Wrox Programmer to Programmer

Beginning

XSLT and Xpath

Transforming XML Documents
and Data

lan Williams

Updates, source code, and Wrox technical support at www.wrox.com

Beginning XSLT and XPath

Introduction coceen tiiine suuun sennes sannns sanEaE sawEs sEsass EEEEEE EEees wEuas Xix
Chapter 1: First Steps with XSLTvvs vuvuun snnnns snnnns snnnn snnnns snnnns snnne snnnns .1
Chapter 2: Introducing XPatho ciiiie coiiis siiiee ciies senns snnnns snnns snnss 25
Chapter 3: Templates, Variables, and Parametersuvr suves sennee snnnne snnns sunns 43
Chapter 4: USINg LOZIC «..cv cuvuun sunns sunnnn sumnnn sannns snnns snnnns sannns snns snnus 61
Chapter 5: Sorting and Grouping covees sunnnn sansns snnns snnnns ssnnss snnns snnun 75
Chapter 6: Strings, Numbers, Dates, and Times cvvver svver snenne snnnns sunns snnnn 95
Chapter 7: Multiple Documents covies sennns sennns cnnee snnnns snnnns snnnn suns 115
Chapter 8: Processing Text c.uvs cuvuun snnnns snnnns snnne snnsns snnnns snnnn susns 141
Chapter 9: Identifier and KeyS.... cvvun cvvunn sunens tnvnnn sanns snnnss sannnn snnns suns 159
Chapter 10: Debugging, Validation, and Documentation cccoet siien venee 2nen 181
Chapter 11: ACase Studyuuv coiuin suvens snnnns snnnns snnns snnnns sannnn sannn suns 201
Appendix A: Answers t0 EXerciSes ... tieen trnenn snnnns sanns snnnns snsnns sannn snnsn 239
Appendix B: Extending XSLT cover tiieen sennnn snnnns snnns snnnns snsnns sassn sunsn 253
Appendix C: XSLT Processing Model....c. tiiien trenn tenes snnnnn snnnnn snnnn snns 259
Appendix D: XSLT 2.0 Quick Referenceccc. tivuins suven snnnne sannns sunen suns 263
Appendix E: XSLT 2.0 Schemaccuus tiiien trnenn snnnns snnns snnnns snsnns sansn sunsn 315
Appendix F: XPath 2.0 Function Reference ciiis civie cnnnee snnnnn sanen suns 341
Appendix G: ReferenCes ccoeee suunun canees sennee sasnns snnns sansss sasnns sanen snnn 377
GlOSSANY - .uiin tutus susnnns srmnen sasns sunaEs EEEEs mmssss mmsss sEsses smssss sasss sees 381

INAEX .t suuuns sunns snnnnn snnsss sanss ssssss ssssss ssssss sssss sannns sannns sanns sens 385

Beginning
XSLT and XPath

Transforming XML Documents and Data

Tan Williams

WILEY
Wiley Publishing, Inc.

Beginning XSLT and XPath: Transforming XML Documents
and Data

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Ian Williams

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-47725-0

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2009929458

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

About the Author

Ian Williams is an information designer specializing in XML technologies, and a software technical
writer. He worked in the U.K. publishing industry before getting involved in information technology at
OWL International, developers of the one of the first commercial hypertext products. Ian was a product
manager there, and later a consultant working with large corporate customers.

Since 1998 Ian has worked on technical writing and information-design projects, most recently for Nokia,
Reuters, and Volantis. He is co-author with Pierre Greborio of Professional InfoPath 2003, also from Wrox

Press.

Ian lives with his wife, Helen, in Kent, in a converted lifeboat station overlooking the English Channel.

Credits

Executive Editor Production Manager
Carol Long Tim Tate
Development Editor Vice President and Executive
Tom Dinse Group Publisher
Richard Swadley

Technical Editor

Dan Squier Vice President and Executive Publisher

Barry Pruett

Production Editor

Eric Charbonneau Associate Publisher

Jim Minatel

Copy Editor

Luann Rouff Project Coordinator, Cover

Lynsey Stanford
Editorial Director Proofreader
Robyn B. Siesky Candace English
Editorial Manager Indexer

Mary Beth Wakefield Johnna VanHoose Dinse

Contents

Introduction Xix
Chapter 1: First Steps with XSLT 1
Transforming an XML Document to a Web Page 1
Using a Browser 2
Transforming Locally 11
Transforming XML Data to XML 14
Atom and RSS Elements 14
Developing the Stylesheet 17
Summary 23
Chapter 2: Introducing XPath 25
Nodes 25
Node Types 26

Node Properties 26

Data Model 27
Path Expressions 28
Using an XPath Analyzer 29

Axes 30

Node Tests 32
Predicates 33
Operators 33
XPath Functions 35
Strings 35
Dates, Times, and Durations 37
Nodes and Documents 38
Numbers 39
Summary 40
Exercises 40
Chapter 3: Templates, Variables, and Parameters 43
About Templates 44
Template Rules 44

Contents

Invoking a Rule 45
Using Modes 46
Setting Priorities 48
Built-in Rules 49
Named Templates 49
Variables 50
Parameters 55
Global Parameters 55
Template Parameters 57
Summary 59
Exercises 60
Chapter 4: Using Logic 61
Conditional Processing 61
A Simple Choice 61
Multiple Choices 62
Using XPath for Conditional Tests 64
Iteration 64
Using Attribute Sets 64
Monitoring the Context 69
Processing XML Code 70
Summary 71
Exercises 72
Chapter 5: Sorting and Grouping 75
Sorting Content 75
Perform a Sort 81
Grouping 83
Common Values 84
Adjacent Items 85
Starting and Ending Conditions 91
Summary 93
Exercises 93
Chapter 6: Strings, Numbers, Dates, and Times 95
String Processing 95
About Collations 95
General Functions 96
Codepoints 96
Comparison o7

viii

Contents

Concatenation 97
Simple Substrings 98
Using Regular Expressions 99
Normalizing Values 101
Escaping URIs 102
Numbers 103
Generating Numbers 103
Formatting Source Numbers 107
Dates and Times 109
Contextual Dates 109
Formatting 109
Combining and Converting Values 111
Durations 112
Time Zones 112
Summary 113
Exercises 114
Chapter 7: Multiple Documents 115
Modular Stylesheets 115
Including Modules 116
Imported Stylesheets 119
Source Documents 123
Using the document() Function 123
XPath Alternatives 125
Setting or Changing Context 127
Output Documents 127
Preparing a Feed Update 129
Splitting a Document 136
Summary 138
Exercises 139
Chapter 8: Processing Text 141
Controlling Whitespace 141
Stripping Space 142
Preserving Space 143
Using <xsl:text> 143
XML to Text 144
Text to XML 146
Loading Unparsed Text 146
Analyzing the Input 146

Contents

Alternatives to XSLT 153
XML Maps 154
XML Data in Excel 156

Summary 157

Exercises 158

Chapter 9: Identifier and Keys 159

ID Datatypes 159

Using the id() Function 160

Keys 162
The key() Function 163

Generating Identifier 165
Indexing Lines 165
Census to GEDCOM XML 170

Summary 179

Exercises 180

Chapter 10: Debugging. Validati | D tati 181

Debugging XSLT 181
Profiling 184
Verifying XHTML Output 185
Using Messages 186
Commenting Output 187
Using the error() Function 188

Type and Schema Validation 188
Types in XSLT 188
Using a Schema-Aware Processor 189

Documenting Your Stylesheets 195

Summary 199

Exercises 200

Chapter 11: A Case Study 201

Schema Overview 201

Common Elements and Attributes 202
Common Attributes 202
Block Elements 202
Inline Elements 203

The Quick-Reference Schema 204
Link Container Elements 205

Contents

Property Elements 206
Link Verification 208
Metadata Schemas 209
Resource Metadata 210
Subject Metadata 214
Reference Stylesheets 217
Link Module 220
Link Parameters 220
Function Module 223
Term Module 223
Term Parameters 225
Displaying Inline Terms 226
Building the Site 227
Generating the Reference Pages 228
Landing and Glossary Pages 233
Creating a Sitemap 234
Summary 237
Appendix A: Answers to Exercises 239
Chapter 1 239
Chapter 2 239
Question 1 239
Question 2 240
Question 3 240
Chapter 3 241
Question 1 241
Question 2 242
Chapter 4 242
Question 1 243
Question 2 243
Chapter 5 244
Question 1 244
Question 2 245
Question 3 245
Chapter 6 246
Question 1 246
Question 2 246
Question 3 247
Chapter 7 247
Question 1 247

Xi

Contents

Question 2 248
Question 3 248
Question 4 248
Chapter 8 249
Question 1 249
Question 2 249
Question 3 250
Chapter 9 250
Question 1 250
Question 2 250
Question 3 251
Chapter 10 251
Question 1 251
Question 2 251
Chapter 11 252
Appendix B: Extending XSLT 253
Stylesheet Functions 253
Calling an Extension Function 254
Function Libraries 255
EXSLT 255
FunctX 256
Vendor Extensions 256
User-Define Extensions 257
Appendix C: XSLT Processing Model 259
The Data Model 259
Transforming 260
Parsing Inputs 260
Template Rules 261
Variables and Parameters 261
Controlling Processing 261
Outputs and Serialization 262

: lix D: XSLT 2.0 Quick Ref 263

Xii

Elements

Attribute Groups

Types
Functions

263
264
264
264

Contents

XSLT Elements 264
xsl:analyze-string 264
xsl:apply-imports 265
xsl:apply-templates 265
xsl:attribute 266
xsl:attribute-set 267
xsl:call-template 268
xsl:character-map 269
xsl:choose 269
xsl:comment 270
xsl:copy 271
xsl:copy-of 271
xsl:decimal-format 272
xsl:declaration 274
xsl:document 274
xsl:element 274
xsl:fallback 275
xsl:for-each 276
xsl:for-each-group 276
xsl:function 277
xsl:if 278
xsl:import 279
xsl:import-schema 280
xsl:include 281
xsl:instruction 281
xsl:key 282
xsl:matching-substring 283
xsl:message 283
xsl:namespace 284
xsl:namespace-alias 285
xsl:next-match 285
xsl:non-matching-substring 286
xsl:number 286
xsl:otherwise 288
xsl:output 288
xsl:output-character 291
xsl:param 291
xsl:perform-sort 292
xsl:preserve-space 293
xsl:processing-instruction 294
xsl:result-document 294

Xiii

Contents

xsl:sequence 297
xsl:sort 297
xsl:strip-space 299
xsl:stylesheet 299
xsl:itemplate 300
xsl:text 301
xsl:itransform 301
xsl:value-of 302
xsl:variable 303
xsl:with-param 304
Attribute Groups 304
Generic element attributes 304
Version attributes 305
Validation attributes 305
Types 306
XSLT Functions 306
current 307
current-group 307
current-grouping-key 307
document 307
element-available 308
format-date, format-dateTime, format-time, 308
format-number 309
function-available 310
generate-id 310
key 310
regex-group 311
system-property 311
type-available 312
unparsed-text, unparsed-text-available 312
unparsed-entity-public-id, unparsed-entity-uri 313
Appendix E: XSLT 2.0 Schema 315
W3C® Document License 336
; lix F: XPath 2.0 F ti Ref 341
Functions 341
abs 341
avg 342
adjust-date-to-timezone, adjust-dateTime-to-timezone, adjust-time-to-timezone 342
base-uri 342

Xiv

Contents

boolean 343
ceiling 343
codepoint-equal 344
codepoints-to-string 344
collection 344
compare 345
concat 345
count 345
current-date, current-dateTime, current-time 346
data 346
dateTime 346
day-from-date, day-from-dateTime 347
days-from-duration 347
deep-equal 348
default-collation 348
distinct-values 348
doc, doc-available 349
document-uri 349
empty 349
encode-for-uri 350
ends-with 350
error 350
escape-html-uri 351
exactly-one 351
exists 352
false 352
floor 352
hours-from-dateTime, hours-from-time 353
id 353
idref 353
implicit-timezone 354
index-of 354
implicit-timezone 355
in-scope-prefixes 355
insert-before 355
iri-to-uri 356
lang 356
last 356
local-name 357
local-name-from-QName 357
lower-case 357
matches 358

XV

Contents

XVvi

max, min

minutes-from-dateTime, minutes-from-time
minutes-from-duration
month-from-date, month-from-dateTime
months-from-duration
month-from-date, month-from-dateTime
name

namespace-uri
namespace-uri-for-prefix
namespace-uri-from-QName

nilled

normalize-unicode

not

number

one-or-more

position

prefix-from-QName

QName

remove

replace

resolve-uri

resolve-QName

reverse

root

round

round-half-to-even
seconds-from-dateTime, seconds-from-time
seconds-from-duration

starts-with

static-base-uri

string

string-join

string-length

string-to-codepoints

subsequence

substring

substring-after

substring-before

sum

timezone-from-date, timezone-from-dateTime, timezone-from-time

tokenize
trace

358
358
359
359
360
360
360
361
361
362
362
362
362
363
363
363
364
364
364
365
365
366
366
366
367
367
368
368
368
369
369
369
370
370
371
371
371
372
372
373
373
374

Contents

translate 374

true 375
unordered 375
upper-case 375
year-from-date, year-from-dateTime 376
years-from-duration 376
Zero-or-one 376
Appendix G: References 377
Specification 377
Tools and Resources 379
Glossary 381
Index 385

XVii

Introduction

Welcome to XSLT and XPath, two members of the W3C XML family of standards. This book concentrates
on using XSLT and XPath to solve problems that you are likely to encounter every day in writing XSLT
stylesheets. I have tried to focus most attention on the features that you will need frequently, while
still treating other aspects of the subject in brief. You can find additional detailed information in the
Quick Reference appendixes, and in more advanced works such as Michael Kay’s XSLT 2.0 and XPath 2.0
Programmers Reference, also in the Wrox list.

Who This Book Is For

I assume that you have a sound knowledge of XML and related web standards, such as XML Schema and
XHTML. In an introductory book like this, there isn’t enough space to fill in background information on
these subjects.

Conversely, I don’t assume that you are familiar with a particular programming language, or that you
necessarily have a strong programming background. The chapters include a few comparisons with other
languages, and as you'll see, XSLT takes a different approach from most of them.

If you are an experienced web author, or a technical writer who works regularly with XML, there is
no reason why you can’t pick up XSLT, leveraging your existing knowledge and skills. Quite a few
practitioners that I know come from this kind of background.

This book aims to give you a good grounding in the basics of XSLT and XPath, concentrating on version
2.0 of both standards. It is definitely not aimed at experienced XSLT 1.0 programmers who require a skills
update. Explaining the often-very-detailed differences between the two versions would simply confuse
matters for beginners, who will do better to learn how to use techniques that are appropriate to the latest
version.

