removeAttributeNS method, 116
removeChild method, 105, 253
removeNamedItem method, 113
removeNamedItemNS method, 113
removeQualifiedItem method, 114
replaceChild method, 105
replaceData method, 118, 119
ReportML file, 280
ReqRespListener interface, 753
request JSP variable, 391
Request Time. See RT
requestScope JSP implicit object, 397
reset method, 112, 114, 153
resolveEntity method, 142, 150, 156, 162, 166
response JSP variable, 391
restartQUERY function, 500
restriction element, 67
ResultTransform.xsl file, 441, 593
RMI (Remote Method Invocation), 760
rootelement element, 84, 177, 599, 604
round function, 186
RowElement element, 518
ROWSET element, 482
RPC (Remote Procedure Call). See also JAX-RPC (Java

API for XML-Based RPC)
compatibility considerations, 635
HTTP as transport protocol, 635
marshaling, 689
protocol used, 635
Router

AXIS support, 691, 810
class based on, 689
deployment descriptor, use of, 688, 689
JDBC query result, passing to, 815
SOAP message routing, 637, 687–688, 689, 827,

828
Tomcat RPC Router, 689

security, 635
RPCRouter class, 689, 740
RT (Request Time), 392

r538292 Index.qxd 8/18/03 8:45 AM Page 920

921Index ✦ S

S
SAAJ (SOAP with Attachments API for Java)

AXIS support, 775
chained model attachment support, 633
described, 318
DIME support, 880
exchange mode, 752
JAXM use of, 751–752, 753
specification, 318, 364–365, 745
structure of message containing attachment,

751–752
WS-Attachment specification support, 880
WS-Security specification support, 880

saaj.jar file, 781
SAML (Secure Assertion Markup Language), 789, 878
save method, 253
saveOrganizations method, 772
SAX Project Web site, 83, 84, 89, 125
SAX (Simple API for XML)

archive file, 124–125
attribute

definition, checking, 129, 161, 164, 165
list, 128, 141, 159–160, 164, 167–168

AXIS use of, 774
callback method, 336
character encoding, returning, 129, 163, 167
class

AttributeListImpl, 159–160
AttributesImpl, 146–148
DefaultHandler, 148–150
LocatorImpl, 150–151
NamespaceSupport, 152–153
org.xml.sax classes, 329
ParserAdapter, 157–158
ParserFactory, 158–159
XMLFilterImpl, 153–157
XMLReaderAdapter, 144–146
XMLReaderFactory, 144

compatibility, backward, 125
creating parser, 158–159
described, 83
document event, 135–138, 145, 149, 153, 336
document handler

returning, 131, 154, 157
setting, 132, 155, 158

document input source, 132, 134, 144, 155, 158
document location, associating event with, 127
document locator

for event, returning, 151
setting using ContentHandler interface

method, 135, 137
setting using DefaultHandler class

method, 150

setting using DocumentHandler interface
method, 138

setting using XMLFilterImpl class method,
154

setting using XMLReaderAdapter class
method, 146

DOM
combining with SAX parsing, 125
compared, 88–90, 123
content, sending to DOM, 246–247

downloading, 83, 84, 125
DTD

declaration value, returning, 161, 165
entity reference container, using as, 142
event handling, 162, 165–166
handler interface, 128, 142
handler, returning, 131, 154, 157
handler, setting, 132, 134, 145, 155, 158

entity resolving
character encoding, returning, 163, 167
character encoding, setting, 163, 167
DTD, using as entity reference container, 142
external entity, 142, 156, 161, 165, 166
interface, extension, 129
interface, main, 128, 142
returning resolver, 131, 154, 158
setting resolver, 132, 134, 145, 155, 158
skipped entity, 137, 146, 150, 154, 338
tracking, 129
version of entity XML, returning, 163
version of entity XML, setting, 167

error handling
ErrorHandler SAX interface, 128, 143, 336
fatal error, 143, 150, 157
interface, 128
ioException error, 336
locale, 134, 145
recoverable error, 143, 150, 156
returning handler, 131, 154, 158
setting handler, 132, 134, 145, 155, 158
warning event, 143, 150, 157

event handling
CDATA event, 162, 163, 166
character event, 136, 137, 146, 149, 154
comment event, 162, 165
document event, 135–138, 145, 149, 153, 336
document location, associating event with, 127
document locator for event, returning, 151
DTD event, 162, 165–166
element end event, 136, 137, 145, 149, 154
element start event, 136, 138, 145, 149, 153
entity end event, 163, 166

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 921

922 Index ✦ S

SAX (Simple API for XML) (continued)
entity skipped event, 137, 146, 150, 154, 338
entity start event, 163, 166
entity unparsed declaration event, 142
error event, 143, 150
lexical event, 129, 162–163
namespace event, 154
notation declaration, 142, 150, 156
processing instruction event,

ContentHandler interface, 137
processing instruction event,

DefaultHandler class, 149
processing instruction event,

DocumentHandler interface, 138
processing instruction event, Xerces

parsing, 337
processing instruction event, XMLFilterImpl

class, 154
processing instruction event,

XMLReaderAdapter class, 146
public ID of event, returning, 139
system ID of event, returning, 139
Xalan transformation, in, 358
Xerces parsing, in, 336

feature flag, 131, 133, 155, 156, 158
filtering, 127, 134–135, 153–157, 405
interface

AttributeList, 128, 141
Attributes, 84, 128, 139–141
Attributes2, 129, 160–161
ContentHandler, 127, 135–137, 336–337, 358
DeclHandler, 129, 161
DocumentHandler, 127, 137–138
DTDHandler, 128, 129, 131, 142, 336
EntityResolver, 128, 142, 336
EntityResolver2, 129, 162
ErrorHandler, 128, 143, 336
IMXAttributes, 130, 167–168
IMXSchemaDeclHandler, 130, 168–169
IMXWriter, 125, 130, 169–170
ISAXXMLReader, 126, 249
LexicalHandler, 129, 162–163
Locator, 127, 136, 137, 138–139
Locator2, 129, 163
Parser, 127, 134
XMLFilter, 127, 156
XMLFilters, 134–135
XMLReader, 126, 127, 131–133, 135, 144

introduced, 79–80
JSTL parsing, applying SAX filter during, 405
JSTL Saxpath library, 393

MSXML, parsing using, 88, 125–130, 236, 241–242,
246–247

namespace
event handling, 154
support, 152–153

Oracle support, 473, 504
parsing using JAXP, 363
property value

returning, 132, 155, 156
setting, 133

Schema
information about, accessing, 130, 168–169
validation support, 142

streaming output, 130, 169
system identifier, parsing document by, 132, 134,

144, 155, 158
updating, 83, 125
URI mapping, 136, 145, 149, 338
URL, parsing document by, 132
versions, 83–84, 125
whitespace, handling, 136, 137, 146, 149, 154
Xalan

transformation output, passing to SAX, 351,
356–358

use of SAX by, 319, 341
Xerces, parsing using, 87, 325, 334–339
XML4J, parsing using, 87–88

SaxAppWizard utility, 241
SAXException class, 329
sax.jar file, 83, 124–125
SAXParseException class, 142
saxpath.jar file, 393, 398
SAXResult object, 358
SAXTransformerFactory class, 358, 368
SAXWarning event, 124
ScheduleItem class, 790–791, 793
Schema

Access
XML export, including Schema information in,

273–275, 279–280
XML import, including Schema information

in, 284
annotating, 66, 441–443, 460–466
applying, 71
closing, 21
commenting, 12, 66, 72
data type, 62–65, 67–68, 72–74, 840
DB2, 521, 526
declaring, 18
DOMSchemaCollection interface, 97, 99–100

r538292 Index.qxd 8/18/03 8:45 AM Page 922

923Index ✦ S

DTD
document, including with Schema reference in

same, 15–16
Schema versus, 18

editing, 62
element, 65–68, 76
generating using specialized software, 62, 72
importing, 66, 72
including, 66
JAXB class set, generating from, 371, 373, 376
JAXP support, 317, 744
location, 71
MSXML support, 241
namespace, 14, 18, 68, 72
.NET Web service, editing definition in, 708
Oracle

name considerations, 493
W3C Schema, generating from Oracle Schema,

489–491
W3C Schema, mapping view to, 495–496
W3C Schema, registering, 491–493
XMLFormat Schema, 498–499

parsing, 21
recommendation, 68
referencing, 71
root element, 67
SAX

parsing, accessing Schema information during,
130, 168–169

validation support, 142
SOAP, referencing in, 641–642
SQL Server

creating annotated Schema for SQL Server data,
460–466

data mapping, Schema role in, 441–443
subdirectory, 441
table relationship, specifying in, 466–467

SQLXML role in Schema annotation, 441
structure, 72–76
syntax, 72–76
UDB XML Extender Schema repository, 521
validation, Schema-based, 15, 18–21, 48, 62, 142
Visual Studio .NET, creating using, 460
XMLFormat Schema, 498–499
XML4J support, 314
XML.org registry, 48
XPath expression Schema reference, passing in

URL, 443
XSD format, 20, 273–275

schema element, 67

Schema Object Model. See SOM
schemaName attribute, 499
schemaType attribute, 498
scriptlet, 390
SDK (Software Development Kit)

JDK
javadoc API, 377, 378, 379
JAXP compatibility, 365
WSDP compatibility, 363

JSDK, 559
Microsoft SOAP Toolkit

attachment to Web service, sending, 667–668
class, 667–668
component library, 667–668
described, 666–667
directory structure, 666
documentation, 666
downloading, 666
exposing service, 668–669, 671–672
function definition, 666
HTTP connector, 668
IIS requirement, 667
include file, 666
installing, 667, 669
ISAPI handler, 669–670, 674
MsSOAPT3.exe utility, 680
MSXML, reliance on, 667
namespace, 672
output file location, specifying, 673
programming, client-side, 667, 675–679
programming, server-side, 667, 668–674
request/response handling, 667
serialization, 668
SOAPVDIR.CMD utility, 680
SQL Server data type support, 840
stream, reading as attachment to Web

service, 667
stream, sending as attachment to Web

service, 668
Windows registry key, 669–670
Windows requirement, 667
WSDL Generator, 670–671, 673
wsdlgen3.dll utility, 680
XML parsing, 667

MSXML, 237
Oracle XDK, 477–478, 499, 502, 504–508
UDDI, 656, 663–664
XML, 253

Secure Assertion Markup Language. See SAML
Secure Sockets Layer. See SSL

r538292 Index.qxd 8/18/03 8:45 AM Page 923

924 Index ✦ S

security
authentication

Java environment, in, 878–880
Kerberos, 874
Microsoft Passport, using, 712
PKI, 874
SOAP header, passing authentication

information in, 640
SOAP message authentication, 629
Web service authentication, 711–713, 872, 874
Web.Config file, role in, 713–714

BPEL4WS, 881–883
BPML, 881, 882
BPWS4J, 883
encryption

SOAP, 630, 873, 876
SSL, 873
WS-SecureConversation environment, in,

877–878
WS-Security specification, 875–876, 880
XML Encryption recommendation, 875
XML Encryption Syntax and Processing, 692,

740, 879
IIS, 711–712
key spoofing, 874
PKI, 874
policy, 876
RPC, 635
SAML, 789, 878
signature, digital, 630, 874–875
SOAP, 630, 873, 876, 878
SQL Server, 437, 439, 468
SQLXML, 837
SSL, 873
transaction, 629, 872–873, 880–883
transport-layer, 873
trust, 877, 879
Web service

AXIS environment, in, 789
BPML, 881, 882
BPWS4J, 883
encryption, 873, 874–875, 877–878
key spoofing, 874
.NET Web service, 711–714, 880
overview, 872–873
PKI, 874
policy, 876
SAML, 789, 878
signature, digital, 630, 874–875
SQLXML directory, separating Web service

from, 837
transaction, 872–873, 880–883

transport-layer, 873
trust, 877, 879
WSCI, 880, 881, 882
WS-Policy specification, 876
WS-PolicyAssertions specification, 876
WS-PolicyAttachment specification, 877
WS-SecureConversation specification, 877–878
WS-Security specification, 875–876, 880
WS-SecurityPolicy specification, 877
WS-Trust specification, 877
XACML, 878
XML-Signature Syntax and Processing, 879