XSLT in Outline

According to the W3C specification, XSLT (Extensible Stylesheet Language: Transformations) is a ““lan-
guage for transforming XML documents into other XML documents.”” Given the widespread use of
XML for exchanging data between applications and its success as a means of creating a wide range of
document types, it is now easy to see why such a language is useful.

XSLT 1.0 was published as a recommendation late in 1999 shortly after XML 1.0, and at the time it didn’t
seem obvious that XSLT would become a success. It is probably so successful because it was, and still

Introduction

is, most often used to generate HTML content for the web from XML sources — so much so that XSLT
processing was incorporated into browser engines at an early date. XSLT 2.0 was published in January
2007 after a very long development period, which was complicated by some controversy and the need to
track the development of XPath 2.0, on which is relies heavily.

The name Extensible Stylesheet Language: Transformations suggests that there is another “branch’ to
XSL — and there is: Extensible Stylesheet Language: Formatting Objects, or XSL-FO. XSL was initially
part of a much more comprehensive project, covering both transformation and formatting semantics. The
Formatting Objects recommendation (still formally titled ““XSL"’) was published separately in October
2001. It is essentially an XML vocabulary used to specify the layout and properties of parts of printed
pages, but I won’t be covering it in this book.

XSLT Is Different

XX

Writing code to handle XML transformations in XSLT differs markedly from the approach used in other
programming languages. It is written in XML syntax in a declarative fashion, with processing specified
in pattern-matching rules. By declarative I mean the opposite of the usual imperative approach; that is, an
XSLT programmer does not define a sequence of actions, but specifies a number of rules that the result
should satisfy.

XSLT has a type system based on XML Schema, and XPath expressions form an important second lan-
guage, matching source document objects, selecting content for processing, and performing operations
on content.

Compared to some other languages, it is much easier to learn the XSLT basics, but the different syntax
and the nature of the XSLT processing model take some getting used to.

The XML source example that follows is written in the DocBook vocabulary (which is widely used in
documenting information technology):

<?xml version="1.0" encoding="UTF-8"?>
<article>

<title>A Simple Transform</title>

<para>Because the transform is an XML document we need to start with an XML
declaration, specifying the version and the encoding.</para>

<para>The root element in a stylesheet is
<emphasis>xsl:stylesheet</emphasis>, though the synonym

<emphasis>xsl:transform</emphasis> may also be used. You must always

specify the XSLT namespace, and it is important to set the version
attribute correctly to match the type of processing required. In this book
we generally specify version 2.0.</para>

<programlisting><![CDATA[
<xml version="1.0" encoding="UTF-8"/>
<xsl:stylesheet

Introduction

xmlns:xsl=http://www.w3.0rg/1999/XSL/Transform
version="2.0"

</xsl:stylesheet>]]></programlisting>

<para>In both cases there are stylesheets available for creating XHTML and
PDF output. But what if you need to migrate content from one system to
another?</para

</ar£ié1e>
Shown next is a simple XSLT stylesheet that transforms the XML to HTML:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of select="title"/>
</title>
</head>
<body>
<xsl:apply-templates select="body"/>
</body>
</html>
</xsl:template>
<xsl:template match="title">
<hl><xsl:value-of select="."/></hl>
</xsl:template>
<xsl:template match="para">
<p><xsl:apply-templates/></p>
</xsl:template>
<xsl:template match="emphasis">
<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="programlisting">
<pre>
<xsl:value-of select="."/>
</pre>
</xsl:template>
</xsl:stylesheet>

The core HTML elements, highlighted in the preceding code example, form the output structure. They
are written literally inside a series of sibling template instructions prefixed with xs1:.

The use of templates is similar to the non-HTML code you may have seen in web pages written using
ASP, JSP, or PHP; but here the syntax is entirely XML, and the XSLT elements provide both the frame-
work and the processing instructions.

Introduction

Importance of XPath Language

XPath 2.0 is an expression language that is absolutely fundamental to XSLT 2.0 in several ways.
An expression takes one or more input values and returns a value as output, so everywhere
you can use a value you should also be able to use an expression to be evaluated. Usually,
expressions are used as the value of attributes on XSLT elements — for example, <xs1:value-of
select="a+b"/>.

XPath is used to match elements to XSLT template rules.

Another common use of XPath is selecting nodes in an XML document for subsequent processing. You
can make a document-wide selection and refer to all the <1ist> elements, or be very specific by pointing
to the class attribute in the first <para> in the third <section> of a document.

Then, you can use XPath to load documents, search strings, and manipulate numbers, using a very wide
range of built-in functions.

Node Trees
XPath expressions operate on an abstract tree structure. Objects in the tree are nodes, of which there
seven types, briefly described here:

QO Document: The root of the tree representing an entire source document. I use the term
document node to designate this node, to avoid confusing it with the root element of the source
document.

O Element: Defined by pairs of start and end tags (e.g., <title></title>) or an empty element tag
such as with no content.

0 Text: A character sequence in an element.

O Attribute: The name and value of an attribute in an element start tag or an empty element tag,
including all default value attributes in the schema.

0 Comment: Comments in the XML source document, i.e., <!-- -->.

(]

Processing instruction: An instruction in the source document contained by <2 2>.

0O Namespace: Namespace declaration copied to each element to which the declaration
applies.

Figure I-1 shows how part of the tree of nodes for the DocBook article would look, with the document
node outside of everything. Only the document, element, and text nodes for one instance of each element
are shown. Each node contains the node type at the top, its name in the center in the case of elements,
and the string value in the case of text nodes.

XXii

Introduction

Document
Element
Element Element Element
article para programlisting
Text Text Element Text
emphasis

A Simple Because the <![CDATA[
Transform transform is an <xml:stylesheet
XML xmins:xsl=http:/
document... Text www.w3.0rg >

xsl:stylesheet

Figure I-1

Processing Overview

The basic work of an XSLT processor is to use a stylesheet as a set of instructions for producing a result
document from a source document. Generally, all three documents are XML documents, so XSLT is said
to transform one input object to an output object of the same kind. Figure I-2 illustrates the process in
outline.

Transform

Figure I-2

XXxiii

Introduction

An XSLT processor treats the input and output documents as trees of nodes. You can think of these
trees as being something like the W3C document object model, which some XSLT processors indeed use.
However, unlike the DOM, there is no defined API in the XSLT specification. Different processors are
free to implement this abstract data model in different ways.

The basic processing sequence comprises several steps, shown in Figure I-3.

Source
Transform

Result
tree

Serialize

Figure 1-3

The XML source document is parsed into a source tree.
The XSLT stylesheet is parsed to a stylesheet tree.

A transform is applied to create a result tree.

P ONPR

Serialization is applied to deliver content in the specified output format.

Essentially, the processor traverses the source tree in document order and looks for matching template
rules in the stylesheet. If a match is found, then the instructions in the template are used to construct a
node in the result tree. By default, the serialization creates an XML document, but specific instructions
may be applied to output HTML, XHTML, or plain text.

The process can be more complex, potentially involving multiple sources, stylesheets and result trees,

temporary trees held as variables, and multiple serializations. In Appendix B you'll find a more detailed
view of how an XSLT processor works.

XXiv

Introduction

About the XSLT 2.0 Schema

As you work through the examples in the book, I'll introduce parts of the XSLT 2.0 schema so that you
can examine the structure of the individual elements.

This schema is published separately by W3C, and it is not part of the XSLT 2.0 recommenda-
tion as such. The full schema is reproduced in Appendix E, and the latest version is also at
www.w3.0rg/2007/schema-for-xslt20.xsd.

XSLT elements are broadly divided into two categories: declarations and instructions. For clarity, I mostly
use one or the other of these terms, rather than call them elements.

The <xsl:declaration> and <xsl:instruction> are represented in the schema as abstract elements,
which never appear in document instances, so you will not use them in a stylesheet; rather, you will use
one of the elements in their substitution groups. A substitution group determines where the elements
may appear. For example, you can see that <xs1:output> is a declaration from the substitutionGroup
attribute value:

<xs:element name="output" substitutionGroup="xsl:declaration">

</xs:element>

This leads to a rather flat structure overall, with very little nesting of elements.

Declarations

Declarations define values such as the location of stylesheets to include or import, the method of output,

global parameters, and the templates to use to match the source XML. These are top-level elements that

immediately follow the root <xs1:stylesheet> element. They can appear in any order unless there is an
<xsl:import> element, which must always appear first.

The schema declares the complex type xs1:generic-element-type with some common attributes:

<xs:complexType name="generic-element-type" mixed="true">
<xs:attribute name="default-collation" type="xsl:uri-list"/>
<xs:attribute name="exclude-result-prefixes" type="xsl:prefix-list-or-all"/>
<xs:attribute name="extension-element-prefixes" type="xsl:prefix-list"/>
<xs:attribute name="use-when" type="xsl:expression"/>
<xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<xsl:declaration> is then defined as a generic-element-type, and the top-level elements are subse-
quently specified to be in the declaration substitution group:

<xs:element name="declaration" type="xsl:generic-element-type" abstract="true"/>

Introduction

Here, for example, is the schema definition for the <xs1:output> element:

<xs:element name="output" substitutionGroup="xsl:declaration">
<xs:complexType mixed="true">
<xs:complexContent mixed="true">
<xs:extension base="xsl:generic-element-type">
<xXs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="method" type="xsl:method"/>
<xXs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
<xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
<xs:attribute name="doctype-public" type="xs:string"/>
<xs:attribute name="doctype-system" type="xs:string"/>
<xs:attribute name="encoding" type="xs:string"/>
<xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
<xXs:attribute name="include-content-type" type="xsl:yes-or-no"/>
<xs:attribute name="indent" type="xsl:yes-or-no"/>
<xs:attribute name="media-type" type="xs:string"/>
<xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
<xXs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
<xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
<xs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="version" type="xs:NMTOKEN" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Figure I-4 shows a schema diagram for the declaration substitutions.

Instructions

Other XSLT elements known as instructions are used to specify the construction of result trees from
individual elements and attributes in the source XML.

The xs1:versioned-element-type is defined as an extension of the generic-element-type, and fol-
lowed by the instruction declaration. This is because every element except <xsl1:output> may have a
version attribute containing the XSLT version number, which may be used to indicate which version of
XSLT the processor should apply:

<xs:complexType name="versioned-element-type" mixed="true">
<xs:complexContent>
<xs:extension base="xsl:generic-element-type">
<xs:attribute name="version" type="xs:decimal" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="instruction" type="xsl:versioned-element-type" abstract="true"/>

<xsl:output> has an attribute with the same name, but this is intended to refer to the XML version
specified in the output method.

XXVi

Introduction

© [xsl:generic-element-type
- @ @ attributes J
© substitutions
N
(attribute-set)
< S : . |®
\Jype extension of ‘xsl:element-only-versioned-element-type’)
/character-map)
< B : D
\Jype extension of ‘xsl:element-only-versioned-element-type’)
(decimal-format h
) o1 - ()
\Jype extension of ‘xsl:element-only-versioned-element-type’
P (function
\Jype extension of ‘xsl:versioned-element-type’
/import-schema
declaration - (Type extension of ‘xsl:element-only-versioned-element-type’
Type xsl:generic-element-type | ©-
7
Abstract true - include
\Jype extension of ‘xsl:element-only-versioned-element-type’
P (key
\Jype extension of ‘xsl:sequence-constructor’
g "
B namespace-alias
\Jype extension of ‘xsl:element-only-versioned-element-type’ J
P /output
A \Jype extension of ‘xsl:generic-element-type’
P
P preserve-space
\Jype extension of ‘xsl:element-only-versioned-element-type’ J
7
P strip-space
\Jype extension of ‘xsl:element-only-versioned-element-type’ J
A 7
N template ®
\Jype extension of ‘xsl:versioned-element-type’
J
Figure I-4

<xsl:value-of>, which you will meet in Chapter 1, is specified as an instruction. It is also has
the type sequence constructor, which is a type that contains a series of XSLT instructions. The

XXVii

Introduction

xsl:sequence-constructor type includes elements that can contain a sequence constructor. The schema
extends the xs1:versioned-element-type, specifies the content model of a sequence-constructor
group, and defines the <xsl:value-of> instruction:

<xs:complexType name="sequence-constructor">
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</xs:extension>
</xs:complexContent>
</xs:complexType>

<XS:group name="sequence-constructor-group">
<xs:choice>
<xs:element ref="xsl:variable"/>
<xs:element ref="xsl:instruction"/>
<xs:group ref="xsl:result-elements"/>
</xs:choice>
</Xs:group>

<xs:element name="value-of" substitutionGroup="xsl:instruction">

<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">

<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no"
default="no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The substitution diagram for instructions looks very similar to the one for declarations, but because of
the number of instructions it is too large to include here.

What You Need to Use This Book

I'habitually use a limited set of tools and a single development environment: the open-source Eclipse IDE,
and the edition of Oxygen XML Editor that goes with it. Now and then I'll refer to them in particular.

There is a wide and very useful range of XSLT processors and XML editors out there; and while I don’t
want to endorse one rather than another, there are some arguments for using Oxygen as you work

through this book, even if only temporarily:

0 Oxygen is a multiplatform Java application.

O Both the basic and schema-aware versions of the Saxon XSLT processor are bundled with it.

Xxviii

Introduction

0 The IDE tools considerably ease the task of working with XSLT.
O You can get an evaluation license free.
O You can obtain the academic edition at a low cost.

Regardless of which processor you choose, make sure that it supports XSLT 2.0 and XPath 2.0. Ideally, it
should also be schema-aware, or you will miss out on many important aspects of this book.

Choosing a Processor

Although the W3C recommendation for XSLT 2.0 was published early in 2007, not many processor imple-
mentations are available. I'll mention a few here.

One of the best-known processors is Michael Kay’s Saxon, currently at version 9.x. The basic, or “B,”
versions of Saxon are free, and open source; the “SA”" (schema-aware) versions will cost you something,
either as a standalone tool from Saxonica, or as a bundled component in a commercial IDE.

AltovaXML 2008 is a free XML toolkit that includes a validating parser, an XSLT 1.0 engine, and XSLT 2.0
and XQuery 1.0 engines, which are both schema-aware. These tools are also part of Altova’s commercial
XMLSpy 2008 IDE.

The Gestalt command-line processor for XSLT 2.0 is still under development. You can find about its
current status at http://gestalt.sourceforge.net/doc/gexslt/index.html.

The XML team at Microsoft seems to have concluded that developer demand will be greater for the
SQL-like syntax of XQuery than for XSLT 2.0, although because XQuery depends on XPath 2.0 being in
place, they will be more than part of the way once the XPath implementation is done. Any development
will be implemented in the System.xml classes rather than a Windows COM component.