WSCI, 880, 881, 882
XACML, 878
XKMS, 875
XML Security Suite, 314–315, 742, 879–880
XML-Signature Syntax and Processing, 692, 740, 879

SELECT SQL statement, 453
SelectionHandler object, 545
selectNodes method, 105, 253, 257–260
selector element, 67
selectSingleNode method, 105, 254, 257, 266, 708
self XPath node axis, 184
semicolon (;) character reference suffix, 22, 24
send method, 758–759
SentAttachments30 class, 667
sequence element, 67
service file, 707. See also .NET Framework
Service object, 770
service requestor, 687, 688–689. See also J2EE (Java 2

Platform Enterprise Edition); Web service
Service1.asmx file, 707
Servlet

applet compared, 558–559
Application server, 559, 560
class, 559
comment generation by Apache TomCat, 411, 420
context, 391, 410
DB2, using with, 844–845
described, 559
generating in JSP, 389
GetSingleQuoteDB2Format, 844
initializing, 410
JDBC, working with in

HTTP request handling using Servlet,
559–561, 566

query result, displaying using Servlet, 569–575,
829–832

query result, retrieving using Servlet, 564–569
JSDK, 559
Oracle support, 843
parsing XML, Servlet object setup in, 419

r538292 Index.qxd 8/18/03 8:45 AM Page 924

925Index ✦ S

request/response handling, 559–561, 566
SOAP, passing database XML to Servlet using, 844
specification, 559
SQL Server data, working with, 559, 561
threading, 411, 419
tiers, comprising multiple, 576, 586, 802–803,

844–845
Tomcat Server official J2EE Reference

Implementation for, 692
user interface, separating from data access

process, 803, 845
XMLPBAppServletBuildAttributeXML, 561,

583–585
XMLPBAppServletBuildElementXML, 561,

580–583
XMLPBAppServletGetAuthorList, 561, 576–578
XMLPBAppServletGetSingleAuthorList, 561,

578–580
XMLPBServletApp, 561, 575–576, 586–589
XMLPBWebServletAppGetSingleAuthorList,

566–569
XMLPBWebServletBuildAttributeXML, 561,

569, 572–575
XMLPBWebServletBuildElementXML, 561,

569–572
XMLPBWebServletGetAuthorList, 561–562,

564–566
XMLPBWebServletGetSingleAuthorList, 561,

562–563
XSQL, 504, 505–506, 596

ServletContext object, 391, 410
ServletRequest object, 396
servlets.com Web site, 559
session JSP variable, 391
sessionScope JSP implicit object, 397
set JSTL tag, 406–407
setAttribute method, 116, 148
setAttributeList method, 160
setAttributeNode method, 116
setAttributeNodeNS method, 116
setAttributeNS method, 116
setAttributes method, 148, 164
setAuthor method, 386
setColumnNumber method, 151
setContentHandler method, 132, 155, 158, 336
setConvertSpecialChars function, 500
setDeclared method, 164
setDocumentHandler method, 134, 145
setDocumentLocator method

ContentHandler interface, 135, 137
DefaultHandler class, 150
DocumentHandler interface, 138

XMLFilterImpl class, 154
XMLReaderAdapter class, 146

setDTDHandler method, 132, 134, 145, 155, 158
setEncoding method, 167
setEntityResolver method, 132, 134, 145, 155, 158
setErrorHandler method, 132, 134, 145, 155, 158
setFeature method, 133, 156, 158
setLineNumber method, 151
setLocale method, 134, 145
setLocalName method, 148
setMaxRows function, 500
setNamedItem method, 114
setNamedItemNS method, 114
setNamespaceDeclUris method, 152
setParent method, 135, 156, 424, 425
setProperty method, 133, 156
setPublicId method, 151
setQName method, 148
setRowSetTag function, 500
setRowTag function, 500
setSelect method, 423, 424, 425
setSkipRows function, 500, 502–503
setSource method, 386
setSpecified method, 165
setSystemId method, 151
setType method, 148
setURI method, 148
setUrl method, 414, 421
setValue method, 148, 386
setVar method, 421
setXml method, 415, 422
setXMLVersion method, 167
SGML (Standard Generalized Markup Language)

DTD, 49
HTML, relation to, 4
XML, relation to, 3

short data type, 64, 780
short-name JSTL tag, 400–401
SIC (Standard Industrial Classification), 656
signature, digital, 630, 874–875
Signature Syntax and Processing, 692, 740
Simple API for XML. See SAX
Simple Mail Transfer Protocol as SOAP transport

option. See SMTP as SOAP transport option
Simple Object Access Protocol. See SOAP
Simple SOAP Server, 739, 804–806, 848–849, 865. See

also AXIS (Apache eXtensible Interaction
System)

simpleContent element, 67
SimpleParsingWithDOM class, 330, 333
SimpleParsingWithDOM.java file, 326–329
SimpleParsingWithSAX.java file, 334–335, 336

r538292 Index.qxd 8/18/03 8:45 AM Page 925

926 Index ✦ S

simpleType element, 67
skippedEntity

event, 338
method, 137, 146, 150, 154

slash (/) XPath location operator, 184
slashes (//) XPath location operator, 184
SmallImage class, 380
smart client, 684–685, 686
SMTP (Simple Mail Transfer Protocol) as SOAP

transport option, 628
SOAP for Java. See SOAP4J
SOAP (Simple Object Access Protocol). See also Web

service
Apache SOAP Toolkit, 847
ASP.NET SOAP messaging, 712, 727
attachment using SAAJ

AXIS support, 775
chained model attachment support, 633
described, 318
DIME support, 880
exchange mode, 752
structure of message containing attachment,

751–752
WS-Attachment specification support, 880
WS-Security specification support, 880

authenticating message, 629
authentication information, passing in header, 640
AXIS SOAP messaging

chaining, 777–778
client message processing, 777
context, 776, 777
deserialization, 776
handler, 777–778, 789
incoming message, 776
lifecycle of message, 776
Message Flow subsystem, 778
Message Model subsystem, 779
monitoring, 798–800
pivot, 776
response, 776, 777, 810
routing message, 776, 827
Simple SOAP Server, 739, 804–806, 848–849, 865
specification implementation, 319–320, 738–739,

773–774, 775
validation, 776

body, 637, 642
COM application environment, in, 666, 668–669, 674
console application call, 675
described, 625, 627–628
encoding, 628, 636
encryption, 630, 873, 876
endpoint, 636, 651, 827, 865

envelope
described, 628, 636
empty, 839
header, 640–641
JAXP support, 744
J2EE environment, in, 687
request envelope, 637, 639–642
response envelope, 642, 688, 689
RPC, formatted by, 687–688, 689
WSDL, based on, 639
WSDL, generated by, 651

ETTK support, 742
GET method, 638
HTTP as transport option

header, 636, 637–638, 640–641, 705
introduced, 628
method, declaring, 638
protocol version, declaring, 638
request URI, 638

ISAPI handler, 669–670, 674
JAXM

attachment support, 754
connection object, 753
messaging, 749–752, 755–759
package, 753
RP profile, 754

JAXP support, 744
JAX-RPC role in isolating application from

SOAP, 760
J2EE portal support, 686
lifecycle of message, 776
method, 636
Microsoft SOAP Toolkit

attachment to Web service, sending, 667–668
class, 667–668
component library, 667–668
described, 666–667
directory structure, 666
documentation, 666
downloading, 666
exposing service, 668–669, 671–672
function definition, 666
HTTP connector, 668
IIS requirement, 667
include file, 666
installing, 667, 669
ISAPI handler, 669–670, 674
MsSOAPT3.exe utility, 680
MSXML, reliance on, 667
namespace, 672
output file location, specifying, 673
programming, client-side, 667, 675–679

r538292 Index.qxd 8/18/03 8:45 AM Page 926

927Index ✦ S

programming, server-side, 667, 668–674
request/response handling, 667
serialization, 668
SOAPVDIR.CMD utility, 680
SQL Server data type support, 840
stream, reading as attachment to Web

service, 667
stream, sending as attachment to Web

service, 668
Windows registry key, 669–670
Windows requirement, 667
WSDL Generator, 670–671, 673
wsdlgen3.dll utility, 680
XML parsing, 667

namespace, 14, 636, 641–642, 672
.NET SOAP messaging, 703, 704–705, 707, 720
Oracle support, 842, 843
pivot, 776
portal support, 686
POST method, 636, 638, 689
request

ASP.NET application, handling in, 727
encoding, 641–642
envelope, 637, 639–642
filtering, 637
header, 638, 640
method, 638
Microsoft SOAP Toolkit request handling, 667
namespace, 641–642
UDDI request, 662
WSDL call description, 649

response
ASP.NET application, handling in, 727
envelope, 642, 688, 689
Microsoft SOAP Toolkit response handling, 667
parsing of response data, 643
RPC routing, 827
UDDI request, from, 662
WSDL call description, 649

RPC routing, 637, 687–688, 689, 827, 828
Schema, referencing, 641–642
security, 630, 873, 876, 878
serialization, 628, 636, 668, 776, 780–781
Servlet, passing database XML to using, 844
Simple SOAP Server, 739, 804–806, 848–849, 865
SMTP as transport option, 628
specification, 364–365, 627, 635, 738–739, 775
SQL Server environment, messaging in, 836,

837, 839
SQLXML support, 835
SSL, encrypting using, 873
token management using SAML, 878

Tomcat Server support, 740
tracing SOAP call, 680–682
transaction concatenation, 629
UDDI API, accessing using, 661–662
URL

namespace, 641–642
parameter passing in URL, as alternative to, 636

Web service client
AXIS, message processing in, 777
Oracle, message processing in, 843

wrapper class for Web service, creating, 677–678
WSDL

envelope based on, 639
envelope, generated by, 651
request/response call description, 649, 813

SOAP with Attachments API for Java. See SAAJ
SOAPAction header, 638–639, 650, 651
SOAPBody interface, 753
SOAPBodyElement object, 757
SoapClient30 class, 667, 677
SOAPConnection

class, 753
object, 753

SOAPConnectionFactory class, 753
SoapConnectorFactory30 class, 667
SOAPEnvelope interface, 753
SOAPFault interface, 753, 759
SOAP4J (SOAP for Java), 773–774
SOAPHeader interface, 753, 756
SOAPIS30.DLL file, 669
SoapReader30 class, 667
SOAP-RP profile, 754. See also JAXM (Java API for XML

Messaging)
SoapSerializer30 class, 667
SoapServer30 class, 667
SoapTypeMapperFactory class, 667
SOAPVDIR.CMD utility, 680
Software Development Kit. See SDK
Solution Explorer window (Visual Studio .NET), 725
SOM (Schema Object Model), 88
sort element, 181, 200
sortSheet object, 616
SortXML stylesheet, 620–621
SourcePane object, 545, 862
Sources table, 435, 512, 846
span element, 604
specialcharacters.dtd file, 22–23
specification

Java Servlet, 559
JAX-RPC, 760
SAAJ, 318, 364–365, 745

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 927

928 Index ✦ S

specification (continued)
SOAP, 364–365, 627, 635, 738–739, 775
UDDI, 627, 628, 655–656
Web service, 626–627, 628, 629, 630
WS-Attachments, 880
WSCI, 881
WSDL, 627, 628
WSIL, 691
WS-Policy, 876
WS-PolicyAssertions, 876
WS-PolicyAttachment, 877
WS-Routing, 880
WS-SecureConversation, 877–878
WS-Security, 875–876, 880
WS-SecurityPolicy, 877
WS-Trust, 877
X-KISS, 875
XKMS, 875
X-KRSS, 875
XML Encryption, 875
XML Signature, 874

splitText method, 119
spreadsheet, Excel. See Excel
sp_xml_preparedocument procedure, 452–453, 457
sp_xml_removedocument procedure, 453
sql element, 553
SQL Server. See also SQLXML (XML for SQL Server)