Don’t expect to see support for built-in XSLT parsing in browsers anytime soon. MSXML 6.0 continues

to provide support for XSLT version 1.0, as does Mozilla 1.9, with JavaScript interfaces. Safari and Opera
9.0 will handle xml-stylesheet instructions.

Interface Options

XSLT processors can be invoked in several ways: from a browser using an xml-stylesheet processing
instruction, from an XML IDE, from the command line, or from an API.

I've generally used version 10.x of the Oxygen IDE, Eclipse Edition, for the examples in this book. Please

note that the user interface in Windows, Linux, and Mac OS X desktop editions differs somewhat from
the Eclipse interface.

How This Book Is Structured

This book contains 11 chapters, 7 appendixes, and a glossary.

It is important that you read the chapters sequentially for two reasons. First, you will add to your knowl-
edge in increments that build on what you picked up in the previous chapters. Second, and especially

XXiX

Introduction

true in the first half of the book, the stylesheet code examples use XML source documents with a similar
structure to progressively produce more complex output, making the new material easier to understand.

XXX

Chapter 1, “First Steps with XSLT”” — This chapter shows you how to write two stylesheets: the
first generates a web page from an XML document, and the second illustrates how to transform one
XML data format to another. You'll learn about key XSLT elements and structures, XPath expres-
sions for matching and selection, and different ways to invoke a stylesheet processor.

Chapter 2, “Introducing XPath” — In this chapter you'll take a short break from creating
stylesheets to learn about the basics of XPath, node types, and properties, the XPath data model,
and the important topic of path expressions used to navigate the node trees in your source
documents.

Chapter 3, “Templates, Variables, and Parameters”” — In this chapter you'll extend your knowl-
edge about template rules, learning how to apply them using match patterns, modes, and prior-
ities. You will also work with named templates, and learn about variables and parameters with
both local and global scope.

Chapter 4, “Using Logic” — There are often cases when you want to use a more imperative style
of programming, and exercise specific control over the processor. This chapter shows you how to
use logic to test for simple or complex conditions, and direct processing accordingly. You'll also
learn that when the source data is repetitive in nature, often the most straightforward thing to do
is iterate over it rather than use template rules.

Chapter 5, “Sorting and Grouping” — This chapter examines the options available to you in sort-
ing and grouping. Along the way, you’ll learn about the significance of datatypes and languages
in sorting, see how to use variables and attribute-value templates to create run-time values, and
encounter part of a play by William Shakespeare, marked up in XML.

Chapter 6, ““Strings, Numbers, Dates, and Times” — This chapter takes you through a mix of
XSLT elements and XPath functions that you can use to manipulate string, numeric, and datetime
values. XPath 2.0 has a very handy set of string-processing tools, including ones to match, tokenize,
and replace regular expressions, and others to normalize text values and escape URIs. You'll learn
how to generate simple and hierarchical numbering and how to format the generated values. Also
included are many valuable XPath functions, which you’ll use to generate and format dates.

Chapter 7, “Multiple Documents”” — In this chapter you'll take a look at ways to deal with mul-
tiple documents. You'll learn how to include stylesheet modules and how to override existing
stylesheets by importing them into a new one that provides alternative parameters, variables, and
template rules. You'll also create multiple document output in different formats, and “chunk” a
source file into separate web pages.

Chapter 8, “Processing Text”” — Although XSLT is primarily designed to generate XML markup,
in this chapter you will learn use XSLT to produce plain text without markup in any convenient
output format. You will process raw text with XSLT by loading a text file and analyzing the content
to find markers that you can use to construct XML elements or attributes.

Chapter 9, “Identifiers and Keys”” — XSLT and XPath between them provide several ways to
make use of identifiers and keys to locate items, which you can then use to support indexing and
linking processes. In this chapter you’'ll learn about some limitations of using XML identifiers, and
work with a variety of techniques, including one provided by XSLT’s built-in ID generator.

Chapter 10, “Debugging, Validation, and Documentation’”” — In this chapter you'll learn how
to make use of IDE debugging features that will help locate problems in your code, and make use

Introduction

of inline messaging and error-tracing features in XSLT. You will learn how to validate both source
and result documents within an XSLT processor. You will also see how easy it is to add documen-
tation to your stylesheets and process them using XSLT.

Chapter 11, “A Case Study” — The case study in this chapter builds on the work you have
already done with the templates for processing the documents used in the XSLT 2.0 Quick
Reference in Appendix D. The link processing uses a small library of modules that operate on
both resource and subject metadata. This chapter explains the reference and metadata schemas,
and how a link module and a related function module together provide link processing. Subject
metadata is processed in a similar way to create a glossary, and inline definitions. The chapter
ends by illustrating the production of a quick-reference website, and how to output a sitemap
conforming to the Sitemaps protocol for consumption by web crawlers.

Appendix A, “Answers to Exercises” — Contains solutions to exercises for Chapters 2-10.

Appendix B, “Extending XSLT” — Examines the resources available in third-party function
libraries built with XSLT and XPath, and vendor-provided extensions.

Appendix C, “XSLT Processing Model”” — Reviews the XSLT processing model, drawing on the
knowledge and experience that you have gained in working through the book.

Appendix D, “XSLT 2.0 Quick Reference”” — This reference provides brief details about the XSLT
2.0 elements and functions. It is derived from the same XML source as the material used in the case
study in Chapter 11. If you choose to build the reference website described there, you can make use
of the online version too.

Appendix E, “XSLT 2.0 Schema” — This is a copy of the XSLT schema published by the W3C.

Appendix F, “XPath 2.0 Function Reference” — This reference provides brief details of the XPath
2.0 functions. These are distinct from functions that apply only to XSLT, and which are detailed in
Appendix D.

Appendix G, “References” — A consolidated list of online resources found in various chapters
and appendixes.

Glossary — A glossary of key terms, based on definitions published in the XSLT specification.

Conventions

To help you get the most from the text and keep track of what’s happening, a number of conventions are
used throughout the book.

The Try It Out is an exercise you should work through, following the text in the book.

1.
2.
3.

They usually consist of a set of steps.
Each step has a number.

Follow the steps through with your copy of the database.

XXXi

Introduction

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

QO We italicize new terms and important words when we introduce them.

O We show keyboard strokes like this: Ctrl+A.

Q We show filenames, URLs, and code within the text like so: persistence.properties.
a

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use gray highlighting to emphasize code that is of particular importance.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox. com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-47725-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or a faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Errata link. On this page you can view all errata
that has been submitted for this book and posted by Wrox editors. A complete book list, including links
to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

XXXii

Introduction

If you don't spot “your” error on the Errata page, click the Errata Form link and fill out the form that
appears. We'll check the information and, if appropriate, post a message to the book’s errata page and fix
the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P; but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XxxXiii

First Steps with XSLT

In this chapter you will get started with XSLT by developing two stylesheets. In the first stylesheet
you'll see how to generate an XHTML web page from an XML document.

The second stylesheet illustrates how to transform one XML data format to another, in this case
from the Atom 1.0 syndication format to RSS 1.0.

You'll learn about:

O Key XSLT elements and structure

Q Built-in template rules

Q XPath expressions for matching and selection
Q

Different ways to invoke a stylesheet processor

Transforming an XML Document to a Web
Page

Probably the most common application of XSLT is to generate one or more pages of a website from
an XML source of some kind. For example, you might want to split a large file into chapters, each
with a separate page, or display a news feed.

There are a couple of ways to accomplish this: You might want to rely on a browser’s client-side
processor to transform the content; alternatively, you could generate static content for a server to
render.

Let’s start with an example that relies on a browser’s built-in processor. It is drawn from the case
study that you will work on later in this book.

The case study in Chapter 11 illustrates the production of a website from a set of XML source doc-
uments that describe each of the XSLT elements and functions. The same information was used to
produce the XSLT Quick Reference in Appendix C.

Chapter 1: First Steps with XSLT

If you haven’t already done so, download the source code for this book from this book’s web page at
www.wrox.com. You'll be using the source files from now on in the examples that follow. When you've
unzipped the download, open the folder for Chapter 1 and locate the file xm1_stylesheet .xml.

Listing 1-1 shows a pared-down version of the source document describing the <xsl:stylesheet>
element.

Listing 1-1
<?xml version="1.0" encoding="UTF-8"?>
<reference>
<body>
<title>xsl:stylesheet</title>
<purpose>
<p>The root element of a stylesheet.</p>
</purpose>
<usage>
<p>The <element>stylesheet</element> is always the root element, even if
a stylesheet is included in, or imported into, another. It must have a
<attr>version</attr> attribute, indicating the version of XSLT that the
stylesheet requires.</p>
<p>For this version of XSLT, the value should normally be "2.0". For a
stylesheet designed to execute under either XSLT 1.0 or XSLT 2.0, create a core
module for each version number; then use <element>xsl:include</element> or
<element>xsl:import</element> to incorporate common code, which should specify
<code>version="2.0"</code> 1f it uses XSLT 2.0 features, or
<code>version="1.0"</code> otherwise.</p>
<p>The <element>xsl:transform</element> element is allowed as a synonym.</p>
<p>The namespace declaration <code>xmlns:xsl="http//www.w3.0rg/1999/XSL/
Transform</code> by convention uses the prefix <code>xsl</code>.</p>
<p>An element occurring as a child of the <element>stylesheet</element>
element is called a declaration. These top-level elements are all optional, and
may OcCcur zero or more times.</p>
</usage>
</body>
</reference>

In the quick reference documents I use an XML grammar based on the Darwin Information Typing
Architecture (DITA) reference content model. DITA is finding increasing support among the larger pub-
lishers of technical documentation. It differs considerably from the longer-established DocBook format,
using a more modular approach, covering the concept/task/reference pattern often found in software
help systems. You can look ahead to see details of the schema in Chapter 11. In addition to markup
like <body>, <p> and <code>, which you’ll recognize from XHTML, note that the root element in this
example is <reference>. To keep the example simple, only the sections on <purpose> and <usage> are
included, as are the inline <attr> (attribute) and <element> names. In later chapters I'll introduce
more elements from the reference vocabulary.

Using a Browser

To run any transform inside a browser, you need to add a processing instruction to the source document,
which will give the browser the location of the stylesheet you want to use. This goes immediately after
the XML declaration in xs1_stylesheet.xml. Save the update while you start work on the stylesheet.

Chapter 1: First Steps with XSLT

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="browser.xsl" type="text/xsl"?>

<reference>

</reference>

You may have used processing instructions in other XML applications; what appear to be attributes in
the instruction are in fact known as pseudo-attributes. The href pseudo-attribute locates the stylesheet
(browser.xsl). The file extension .xs1 is a convention, which some applications may rely on for iden-
tification. The type pseudo-attribute defines the content type (text/xsl). In this case you use a relative
UR], for a stylesheet in the same directory as the source document. (In this book I use the more general
term URI, which is an identifier that may not imply a specific location, whereas the term URL implies a
location from which you can obtain a representation of a resource such as an HTML page.

The W3C recommendation for this processing instruction is separate from the XSLT specifications, and is
at www.w3.org/TR/xml-stylesheet/.

The semantics of pseudo-attributes is the same as that of the attributes used in <link
rel="stylesheet"> in HTML.

The content type expressed need not be XSLT, and this processing instruction is often used to specify
multiple CSS files to handle different types of media using the value 'text/css'. The content type
for XSLT 1.0 was never specified in the W3C recommendation. Microsoft invented the 'text/xsl'
value for Internet Explorer, which seems to have stuck in practice, though browsers may also accept
other values, such as 'text/xml'. The XSLT 2.0 recommendation formally registers the media type
'application/xslt+xml"'.

Built-in Rules

We can now process the sample by writing a bare-bones transform. It is not very exciting, but it illustrates
the default behavior of a processor using a built-in template rule, specified in the XSLT specification.

XSLT defines built-in rules for processing templates, and the rule for document and element nodes
ensures that the root element and all of its children will be handled recursively, even if there are no
element-specific templates.

This book generally specifies XSLT version 2.0 for stylesheets. However, in the following Try It Out you'll

create an XSLT 1.0 transform using a single root <xsl:stylesheet> element to demonstrate this built-in
behavior.

_ A Root Element Stylesheet

To create the transform, follow these steps:

1. Inthe Oxygen IDE, mentioned in this book’s Introduction, create a new document by choosing
New > Stylesheet (XSL) File.

2. In the dialog that appears, select 1.0 as the Stylesheet version.

Chapter 1: First Steps with XSLT

3. Enter browser.xsl as the filename and click Finish. The new file should open with the following
contents:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">

</xsl:stylesheet>

Because this stylesheet is an XML document, it must begin with an XML declaration, specifying the
version number and the encoding. The root element in a stylesheet is <xs1:stylesheet>, though the
synonym <xsl:transform> may also be used. You must always specify the XSLT namespace, and it is
important to set the version attribute correctly to match the type of processing required.

After you've declared the namespace, all the XSLT element names require the namespace prefix, which
is xs1: by convention. The prefix also makes it clear which element is referenced if other namespaces are
in use.

Browsers that I have used will not complain about the version number, and many version 1.0 features
are unchanged in version 2.0. In any case, it is good practice to document your intentions.

You can now process the sample. Open the xs1_stylesheet.xml file from a browser using the File >
Open menu command. You should see something like the output shown in Listing 1-2.

Listing 1-2
xsl:stylesheetThe root element of a stylesheet.The xsl:stylesheet element is
always the root element, even if a stylesheet is included in, or imported
into, another. It must have a version attribute, indicating the version of
XSLT that the stylesheet requires. For this version of XSLT, the value should
normally be "2.0". For a stylesheet designed to execute under either XSLT 1.0
or XSLT 2.0, create a core module for each version number; then use xsl:include
or xsl:import to incorporate common code, which should specify version="2.0" if
it uses XSLT 2.0 features, or version="1.0" otherwise.The xsl:transform element
is allowed as a synonym.The namespace declaration
xmlns:xsl="http//www.w3.0rg/1999/XSL
/Transform by convention uses the prefix xsl. An element occurring as a child of
the xsl:stylesheet element is called a declaration. These top-level elements are
all optional, and may occur zero or more times.

What has happened here? Without any further instructions, the processor has output all the text nodes
from the source document.

Safari 3.4 on Windows reports an empty stylesheet error and renders nothing, which suggests that
something may not be quite right with the implementation of built-in rules. Google Chrome produces the
same result, presumably because it is based on the same core engine.

Definin an Output Method

You can provide hints to the stylesheet processing by adding some output specifications to your
stylesheet. Unless otherwise specified as HTML or XHTML, the output will be in XML format. It is also
possible to add user-defined methods.