ADO, integrating with, 451
AXIS environment, connection in, 807, 821
BULK INSERT command, 469
Bulk Load feature, 451, 467–469
connection

AXIS environment, in, 807, 821
JDBC, 548–549, 807, 821
OLE, using, 460
resetting, 453

data source, specifying, 837
data type, 839–841
directory, managing virtual, 436–437, 438–439, 443,

836–838
downloading trial version, 432
edge table, 451–456
HTTP support, 435, 436–444
IIS support, 436–437, 835, 836
INSERT command, 457–458, 493–494
JDBC

connection, 548–549, 807, 821
element, containing SQL Server query in, 553
query, passing to SQL Server from, 549, 550
query result, passing from calling object, 550
support, 541

loading, bulk, 432

login, 437, 836, 837
metaproperty, 453
MMC snap-in, 436
.NET environment, 432
ODBC driver, 436
OLE, connecting to using, 460
port setup, 437, 836
query, formatting using XSLT, 593
query, JDBC

element, containing query in, 553
passing to SQL Server from JDBC, 549, 550
result, passing from calling object, 550

query, OPENXML
ADO, integrating with, 451
deleting data from data source using, 451
edge table, 451–456
inserting data using, 456–458
introduced, 432
mapping data, 455
metaproperty, 453
node ID, 454
node namespace, 455
node type, 454
overflow, storing as variable, 453
updating data from data source using, 451,

458–459
viewing XML document in SQL Server table

using, 451
XPath, using in OPENXML query, 453

query result
array, sending to, 807–808
AUTO mode, 445–446, 593–596
browser, sending to, 435
ELEMENTS option, 445–446
encoding, specifying in URL, 438
EXPLICIT mode, 446–450
MIME type of returned document, specifying in

URL, 438
RAW mode, 444–445
root element, specifying in URL, 438
SQLXML Query Analyzer, viewing in, 435–436
stylesheet, formatting using, 438, 439, 441, 593
XMLDATA option, 445

query, URL, 437–438, 446
query, XPath, 440, 441–444, 453
Schema

creating annotated Schema for SQL Server data,
460–466

data mapping, role in, 441–443
subdirectory, 441
table relationship, specifying in, 466–467

r538292 Index.qxd 8/18/03 8:45 AM Page 928

929Index ✦ S

template containing external Schema
reference, 443

virtual directory, saving in, 439, 443
security, 437, 439, 468
SELECT command, 453
Servlet, working with SQL Server data in, 559, 561
SOAP messaging, 836, 837, 839
SQLXML requirement, 437
streaming output, 839
table relationship, specifying in Schema, 466–467
TCP/IP setup, 437, 836
template, 439–440, 443, 592–593
UPDATE command, 459
updating

Bulk Load, using, 451, 467–469
OPENXML, using, 451, 458–459
scripting, 467–468
Updategram, using, 432, 451, 469–471

URL
query, 437–438, 446
virtual directory, calling using URL, 437

variable, storing expression overflow as, 453
Virtual Directory Configuration Utility, 439
virtual directory, managing, 436–437, 438–439, 443,

836–838
Web access virtual root, 436
Web service, database access via, 835–842
WITH command, 457–458
XML support on SQL Server 2000, 431–432
XPath, working with

query using, 440, 441–444, 453
template-based XPath result, 443–444

XSLT operation, 438, 439, 441, 592–596
sql:field attribute, 443
sql:header element, 439
SQLj.org Web site, 505
sql:param element, 439
SQL*Plus code, 478, 492. See also Oracle
sql:query element, 440
sql:relation attribute, 442
SqlResultStream data type, 839, 841
SqlRowSet data type, 841
SQL/XML standard, 431
SQLXML (XML for SQL Server)

AUTO mode, 445–446
class, managed, 432
column, setting maximum characters per, 436
documentation, 443
downloading, 435, 835
Enterprise Manager, 432
EXPLICIT mode, 446–450
FOR XML statement, 444–450

HTTP support, 435
IIS requirement, 435, 835
installing, 435, 836
ODBC, use of, 436
Query Analyzer, 435–436
RAW mode, 444–445
Schema annotation, role in, 441
security, 837
SOAP support, 835
SQL/XML standard versus, 431
trace tag, 436
version described in this book, 435, 836
Web service, separating from SQLXML

directory, 837
SQLXMLBulkload.3.0 object, 468
SQLXMLOLEDB data-access component, 432
sql:xpath-query element, 440
sql:xsl element, 439
SSL (Secure Sockets Layer), 873
standalone attribute, 52–53
Standard Generalized Markup Language. See SGML
Standard Industrial Classification. See SIC
standard.jar file, 393, 398
startCDATA method, 163, 166
start-content element, 222
startDocument

event, 124
method, 136, 138, 145, 149, 153

startDTD method, 163, 165
startElement

event, 84, 124
method, 136, 138, 145, 149, 153

startEntity method, 163, 166
startPrefixMapping method, 136, 145, 149, 154
starts-with function, 187
static-content element, 222
SteamAttachment30 class, 667
Stream class, 578
streaming

input
JAXB, 385
JDBC, 589
Xalan, 350

output
JAXP, 366
JDBC, 578, 580
SAX, 130, 169
SQL Server, 839
Xalan, 348, 350, 355

Web service attachment
reading stream as, 667
sending stream as, 668

r538292 Index.qxd 8/18/03 8:45 AM Page 929

930 Index ✦ S

StreamOutput object, 348
StreamResult object, 351, 355
StreamSource object, 348
String

data type, 63, 186, 780, 827
function, 187

StringAttachment30 class, 667
StringBuffer

class, 553, 557
object, 815

string-length function, 187
stringReplace class, 554–555, 572
strip-space element, 180, 209, 210
Stub classes, 763–764
Studio Workbench. See also WebSphere

cost, 313
downloading, 313
plug-in support, 313, 741
WSAD compared, 313, 741

stylesheet element, 179, 180, 205
STYLESHEETS table, 597–598, 602–605
substring function, 187
substring-after function, 187
substring-before function, 187
substringData method, 118, 119
sum function, 186
Sun resources

BPMI, 881
JAXB

batch file, 376
CLASSPATH environment variable, 372–373
compiling class, 376–377
context object, 385
data binding, enabling, 371
described, 318, 363, 744
documentation, 372, 377–378, 379
downloading, 372
environment variable base directory,

referencing, 372
error handling, 385, 386, 387
flexibility of, 371
formatting output, 387
handler class, 378, 823
installing, 372–373
.jar file, using with, 371, 384
javadoc API, using with, 377, 378, 379
list, working with, 384, 385–386
marshalling, 371, 387
Oracle support, 842
Schema, generating class set from, 371, 373, 376
streaming input, 385
unmarshalling, 371, 385–386
validating XML using, 383–387

WSDP, included with, 372
xml: prefix recognition, 373

JAXM
architecture, client place in, 749–750
Asynchronous Inquire exchange mode, 752
Asynchronous Update with Acknowledgement

exchange mode, 752
attachment support, SOAP, 754
Axis package, 753
connection, 749, 752–753, 755, 758
creating client, 755
described, 318, 364, 744
ebXML profile, 754, 758
exception handling, 753, 759
Fire and Forget exchange mode, 752
JMS versus, 754
JWSDP, role in, 748
messaging, SOAP, 749–752, 755–759
package, SOAP, 753
package structure, 753
profile, 754, 758
provider, 750–751, 753, 758–759
Provider Admin tool, 759
SAAJ, use of, 751–752, 753
Servlet container, 751
standalone client, 751, 755–757
Synchronous Inquiry exchange mode, 752
Synchronous Update exchange mode, 752

JAXP
deployment descriptor support, 744
DOM parsing, 87–88, 317, 363
front-end for other parser, using as, 86, 87–88
interface, as pluggable, 320, 324, 365
JAVA_HOME environment variable, 369
JDK compatibility, 365
parser, swapping, 367–370
processor, swapping, 320, 367–370
SAX parsing, 363
Schema support, 317, 744
SOAP envelope support, 744
source document, specifying, 367
specification, 367–368
streaming output, 366
system property, 368, 369–370
template object, 367
transformation processor, as, 365–367
Transformer Factory, 365–367, 368, 370
WSIF compared, 739
Xalan, using with, 365–367, 370
Xerces, using with, 324
XML4J JAXP support, 87, 314
XSLT processor, as, 365–367

r538292 Index.qxd 8/18/03 8:45 AM Page 930

931Index ✦ S

JAXR
API implementation, 769
architecture, 768–769
Capability profile, 768
connection, 770
described, 318, 364, 745
ebXML profile, 768
JWSDP, place in, 748–749
organization, 771–772
provider, 768–769
query mechanism, 770–771
UDDI registry scheme compared, 768

JAX-RPC
architecture, 761
AXIS JAX-RPC compliance, 779
class generation, 761, 763–764
data type mapping, 760, 766–767
described, 318, 364, 745
DII client, 762–763
Dynamic Proxy client, 764–765
endpoint, 765–766
exception handling, 765
Generated Stubs client, 763–764, 767
JWSDP, role in, 748
learning curve, 760
listening, 760
messaging, 767
platform neutrality, 762
protocol neutrality, 762
RMI, relation to, 760
run-time layer, 760
serializer, generating, 767
server container, 766
server tie, generating, 767
SOAP, role in isolating application from, 760
specification, 760
Type Mapping Registry, 766
Web service, defining, 765–766
Web service, deploying, 767
wscompile utility, 767
wsdeploy utility, 767
WSDL, use of, 761–762, 766

JMS, 754
JSR, 362–363, 559, 842, 878–879
JSTL

body content tag, 402
conditional expression, 402, 403–405, 408
core tag library, 364, 392, 393, 417
database access tag library, 364, 392, 393
described, 389
documenting tag library, 401, 402
downloading, 398

DTD, 400
EL, using with, 393–397
entity reference, 403, 405
error handling when parsing XML, 428
formatting tag library, 364
HTML table, defining when parsing XML,

417, 423
I18N (Internationalization) tag library, 364,

392, 393
implementation classes, 418
import operations, 398, 418, 421
initialization parameter handling when parsing

XML, 419
installing, 397–398
.jar file, mapping tag to class in, 402
.jar files, native, 392
Jaxen library, 393
JSP 1.2 API, based on, 744
JSP page, referencing tag library in, 399–400
JSP version, declaring, 400, 402
JspWriter object, sending output to, 391, 403,

411, 419–420, 424–426
J2EE server instance support, 398–399
looping through document when parsing

XML, 417
naming tag library, 401
page context when parsing XML, 419, 428
SAX filter, applying when parsing XML, 405
Saxpath library, 393
scope when parsing XML, 405
screen, sending output to when parsing XML,

419, 420, 424
Servlet context, 391, 410
Servlet, generating, 389
Servlet, initializing, 410
Servlet object setup when parsing XML, 419
Servlet, threading, 411, 419
session tracking when parsing XML, 419
source document, specifying when parsing

XML, 405
specification, 418
string, converting document to for parsing, 421
tag, evaluating when parsing XML, 422, 424
tag loading/unloading when parsing XML,

421–422
tags, sharing class between, 402
TLD files, 392, 393, 400
URI parameter, specifying, 400
validation class, specifying, 401–402
variable, assigning to document when parsing

XML, 417, 421
Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 931

932 Index ✦ S–T

Sun resources (continued)
variable, assigning to expression result,

406–407
version described in this book, 392
XML declaration, 400
XML processing tag library, 364, 392,

400–408, 417
XPath expression result nodes, looping

through, 404
XSL stylesheet, passing parameter to, 405
XSLT operation, performing, 407, 409–417

SAAJ
AXIS support, 775
chained model attachment support, 633
described, 318
DIME support, 880
exchange mode, 752
JAXM use of, 751–752, 753
specification, 318, 364–365, 745
structure of message containing attachment,

751–752
WS-Attachment specification support, 880
WS-Security specification support, 880

Sun ONE Application Server, 317, 694, 743
Sun ONE Studio, 743
XACML resources, 878

svalidate function, 513, 531
swing class

javax.swing, 544, 861
JDBC/AXIS environment, using in, 803, 820–822, 824

syntax
attribute, 8, 17
document, 12
DTD, 53
element, 7, 10–11, 12, 17
entity reference, 22
Schema, 72–76
text, 8

SYSTEM DTD source, 51–52
system-property function, 188
System.Web.Services namespace, 703
SYS_XMLAGG function, 479, 481–482
SYS_XMLGEN function, 479, 488–489, 498

T
table-body element, 230
table-cell element, 224, 225, 226, 227
table-row element, 225, 230
tag element, 447
Tag Library Descriptor. See TLD
tag-class JSTL tag, 401
TaggedUrl class, 380

taglib directive, 399–400
TagLibraryValidator class, 401
targetNameSpace attribute, 499
TCP/IP (Transmission Control Protocol/Internet

Protocol)
JDBC, configuring for, 541
SQL Server, configuring for, 437, 836

TCPMON utility, 798–800
tei-class JSTL tag, 402
template

element, 181, 183, 202
JAXP template object, 367
SQL Server template, 439–440, 443, 592–593
UDDI binding template, 659
XSLT template

applying, 181, 195–196, 200, 206, 215
calling, 181, 196, 202
overriding, 180
select operation, applying rule in, 181
variable, defining in, 181

XSQL page template, 505
TestDynamicClient.java file, 786–787
TestStaticClient.java file, 787–788
text

bibliographic data, representing, 36, 38–39
character

line-end, 26–27
reference, 22–24, 34
requiring character data, 56
SAX character event handling, 136, 137, 146,

149, 154
set, XML 1.1, 25–26

content model, text-only, 54, 67
data, loading using text value, 34
data type, 97, 99, 110, 118–119
DOM

string operation, 118–119
text content of DOM node, returning, 253
Text data type, 97, 99, 118–119
text node, creating, 253

element, 182, 214
entity reference

character, reserved, 24
character, special, 22–24, 34, 37
DB2, conversion in, 514
declaring, 53
hex character, 39
JDBC handling of, 553–555, 557, 572, 815, 818
JSTL, working with in, 403, 405
syntax, 22
variable, using as, 23–24
XSL:FO, working with in, 223

r538292 Index.qxd 8/18/03 8:45 AM Page 932

933Index ✦ T–U

formatting, parsing, 40
JDBC

query result string, buffering, 553, 557, 815, 818
query result string, trimming, 550, 851

JSTL parsing document, converting to string, 421
J2EE support, 311
SAX parser text value, 84
spacing, maintaining using xml:space attribute, 40
SQL Server edge table column, 455
syntax, 8
Web service attachment, sending string as, 668
whitespace

described, 40
DOM parsing, handling during, 108
SAX parsing, handling during, 136, 137, 146,

149, 154
Schema element restriction, 68
XSLT, handling during, 180, 209, 210–211

XPath reference expression, 226
XSL:FO, working with in

block, 218, 224
font, 223
quote text value, 226

XSLT
output, adding to, 182
string, converting output to, 601
string operation using function, 187
transforming XML to text, 209–212
whitespace, handling, 180, 209, 210–211

TextArea element, 263
TEXT_NODE constant, 100, 101
Thread class, 714
time data type, 63
Title class, 380
Titulo class, 380
TLD (Tag Library Descriptor), 392–393
tlib-version JSTL tag, 400
tModels UDDI identification type, 659–661
toArray method, 550, 808, 851
Token data type, 63
Tomcat Server

AXIS installation, 781–782, 783
downloading, 740
Java Servlet comment generation by, 411, 420
Java Servlet, official J2EE Reference

Implementation for, 692
JSP, official J2EE Reference Implementation for, 692
SOAP support, 740
WSDL support, 740

Tools ➪ Options ➪ Results, 436
totalDigits Schema element restriction, 68
Trace Utility, 680–681

transaction
SOAP transaction concatenation, 629
Web service-based, 872–873, 880–883

transform

element, 180
JSTL tag, 407–408
method, 355

Transformation API for XML. See TRAX
transformation engine, 174
transformedXML object, 616
TransformerFactory class

JAXP, 365–367, 368, 370
Xalan, 348, 350, 355, 358

transform_menus.xsl file, 263, 267
transformNode method, 105, 108, 254, 260
transformNodeToObject method, 105, 108, 254,

260–262
TransformTag class, 415
translate function, 187
Transmission Control Protocol/Internet Protocol. See

TCP/IP
TransX Utility, 504
TRAX (Transformation API for XML), 341
trim method, 550, 851
true function, 186
trust relationship, 877, 879. See also security
Type Mapping Registry, 766. See also JAX-RPC (Java

API for XML-Based RPC)

U
UAN (Universal Application Network), 883
UDB (Universal Database) XML Extender. See also DB2

Administration Wizard, 526
cast function, 523–524
Command Line processor, 521
DAD, 523, 525, 528–536
database

binding, 521–522
connecting to, 521, 526
disconnecting from, 522
enabling, 521, 527

downloading, 509
DTD, 521, 525–526
dvalidate function, 513, 531
dxxDisableCollection procedure, 536
dxxEnableCollection procedure, 536
dxxGenXML procedure, 536
dxxInsertXML procedure, 536
dxxRetrieveXML procedure, 536
dxxShredXML procedure, 536
extractChar function, 528

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 933

934 Index ✦ U

UDB (Universal Database) XML Extender (continued)
extractCLOB function, 528
extractDate function, 528
extractDouble function, 528
extractInteger function, 528
extractReal function, 528
extractSmallint function, 528
extractTime function, 528
extractTimestamp function, 528
extractVarchar function, 528
installing, 509–510
Schema repository, 521
svalidate function, 513, 531
user-defined function, 524
XMLCLOB function, 524
XMLCLOBFromFile function, 513, 524
XMLFILE function, 524
XMLFileFromCLOB function, 513, 524
XMLFileFromVarchar function, 513, 524
XMLVARCHAR function, 524
XMLVarcharFromFile function, 513, 524

UDDI (Universal Description, Discovery, and
Integration). See also Web service

API, 661–663
browsing, 626
businessEntity identification type, 658
businessService identification type, 658–659
described, 628
JAXR compared, 768
J2EE UDDI functionality, 689
NAICS code, searching for, 656
OASIS responsibility for, 628
Oracle support, 842
platform independence, 655
publisherAssertion identification type, 657
registration

server, via public, 628, 656, 661
Web service client, via, 628
Web site, via, 628, 656

registry scheme, as, 768
SDK, 656, 663–664
service discovery, 629, 656–661
SOAP, accessing UDDI API using, 661–662
specification, 627, 628, 655–656
taxonomy, 657
template, binding, 659
tModels identification type, 659–661
WSDL file, publishing, 807
WSDP Registry Server implementation, 745

UDDI.org Web site, 661
Unicode, 10, 22, 38
Uniform Resource Identifier. See URI
Uniform Resource Locator. See URL

Uniform Resource Name. See URN
union element, 67
unique element, 67
Universal Application Network. See UAN
Universal Character Set Transformation Format.

See UTF
Universal Database XML Extender. See UDB XML

Extender
Universal Description, Discovery, and Integration.

See UDDI
unparsedEntityDecl method, 142, 150, 156
unparsed-entity-uri function, 187
unsignedByte data type, 64
unsignedInt data type, 64
unsignedLong data type, 64
unsignedShort data type, 64
UPDATE SQL Server command, 459
Updategram document, 432, 451, 469–471. See also

SQL Server
UPDATEXML function, 479, 495
URI (Uniform Resource Identifier)

described, 638
DOM node namespace URI, returning, 102
JSTL, specifying URI parameters in, 400–401
namespace, referencing in, 44–45
SAX parsing, URI mapping during, 136, 145, 149, 338
SQL Server OPENXML query node namespace

URI, 455
URL compared, 638
URN compared, 638

URL (Uniform Resource Locator)
described, 638
document URL

DOM parsing by, 110
DOM parsing, returning during, 109
SAX parsing by, 132

DTD, referencing in, 53
JDBC

connection object, 589
query result, assigning to, 566

namespace, referencing in, 14, 43, 44–45
procedure, mapping to, 839
SOAP

namespace, 641–642
parameter passing in URL, as alternative to, 636

space, using escape character for, 437, 563
SQL Server

URL query, 437–438, 446
virtual directory, calling using URL, 437

URI compared, 638
XPath expression, passing as, 443
XSL stylesheet, referencing, 593

URLConnection object, 589

r538292 Index.qxd 8/18/03 8:45 AM Page 934

935Index ✦ U–V

URN (Uniform Resource Name)
described, 638
namespace, referencing in, 44–45
URI compared, 638

useItemTagsForColl function, 500
user interface

AXIS application, 822–829, 860–867
JDBC application, 543–551, 822–829
Servlet, separating from data access process in,

803, 845
UTF (Universal Character Set Transformation Format),

10, 32
utilities

AdminClient, 793
AlphaWorks suite, 693, 741–742, 883
EMF.Codegen, 316, 694
EMF.Edit, 316, 693
Java2WSDL, 797
jDeveloper, 842
MsSOAPT3.exe, 680
OmniOpera, 652
SaxAppWizard, 241
SOAPVDIR.CMD, 680
TCPMON, 798–800
Trace, 680–681
TransX, 504
Virtual Directory Configuration Utility, 439
wscompile, 767
wsdeploy, 767
wsdlgen3.dll, 680
WSDL2Java, 794–797, 839
XML Viewer, 81
XMLSpy

DB2, working with using, 526
downloading, 49
DTD, working with using, 49, 53–54, 62
Enterprise edition, 49
Oracle, working with using, 489–491
Schema, generating using, 72
SQL Server, working with using, 460, 461, 462
Stylesheet Designer, 212, 220
trial version, 49
WSDL, working with using, 652

XSU, 505, 506–508
Utl_File.FClose function, 503
Utl_File.FOpen function, 503

V
validation

AXIS SOAP message, of, 776
DAD checker, using, 535
DB2, in, 529, 531, 535

document formatting, enforcing using, 47
DTD-based, 14–18, 48, 52, 60–62, 125
introduced, 6
JAXB, using, 383–387
JSTL validation class, specifying, 401–402
NewsML standard, 14, 15, 48
parsing, performed during, 15, 49, 86, 88–89, 109
Schema-based, 15, 18–21, 48, 62, 142
W3C DOM 3 Validation Recommendation Working

Draft, 94
Xerces, 320
XML4J parser, 320

Validator class, 386
value-of element, 182
variable. See also specific variable

AXIS environment, defining public variable in,
822–823, 861

EL variable reference, 393
element, 181
entity reference, using as, 23–24
JAXB, referencing environment variable base

directory in, 372
JDBC application, defining public variable in, 544,

822–823
JSP

page request variable, 395–396
predefined variables, 391

JSTL
document, assigning to when parsing XML,

417, 421
expression result, assigning to, 406–407

SQL Server expression overflow, storing as, 453
XSL:FO, declaring in, 221
XSLT, working with in

defining variable, 181
element name, replacing using variable,

198, 201
namespace, assigning to, 207

version of XML
compatibility, backward, 25
declaring, 25
overview of version 1.1, 24–27

verysimplexml.dtd file, 16
verysimplexml.xsd file, 19
Virtual Directory Configuration Utility, 439
Visio, exporting Access XML to, 283
Visual Studio .NET

PocketPC application, creating using, 730–733
Schema, creating using, 460
Solution Explorer window, 725
Web service, developing using, 705–707, 715–716,

726–727, 730–732

r538292 Index.qxd 8/18/03 8:45 AM Page 935

936 Index ✦ W

W
warning method, 143, 150, 157
WAS (WebSphere Application Server), 560, 692
Web query, Excel

exporting data from, 304, 305–306
importing XML into Excel using, 296–304

Web server, posting Access XML data to, 273
Web service. See also specific tool and protocol

action, adding, 838
agent

calling, 631
introduced, 629
serving, 631

AmortizationManager service, 790
application integration functionality provided by,