Chapter 1: First Steps with XSLT

You can define the type of output in the declaration <xsl:output>. You saw the schema definition in
this book’s introduction, but here it is as a reminder. The attribute list is quite extensive, but for now I'd
like to focus on just a few attributes:

<xs:element name="output" substitutionGroup="xsl:declaration">
<xs:complexType mixed="true">
<xs:complexContent mixed="true">
<xs:extension base="xsl:generic-element-type">
<xs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="method" type="xsl:method"/>
<xs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
<xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
<xs:attribute name="doctype-public" type="xs:string"/>
<xs:attribute name="doctype-system" type="xs:string"/>
<xs:attribute name="encoding" type="xs:string"/>
<xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
<xs:attribute name="include-content-type" type="xsl:yes-or-no"/>
<xs:attribute name="indent" type="xsl:yes-or-no"/>
<xs:attribute name="media-type" type="xs:string"/>
<xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
<xs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
<xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
<xs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="version" type="xs:NMTOKEN"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

In XSLT 1.0, the method attribute can take the values "xml", "html", or "text". For instance, you
would use the "text" method to output a CSV file, which you’ll learn how to do in Chapter 9. You
would use "xml" as a value for SVG output, and also for PDF because it requires transforming to the
XSLFO format as an intermediate step. The XSLT 2.0 specification adds "xhtml"to the possible attribute
values.

However, in the next XSLT 1.0 example you’'ll use "xml" as a value, as the output is XHTML.

The version attribute on the <xsl:stylesheet> element is rather confusing. It has absolutely nothing
to do with the version of XSLT; rather, it refers to the version of XML to be output.

You can define an encoding attribute, which specifies the preferred character encoding of the output
document. All XSLT processors (and XML parsers) are required to support UTF-8 and UTF-16. Clearly,
processing Chinese or Japanese content with UTF-8 encoding would produce corrupt output.

On this occasion, you'll set it to 'UTF-8'. You can also add two more attributes specifying the XHTML
doctype-system and doctype-public attribute values. These will result in the processor generating
correct declarations in the output, before the <ntml> element:

<xml version="1.0" encoding="UTF-8"/>
<xsl:stylesheet
xmlns:xsl=http://www.w3.0rg/1999/XSL/Transform

Chapter 1: First Steps with XSLT

version="1.0">

<xsl:output
method="xml"
encoding="UTF-8"
doctype-system="http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

</xsl:stylesheet>

An XSLT 2.0 stylesheetstylesheet may contain multiple <xs1:output> declarations and may include or
import stylesheet modules that also contain <xs1:output> declarations. This enables you to use one or
more stylesheets to output results using different methods. So you might, for instance, output both a CSV
file and a web page in one pass.

If you use multiple declarations in this way, the name attribute must be specified on each
<xsl:output> element to identify it. These names should match a set of format attribute values

on <xsl:result-document> instructions, which I discuss in Chapter 7, in the stylesheet. The following
snippet briefly illustrates how this might work:

<xsl:output name="web" method="xhtml" encoding="UTF-8"/>
<xsl:output name="csv" method="text"/>

<xsl:template match="/">
<xsl:result-document format="web">

</xsl:result-document>
<xsl:result-document format="csv">

</xsl:result-document>
</xsl:template>

The form of name attributes on XSLT elements is defined as a lexical QName or namespace qualified
name. It applies, for example, to templates, attribute sets, variables, parameters, and so on. Typically
this is a simple name, but it may also be qualified with a namespace prefix such as <xsl:function
name="xm:getentry-by-id">. If two qualified names are compared, the namespace URI that is
declared with the prefix and the local name is used.

Main Template

The <xsl:template> element, which is covered in more detail in Chapter 3, is a basic building block of a
stylesheet. This element is used to declare templates that match elements in the XML source, and to gen-
erate nodes in a result tree. Usually a stylesheet has a main template with the match attribute, set to "/

<xsl:template match="/">
<xsl:apply-templates select="reference/body"/>
</xsl:template>

This value is an XPath expression that means “‘match the root of the source tree.” Note that this is not
the same thing as the root element of the source document. The root of the source tree is outside of
everything, including the containing top-level element.

Chapter 1: First Steps with XSLT

This means that processing will begin right at the start of the XML source tree, outside the <reference>
element. Path expressions in this context will be relative to this location.

The contained <xs1:apply-templates> instruction selects the <body> element in the source document
(see Listing 1-1) for processing, showing the relative XPath expression "reference/body" in the select
attribute. This means that the <body> element and everything inside it have been selected for processing.
This instruction simply defines a set of nodes to be processed using the template rules for each source
node to be matched.

You are not restricted to following the nested nodes as shown in this example. You might
want to select all the paragraphs in the source document for processing, in which case you
would use <xsl:apply-templates select= "//p"/>. There’s more on XPath expressions in
Chapter 2.

Literal Result Elements

You have two options when it comes to generating the element names that will be output. Usually,
the most straightforward is to create what is called a literal result element by typing the element name
with start and end tags straight into the stylesheet, and then populating the new elements with selected
content from the source XML.

Literal result elements are treated as data to be copied from the result tree directly to the output. These
elements can have any name, and the content may be XSLT instructions, nested literal result elements, or
text. If you set attributes on the literal result elements, they will also be copied to the output.

This gives you considerable freedom to construct output from any source in your target XML vocabulary.
For this XHTML page, you will start with something like the following skeleton:

<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of select="reference/body/title"/>
</title>
</head>
<body>
<p>The body goes here</p>
</body>
</html>
</xsl:template>

The preceding code will render the following output:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>xsl:stylesheet</title>
</head>
<body>
<p>The body goes here.</p>
</body>
<html>

Chapter 1: First Steps with XSLT

Selecting Source Content

To output source content, you select from the element to be transformed, using the <xsl:value-of>
instruction. The select attribute defines the XPath expression to use. The next code snippet shows
how:

<hl class="section"><xsl:value-of select="title"/></hl>

As you learned in the introduction to this book, the <xs1:value-of> element is a sequence constructor,
which is a series of XSLT instructions. This is the schema declaration:

<xs:element name="value-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no" default=
"no" />
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Processing Specifi Source Elements

The processor’s built-in template rules have a lower priority than other templates, so by adding rules for
individual elements, you can override the defaults.

Now you can add specific templates for the structural elements in the XML source: <title>, <purpose>,
<usage>, and <p>. The match attribute identifies the element, and the output is specified with literal
result elements. The select attribute value "." for the <title> element is an XPath expression that
refers to the current node being processed. Because both the <purpose> and the <usage> elements can
contain paragraphs, we apply processing to all the <p> content and its inline markup.

These templates are located at the top level like the main template you have just written, but their order
is not significant. The XSLT processor treats the source elements in document order and will look in the
templates for matches as it goes. I generally put them in rough document order in simple stylesheets:

<xsl:template match="title">
<hl>
<xsl:value-of select="."/>
</hl>
</xsl:template>

<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="usage">
<h2>Usage</h2>
<xsl:apply-templates select="p"/>
</xsl:template

Chapter 1: First Steps with XSLT

<xsl:template match="p">
<p><xsl:apply-templates/></p>
</xsl:template>

In the next template you match the XML source <attr> (attribute) and <element> names using the
XPath union operator " |, and output a containing <code> literal result element. The union operator
performs a logical Or, matching either of the source element names:

<xsl:template match="attr | element">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

The output for an element name will look like this:

<p>An element occurring as a child of the
<code>xsl:stylesheet</code> element is called a
declaration. These top-level elements are all optional, and may
occur zero or more times.

</p>

Copying Content

When content in both the source and the output should be identical, you can simply copy the source
nodes to the result. With the <xs1:copy> instruction, you copy the source <code> element name and its
content to the output:

<xsl:template match="code">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

Here is the schema definition:

<xs:element name="copy" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xXs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default=
"yes" />
<xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

There are two copy instructions in XSLT. The <xs1:copy> instruction is a shallow copy, and copies
only the context node, but nothing under it. You specify the output in the sequence constructor inside
<xsl:copy>. This instruction is most useful when copying element nodes.

Chapter 1: First Steps with XSLT

It causes the current XML node in the source document to be copied to the output. The actual effect
depends on whether the node is an element, an attribute, or a text node. For an element, the start and
end element tags are copied; the attributes, character content, and child elements are copied only if
xsl:apply-templates is used within xs1:copy

In contrast, if you use <xs1:copy-of>, each new node will contain copies of all the children, attributes,
and namespaces of the original node, recursively. This is often called a deep copy. This instruction has a
select attribute, providing you with more flexibility in selection:

<xs:element name="copy-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Listing 1-3 shows the completed stylesheet. Save this version as local.xsl.

Listing 1-3
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:output method="html"
encoding="UTF-8"
doctype-system="http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of select="reference/body/title"/>
</title>
</head>
<body>
<xsl:apply-templates select="reference/body"/>
</body>
</html>
</xsl:template>

<xsl:template match="title">
<hl>
<xsl:value-of select="."/>
</hl>
</xsl:template>

<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

10

Chapter 1: First Steps with XSLT

<xsl:template match="usage">
<h2>Usage</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="p">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

<xsl:template match="attr | element">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

<xsl:template match="code">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Transforming Locally

This time you’ll run the stylesheet processor ““locally,” rather than on the browser. The setup suggestions
that follow make further use the Oxygen IDE . You'll also look briefly at invoking the Java command-line
interface for the Saxon processor.

_ Configuring a Transformation

You can use the Oxygen IDE to set up a transformation, providing a range of configuration values.
Essentially, you provide input and output values, which are associated with the source file and saved
automatically for reuse. To avoid typing long paths, you can use editor variables recognized by the
application, such as “${cfdu}” for “current file directory URL.”

1.
2.
3.

ok

N

Open xs1_stylesheet.xml in the XML editor.
Choose XML » Configure Stylesheet Transformation.

Click New in the dialog that opens, and name the scenario xml2xhtml in the Edit Scenario dialog
that appears, as shown in Figure 1-1. By default, the variable "${currentFileURL}" is used for
the XML URL setting.

On the XSLT tab, insert ${cfdu}local.xsl in the XSL URL control.
Choose Saxon6.5.5 in the Transformer drop-down. Figure 1-1 shows the settings.

On the Output tab, accept the default setting Save as ${cfn}.html, which will save the XHTML
file in the same directory as the source, with the current filename.

Check Show in Browser and click OK.
In the main dialog, click Transform Now.

11

Chapter 1: First Steps with XSLT

= Edit scenario

Scenario

Name | wml2xhtmd]

#5LT - FO Processor | Qutput

HMLURL: | ${eumrentrleURLE rMEBE
®SLURL: | ${CF¢J},|’SEE|32YS| v @ Q

More about ${currentFilelJRLY ...
[Cluse “smi-stylesheet” declaration

Transformer: | Saxon6.5.5 |

| Parameters I

| Append Tesader awd Nuuler I

[Addtional kLT stylesheets (0} |

[Extensions {0}]

ok | [cancel

Figure 1-1
The transformed document should open in your browser.

Figure 1-2 shows the browser output, and Listing 1-4 shows the XHTML source code.

xsl:stylesheet

Purpose

The root element of a stylesheet.

Usage

The xs1l:ztylesheet iz always the root element, even if a stylesheet is meluded m, or inported into another. Tt
must have a version attrbute, indicating the version of ZISLT that the stylesheet recuires.

For this wersion of 3[5LT, the value should normally be »z.0m. For a stylesheet designed to execute under
either Z0SLT 1.0 or ZI3LT 2.0, create a core module for each version number; then use xs1:include or
®xsl:import to mcorporate comunon code. which should specify version=rz.oriftuses ZSLT 2.0
features, of version="1.0" otherwise.

The xs1:transform element is allowed as a synonym.

The namespace declaration =mlns:xsl="http//vww. w3 . org/ 1999/ 3L/ Transform by convention uses
the prefiz xs 1.

An element ocourning as a child of the x=1:stylesheet element iz called a declaration. These top-lewvel
elements are all optional, and may cccur zeL’o of more times.

Figure 1-2

12

Chapter 1: First Steps with XSLT

Listing 1-4
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html>
<head>
<title>xsl:stylesheet</title>
</head>
<body>
<hl>xsl:stylesheet</hl>
<h2>Purpose</h2>
<p>The root element of a stylesheet.</p>
<h2>Usage</h2>
<p>The <code>stylesheet</code> is always the root element, even if a
stylesheet is included in, or imported into, another. It must have a <code>
version</code> attribute, indicating the version of XSLT that
the stylesheet requires.</p>
<p>For this version of XSLT, the value should normally be <code>"2.0"</code>.
For a stylesheet designed to execute under either
XSLT 1.0 or XSLT 2.0, create a core module for each version number;
then use <code>xsl:include</code> or <code>xsl:import</code> to
incorporate common code, which should specify <code>version="2.0"</code> if it uses
XSLT 2.0 features, or <code>version="1.0"</code> otherwise.</p>
<p>The <code>xsl:transform</code> element is allowed as a synonym.</p>
<p>The namespace declaration <code>xmlns:xsl="http//www.w3.0rg/1999/XSL
/Transform</code> by convention uses the prefix <code>xsl</code>.</p>
<p>An element occurring as a child of the <code>stylesheet</code> element is
called a declaration. These top-level elements are all optional, and may occur
zero or more times.</p>
</body>
</html>

Using the Command Line

Another way to invoke a stylesheet processor is to use a command-line interface. The specifics of the
interface will vary according to which processor you use.

The next example uses the Saxon CLI for the open-source version on the local.xsl.If you intend to use
the CLI frequently, you may prefer to run it from an open-source tool like jEdit (www. jedit.org), rather
than from the file system console.

If you are using the Oxygen IDE and just want to experiment with the CLI, you will find the . jar file
in the 1ib directory. If you are not using a bundled version of Saxon, you can download the Java ver-
sion of the Saxon processor from SourceForge (http://sourceforge.net/project/showfiles.php?
groupid=29872).

Unzip the download to a convenient directory. Add the saxon9.jar file to the classpath so that the
command in the following Try It Out will locate the main program net.sf.saxon. The schema-aware

version is com. saxonica.

Full documentation is available on the Saxonica site, which you should consult for installation and con-
figuration instructions (www.saxonica.com/documentation/contents.html).

13

Chapter 1: First Steps with XSLT

_ The Saxon CLI

Enter the following code on the command line and execute it:

java net.sf.saxon.Transform -s:xsl_stylesheet.xml -xsl:local.xsl
-0:xsl_stylesheet.html

The options in the example have the following meanings:

-s:filename: The source XML file
-xs1:filename: The XSL stylesheet to use

-o:filename: The output filename

The remaining Saxon CLI options are extensive and quite powerful. If you are interested in pursuing the
CLI approach, you should review the Saxon documentation at your leisure before using them.

Transforming XML Data to XML

The next example illustrates how simple it can be to transform content from one XML format to another.
A common transform problem is that two similar schemas will use different names for identical content
values. Another problem is that in one case an attribute is used for a value, while another uses an element
for the same purpose.