626, 655
architecture, 629–631, 687–690
attachment

reading, 667
sending, 667–668

authentication
described, 872
Kerberos, 874
.NET Web service, 711–713
passing between Web services, 872
token, using, 872, 874

AXIS Web service
creating, 785–786
deploying, 788–794, 804, 805, 848–849
testing, 739

BPEL4WS, 630, 633, 881–883
call model

brokered, 632
call and response, 631–632
chained, 633
SOAP request, 637, 638, 639–642
SOAP response, 642–643

client
AXIS client, 690, 786–788, 807, 820–821, 850
call and response model, 632
DII client, 762–763
JAXM, 749–750, 751, 755–759
JAX-RPC, 762–765
J2EE AXIS implementation, client-side, 690
J2EE client, multi-tier, 687, 690
J2EE client, thin, 687, 690
.NET client, browser-based, 721–730
.NET client, Windows-based, 730–733
service requestor, 687, 688–689
SOAP client message processing in AXIS, 777
SOAP client message processing in Oracle, 843

WSDL file, client application reading of, 720
XMLPBWSMTApp client, 859–860

COM application environment, 666, 668–669, 674
consuming, 629, 634
DADX-based, 843, 846–847, 868
database access via

DB2 environment, 843–850
Oracle environment, 842–843
SQL Server environment, 835–842

defined, 625
deploying

AXIS Web service, 788–794, 804, 805, 848–849
JAX-RPC Web service, 767
JWS-based deployment, 788–789
.NET Web service, 715–716
Simple SOAP Server, to, 848–849
WSDD-based deployment, 789–793, 804,

852–853
discovery by UDDI, 629, 656–661
encryption, 873, 874–875, 877–878
event chaining, 629
exposing using Microsoft SOAP Toolkit, 668–669,

671–672
implementation guideline, 627
industry buy in, 871
interface generation, 631
ISAPI, 669–670, 674
J2EE Web service

architecture, 687–690
choosing as Web service platform, 802
client, AXIS implementation, 690
client, multi-tier, 687, 690
client, thin, 687, 690
.NET Web service versus, 683–686
portal, 685–686, 687–688
software support, 690
tool overview, 691–695, 737–746

JWS, 788–789
MagicEightBall service, 762, 785
MEP, 629
message

authentication, 629
routing, fixed, 630
session handling, 630

method, adding, 838
naming, 837
.NET Web service

attribute, 703–705
authentication, 711–713
call, remote, 720
class library, 703–705, 708

r538292 Index.qxd 8/18/03 8:45 AM Page 936

937Index ✦ W

client, browser-based, 721–730
client, Windows-based, 730–733
CLR, 701, 705
compiling, 706, 715
creating, 703–704, 706–707
deploying, 715–716
IIS requirement, 699
introduced, 665–666
J2EE Web service versus, 683–686
language support, 700–701, 702, 705–707
MSIL, 701, 705
namespace, 703, 704, 708
outputting XML, 709
PocketPC application, creating, 730–733
production server, copying/pasting to, 715–716
query using XPath expression, 708–709
Schema definition, editing, 708
security, 711–714, 880
service file, 707
SOAP messaging, 703, 704–705, 707, 720
Visual Studio .NET, developing using, 705–707,

715–716, 726–727, 730–732
XML, using in, 707–709
XSLT operation, 708

Office XP Web Services Toolkit, 676–679
platform, choosing, 684, 802
port, binding to in WSDL, 650
profile, 627
proxy, creating on the fly, 651
registry, 768
security

AXIS environment, in, 789
BPML, 881, 882
BPWS4J, 883
encryption, 873, 874–875, 877–878
key spoofing, 874
.NET Web service, 711–714, 880
overview, 872–873
PKI, 874
policy, 876
SAML, 789, 878
signature, digital, 630, 874–875
SQLXML directory, separating Web service

from, 837
transaction, 872–873, 880–883
transport-layer, 873
trust, 877, 879
WSCI, 880, 881, 882
WS-Policy specification, 876
WS-PolicyAssertions specification, 876
WS-PolicyAttachment specification, 877
WS-SecureConversation specification, 877–878

WS-Security specification, 875–876, 880
WS-SecurityPolicy specification, 877
WS-Trust specification, 877
XACML, 878
XML-Signature Syntax and Processing, 879

service requestor, 687, 688–689
signature, digital, 630, 874–875
stream

reading as attachment, 667
sending as attachment, 668

transaction, 872–873, 880–883
workflow, 630
wrapper class for, creating, 677–678
WSDL, describing Web service type in, 646
WSE, 880, 882
WS-I involvement in standard development,

626–627
WSIF, 691, 739
WSIL, 691, 739
WSML, 674
XML standard, based on, 626
XMLPBMTWSServletDB2Format service, 858–859
XMLPBWS service, 837–839
XMLPBWSMTServletDB2Format service,

858–859, 868
XMLPBWSMTServletGetAuthorList service, 847,

850–856, 865
XMLPBWSMTServletGetSingleAuthorList

service, 847, 856–857, 866
XMLPBWSServletBuildAttributeXML service,

804, 818–820, 831
XMLPBWSServletBuildElementXML service, 804,

815–817, 829, 830
XMLPBWSServletGetAuthorList service, 804,

807–813, 826–827
XMLPBWSServletGetSingleAuthorList

service, 804, 813–815, 828
Web Service Deployment Descriptor. See WSDD
Web Service Provider. See WSP
Web Services Business Process Execution Language

Technical Committee. See WSBPEL TC
Web Services Choreography Interface. See WSCI
Web Services Description Language. See WSDL
Web Services Developer Pack. See JWSDP; WSDP
Web Services Enhancements. See WSE
Web Services, exporting Access XML to, 283
Web Services Inspection Language. See WSIL
Web Services Interoperability Organization. See WS-I
Web Services Invocation Framework. See WSIF
Web Services Meta Language. See WSML
Web Services Object Runtime Framework. See WORF
Web Services Tool Kit. See WSTK

r538292 Index.qxd 8/18/03 8:45 AM Page 937

938 Index ✦ W

Web.Config file, 712, 713–714
WebLogic resources

Application Server, 397, 560, 694
WebLogic Workshop, 883

WebMethod attribute, 705
WebMethodAttribute class, 703
WebService class, 703–704
WebServiceAttribute

attribute, 704
class, 703

WebServiceBindingAttribute class, 703
WebSphere

Portal Server, 692
Studio Workbench

cost, 313
downloading, 313
plug-in support, 313, 741
WSAD compared, 313, 741

WAS, 560, 692
web.xml file, 398–399, 400
when

element, 181, 201
tag, 408

whitespace
described, 40
DOM parsing, handling during, 108
SAX parsing, handling during, 136, 137, 146, 149, 154
Schema element restriction, 68
XSLT, handling during, 180, 209, 210–211

WindowsIdentity class, 714
WITH SQL Server command, 457–458
with-param element, 181
WORF (Web Services Object Runtime Framework),

843, 846
WorkWithMenus.html file, 263
World Wide Web Consortium. See W3C
WSAD (WebSphere Studio Application Developer)

AXIS support, 741
cost, 313
CSS support, 741
DHTML support, 741
downloading, 313
introduced, 312–313
JavaScript support, 741
JSP support, 741
Rational ClearCase LT support, 313, 741
SOAP support, 741
Studio Workbench compared, 741
trial version, 741
tutorial, online, 313, 741
WebSphere Studio Workbench compared, 313
WORF, using with, 843, 846
Xalan support, 313

Xerces support, 313
XML Toolkit, 314

WS-Attachments specification, 880
WSBPEL TC (Web Services Business Process Execution

Language Technical Committee), 881
WSCI (Web Services Choreography Interface), 880, 881,

882
wscompile utility, 767
WSDD (Web Service Deployment Descriptor), 789–793,

804, 809, 847, 852–853
wsdeploy utility, 767
WSDL (Web Services Description Language). See also

Web service
ASP.NET, referencing WSDL file in, 725–727
AXIS environment, in

deploying WSDL, 804, 806–807, 847, 852–853
generating WSDL from Java, 689, 797
Java, generating from WSDL, 794–797, 839
support, 775

binding, 646, 650
call mechanism, role in, 631, 632–633
client application, reading by, 720
data type mapping, 766, 780
described, 628
documentation, 646
editing manually, 652–653
generating, 646
installing WSDL file, 806–807, 850
Java

generating from WSDL, 794–797, 839
generating WSDL from, 689, 797

JAX-RPC use of, 761–762, 766
J2EE server, registration with, 689
message

description, 646
grouping, 646

Microsoft SOAP Toolkit WSDL Generator,
670–671, 673

namespace, declaring, 14, 648–649
Office XP Web Services Toolkit, referencing WSDL

file in, 676–677
operation, 649, 839
parsing, 628
port

protocol, binding to, 646, 650
service, binding to, 650
type statement, 646, 649

root definition element, 646
SOAP

envelope based on, 639
envelope, generating, 651
request/response call description, 649, 813

r538292 Index.qxd 8/18/03 8:45 AM Page 938

939Index ✦ W

specification, 627, 628
Tomcat Server support, 740
type of Web service, describing, 646
UDDI, publishing in, 807
updating, 651–652
verbosity of, 646
XML, based on, 628, 646

wsdl.exe file, 628
wsdl4j.jar file, 781
wsdlgen3.dll utility, 680
wsdlgen3.exe file, 680
WSDL2Java utility, 794–797, 839
WSDP (Web Services Developer Pack). See also JWSDP

(Java Web Services Developer Pack);
specific WSDP API

APIs, 317–318, 694–695, 743–745
downloading, 317, 363
introduced, 317
JDK compatibility, 363
Registry Server, 364, 745

WSE (Web Services Enhancements), 880, 882
WS-I (Web Services Interoperability Organization),

626–627
WSIF (Web Services Invocation Framework), 691, 739
WSIL (Web Services Inspection Language), 691, 739
WSIL4J J2EE reference implementation, 739
WSML (Web Services Meta Language), 674
WSP (Web Service Provider), 626
WS-Policy specification, 876
WS-PolicyAttachment specification, 877
WS-Routing specification, 880
WS-SecureConversation specification, 877–878
WS-Security specification, 875–876, 880
WS-SecurityPolicy specification, 877
WSTK (Web Services Tool Kit), 628
WS-Trust specification, 877
W3C (World Wide Web Consortium)

CHARMOD specification, 25–26
DOM recommendation, 80, 82, 89, 92–94
Namespaces for XML 1.1 document, 27
recommendation process, 7
SAX, relation to, 83
Schema

Access XML export, including Schema
information in, 273–275, 279–280

Access XML import, including Schema
information in, 284

annotating, 66, 441–443, 460–466
applying, 71
closing, 21
commenting, 12, 66, 72
data type, 62–65, 67–68, 72–74, 840

DB2, 521, 526
declaring, 18
DOMSchemaCollection interface, 97, 99–100
DTD, including with Schema reference in same

document, 15–16
DTD versus, 18
editing, 62
generating using specialized software, 62, 72
importing, 66, 72
including, 66
JAXB class set, generating from, 371, 373, 376
JAXP support, 317, 744
location, 71
MSXML support, 241
namespace, 14, 18, 68, 72
.NET Web service, editing definition in, 708
Oracle, generating W3C Schema from Oracle

Schema, 489–491
Oracle, name considerations in, 493
Oracle, registering, 491–493
Oracle view, mapping to W3C Schema, 495–496
Oracle XMLFormat Schema, 498–499
parsing, 21
recommendation, 68
referencing, 71
root element, 67
SAX parsing, accessing Schema information

during, 130, 168–169
SAX validation support, 142
SOAP, referencing in, 641–642
SQL Server data, creating annotated Schema

for, 460–466
SQL Server data mapping, role in, 441–443
SQL Server subdirectory, 441
SQL Server table relationship, specifying in,

466–467
SQLXML role in Schema annotation, 441
structure, 72–76
syntax, 72–76
UDB XML Extender Schema repository, 521
validation, Schema-based, 15, 18–21, 48, 62, 142
Visual Studio .NET, creating using, 460
XMLFormat Schema, 498–499
XML4J support, 314
XML.org registry, 48
XPath expression Schema reference, passing in

URL, 443
XSD format, 20, 273–275

SOAP specification, 364–365, 627, 635, 738–739, 775
Unicode report, 10
Working Groups, 7

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 939

940 Index ✦ W–X

W3C (World Wide Web Consortium) (continued)
WSCI specification, 881
WSDL specification, 627, 628
X-KISS specification, 875
XKMS specification, 875
X-KRSS specification, 875
XML core Working Group, 27
XML Encryption recommendation, 875
XML 1.1 working draft, 27, 45
XML 1.0 recommendation, 49, 62
XML Signature recommendation, 874
XPath recommendation, 174
XSL:FO recommendation, 174, 217–218
XSL/XSLT recommendations, 173–174, 189, 217–218

X
XACML (XML Access Control Markup Language), 878
Xalan transformation engine

C++ version, 341
class, creating, 350
component overview, 342
documentation, 342
DOM

output, passing to, 351–356
support, 319, 341

downloading, 342
error handling, 348–349
event handling, 358
HTML, transforming XML to, 351, 352
installing, 342
Java version, 341
Javax stream, 350
JAXP, using with, 365–367, 370
LotusXSL engine, relation to, 174
output document location, specifying, 348
sample source code, 342
SAX

output, passing to, 351, 356–358
use of, 319, 341

screen, sending output to, 349–351
source document, specifying, 348, 350
streaming

input, 350
output, 348, 350, 355

stylesheet, using, 345–346, 348, 349, 350–351
Transformer Factory, 348, 350, 355, 358
TRAX implementation, 341
WSAD support, 313
XML-Signature Syntax and Processing

compatibility, 740
XPath support, 341
XSLT implementation classes, 341, 342

xalan.jar file, 342
XalanSimpleTransform.java file, 366
XalanSimpleTransformToDOM.java file, 352–355
XalanSimpleTransformToSAX.java file, 356–358
XalanSimpleTransformToScreen class, 350
XalanSImpleTransformToScreen.java file,

349–350
x.choose JSTL tag, 402
Xcollection tag, 529, 532
XDK (XML Developer’s Kit), 477–478, 499, 502, 504–508.

See also Oracle
Xerces API

AXIS, using with, 782
class

creating, 329
importing, 329
org.apache.xerces classes, 336, 368
org.xml.sax classes, 329

component overview, 324–325
described, 323
DOM

implementation, 323
parsing, 87, 89, 92, 325–333

downloading, 323, 324
error handling, 330
event handling, 329, 336
installing, 324–325
JAXP, using with, 324
J2EE, included with, 324
licensing, 323
node

existence of, checking, 330, 333
iterating through nodes, 330
map, working with, 332
output information, sending to screen, 332
reading, 330
value, assigning, 331

org.apache.xerces classes, 336, 368
org.xml.sax classes, 329
SAX parsing, 87, 325, 334–339
source code, 323, 324
source document, specifying, 330
URI prefix mapping, 338
validation, 320
WSAD support, 313
XML4J, relation to, 314, 320, 324

xercesImpl.jar file, 324, 342
xercesSamples.jar file, 324
x.forEach JSTL tag, 404, 417, 423, 424
XHTML (eXtensible Hypertext Markup Language), 93
XI (XML Integrator), 314
x.If JSTL tag, 403–404

r538292 Index.qxd 8/18/03 8:45 AM Page 940

941Index ✦ X

Xindice database implementation, 320, 739
X-KISS (XML Key Information Service Specification), 875
XKMS (XML Key Management Specification), 875
X-KRSS (XML Key Registration Service Specification), 875
Xmethods Web site, 633, 637, 647–648
XML Access Control Markup Language. See XACML
XML Core Services. See MSXML (Microsoft XML)

parser
XML data type, 516
XML DB repository. See also Oracle

extension, 478
function overview, 478–485
functionality, structured/unstructured, 473–474
rows, aggregating using, 485–487
XMLType object, managing using, 497

XML Developer’s Kit. See XDK
XML element, 448
XML Encryption Syntax and Processing, 692, 740, 879
XML Extender for DB2. See UDB (Universal Database)

XML Extender
XML for Java parser. See XML4J parser
XML for SQL Server. See SQLXML
XML Integrator. See XI
XML Key Information Service Specification. See X-KISS
XML Key Management Specification. See XKMS
XML Key Registration Service Specification. See X-

KRSS
XML Notepad editor, 81–82
XML Path Language. See XPath
XML Project, 323, 341
XML Security Suite, 314–315, 742, 879–880
XML Spreadsheet Add-In for Access 2002, 282
XML- SQL Utility. See XSU
XML TreeDiff software, 315
XML Viewer utility, 81
XMLAGG function

DB2, 513, 514, 518–519, 520–521, 601
Oracle, 480, 485–486

xml-apis.jar file, 342
XMLATTRIBUTES function

DB2, 513, 514, 517–518
Oracle, 480, 483–484, 486

XMLCLOB function, 524
XMLCLOBFromFile function, 513, 524
XMLCOLATTVAL function, 480, 484–485
XML.com Web site, 49, 62
XMLCOMMATTVAL function, 487
XMLCONCAT function, 480
XML:DB API, 739
XML-DEV mailing list, 89
XMLDoc

object, 616
variable, 829

XmlDocument class, 708, 724
XMLELEMENT function

DB2, 513, 514, 516–517, 601
Oracle, 480, 482–483, 485–486, 597–600

XMLFILE function, 524
XMLFileFromCLOB function, 513, 524
XMLFileFromVarchar function, 513, 524
XMLFilter SAX interface, 127, 156
XMLFilterImpl class, 153–157
XMLFilters SAX interface, 134–135
XMLFOREST function, 478, 480–481, 485–486, 597–600
XMLFormat object, 497–499
XML4J (XML for Java) parser

DOM parsing, 87
downloading, 87
JAXP support, 87, 314
SAX parsing, 87–88
Schema support, 314
validation, 320
Xerces, relation to, 314, 320, 324

xml:lang attribute, 37–39, 61, 72, 207
XMLnews.org Web site, 48
xmlns: attribute, 13, 43
XMLONLY table, 487–488, 498, 527
XML.org Web site, 48
xmlParserAPIs.jar file, 324
XMLPBAppServletBuildAttributeXML Servlet, 561,

583–585
XMLPBAppServletBuildElementXML Servlet, 561,

580–583
XMLPBAppServletGetAuthorList Servlet, 561,

576–578
XMLPBAppServletGetSingleAuthorList Servlet,

561, 578–580
XMLPBMTWSServletDB2Format service, 858–859
XMLPBServletApp Servlet, 561, 575–576, 586–589
XMLPBWebServletAppGetSingleAuthorList

Servlet, 566–569
XMLPBWebServletBuildAttributeXML Servlet, 561,

569, 572–575
XMLPBWebServletBuildElementXML Servlet, 561,

569–572
XMLPBWebServletGetAuthorList Servlet, 561–562,

564–566
XMLPBWebServletGetSingleAuthorList Servlet,

561, 562–563
XMLPBWS service, 837–839
XMLPBWSApp.java file, 803
XMLPBWSMTApp application, 845, 849, 859–860
XMLPBWSMTServletDB2Format service, 858–859, 868
XMLPBWSMTServletGetAuthorList service, 847,

850–856, 865

r538292 Index.qxd 8/18/03 8:45 AM Page 941

942 Index ✦ X

XMLPBWSMTServletGetSingleAuthorList service,
847, 856–857, 866

XMLPBWSServletBuildAttributeXML service, 804,
818–820, 831

XMLPBWSServletBuildElementXML service, 804,
815–817, 829, 830

XMLPBWSServletGetAuthorList service, 804,
807–813, 826–827

XMLPBWSServletGetSingleAuthorList service,
804, 813–815, 828

XMLPBXMLApp.java file, 542–543
XMLProgrammingBible database, 432–435
xmlprogrammingbible.com Web site

authentication resources, 871
data island examples, 614
DB2 examples, 510–512
document examples, 49
DOM 3 Recommendation, 94
DTD examples, 49
JDBC examples, 543
J2EE resources, 326, 355
MSXML resources, 126
Oracle examples, 474–477
security resources, 871
Servlet examples, 560–561
SQL Server examples, 432–435
XSL/XSLT resources, 173, 191, 217, 220, 594

XMLReader

class, 83, 124, 708
SAX interface, 126, 127, 131–133, 135, 144

XMLReaderAdapter class, 144–146
XMLReaderFactory class, 144
XMLSEQUENCE function, 479
XMLSequenceType data type, 479
XML-Signature Syntax and Processing, 692, 740, 879
XMLSoftware Web site, 86, 219, 312
xml:space attribute, 39–45
XMLSpy utility

DB2, working with using, 526
downloading, 49
DTD, working with using, 49, 53–54, 62
Enterprise edition, 49
Oracle, working with using, 489–491
Schema, generating using, 72
SQL Server, working with using, 460, 461, 462
Stylesheet Designer, 212, 220
trial version, 49
WSDL, working with using, 652

xmltext element, 448
XMLtoCatalogHTML.xsl file, 212–213, 221
XMLtoCatalogNamespaces.xsl file, 204–205,

208–209

XMLtoCatalogText.xsl file, 209–210, 211–212
XMLtoCatalog.xsl file, 198–199
XMLtoHTML.xslt file, 351
xmlToParse variable, 417
XMLtoPDF.xsl file, 220
XMLtoQuotes.xsl file, 194, 409
XMLTRANSFORM function, 479, 596, 600–601
XML2CLOB function, 514, 516
XMLType data type, 474, 487–489, 494–497
XMLTypeVal variable, 487
XMLTYPEVIEW1 view, 495–496. See also Oracle
XMLVARCHAR function, 524
XMLVarcharFromFile function, 513, 524
xmslinst.exe file, 239
X/Open SQL CLI, 540
x.otherwise JSTL tag, 404–405
x.out JSTL tag, 402
x.param JSTL tag, 405
x.parse JSTL tag, 405–406, 417
XPath (XML Path Language)

data type support, 186
DB2, working with in

element location, defining using XPath
expression, 525

value returned by XPath expression,
returning, 528

EL based on, 393
JSTL, looping through XPath expression result

nodes in, 404
location operator, 183–184
namespace treatment in node axis, 184, 185
.NET Web service query using XPath expression,

708–709
node

axis, 184–186
checking for node returned by XPath

expression, 479
key value, adding to in XSLT, 180
returning node produced by XPath expression,

97, 105
Oracle, working with in

node returned by XPath expression, checking
for, 479

query using XPath expression, 494–495
scalar value, returning using XPath expression,

479
XML document fragment, returning using XPath

expression, 479
Schema, referencing, 443
SQL Server, working with in

query, XPath, 440, 441–444
template-based XPath result, 443–444

r538292 Index.qxd 8/18/03 8:45 AM Page 942

943Index ✦ X

URL passing XPath expression as, 443
W3C recommendation, 174
Xalan support, 341
Xindice, use by, 739
XSLT use of, 175, 183–189

XPathNamespace node type, 331
xpath-query element, 440
xs:annotation tag, 460
xs:appinfo tag, 460
XSD Schema format, 20, 273–275
xsd:base64Binary data type, 780
xsd:Boolean data type, 780
xsd:byte data type, 780
xsd:dateTime data type, 780
xsd:decimal data type, 780
xsd:double data type, 780
xsd:float data type, 780
xsd:hexBinary data type, 780
xsd:int data type, 780
xsd:integer data type, 780
xsd:long data type, 780
xsd:Qname data type, 780
xsd:short data type, 780
xsd:string data type, 780, 827
x:set JSTL tag, 406–407
xs:field element, 46
xsl element, 439
XSL (Extensible Stylesheet Language). See also XSL:FO

(XSL: Formatting Objects); XSLT (XSL
Transformation)

ID, assigning to stylesheets incrementally, 597, 602
introduced, 173
JSTL, passing parameter to stylesheet from, 405
MSXML support, 247
URL, referencing stylesheet in, 593
W3C recommendation, 173–174, 217–218
XSL:FO compared, 219
XSL:FO, using stylesheet in, 219