The next stylesheet uses two common metadata vocabularies that express information in roughly the
same manner. One is the Atom 1.0 format, increasingly used for blogs and news feeds; the other is RSS
1.0, which uses a combination of the Dublin Core Metadata Initiative vocabulary and RDF/XML.

There is also a version 2.0 “branch” of RSS. Although it is often assumed that RSS 2.0 supersedes

RSS 1.0, it doesn’t; and the versions are incompatible in several ways. RSS 2.0 is also in widespread
use, but we won't be using it in this chapter. If you want to explore the structure of RSS 2.0, go to
http://cyber.law.harvard.edu/rss/rss.html.

Of course, you wouldn't bother serializing either of these feeds to XML if the data were in a SQL database
or an RDF triple store. However, if you are aggregating the data from feed URLs, or you have been
provided with source data in XML, you won’t have much choice.

Atom and RSS Elements

14

The next two tables compare the feed elements and entry elements in the Atom 1.0 schema with the
equivalents in RDF Site Summary (RSS) 1.0. The pros and cons of the different ways to describe metadata
can be a contentious issue, but just now we need not be concerned with the details.

The following table lists the top-level elements that define the properties of the Atom feed in the <feed>
and RSS 1.0 <channel> elements. The matches are quite weak at this level, perhaps reflecting the history

Chapter 1: First Steps with XSLT

of how these structures were developed. The Atom specification provides a richer set of values on the
whole.

Atom RSS 1.0 Description
feed channel Root element of the feed document
title title Feed title
id Feed identifier
updated Date the feed was most recently updated
subtitle Feed subtitle
generator Application that generated the feed
link link URL for the HTML version of the feed
description Feed description
logo, icon image URI for a feed image
items RDF sequence acting as a table of contents
entry item Feed entry container

The next table shows elements in the Atom <entry> and RSS 1.0 <item> elements. The “item’” contents
for RSS 1.0 are in the Dublin Core (DC) namespace. The matches between the schemas are much closer
here, and the differences reflect the fact that the DC format has strong origins in the library community,
and Atom was primarily developed for the requirements of web logs.

Atom DC Description

id identifier Identifier of the resource

title title Name by which the resource is known

published date Date of publication

updated Date updated

author Container for name, e-mail, and URI elements

name creator The person or organization responsible for creating
the resource

email Author’s e-mail address

uri URI associated with the author

contributor contributor Contributor to a work; same structure as author.

Continued

15

Chapter 1: First Steps with XSLT

Atom DC Description
summary description Description of the resource
language Principal language of the resource
content/@type format File format
type Defines either the genre or intellectual type of the
resource
publisher Supplier of the resource
source source Identifier for source material for the resource,

assuming it is derived from another format

content Container of or link to the content

coverage Locations or periods that are subjects of the resource
category subject Subjects of the resource
rights rights Rights information

relation Reference to a related resource

Listing 1-5 shows part of an Atom feed from the xml.com website. We'll use this document as the source
for the transformation. Some content, an additional namespace declaration, and stylesheet-processing
instructions have been removed for clarity.

The listing shows the <feed> element and its content to the end of the first <entry> element. The code
download is in the file atom.xml.

Listing 1-5

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.o0rg/2005/Atom">
<title>0'Reilly News: XML</title>
<link rel="alternate" type="text/html" href="http://news.oreilly.com/"/>
<id>tag:news.oreilly.com,2008-08-01://44</id>
<updated>2008-12-17T07:32:30%Z</updated>
<subtitle>0'Reilly News - Spreading the knowledge of innovators</subtitle>
<generator uri="http://www.sixapart.com/movabletype/">Movable Type Pro 4.21-en

</generator>
<link rel="self" href="http://feeds.oreilly.com/oreilly/xml"
type="application/atom+xml" />

<entry>
<title>Defining markup languages using Unicode properties</title>
<link rel="alternate" type="text/html" href="http://feeds.oreilly.com

/~r/oreilly/xml/~3/487372046/defining-markup-languages-usin.html" />
<id>tag:broadcast.oreilly.com,2008://53.34679</id>
<published>2008-12-17T03:01:237</published>
<updated>2008-12-17T07:32:30Z</updated>

16

Chapter 1: First Steps with XSLT

<summary>Can we define a family of markup languages that used the Unicode
properties and which could accept a fair imitation of XML and produce
a SAX-like event stream?</summary>
<author>
<name>Rick Jelliffe</name>
</author>
<category term="xml" label="xml"
scheme="http://www.sixapart.com/ns/types#tag"/>
<content type="html" xml:lang="en" xml:base="http://broadcast.oreilly.com/">
Can we define a family of markup languages that used the Unicode
properties and which could accept a
fair imitation of XML and produce a SAX-like event stream?
<img src="http://feeds.oreilly.com/~r/oreilly/xml/~4/487372046"
height="1" width="1"/></content>
</entry>

</feed>

This feed will be well out of date when you read this. To get a current version, go to
http://feeds.oreilly.com/oreilly/xml, copy the source, and save it as a replacement.
Alternatively, you can load the data directly from the feed site using the URL containing the feed source.

Developing the Stylesheet

As with the XML to HTML transform, we’ll take the development one step at a time. The approach is
essentially the same, with XML as the target rather than HTML. The vocabularies are, of course, different,
but the matching process will work similarly. It is not too important at present to absorb the details of
the Atom and RSS 1.0 formats, but if you would like to do so here are the relevant URLs:

Atom 1.0 www.atomenabled.org/developers/syndication/atom-format-spec.php

RSS 1.0 http://web.resource.org/rss/1.0/spec

I'll call the top-level elements “feed elements,” and the individual entries “entry elements,” using the
Atom terminology.

Preliminaries

Let’s start with the basics of the stylesheet rss_feed.xs1. This time you'll set "2.0" as the value of the
stylesheet’s version attribute. Inside the <xsl:stylesheet> element are two namespaces to declare
using the rdf and dc prefixes.

Always check the source file for a default namespace declaration: In this case it is
"http://www.w3.0org/2005/Atom". You need to set the xpath-default-namespace
attribute on the <xsl:stylesheet> element to this value; otherwise, nothing from
the source file will be output.

17

Chapter 1: First Steps with XSLT

Next, declare the output method as "xml" and the encoding as "UTF-8". In the main template, create
the literal result elements <rdf : RDF> and <channel>, in that order, as the container for your output. The
namespaces must be declared again on the <rdf : RDF> element:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"

xpath-default-namespace="http://www.w3.0rg/2005/Atom">

<xsl:output method="xml" encoding="UTF-8"/>
<xsl:template match="/">
<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
<channel>

</channel>
</rdf :RDF>
</xsl:template>

</xsl:styleheet>

Specifying Attributes

Both the <channel> and <item> elements require the rdf:about attribute.

An attribute can be set directly on a literal result element if you know its value ahead of time, but in
this case you need to use another approach, with the <xs1:attribute> instruction. This element should
always come first in any set of sequence constructor instructions. You can use either the element content
or the select attribute, but note that these approaches are mutually exclusive.

The XSLT 2.0 schema definition looks like this:

<xs:element name="attribute" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="namespace" type="xsl:avt"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

To add the rdf:about attribute to the <channel> element, enter the <xsl:attribute> element

right after the <channel> element, and use the <xsl:value-of> instruction to obtain the link URL
http://news.oreilly.com/ from the href attribute on the source feed’s <1ink> element:

18

Chapter 1: First Steps with XSLT

<channel>

<xsl:attribute name="rdf:about">
<xsl:value-of>feed/link/@href<.xsl:value-of>
</xsl:attribute>

</channel>

Completing the Feed Elements

Adding a title is straightforward, again using the element <xsl:value-of>; you could also have used
<xsl:copy-of> because the elements are identical in each vocabulary:

<title>
<xsl:value-of select="feed/title"/>
</title>

There’s nothing you can use to fill the <description> element except perhaps the feed’s subtitle, but that
might not be a good idea because it is optional in the Atom schema.

Next you come to the <1ink> element in the RSS feed ... but wait — you've just used the required value
in the rdf:about attribute. Let’s backtrack and create a reusable template variable $feedurl.

You can also refine the selection to choose the link that has the rel attribute set to 'self', because there
are two link elements in the source. To do this you use a predicate inside square brackets: " []". You'll
learn more about predicates in the next chapter. Change the code to look like this:

<channel>
<xsl:variable name="feedurl" select="feed/link[@rel='self']/@href"/>
<xsl:attribute name="rdf:about">
<xsl:value-of select="S$feedurl"/>

</xsl:attribute>
<title>

<xsl:value-of select="feed/title"/>
</title>

<link><xsl:value-of select="S$feedurl"/></link>
</channel>

Item Listing

To create an item listing to act as a table of contents, enter the literal result element <items> and an
RDF sequence element, rdf: Seq. The sequence constructor <xs1:for-each> will take the processor to
all of the matching nodes one by one, changing the context node as it goes. You will learn more about
<xsl:for-each> in Chapter 4.

By selecting with the XPath expression feed//entry (using "//"), you operate on all the entry elements
in the feed. For each entry, you add an RDF list item, rdf:11, and set its rdf : resource attribute value

from the <1ink> element in each individual entry:

<items>
<rdf:Seqg>

19

Chapter 1: First Steps with XSLT

<xsl:for-each select="feed//entry">
<rdf:1i>
<xsl:attribute name="rdf:resource">
<xsl:value-of select="link/@href"/>
</xsl:attribute>

</rdf:li>
</xsl:for-each>
</rdf:Seqg>
</items>
Entry Elements

20

Still in the main template, you need to loop through the entries again to create a series of complete <item>
elements in the output:

<xsl:for-each select="//entry">
<xsl:apply-templates select="."/>
</xsl:for-each>

In a template matching <entry> elements, you can handle the translation from Atom to Dublin
Core. Most of the translations are straightforward. Dublin Core doesn’t have an equivalent of the
<atom:updated> element, so you use that value in <dc:date>. The language can be obtained from the
<content> element’s xml : lang attribute. Another point to note is that there can be multiple categories
in entries, just as there can be multiple <dc: subject> elements. Therefore, you need to select the 1abel
attribute on the <category> element inside another <xsl:for-each> loop that creates the subject
elements.

In neither of these two schemas does the order of elements matter, or the number of occurrences, so you
can simply let the source sequence drive the process:

<xsl:template match="entry">
<item>
<xsl:attribute name="rdf:about">
<xsl:value-of select="id"/>
</xsl:attribute>
<link>
<xsl:value-of select="link/@href"/>
</1link>
<dc:identifier>
<xsl:value-of select="id"/>
</dc: identifier >
<dc:language>
<xsl:value-of select="content/@xml:lang"/>
</dc:language>
<dc:title>
<xsl:value-of select="title"/>
</dc:title>
<dc:date>
<xsl:value-of select="published"/>
</dc:date>
<dc:creator>
<xsl:value-of select="author/name"/>
</dc:creator>

Chapter 1: First Steps with XSLT

<dc:description>
<xsl:value-of select="summary"/>
</dc:description>
<dc: format>
<xsl:value-of select="content/@type"/>
</dc:format>
<xsl:for-each select="category">
<dcsubject>
<xsl:value-of select="./@label"/>
</dc:subject>
</xsl:for-each>
</item>
</xsl:template>

The full stylesheet is shown in Listing 1-6.

Listing 1-6
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xpath-default-namespace="http://www.w3.0rg/2005/Atom">
<xsl:output method="xml"/>
<xsl:variable name="site">testurl</xsl:variable>
<xsl:template match="/">
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<xsl:variable name="feedurl" select="feed/link[@rel="'self']/@href"/>
<xsl:attribute name="rdf:about">
<xsl:value-of select="S$feedurl"/>
</xsl:attribute>

<title>

<xsl:value-of select="feed/title"/>
</title>
<link>

<xsl:value-of select="S$feedurl"/>
</1link>
<items>

<rdf:Seqgq>

<xsl:for-each select="feed//entry">
<rdf:1i>
<xsl:attribute name="rdf:resource">
<xsl:value-of select="id"/>
</xsl:attribute>
</rdf:1i>
</xsl:for-each>

</rdf:Seqg>
</items>
<xsl:for-each select="//entry">

<xsl:apply-templates select="."/>
</xsl:for-each>

</channel>

Continued

21

Chapter 1: First Steps with XSLT

Listing 1-6: (continued)

</rdf :RDF>
</xsl:template>
<xsl:template match="entry">
<item>
<xsl:attribute name="rdf:about">
<xsl:value-of select="id"/>
</xsl:attribute>
<link>
<xsl:value-of select="link/@href"/>
</link>
<dc:language>
<xsl:value-of select="content/@xml:lang"/>
</dc: language >
<dc:title>
<xsl:value-of select="title"/>
</dc:title>
<dc:date>
<xsl:value-of select="updated"/>
</dc:date>
<dc:creator>
<xsl:value-of select="author/name"/>
</dc:creator>
<dc:description>
<xsl:value-of select="summary"/>
</dc:description>
<dc:format>
<xsl:value-of select="content/@type"/>
</dc:format>
<xsl:for-each select="category">
<dc:subject>
<xsl:value-of select="./@label"/>
</dc:subject>
</xsl:for-each>
</item>
</xsl:template>
</xsl:stylesheet>

RSS 1.0 Results

To run the transform, add a scenario in the Oxygen IDE, using atom.xml as the source, and rss_feed.xsl
as the stylesheet.

Listing 1-7 shows a matching fragment of the transformed RSS 1.0 feed.

Listing 1-7
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<channel rdf:about="http://feeds.oreilly.com/oreilly/xml">
<title>0'Reilly News: XML</title>

22

Chapter 1: First Steps with XSLT

<link>http://feeds.oreilly.com/oreilly/xml</1link>
<items>
<rdf:Seqg>

<rdf:1i rdf:resource="tag:broadcast.oreilly.com,2008://53.34667"/>
<rdf:1i rdf:resource="tag:broadcast.oreilly.com,2008://53.34679"/>
<rdf:1i rdf:resource="tag:broadcast.oreilly.com,2008://53.34620"/>
<rdf:1i rdf:resource="tag:broadcast.oreilly.com,2008://53.34524"/>
<rdf:1i rdf:resource="tag:broadcast.oreilly.com,2008://53.34508"/>

</rdf:Seqg>
</items>
<item rdf:about="tag:broadcast.oreilly.com,2008://53.34667">
<link>http://feeds.oreilly.com/~r/oreilly/xml/~3/487860677
/xforms-a-pause-for-reflection.html</link>
<dc:language>en</dc: language >
<dc:title>XForms, a pause for reflection</dc:title>
<dc:date>2008-12-17T18:05:12Z</dc:date>
<dc:creator>Philip Fennell</dc:creator>
<dc:description>The other day I had what could only be described as a
'Roy Scheider moment', you know the bit in the film Jaws where the camera
tracks-in whilst zooming-out at the same time. Well, whilst debugging an
XForms enabled application, the Mozilla XForms plug-in had exposed the host
document, XForms and all, as the content of the empty xf:instance. How odd.
I mean, what good is that? That's when it struck me in a Roy Scheider sort
of way; this was Reflection, the ability of a program to look at itself and
change its behaviour.</dc:description>
<dc:format>html</dc:format>
<dc:subject>xforms</dc:subject>
<dc:subject>xml</dc:subject>
<dc:subject>xrx</dc:subject>
</item>

</channel>
</rdf :RDF>

Summary

In this chapter you created two stylesheets, the first of which handled a typical document transformation
from XML to XHTML.