XSL Transformation. See XSLT
XSL:FO (XSL: Formatting Objects)

browser support, 218
element, root, 222
entity reference, working with, 223
FOP engine, 219, 319
image, referencing external, 231
iteration, for-each, 223, 226
namespace, declaring, 221
PDF, converting XML to using

content, static, 222
font, 223
footer, 222
header, 222

page setup, 221–222
table, 223–231
title, 223

quote processing, 223, 226
region

body, 222
footer, 222
header, 222
introduced, 218

stylesheet, 219
table processing, 223–231
text, working with

block, 218, 224
font, 223
quote text value, 226

variable, declaring, 221
W3C recommendation, 174, 217–218
XSL compared, 219

xslSheet stylesheet, 616
XSLT (XSL Transformation). See also XSL (Extensible

Stylesheet Language); XSL:FO (XSL:
Formatting Objects)

Access
export data, formatting using, 273, 274–277,

280, 281–283
import data, formatting using, 287–288

attribute
element declaration, passing name of attribute

node to, 185
mandatory attributes, 176
output, adding to, 182
transforming to element, 178

Boolean operations, 186
choice operations, 181
CLOB, transforming XML to, 601–602, 605–606
comment, adding to output, 182
data island, applying to data destined for, 613–618
DBMS_XSLPROCESSOR processor, 499
DB2 environment, in, 601–606
decimal format, specifying, 182
described, 175
DSSSL, based on, 173, 218
EL reference, performing on source document

defined by, 394
element

attribute node name, passing to element
declaration, 185

attribute, transforming to element, 178
listing of XSLT elements, 179–183
name, replacing using variable, 198, 201
output, adding to, 182

Continued

r538292 Index.qxd 8/18/03 8:45 AM Page 943

944 Index ✦ X

XSLT (XSL Transformation) (continued)
encoding

output encoding, declaring, 179, 195
processor support, 195
stylesheet encoding, declaring, 176

end of file, indicating, 210
environment information, returning, 188
event handling, 108
Excel, formatting data for using, 281–283, 293–295
extension, 186, 189, 204–206
fallback, 182, 206
format of output, specifying, 180
function, using, 186–188
href, declaring, 176
HTML, transforming XML to

DB2 environment, in, 603–604
JDBC environment, in, 606–611
Oracle environment, in, 599–600
overview, 212–215
SQL Server environment, in, 593–596
Xalan environment, in, 351

iteration, for-each, 181, 200, 207
JAXP as transformation processor, 365–367
JDBC environment, in, 606–611
JSP, working with XSLT output in, 409–417
JSTL

parameter, passing to stylesheet from, 405
performing XSLT operation in, 407, 409–417

key value, adding to node in XPath expression
result, 180

language, checking, 188, 207
medium, declaring, 176
MIME type, declaring, 176
namespace

alias, 180
declaring, 179, 195, 205–206
output, assigning to, 207–208
variable, assigning to, 207

.NET Web service, in, 708
node

copying, 181, 196
event handling, 108
key value, adding to node in XPath expression

result, 180
MSXML DOM node, transforming, 254, 260–263
number, adding sequential to, 182
result, passing to specified object, 105
result, returning, 105
set operation, 187–188
string value of, returning, 182
tree, 182, 188

number operations, 186

Oracle environment, in, 479, 499, 596–601
parsing, 86
path considerations, 176
pattern matching, 181, 183, 188, 195
processing instruction

alternative, specifying, 176, 206
output, adding to, 182
support, checking, 188
title, assigning to, 176

screen, sending output to, 349–351, 409
sorting output, 181, 198, 200, 210
SQL Server data, applying to, 438, 439, 441, 592–596
stylesheet

creating, 212
described, 175
encoding, declaring, 176
importing, 180, 206
JSTL parameter, passing to, 405
referencing, 176–177, 693
root, 180
URL, referencing in, 593
Xalan XSLT operation using, 345–346, 348, 349,

350–351
XML, embedding in, 177

template
applying, 181, 195–196, 200, 206, 215
calling, 181, 196, 202
overriding, 180
select operation, applying rule in, 181
variable, defining in, 181

text
adding to output, 182
string, converting output to, 601
string operation using function, 187
transforming XML to, 209–212
whitespace, handling, 180, 209, 210–211

URL, referencing stylesheet in, 593
variable

defining, 181
element name, replacing using, 198, 201
namespace, assigning to, 207

variable, defining, 181
whitespace, handling, 180, 209, 210–211
wildcard, working with, 200
W3C recommendation, 173–174, 189, 217–218
Xalan XSLT operation

class, creating, 350
DOM, passing output to, 351–356
DOM support, 319, 341
error handling, 348–349
event handling, 358
HTML, transforming XML to, 351, 352

r538292 Index.qxd 8/18/03 8:45 AM Page 944

945Index ✦ X

Javax stream, 350
output document location, specifying, 348
sample source code, 342
SAX, passing output to, 351, 356–358
SAX, use of, 319, 341
screen, sending output to, 349–351
source document, specifying, 348, 350
streaming input, 350
streaming output, 348, 350, 355
stylesheet, using, 345–346, 348, 349, 350–351

XML, embedding in stylesheet, 177
XML, transforming to other form of XML

copy-of element, using, 194–198
extension, using, 204–206

iteration, using, 198, 200
Oracle environment, in, 600–601
XMLTRANSFORM function, using, 600–601

XPath, use of, 175, 183–189
XSLTransformToClob function, 605
XSLTransformToFile function, 601, 605–606
XSQL Servlet, 504, 505–506, 596. See also Oracle
xs:selector element, 46
XSTP (eXtended Satellite Transport Protocol), 367
XSU (XML- SQL Utility), 505, 506–508
x.tld file, 400
x.transform JSTL tag, 407–408
x.when tag, 408

r538292 Index.qxd 8/18/03 8:45 AM Page 945

	Contents
	Part I: Introducing XML
	Chapter 1: XML Concepts
	What Is XML?
	Extensibility
	Structure
	Validity

	What Is XML Not?
	XML Standards and the World Wide Web Consortium
	XML Elements and Attributes
	Elements
	Attributes
	Text
	Empty elements

	XML Document Structure
	Data Source Encoding
	Element and Attribute Structure
	XML Document Syntax
	XML Namespaces
	When to use namespaces

	XML Data Validation
	Validating XML documents with DTDs
	Validating XML documents with Schemas

	Special Characters and Entity References
	Using entity references as variables
	Reserved character references

	XML 1.1
	XML 1.1 new features

	Summary

	Chapter 2: XML Documents
	An Example XML Document
	XML Document Structure and Syntax
	Empty elements
	XML housekeeping
	Entity references and special characters

	International XML with xml:lang
	Keeping Your Space with xml:space
	XML Namespaces
	When to use namespaces

	Element Name Tips
	Summary

	Chapter 3: XML Data Format and Validation
	XML Parsers for Data Validation
	Document Type Definitions
	Applying DTDs
	DTD structure

	W3C XML Schemas
	W3C Schema data types
	W3C Schema elements
	W3C Schema element and data type restrictions
	Namespaces and W3C Schemas
	An example W3C Schema document
	Applying Schemas
	Schema structure and syntax

	Summary

	Chapter 4: XML Parsing Concepts
	Document Object Model (DOM)
	What is DOM?
	About DOM 1, DOM 2, and DOM 3

	Simple API for XML (SAX)
	What is SAX?
	SAX 1 and SAX 2

	About XML Parsers
	Apache's Xerces
	IBM's XML4J
	Sun's JAXP
	Microsoft's XML parser (MSXML)

	DOM or SAX: Which Parser to Use?
	Summary

	Chapter 5: Parsing XML with DOM
	Understanding the DOM
	The W3C DOM 1 Recommendation
	The W3C DOM 2 Recommendation
	The W3C DOM 3 Recommendation
	Microsoft MSXML DOM enhancements

	DOM Interfaces and Nodes
	Understanding DOM nodes
	W3C DOM nodeTypes, constants, nodeNames, and nodeValues
	The MSXML DOM nodeTypeString property
	DOM node properties
	W3C DOM node methods
	Other DOM node properties and methods

	Summary

	Chapter 6: Parsing XML with SAX
	Understanding SAX
	Where SAX comes from
	SAX 1 and SAX 2
	Microsoft MSXML SAX extensions

	Interfaces for SAX and MSXML
	SAX core interfaces
	SAX extension interfaces
	MSXML SAX extension interfaces

	SAX Methods and Properties
	SAX interfaces
	SAX helper classes
	SAX extension interfaces
	SAX extension helper classes
	MSXML Extension Interfaces

	Summary

	Chapter 7: XSLT Concepts
	Introducing the XSL Transformation Recommendation
	How an XSL Transformation Works
	XSL stylesheets
	XSL for attributes and elements

	XSLT Elements
	XSL and XPath
	XSLT Extensions with EXSLT.org
	Summary

	Chapter 8: XSL Transformations
	To Begin..
	XML to XML
	XML to text
	XML to HTML

	Summary

	Chapter 9: XSL Formatting Objects
	Understanding XSL Formatting Objects
	Understanding FOP Servers
	Converting XML to PDF
	Summary

	Part II: Microsoft Office and XML
	Chapter 10: Microsoft XML Core Services
	Getting Started
	System requirements and installation
	Core files and versions

	Parsing and Features Overview
	Parsing
	Fundamental classes
	Other objects
	New objects

	Summary

	Chapter 11: Working with the MSXML DOM
	Introduction
	DOM members

	Building XML-Based Applications
	Summary

	Chapter 12: Generating XML from MS Access Data
	Introduction
	Exporting and Importing Data
	Exporting
	Importing

	Summary

	Chapter 13: Creating an Excel Spreadsheet from an XML Data Source
	Introduction
	Importing XML
	Exporting XML
	Summary

	Part III: XML Web Applications Using J2EE
	Chapter 14: XML Tools for J2EE: IBM, Apache,Sun, and Others
	IBM Tools
	WebSphere Studio Application Developer and Workbench
	IBM AlphaWorks

	Eclipse Tools
	Sun Tools
	Sun ONE
	The Java Web Services Developer Pack

	Apache Tools
	XML Parsing Code: XML4J, Xerces, and JAXP: What Is What?
	Summary

	Chapter 15: Xerces
	Downloading and Installing Xerces
	Parsing XML Documents in J2EE
	Parsing XML documents with DOM
	Parsing XML documents with SAX

	Summary

	Chapter 16: Xalan
	Downloading and Installing Xalan
	Transforming XML Documents in J2EE
	Using Xalan to transform XML documents
	Sending transformation output to the screen and using an XML stylesheet reference
	Passing transformation output to DOM and SAX

	Summary

	Chapter 17: XML APIs from Sun
	About the Java Community Process
	Introduction to the Sun Java Web Services Developer Pack
	JAXP (Java API for XML Processing)
	JAXB (Java Architecture for XML Binding)
	JAXM (Java API for XML Messaging)
	JSTL (Java Server Pages Standard Tag Library)
	JAX-RPC (Java API for XML-Based RPC)
	JAXR (Java API for XML Registries)
	Java WSDP Registry Server
	SAAJ (SOAP with Attachments API for Java)

	Developing with JAXP (Java API for XML Processing)
	Swapping processors and parsers with JAXP
	Working with JAXP and Xalan JAXP examples
	Developing with JAXB (Java Architecture for XML Binding)
	Developing with JSTL (JavaServer Pages Standard Tag Library)
	Downloading and installing the JSTL
	Working with the JSTL XML Processing Library

	Summary

	Part IV: Relational Data and XML
	Chapter 18: Accessing and Formatting XML from SQL Server Data
	The XML Programming Bible Example Tables
	Installing and Configuring SQLXML
	Viewing XML Results in Query Analyzer
	Accessing SQL Server Using HTTP
	Retrieving XML Data Using FOR XML
	Using RAW mode
	Using AUTO mode
	Using Explicit mode

	Updating SQL Server Data with XML
	Updating relational data using OPENXML
	Creating an annotated W3C schema for SQL Server data
	Using schemas to specify SQL Server table relationships
	Using XML Bulk Load
	Updategrams

	Summary

	Chapter 19: Accessing and Formatting XML from Oracle Data
	The XML Programming Bible Example Tables
	Installing and Configuring the Oracle Database and the Oracle XDK
	About Oracle XML DB
	About the Oracle XDK

	Developing Oracle XML Solutions with XML DB
	Working with XML DB
	Working with multiple data rows using XML DB
	Working with the XMLTYPE data type
	Creating relational data from XML documents
	Formatting XML documents with XMLFormat
	XML resources for PL/SQL developers
	A DBMS_XMLGEN example

	Working with the Oracle XDK
	Oracle and Java integration: JDBC and SQLJ

	Summary

	Chapter 20: Accessing and Formatting XML from DB2
	Installing DB2 and the DB2 XML Extender
	The XML Programming Bible Example Tables
	DB2 XML Functions
	Adding an XML document declaration
	Grouping and ordering XML with XMLAGG()

	Developing XML Solutions with the DB2 XML Extender
	Binding and enabling databases for XML Extender
	Working with Document Access Definitions (DAD)
	Working with XML columns
	XML column mapping example
	XML collection SQL mapping DAD example
	XML Collection RDB Node example
	Checking your RDB Node DAD with the DAD Checker
	Adding DADS and DTDs to the database

	Summary

	Chapter 21: Building XML-Based Web Applications with JDBC
	About Java Database Connectivity (JDBC)
	Introduction to the Sample Java Application – XMLPBXMLApp.java
	How the application works
	About the example SQL Server database

	Creating the Java Application User Interface
	Defining public variables and the application window
	Setting objects in the Window and implementing ActionListeners
	Defining the action for the source list
	Defining the action for the quote list
	Retrieving a list of authors from the Authors table via JDBC
	Retrieving a list of quotes from a selected author

	Generating Custom XML Output
	XML Servlets
	Example: A Three-Tier System Combining Java Applications, Servlets, and SQL Server
	Prerequisites for Servlet Development
	Introducing the XML example servlets and client application

	Running the Web Example Application
	Under the Hood of the Web Application Servlets
	The XMLPBWebServletGetAuthorList Servlet
	The XMLPBWebServletAppGetSingleAuthorList Servlet
	The XMLPBWebServletBuildElementXML Servlet
	The XMLPBWebServletBuildAttributeXML Servlet

	A Multi-Tier Java Application
	Installing the XMLPBServletApp Java Application

	Under the Hood of the Multi-Tier Application Servlets
	The XMLPBAppServletGetAuthorList Servlet
	The XMLPBAppServletGetSingleAuthorList Servlet
	The XMLPBAppServletBuildElementXML Servlet
	The XMLPBAppServletBuildAttributeXML Servlet

	Under the Hood of the XML Quote Generator-Servlet Edition Application
	Summary

	Chapter 22: Transforming Relational XML Output into Other Formats
	Transformation Functions in Oracle, DB2, and MS SQL Server
	MS SQL Server and XSL
	Oracle and XSL
	DB2 and XSL

	Transforming JDBC Result Sets to HTML
	Building Data Islands with the Microsoft XML Core Services (MSXML)
	Introduction to XML data islands
	The Microsoft XML Core Services (MSXML)
	The Data Islands Example Page
	Creating a data island using JavaScript and MSXML
	Transforming an XML document to an XML data island
	Parsing data island data into a table
	Linking XSL with HTML page design elements
	Sorting data islands using JavaScript and XSL

	Summary

	Part V: Introducing Web Services
	Chapter 23: Web Service Concepts
	Introduction to Web Services
	Web Service Building Blocks
	SOAP (Simple Object Access Protocol)
	WSDL (Web Services Description Language)
	UDDI (Universal Description, Discovery and Integration)

	Web Services Architecture
	Basic Web service architecture
	Extended Web service architectures

	Web Service Models
	The call and response model
	The brokered calls model
	The chained model

	Serving Web Services
	Consuming Web Services
	Summary

	Chapter 24: SOAP
	Introduction
	SOAP format
	A SOAP request
	The HTTP header
	The SOAP request envelope
	A SOAP response

	Summary

	Chapter 25: WSDL
	WSDL Format
	Using WSDL
	Definitions
	Parts, types, and messages
	Operations and portTypes
	Bindings
	Services and ports

	Updating WSDL
	Editing WSDL
	Summary

	Chapter 26: UDDI
	UDDI Structure
	Finding Web services with UDDI

	UDDI APIs
	The Microsoft UDDI SDK
	Summary

	Chapter 27: Microsoft Web Services
	The Microsoft SOAP Toolkit
	What's in the SDK
	Overview of the MS SOAP component library

	Server-Side Programming with MS SOAP
	Client-Side Programming with MS SOAP
	Office XP Web Services Toolkit

	Utilities in the MS SOAP Toolkit
	Summary

	Chapter 28: J2EE Web Services
	Web Services: .NET or J2EE?
	Yeah, blah, blah, blah, Brian: Which one do I pick?
	Don't overlook smart clients!
	About portals

	J2EE Web Service Architecture
	Software Support for J2EE Web Services
	Apache Offerings
	Apache AXIS
	Web Services Invocation Framework (WSIF)
	Web Services Inspection Language (WSIL)
	XML security
	Jakarta Tomcat

	IBM Offerings
	WebSphere Application Server
	WebSphere Portal Server
	IBM AlphaWorks

	Eclipse Tools for J2EE Web Service Developers
	BEA Offerings
	Sun Offerings
	Sun ONE Application Server

	The Sun Java Web Services Developer Pack
	Summary

	Part VI: Microsoft.NET and Web Services
	Chapter 29: Creating and Deploying .NET Web Services
	Introduction
	Brief overview of .NET

	Web Services Class and Attributes
	Visual Studio .NET and Language Support
	XML Support for Web Services
	Summary

	Chapter 30: Accessing .NET Web Services
	Web Services Security
	Deploying .NET Web Services
	Upgrading Existing Applications
	Summary

	Chapter 31: Building a .NET Web Services Client
	Introduction
	Browser-Based Client
	Windows-Based Client (PocketPC)
	Summary

	Part VII: Web Services and J2EE
	Chapter 32: Web Service Tools for J2EE: IBM, Apache, Sun, and Others
	Tools for Building J2EE Web Services
	Apache Offerings
	Web Services Invocation Framework (WSIF)
	Web Services Inspection Language (WSIL)
	XML Security
	Jakarta Tomcat

	IBM Offerings
	WebSphere Studio Application Developer and Workbench
	IBM AlphaWorks

	Eclipse Tools
	Sun Offerings
	Sun ONE Studio

	The Sun Java Web Services Developer Pack
	JAXP (Java API for XML Processing)
	JAXB (Java Architecture for XML Binding)
	JAXM (Java API for XML Messaging)
	JSTL (Java Server Pages Standard Tag Library)
	JAX-RPC (Java API for XML-Based RPC)
	Java WSDP Registry Server
	SAAJ (SOAP with Attachments API for Java)

	And Others
	Summary

	Chapter 33: Web Services with the Sun Java Web Services Developer Pack
	JWSDP Overview
	The API Puzzle
	Java API for XML Messaging (JAXM)
	The JAXM provider model
	JAXM clients
	SOAP messages and SAAJ
	Connections
	JAXM package structure
	Profiles
	JAXM versus JMS
	Building a client
	Handling a SOAPFault
	The Provider Admin Tool

	Java API for XML-Based RPC (JAX-RPC)
	WSDL at work
	Developing clients
	Developing services (endpoints)
	Mapping data types
	Message handlers
	Using wscompile and wsdeploy

	Java API for XML Registries (JAXR)
	Capability profiles
	JAXR architecture
	A few registry scenarios

	Summary

	Chapter 34: Apache Axis
	The Axis Evolution
	Performance enhancements
	Flexibility and extensibility
	Supporting the SOAP specification
	Improved interoperability
	Transport independence
	JAX-RPC and SAAJ compliance
	WSDL support

	Architecture Overview
	Message handlers and message chains
	Subsystem overview
	Type mappings

	Installing and Running Axis
	Axis distribution files
	Copying WEBAPPS and LIB files
	Starting the server

	Building and Consuming a Simple Web Service
	Setting up your environment
	Creating a service
	Building the client

	Deployment
	Dynamic deployment (JWS)
	WSDD deployment

	WSDL Tools
	WSDL2Java
	Java2WSDL

	Monitor SOAP Message with TCPMON
	TCPMON setup
	Monitoring messages

	Summary

	Chapter 35: Accessing Web Services from Java Applications
	When NOT to Use J2EE Web Services
	Example: A Three-Tier System Combining Java Applications, Web Services, and Relational Data
	Separating the user interface from the data access processes

	Prerequisites for Developing J2EE Web Services
	Downloading and installing AXIS
	Deploying Web service class, WSDL, and WSDD files
	Running Web services on a J2EE application server
	Running the Web services without a J2EE server
	Installing the WSDL files

	Developing Web Services
	Inside the XMLPBWSServletGetAuthorList Web service
	The XMLPBWSServletGetSingleAuthorList Web service
	The XMLPBWSServletBuildElementXML Web service
	The XMLPBWSServletBuildAttributeXML Web service

	Inside the XMLPBWSApp J2EE Client Application
	How the application works

	Creating the Java Application User Interface
	Defining public variables and the application window
	Setting objects in the window and implementing ActionListeners
	Defining the action for the Author list
	Defining the action for the Quote list
	Retrieving a list of authors by calling a Web service
	Retrieving a list of quotes from a selected author

	Generating Custom XML Output
	Summary

	Part VIII: Advanced Web Services
	Chapter 36: Accessing Relational Data via Web Services
	MS SQL Server and Web services
	Installing and configuring SQLXML
	Configuring IIS Virtual Directory Management Web Services
	Handling Microsoft Web service data in other platforms
	Oracle and Web services
	DB2 and Web services
	Example: A Multi-Tier Web Service Using J2EE and DB2
	Prerequisites for Developing J2EE and DB2 Web Services
	Downloading and installing the DB2 JDBC driver
	Downloading and installing WORF
	Deploying Web service class, WSDL, and WSDD files
	Running Web services on a J2EE application server
	Running the Web services without a J2EE server
	Installing the WSDL files

	Developing Web Services
	Inside the XMLPBWSMTServletGetAuthorList Web service
	The XMLPBWSMTServletGetSingleAuthorList Web service
	The XMLPBMTWSServletDB2Format Web service

	Inside the XMLPBWSMTApp J2EE Client Application
	How the application works

	Creating the Java Application User Interface
	Defining public variables and the application window
	Setting objects in the window and implementing ActionListeners
	Defining the action for the author list
	Defining the action for the quote list
	Retrieving a list of authors by calling a Web service
	Retrieving a list of quotes from a selected author

	Generating DB2 XML Output
	Summary

	Chapter 37: Authentication and Security for Web Services
	Secure, Reliable Web Service Requirements
	Current Web Service Standards for Security and Authentication
	Transport-Layer Security
	Public key infrastructure (PKI)
	Kerberos

	W3C Recommendations
	OASIS Security and Authentication Specifications
	WS-Security
	WS-Policy framework
	Web Services Policy Assertions Language (WS-PolicyAssertions)
	Web Services Policy Attachment (WS-PolicyAttachment)
	Web Services Security Policy Language (WS-SecurityPolicy)
	WS-Trust
	WS-SecureConversation
	Secure Assertion Markup Language (SAML)
	XML Access Control Markup Language (XACML)

	Web Service Security and Authentication in Java
	Java community process initiatives for Web service security
	Apache XML Security
	IBM XML Security Suite

	Web Service Security and Authentication in Microsoft .NET
	Web Service Transactions: BPEL4WS and WSCI
	Web Services Choreography Interface (WSCI)
	BPEL4WS
	BPEL4WS, BPML, and WSCI working together
	Tools for transactional Web services

	Summary

	Index