The second transform was a little more complex, involving two different schemas. You used an XSLT
version 2.0 stylesheet with XML output, and learned about using the <xs1:for-each> instruction to
handle repeating uniform data structures.

You used three methods to invoke your first stylesheet: the <?xs1-stylesheet?> processing instruction,
the Oxygen IDE, and the Saxon CLL

Along the way, you learned about the main structural XSLT elements, defining output methods, match-

ing nodes in source documents, and selecting content to transform. You also encountered some common
XPath syntax, more of which is introduced in Chapter 2.

23

Chapter 1: First Steps with XSLT

24

Key Points

A stylesheet processor uses built-in rules for processing by default.

You override these rules by using specific template rules to match elements
in an XML source document with XPath expressions.

You can specify different output methods in a stylesheet — XML, XHTML,
HTML and text — and define the preferred character encoding too.

Literal result elements and attributes are often used to define output struc-
tures.

Output element content is usually specified by selecting values in the source
with XPath expressions.

Always check for default namespace declarations in source files and set the
xpath-default-namespace attribute on the <xsl:stylesheet> element to
this value.

Introducing XPath

XPath 2.0 is an expression language that is absolutely fundamental to XSLT 2.0 in several important
ways.

A common use of XPath in XSLT is selecting nodes in an XML document. For example, you can
make a very wide selection and refer to all the <1i> elements in a document using the expression
select="//1i", or be very specific by pointing to the class attribute in the first <p> in the third
<div> of a document using div[3]/p[1]/@class.

XPath expressions are also used by an XSLT processor to match source tree nodes to template
rules. As the XSLT processor traverses the element nodes in an XML source document, it looks
for a corresponding XPath expression that you set in the match attribute of an <xs1:template>
declaration.

XPath functions provide you with a wide range of features, enabling you to manipulate strings,
dates and times, numbers, and nodes.

In this chapter you take a break from creating full-scale stylesheets and look into some XPath 2.0
features in some detail. You'll do all of the following;:

0 Review node types and properties.

O Look at the XPath data model.

0 Tackle the important topic of path expressions used to navigate the node trees in your
source documents.

0 Get a brief overview of using the XPath Analyzer — a tool that can help you avoid prob-
lems along the XPath trail.

0 Study a rich set of XPath functions that you will encounter repeatedly as you develop your
XSLT skills.

Nodes

In the introduction you saw that XPath models the XML document as a tree of typed nodes. Here
you’'ll look at the node types in more detail, including their properties.

Chapter 2: Introducing XPath

Let’s consider another partial document from the case study, this one describing the <xsl:apply-
templates> instruction. In this example, a namespace for a different XML vocabulary is declared
and used in the paragraph under the <purpose> element to mark the phrase “template rule” as
a <xm:term> element. A figure contains a reference to a diagram illustrating the content model of
<xsl:apply-templates>. I'll refer to this example in the section on node types that follows.

<reference>
<body>
<title>xsl:apply-templates</title>
<purpose>
<p>A template instruction used to override a <xm:term
xmlns:xm="http://xm.net/2007/xsl/term"> template
rule</xm:term> in an importing module with one of the same name in
an imported module.</p>
</purpose>
<usage>
<p><element>xsl:apply-imports</element> is useful when you want to
partially override a rule rather than replace it.</p>
</usage>
<!-- content model diagram -->
<figure><object src="stylesheet_cm.jpg"/></figure>
</body>
</reference>

Node Types

XPath defines a number of node types:

0O Document: The root of the tree representing the entire document contents, represented by the
"/ character in an XPath expression. I use the term “document” to designate this node, which
is often called the root node, because I find that using “root node”” makes it easy to confuse the
document node with a document’s root, or outermost, element.

O Element: Element nodes are defined by pairs of start and end tags such as <title> </title>
or an empty element tag such as <object/> with no content. Often you will see “tag” used as a
synonym for “element,” but I won’t follow that usage.

QO Text: A character sequence in an element, comment, processing instruction, or namespace, such
as the content "XSLT 2.0" in <title>XSLT 2.0</title>.

O Attribute: The name and value of an attribute in an element start tag or an empty element tag,
such as <object src="stylesheet_cm.jpg"/>.

a Comment: Comments in an XML source document, such as <! --content model diagram -->.

0 Processing instruction: An instruction in the source document, such as the stylesheet instruction
<?xml-stylesheet href="stepl.xsl" type="text/xsl"?>.

0 Namespace: A namespace declaration is copied to each element to which the declaration applies.
In this case it is http://xm.net/2007/xs1/term, copied to the <xm: term> element.

Node Properties
A node may have a number of properties. The following table shows how they apply to each node type.
26

Chapter 2: Introducing XPath

Property Description Applies to Node Type(s)

Name Qualified by the namespace, such as <xm:term>; Element, attribute,
the prefix "xm" precedes the colon, followed by =~ namespace, processing
the local part of the name, here "term". The two instruction
parts of the node may be accessed using the
functions namespace-uri () and local-name ().

String value The value of the element, attribute, comment, All
and so on. You can use the string () function
to access this property.

Typed value The content of the node after it has been Element, attribute
validated against the schema. Applies only to
element and attribute nodes; otherwise, it is
identical to the string value. Most operations
extract this value automatically.

Type annotation The datatype of the node content, set by the Element, attribute
schema processor, as distinct from the node
type.

Base URI The base URI of the document from which the Document, element,
node data was read, or, if present, the value of processing instruction

the xml : base attribute on the element.

Parent Refers to the parent node. It does not apply to All except document
the document node.

Children A list of child nodes. Document, element

Attributes The order of attributes is undefined. Element

Namespace The namespace nodes of an element. Element

Data Model

The XPath value that results from evaluating an expression is known as a sequernce. Sequences are ordered
collections of items, and may contain atomic values as well as nodes.

For example, if you were to select all the <property> elements in a document using the expression
"/ /property", the processor would return a sequence of the elements.

The numbering of items always starts at 1. You can access individual items in this sequence using XPath
functions such as position(), count (), and last (). The next snippet shows a test for the count of ele-

ii_rr

ments in the sequence. If it is greater than 1, then an ““s” is added to the literal text value of Attribute:

<h2>Attribute<xsl:if test="count(//property) gt 1">s</xsl:if></h2>

By atomic values I mean things such as numbers of various kinds, strings, and Boolean values. These are
typed values, using an extension of the W3C XML Schema 1.0 datatypes recommendation. In addition to

27

Chapter 2: Introducing XPath

some 20 primitive datatypes, there are many derived types as well, with the namespace prefix xs. XPath
2.0 defines five additional datatypes in the XML Schema 1.0 namespace, with the same prefix — namely,
anyAtomicType, untyped, untypedAtomic, dayTimeDuration, and yearMonthDuration.

These types may be extended further by specifying user-defined types in an XML schema. With a
schema-aware processor you can access them in XSLT 2.0 using the <xs1:import-schema> declaration.

Examples of these datatypes include xs:anyURI, xs:dateTime, and xs:string. The following table pro-
vides descriptions of the frequently used atomic types supported in XPath functions.

Atomic Type Description

xs :anyURI Absolute and relative URIs, including those with a fragment
identifier.

xs:date A date in the ISO 8601 format yyyy-mm-dd.

xs:dateTime A DateTime value in the ISO 8601 format

yyyy-mm-ddThh:mm:ssZ. A fractional seconds part containing at
least three digits may be provided.

xs:decimal Numbers that can be represented in decimal notation.
xs:double Double-precision, floating-point numbers.

xs:integer Positive and negative natural numbers up to 20 digits.

xs : QName A simple local name, or a namespace-prefixed local name.
xs:string A sequence of zero or more characters.

xs:time A time in ISO 8601 format hh:mm:ss.
xs:dayTimeDuration Duration in the ISO 8601 format PnDnHnMnS.
xs:yearMonthDuration Duration in the ISO 8601 format PnYnM.

The W3C XML Schema working group has developed XML Schema 1.1 to address commonly requested
features and shortcomings of XML Schema 1.0. To align the type systems of XML Schema with XPath
2.0, the new datatypes specification that is currently at working draft status, introduces three of these
datatypes: xs:anyAtomicType, xs:dayTimeDuration, and xs:yearMonthDuration.

You can find the working draft at www.w3 .org/TR/xmlschemall-2/.

Path Expressions

28

You've already encountered several path expressions in the XSLT stylesheets that you have seen so far.
Expressions like reference/body from the first stylesheet in Chapter 1 are used to select nodes in a tree
in a series of steps.

Paths are interpreted with respect to the current context, which, broadly speaking, is the node in the tree
being processed, or the location. It also consists of other information, such as the variables, functions, and
namespaces that are in scope, and a good deal more as well.

Chapter 2: Introducing XPath

Simple location expressions include " /", which by itself selects the document node, mentioned earlier.
Other examples include " . ", which is shorthand for the current context, and " . . ", which will select the
parent of the context node.

Step expressions ““navigate’” the node tree, in the sense that they describe absolute or relative positions.
These steps are separated by the " /" character, which you will recognize from the naming of paths in file
systems.

Each step may have three parts — axis, test, and predicate:
0 Axis: Specifies a directional relationship in the node tree such as parent:: or child:: This is
often implied — for example, p/code is the shorthand for the code element on the child axis.
Q Test: Defines the nodes to select using the node name or type.
O Predicate: May be used to filter a selection by some other property.

The following example refers to the parent: : axis, testing for an element <p> with the predicate class
attribute equal to "highlight":

parent::p[@class= "highlight"]

Absolute paths start at the document node of the tree containing the context. Relative paths select nodes
relative to the context node.

Using an XPath Analyzer

A quick way to experiment with path expressions is to use an analysis tool. These tools are invaluable for
debugging, too. When I write some XSLT that fails to make the expected selection the first time, I often
go to an analyzer to help me get the syntax right.

Here’s how to use the tool that is built into the Oxygen IDE, which you can use to get feedback as you
work through the book:

1. Open atom.xnl from Chapter 1 in the XML editor.

2. Choose XML > XPath to open the XPath dialog.

3 Choose XPath 2.0 from the drop-down list.

4. Type an expression in the Expression control; the following example uses "/£eed/id".
5

Click Execute. Figure 2-1 shows the XPath Results window.

|z spathResuk 52 =| Resubs| ¥ WSDLS0AP | (21 Problems | Bl Console | = History | =) Froperties| =] Text| = O

=

| Jreed[1]fid[1] - tag:news.oreilly .com, 2008-08-01:/f44

Figure 2-1

The analyzer reports the relative path from the document root, providing the position — in square
brackets " [1" — of each node that matches the expression, followed by the relevant text node.

29

Chapter 2: Introducing XPath

If you click on an item in the report, the matching item in the source code is highlighted.

Try another analysis, this time with the expression //content/@xml:lang. You should get a list of all the
entry nodes with the attribute xml:1ang and its value:

/feed[1l]/entry[l]/content[1l]/@xml:lang - en

/feed[1] /entry[2]/content[1l]/@xml:lang - en

/feed[1l]/entry[3]/content[1l]/@xml:lang - en

/feed[1] /entry[4]/content[1l]/@xml:lang - en

/feed[1l]/entry[5]/content[1]/@xml:lang - en

/feed[1l] /entry[6]/content[1l]/@xml:lang - en
Axes

The following tables summarize the axis relationships and demonstrate two groups of selections from
xsl_stylesheet.xml, which you have already seen:

<reference xml:id="xsl_stylesheet">
<body>
<title>xsl:stylesheet</title>
<purpose>
<p>The root element of a stylesheet.</p>
</purpose>
<usage>
<p>The <element>xsl:stylesheet</element> is always the root element,
even if a stylesheet is included in, or imported into, another. It
must have a <attr>version</attr> attribute, indicating the version
of XSLT that the stylesheet requires.</p>
<p>For this version of XSLT, the value should normally be
<code>"2.0"</code>. For a stylesheet designed to execute under either
XSLT 1.0 or XSLT 2.0, create a <xm:term
xmlns:xm="http://xm.net/2007/xsl/term">core module</xm:term> for each
version number; then use <element>xsl:include</element> or
<element>xsl:import</element> to incorporate common code, which should
specify <code>version="2.0"</code> if it uses XSLT 2.0 features, or
<code>version="1.0"</code> otherwise.</p>
<p>The <element>xsl:transform</element> element is allowed as a
synonym.</p>
<p>The namespace declaration
<code>xmlns:xsl="http//www.w3.0rg/1999/XSL/Transform</code> by
convention uses the prefix <code>xsl</code>.</p>
<p>An element occurring as a child of the
<element>xsl:stylesheet</element> element is called a
declaration. These top-level elements are all optional, and may
occur zero or more times.</p>
</usage>
</body>
</reference>

The first table that follows shows the self:: axis, which identifies the starting node from which any
relationship is expressed, together with five axes that work “up”” the tree from the start node. These axes
select either ancestor or preceding nodes. The fourth column in the table lists the elements selected from
the XML source when the start node is the third <code> element in the second paragraph under <usage>.
The number inside square brackets (" []")shows the position of the elements.

30

Chapter 2:

Introducing XPath

Axis

self::

parent: :

ancestor::

ancestor-or-self::

preceding: :

preceding-sibling: :

Selects

The start node from which any
relationship is expressed

Single parent of the start node

All the elements that enclose the
start node, up to and including
the root node

The start node as well as all the
ancestors

Preceding nodes (excluding
ancestors) in document order,
excluding attribute and
namespace nodes

All nodes with the same parent
that precede the start node

Start

/usage/pl[2]
/code[3]

The next table shows axes with child and following sibling nodes.

Elements

code[3]

pl2]

reference, body,
usage, pl2]

reference, body,
usage, pl2] code[3]

pll]

code[l], element [1],
element[2],code[2]

The last two axes in the table, attribute: : and namespace: :, apply only to element nodes, and are not
directional in any meaningful sense. This time several different start nodes are given to illustrate all the

axis relationships.

Axis

child::

descendant: :

descendant-or-self::

following::

following-sibling: :

attribute::

namespace: :

Selects

All of the children of the start
node

Children of the start node,
and all their children
recursively

The start node and all the
descendants

Following nodes in document
order, excluding attribute and
namespace nodes

All nodes with the same
parent that follow the start
node

Attributes of the start node

Namespace nodes of the start
node

Start

/usage

/usage/pl[4]

/title

/reference

/usage/pl[2]
/xm: term

Elements

All the individuals
under usage

usage and all the
individuals under
usage

pl5], element

purpose, usage

xml:id

http://xm.net/2007
/xsl/term

31

Chapter 2: Introducing XPath

According to the XPath 2.0 recommendation, “'In XPath Version 2.0, the namespace axis is deprecated
and need not be supported by a host language,”” so you may find that a processor does not support this
representation. However, the Saxon processor will return values on this axis.

Node Tests

A node test defines the nodes to select. The syntax is usually in the shorthand form of the axis to
follow — typically an element name, but some tests select on the basis of the node type. Here are just a

few examples.

Name Tests

Consider the instruction <xsl:apply-templates select="reference/body">. In this case, the selection
is implicitly on the child axis, where the full syntax is child: :reference/child: :body. This is certainly
the most common axis relationship, and one that you have used in your stylesheets so far (probably

without noticing it).

Another example of shorthand notation is for the attribute axis, where an expression such as "@src"
replaces the full syntax attribute: :src.

"/ /" selects all the nodes in the specified context — for example, body/ /p selects the <p> element descen-

dants of the <body> element.

"+ is a useful wildcard to apply. The following table shows some name test examples.

Expression

*

Type Tests

Node type tests look like element (div) or comment (), which will match any <div> element or all com-
ments, respectively. The following table presents some examples.

32

Expression
node ()
element ()
attribute (src)

section//comment ()

Description

Matches all elements

Selects all the attributes

Matches all element nodes in the namespace with the "xm" prefix

Any name matching the local name "term", regardless of namespace

Description

Matches any node

Matches any element node

Any attribute node named “‘src”

All comments under the <section> element

Chapter 2: Introducing XPath

Predicates

A step may be qualified with a predicate that acts as a filter on the selected nodes. For example,
p/img[@src="icon.png"] will select only the element with exactly the specified src attribute
value.

In a predicate, the position is expressed as item[integer] — for example, div[3]. Note that numbering
starts at 1, not zero.

The resulting sequences are always in document order, regardless of the direction of the path. Have
another look at xs1_stylesheet.xml. If the start node is in /usage/p[5] and you select preceding-
sibling: :p/element, the result will be as follows:

<element>xsl:stylesheet</element>
<element>xsl:include</element>
<element>xsl:import</element>
<element>xsl:transform</element>

Note also that the position works in the same direction as the relationship. For example,
preceding-sibling

::p[3]/element will return the element nodes three paragraphs back; that is, those from the
second paragraph in our example:

<element>xsl:include</element>
<element>xsl:import</element>

Operators

In XPath expressions, you can use several groups of operators. The examples make use of XPath func-
tions described in the following sections of this chapter. I'll defer a discussion of type operators until
Chapter 11, when I consider validation with a schema-aware processor.

Arithmetic

Of the arithmetic operators +, -, *, div, idiv, and mod, the use of the first four will be familiar from other
languages. The idiv operator performs integer division, and the mod operator provides the resulting
remainder. The following table shows some examples.

Expression Description

count ($metadata) + 1 One greater than the number of nodes in the $metadata variable
last () -1 The next-to-last node in a sequence of items

@width idiv 2 Half of the value of the width attribute

@height * 3 Three times the value of the height attribute

Value Comparison

XPath 2.0 has introduced a new set of value-comparison operators for reasons related to XQuery opti-
mization (see the following table for examples). Therefore, it is recommended that you use "gt" instead
of ">" for comparing single atomic values, along with "eq", "ne", "1t", and "ge".

33

Chapter 2: Introducing XPath

Expression Description
position() ne last()" Compares the position in the current sequence with the last position
count (//property) gt 1 Evaluates to true if the number of property nodes is greater than 1

current-date () ne published Returns true if the current date is not equal to the published date

General Comparison

General comparison operators allow the operands to be sequences of items, unlike the value-comparison
operators, which can compare only atomic values. Usually you will be making one-to-many comparisons,
rather than many-to-many comparisons, which can be computationally expensive for long sequences.

Comparing sequences can be quite tricky in some circumstances, so think carefully about your logic, and
especially about the possible effect of any empty nodes on what is returned. Here are some examples.

Expression Description
count (preceeding- Returns true when there are five preceding nodes with the same
sibling: :p) eq 5 parent as the current node.
sum (employees) < 10 Tests whether the number of employee children is less than 10.
$value I=5 Returns true if any item in the $value sequence is not equal to 5.
$list = Stitles Returns true if $1ist and $titles have any value in common; for
example, (a,b,c) = (b, e, k) is true.

@src != @href Returns false if no src attribute is present.

Boolean Expressions

The order of operands in AND and OR expressions is not significant because the XPath rules allow imple-
mentations to optimize the processing of large sequences by indexing. Here are some examples of
Boolean expressions.

Expression Description
@values and @required True if both attributes are present
@values or @required True if either or both attributes are set
exists (preceding-sibling: :topicref[1]) and True if there is both an adjacent preceding and
exists (following-sibling: :topicref[1]) an adjacent following sibling <topicref>
element
Combining Node Sets

You can combine two sets of nodes using three XPath operators: union (or " | "), intersect, and except.
These sets of nodes are just sequences, not ordered sets in the mathematical sense, and they may contain
duplicates (see the following table for examples).

34

Chapter 2: Introducing XPath

Expression Description

@a* except scheme Selects all attributes except the scheme attribute

sum (employees | managers) Returns the number of employee and manager
children

$members intersect $visitors Returns a sequence of nodes containing the

$visitors variable values that are also in $members

XPath Functions

In working with XSLT you’ll come across several different kinds of function. Some are specific to
XSLT, such as the document () function, and cannot be used in XPath expressions in XQuery. Others
are so-called constructor functions such as xs:date (), which use built-in schema types or user-defined
schema types to cast values, or extension functions you have developed using <xsl1:function>
declarations.

The XPath 2.0 functions discussed here are distinct from any of these and are specified in XQuery
1.0 and XPath 2.0 Functions and Operators, which is available at www.w3.org/TR/2007 /REC-xpath-
functions-20070123/.

An A-Zlist is provided in the XPath 2.0 Function Reference in Appendix F. The following sections review
some of the functions you'll encounter frequently in this book. They are divided into the following broad
categories:

Q0 Strings

Q Dates, Times, and Durations
Q Nodes and Documents
Q

Numbers

The examples are set in the context of their use in XSLT.

Strings

String functions will possibly be used more often than any other in your stylesheets. XPath 2.0 provides
a very full range of string functions, bringing it closer to languages like Perl and JavaScript.

Concatenation

Concatenation is the string function I seem to need most frequently. The concat () function takes two
or more comma-separated values, converts them into strings, and joins them with no punctuation or
spacing. Typically, you'll use it in a select attribute value as shown in the following example, which
you'll see in later chapters. It sets the value of an href attribute by concatenating a metadata URI with an
identifier and a string;:

<xsl:template match="1link">
<xsl:variable name="1inkID" select="@href"/>
<xsl:variable name="linkmeta" select="Sresourcelist//entry[@xml:id=$1inkID]"/>
<a>

35

Chapter 2: Introducing XPath

<xsl:attribute name="href">
<xsl:value-of select="concat ($linkmeta/content/@src,$1inkID, ' .html")"/>

</xsl:attribute>
<xsl:value-of select="$linkmeta/title"/>

</xsl:template>

If the arguments are the URI of a file on the path "../xslt_reference/", a document identifier
"xs1_if", and the file extension "html", the result passed will be as follows:

../xslt_reference/xsl_if.html
An alternative to concat () is string-join(). It enables you to provide a separator to use between values
as a final argument, but it has the disadvantage that you need to explicitly convert any non-string values

to strings using the string () function beforehand.

The next snippet uses string-join() with the "/"separator, converting a number in the nested
string () function:

<p><xsl:value-of select="string-join(('my', 'string', 'join',
string(4.00)), '/')"/></p>

The output will look like the following:

<p>my/string/join/4</p>

Substrings

You can use several useful string functions to handle partial strings.

You can test for the existence of one string within another using the contains () function. The first argu-
ment is the containing string to test, and the second is the value to find.

Suppose a source XML <link> element has a contexts attribute that may contain multiple
space-separated values. If either of the values “‘meta’” or ““test’”” are present, then the link will be
generated; otherwise not:

<related>
<link href="entry" contexts="meta test"/>

</related>

The following expression tests for the existence of one of the values and returns true if it is present. The
<xsl:if> instruction, which is covered in more detail in Chapter 4, provides a simple condition test:

<xsl:1if test="contains (contexts, 'meta')">
</xsl:if>

The functions substring-before () and substring-after () do what you would expect. The next snip-
pet shows a metadata entry for an XSLT quick reference element:

36

Chapter 2: Introducing XPath

<entry xml:id="xsl_output">
<title>xsl:output</title>
<content src="../xslt_reference/"/>
<category term="element_reference" scheme="resource"/>
<published>2008-12-19T20:13:287Z</published>
</entry>

The next example extracts the date part of a string representation of a DateTime value:

<xsl:variable name="tagdate"
select="substring-before (published, 'T')"/>

The first parameter is the value to analyze, and the second is the substring delimiter. In this case, the
variable $tagdate would be set to "2008-12-19".

You can use index and length values on strings with the more general substring () function, which
is useful when you need to work character by character, and you know the structure of the input. For
example, you might select area-code prefixes from North American telephone numbers using the follow-

ing:
<xsl:value-of select="substring(S$code,1,3)"/>

The index starts at 1. The length argument is optional; if you omit it, the entire string following the index
value is returned.

When content entered by users has not been validated, it is good practice to remove leading and trailing
whitespace before you start working with string values. The normalize-space () function does just
that; in addition, it replaces multiple internal spaces with single space characters. If you have validated,
structured values to work with this shouldn’t be necessary.

Given some source content like " A History of France " in a list of book titles, you could prepare it for
matching against another title, or for accurate sorting, by setting a value as shown in this example:

<xsl:value-of select="normalize-space($title)"/>

Dates, Times, and Durations

A host of functions are available for manipulating date and time values. Three of them simply return the
values from your system. You can then go to town with extracting subsets or getting day values. You can
also work with durations.

Contextual Dates
The contextual current-date (), current-dateTime (), and current-time () functions, along with any

values in the source data, will get you to the starting point for your calculations.

Here’s a fragment that timestamps an update to some feed metadata. It returns an xs:dateTime such as
"2008-11-04T16:01:12.4512":

<updated>
<xsl:value-of select="current-dateTime()"/>
</updated>

37

Chapter 2: Introducing XPath

All the DateTime functions always return the same result from multiple calls for any given transforma-
tion, so you can’t get one value for the beginning of a process and another for the end, for example.

Formatting

None of the DateTimes returned can be processed using XPath expressions. If you want to format the
information differently, you can use the one of the XSLT formatting functions such as format-date (),
which you'll examine further in Chapter 6.

Options include 12- or 24-hour clocks, time zones, and even calendars. A picture is used to specify the
options. In the following example, " [M]/[D]/[Y]" returns the month/ day /year format:

<xsl:variable name="date"

select="format-date (current-date(), ' [M]/[D]l/[Y]")"/>
Durations
For calculating durations you can use a function like subtract-dates-yeilding-dayTimeDuration(),
or just use the subtraction operator "-" with two date values:

<xsl:value-of select="subtract-dates-yeilding-dayTimeDuration (xs:date("2008-06-24")
, xs:date("2008-06-22"))"/>

The result is an xs : dayTimeDuration value of "pP2D". Duration functions work in the opposite direction.
For example, you can use the hours-from-duration () function on "pP2D" to get "48":

<xsl:variable name="hours"
select="hours-from-duration (xdt:dayTimeDuration('P2D"))"/>

Nodes and Documents

Several functions are available that enable you to operate on nodes or entire documents, and provide
context information, as described in the following sections.

Node Properties

You can access the properties of nodes with a number of functions (see the following table for examples).
For example, the root () function will return the document node of a source tree.

Expression Description

name () For elements and attributes, returns the name of the context node,
including the namespace prefix if present

data (author, title) Returns the atomized values of the given sequence

namespace-prefix- Returns the URI for the namespace prefix "xm"
for-uri (xm)

38

Chapter 2: Introducing XPath

Counting and Position

You can count nodes in a sequence, and determine positions in the sequence too.

The count () function returns the number of items in a sequence. If the sequence consists of nodes, each
node counts as one item.

Here’s an example of a test that handles some English-language plurals. The XPath expression uses the
count () function to check whether multiple <property> elements need to be processed. If the count is
greater than one, then an "s" is appended to the <h2> content:

<h2>Attribute<xsl:if test="count (//property) gt 1">s</xsl:if></h2>

Given a sequence of nodes made in a selection, two functions, position() and last (), will return the
path position and the size of the sequence, respectively.

The following example shows the use of both functions to check on the current context, testing for
inequality with "ne", and rendering a separator character until the last item in a sequence of nodes is
detected. If $separator is a comma followed by a space, you would get a result like "a, b, ¢, d":

<xsl:1f test="position() ne last()">
<xsl:value-of select="$separator"/>
</xsl:if>

Documents

To return an external document you can use the doc () function. It is a simplified form of the document ()
function in XSLT. You provide the URI of the source document of a single document, and it returns the
document node, ready to process. Fragment identifiers are not supported. Here is an example:

<xsl:variable name="metadata" select="doc('../reslist_xsl.xml')"/>

The XSLT document () function, by comparison, enables you to reference a sequence of nodes containing
the URISs to process, and to use document-fragment identifiers.

Numbers

Numeric functions are fairly limited in comparison to other categories. Here are a few examples.

Expression Description

avg ((2,4,6)) Returns the average of the values in the sequence in the
same primitive type as the values in the input sequence

sum (@width, @height) Returns the total of the width and height attributes

max((5,22,8)) The maximum value in a numeric sequence

39

Chapter 2: Introducing XPath

Summary

In this chapter you learned more about the XPath node types and their properties. You saw how you can
use path expressions to select nodes in a source tree, and how these expressions are composed of axes,
node tests, and predicates.

An XPath analyzer is a valuable tool that will help you validate path expressions, and you learned how
the analyzer in the Oxygen IDE works.

XPath functions provide the basis for a very wide range of expressions. You reviewed a subset of these
functions, especially string, date, node, and number functions, giving you a flavor of some of the most
common functions you can expect to use in XSLT.

In the next chapter, you'll return to stylesheet development, focusing on templates, variables, and param-
eters. Before moving on, try answering the questions that follow to test your understanding of XPath.

Key Points

Q XPath is central to XSLT processing for matching, selection, and functions.

Q Work on the axis/test/predicate pattern, using both the shorthand and full
axis relationship syntax, because it is the key to precise selection.

QO Add an XPath analysis tool to your kit. It will save time and help to hone
your skills.

Q XPath functions are distinct from those that are reserved for XSLT. Familiar-
ize yourself with the details of the function library, which provides a wide
range of valuable processing features.

Exercises

40

You'll find solutions to these exercises in Appendix A.

1. Name some common XPath axes used to select element and attribute nodes.

2. Assume that the context is in an element node. Write the expression that selects the xm1:1id
attribute node for the element using the full and shortcut syntaxes (you can use any element
name you like).

3. After reviewing the string functions in XPath, create a simple XSLT stylesheet that you can
use as a function test bed. Include several additional examples inside <p> elements using the
following code as a guide:

<?xml version="1.0" encoding="iso0-8859-1"7?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform version="2.0">
<xsl:output method="xml" indent="yes" encoding="utf-8"/>
<xsl:template match="/">

Chapter 2: Introducing XPath

<output>
<p>
<xsl:value-of
select="string-join(('my', 'string', 'join', string(4.00)), '/')"/>
</p>
</output>

</xsl:template>
</xsl:stylesheet>

Hint: You can transform the stylesheet by using itself as the source document.

41

Templates, Variables,
and Parameters

When you are writing a stylesheet, some of the intended output, excepting the case of text, will come
from generating elements and attributes that conform to the schema of the resulting document.

However, most of the output content will come from the source tree that the processor has loaded,
and will be obtained (as a first step) by matching source tree nodes to patterns in the stylesheet
templates.

Templates, specified with the <xs1:template> element, are core structures in XSLT. You use them
as containers for the sequences of instructions that select values from the source tree and write them
to the result tree. In addition to specifying matching patterns, you can give templates priority values
to cover cases when several templates match the same source node. You can also specify different
modes of processing for a given match. Named templates can be called explicitly, providing a
degree of control over the processing sequence.

In XSLT you can use both global and local variables, defined with the <xs1:variable> element.
As in any programming language, they enable you to set or calculate a value once and then use it
in many places. They also have other uses, including storing temporary trees of nodes. However,
in XSLT variables cannot be updated. XSLT is designed to be free of side effects. A side effect of
assigning variable values as you might in other languages is that the processor would have to
handle instructions in a particular order.

Parameters can also be defined globally, with predefined values set or passed in as the stylesheet is
invoked. They can also be specified within templates or user-defined functions and passed as part
of the calling process.

In this chapter you'll do the following:
0 Extend your knowledge about template rules, and how to apply them using match pat-
terns, modes, and priorities.

0 Work with named templates.

0 Learn about variables and parameters, including how to use those with global scope and
those with local scope that are used in both template rules and named templates.

Chapter 3: Templates, Variables, and Parameters

About Templates

The XSLT specification notes that the <xs1:template> element may define either a template rule, which
matches source tree nodes against a pattern, or a named template, called explicitly by name.

Each template contains a sequence constructor containing instructions like those you used in Chapter 1,
usually used to create element nodes.

Template rules operate rather like filters, matching specific criteria in the source tree. You don’t direct

the processor to use a template rule; it will automatically compare nodes in the source tree to the rules.
Having found a match, the contained instructions are followed, writing the transformed values to the

result tree.

Named templates, conversely, are called explicitly, and operate more like procedural calls, return-
ing to the calling context after the output has been added to the result tree. This additional control
makes them most suited for data-driven stylesheets, where structures in source instances are quite
uniform.

All template elements require either a match attribute, in the case of a template rule, or a name attribute,
in the case of a named template. The <xsl:template> declaration may have both attributes set, but that
is unusual.

All templates are in the declaration substitution group and are therefore top-level elements. Their order
in a stylesheet is not significant. Here’s a reminder of the element structure:

<xs:element name="template" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded" />
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="match" type="xsl:pattern"/>
<xs:attribute name="priority" type="xs:decimal"/>
<xs:attribute name="mode" type="xsl:modes"/>
<xs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="as" type="xsl:sequence-type" default="item()*"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Template Rules

44

First let’s consider the template rule, characterized by a match attribute pattern that is used to identify the
source node or nodes to which the rule applies. Actually, there is more to rule evaluation than patterns.
Modes, import precedence, and priorities may also come into play, but the match pattern is the most
commonly seen.

Chapter 3: Templates, Variables, and Parameters

Template rules can have three parts: a pattern that is matched against nodes, a set of template parameters,
and a sequence constructor that produces a sequence of new nodes intended to be written to a result tree.

The XSLT 2.0 schema specifies xs1:pattern as the type for the match attribute. A pattern is an XPath
expression that will return a sequence of nodes.

Some matches seem intuitive. You saw several examples in the discussion of XPath in Chapter 2, where
I discussed steps, axes, predicates, and so on; but let’s add a few more match examples here as an aid to
memory:

0 purpose/p: Matches paragraphs inside the <purpose> element
0 usage/p[3]: Matches the third paragraph in any <usage> section

0O element[@xml:id="xsl_stylesheet”]: Matches an element with an xml:id attribute equal to
“xsl_stylesheet”

a $resourcelist/entry: Matches any <entry> element contained in the nodes assigned to the
variable $resourcelist

The rules for the some of the more complex patterns, and those related to resolving conflicts between
apparently similar nodes, are quite complex and therefore beyond the scope of this book. If you want
to dig in to this subject, I suggest you read Chapter 12, “XSLT Patterns,” in Michael Kay’s XSLT 2.0 and
XPath 2.0 Programmer’s Reference, 4th Edition (Wrox, 2008).

You'll encounter patterns again when looking at <xs1 :number> in Chapter 6, in the sections on grouping
in Chapter 5, and with <xs1:key> in Chapter 9.

This template rule approach is very flexible. It supports reuse, and it is simple to maintain when changes
take place in the source or target schemas, because you can isolate the processing of source components
so readily. It works especially well for quite complex documents with unpredictable instance structures,
especially if they may be nested in different ways.

You may well know a great deal about the potential source content; you have the schema, after all. But
schema compliance is not the same thing as consistency from one document instance to another. Take a
schema like DocBook, which is widely used in technical documentation. The schema is very open, and a
large number of elements may appear in a very wide range of contexts. For instance, the <cmdsynopsis>
element provides a syntax summary for a software command. Its content model seems compact, but
the element itself may appear in over 90 different contexts. A look at its child element shows similar
characteristics.

Invoking a Rule

As you have seen, you invoke the evaluation of a rule by using the <xsl:apply-templates> instruction
inside a template that already matches a context node. The instruction selects a set of nodes and causes
them to be processed by selecting a rule for each one. It is therefore commonly used to process nodes that
are descendants of the context node. A rule is evaluated when the <xs1:apply-templates> instruction
selects a node that matches the pattern in the match attribute value. The context always moves to the
matched node. Here is the schema definition.

<xs:element name="apply-templates" substitutionGroup="xsl:instruction">
<xs:complexType>

45

Chapter 3: Templates, Variables, and Parameters

<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:sort"/>
<xs:element ref="xsl:with-param"/>
</xs:choice>
<xXs:attribute name="select" type="xsl:expression" default="child::node()"/>
<xs:attribute name="mode" type="xsl:mode"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Immediately after the start tag of the <xs1:apply-templates> element you may specify a way of sorting
the resulting output using <xsl:sort>, as the following snippet illustrates:

<xsl:apply-templates select="book">
<xsl:sort select="author"/>
<xsl:apply templates>

Information on sorting is covered in Chapter 5.

You can optionally provide a number of patterns to match in the select attribute:
<xsl:apply-templates select="attr | element" />

Normally the XSLT processor will treat the selected nodes in the source document order, but if you

want to define a different order, you can provide space-separated values in the select attribute, and the

specified sequence will be followed:

<xsl:apply-templates select="element attr"/>

Using Modes

46

Modes enable you to process the same content more than once in different ways. One use of modes is to
process a node in a source tree multiple times, each time producing a different result. Another use is to
enable different sets of template rules to be active when processing different trees.

The modes in a template are defined by the mode attribute on the <xsl:template> element. In this case,
the <xs1:apply-templates> instruction that invokes the template must specify both a select and a mode
attribute. The mode attribute value may be a specific name or it can specify #current, which means ““use
the current mode.” Using #current ensures that your templates work even if there are any subsequent
changes or additions to mode names.

mode attributes on templates can contain a list of modes; the value #default, which means ““use the
default (unnamed mode)”’; or the value #all to show that it matches all modes. Templates without
modes are processed using the default mode.

The following Try It Out develops a simple example based on the template local.xsl. It makes a second
pass through the source to create an index of element names.

Chapter 3: Templates, Variables, and Parameters

TAEOUETY Using Modes

Open local.xsl, save it as modes.xs1, and add the code that is highlighted in Listing 3-1, which will
select all the nodes named “element” and apply the template with the mode attribute set to “index.”

The template is used to produce an unordered list of the element occurrences, following the other output.
The list is in document order and multiple instances are shown. An enhanced process could remove
duplicates, sort the output, and merge it with index data from other source files.

Listing 3-1

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:output method="xhtml" encoding="UTF-8"
doctype-system="http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

<xsl:template match="/">
<html>
<head>
<title>
<xsl:value-of select="reference/body/title"/>
</title>
</head>
<body>
<xsl:apply-templates select="reference/body"/>
<p>Element index:
<xsl:apply-templates select="//element" mode="index"/>
</p>
</body>
</html>
</xsl:template>
<xsl:template match="title">
<hl>
<xsl:value-of select="."/>
</hl>
</xsl:template>
<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="usage">
<h2>Usage</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="p">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

Continued

47

Chapter 3: Templates, Variables, and Parameters

Listing 3-1: (continued)

<xsl:template match="attr | element">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

<xsl:template match="element" mode="index">

<xsl:for-each select=".">

<xsl:value-of select="."/>
</1li>
</xsl:for-each>

</xsl:template>

<xsl:template match="code">

<xsl:copy-of select="."/>
</xsl:template>
</xsl:stylesheet>

Now run the modified transform against the original file xs1_stylesheet.xml. The output of the index
should look like this:

<p>Element index:
xsl:stylesheet</1li>

xsl:include</1i>

xsl:import</1li>

xsl:transform</1i>

xsl:stylesheet</1li>

</p>

Setting Priorities

You can apply priority attribute values to <xsl:template> elements to resolve cases for which there
are several possible candidates for a match.

Some patterns are more specific than others. For example, section/p is more specific than p, as it applies
to all paragraphs within sections, not to just any paragraph. It should logically have a higher priority
allocated to it by the XSLT processor.

As a last step in evaluating a match, the processor allocates a default priority in the range —0.5 to +.0.5
using rules based on the pattern syntax. These rules are chosen carefully, but a clear “best match”
solution cannot always be guaranteed. For example, section/p and section/p[1] both have a default
priority of +0.5.

48

Chapter 3: Templates, Variables, and Parameters

If more than one matching template has the same priority, the processor can either choose the last tem-
plate declared or report an error. In these circumstances you should verify that the result is what you
expect, or better still, specify your own priority values for a more certain result.

You can use the priority attribute to set an absolute priority value on templates with the same prece-
dence. The attribute value is a positive or negative xs:decimal number — such as “3” or “-1.6" — that
the processor will use rather than the default rules when there are several candidate nodes in the same
source tree with the same namespace URI.

Priority values are the last to be considered in a match after mode, pattern, and import precedence.

Built-in Rules

If there is no rule with a matching pattern, a built-in template rule is used. You encountered built-in
template rules in your first transform, where you saw that one set of default behaviors was for the XSLT
processor to apply templates to all the children of the document node, and element nodes and their
children. A nodes rule ensures that these nodes are processed regardless of any mode that might be
current.

Four additional built-in rules are applied to nodes when no matching rule is present. Attribute and text
nodes will be copied to the result tree as text, not as nodes, provided they are explicitly selected — for
example, in a select attribute value such as “select="e*"”. Comments, processing instructions, and
namespace nodes are ignored.

Named Templates

A named template is one defined by the name attribute value. One of the advantages of named templates
is reuse for common markup tasks, so when the look and feel of a website is changed there is little
maintenance work to do.

Another benefit is the degree of control you can obtain by explicitly calling a template, rather than relying
on the match processing sequence that typifies template rules.

Named templates are invoked with the <xs1:call-template> instruction. This instruction has a required
name attribute that identifies the target <xsl:template> element. It is an error if there is no named tem-
plate with a matching name. Here is the schema definition:

<xs:element name="call-template" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

49

Chapter 3: Templates, Variables, and Parameters

When you call a named template, the context node does not change as it does when a template rule is
invoked with <xsl:apply-templates>.

In the last section of this chapter you will find a Try It Out that creates an XHTML <head> element,
passing title and style parameter values.

Variables

50

Variables in XSLT have a number of uses. On the surface, they are used like variables in conventional
languages. They can be used to specify global constants that are available throughout a stylesheet, or to
set or calculate a locally used value with restricted scope.

A critical difference from conventional languages is that you cannot assign a new value to a variable once
it has been set. So why call them variables? Consider the mathematical use of the term: It defines a name
that may be used to express different values at different times. With an equation like a =b x ¢, the names
represent values expressing a relationship. They are variables because they can contain different values
each time the equation is applied, not because the relationship is somehow changing dynamically.

Variables also have less obvious uses in XSLT, such as storing intermediate results in temporary trees
of nodes, capturing context-sensitive values to call upon when the processing context has changed, and
convenience values used just to simplify and clarify code.

You define a variable with the <xsl:variable> element, either as a top-level element or in a
template. The schema defines it as content both in the <xsl:transform> substitution and in the
sequence-constructor-group:

<xs:element name="variable">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="select" type="xsl:expression" use="optional"/>
<xs:attribute name="as" type="xsl:sequence-type" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

One way to specify a variable is to use the select attribute with an XPath expression. The other way is
to define the <xsl:variable> value in a contained sequence constructor.

The name attribute is required in each case, and must be unique within the scope of the variable, unless
one of them is in an imported stylesheet.

Any variable defined at top level has a global scope, which means that you can access the value from
anywhere in your stylesheet, and you may refer to it before it is declared, a so-called forward reference.
That said, it seems to me good practice to set global variables near the beginning of a transform, or even
in an included stylesheet module, rather than scattering the declarations about.

Chapter 3: Templates, Variables, and Parameters

The scope of a template, or local, variable may be referenced in any following sibling element or any
of those siblings” descendants. If the name of a local variable is the same as a global variable, then the
local value is used. You cannot access the variable from one of its own descendant elements. Forward
references are not allowed.

In the next Try It Out you'll use part of another reference document for the <xsl:choose> element that
shows three elements — <contains>, <containedby> and <link> — used to express the content model.
The link elements identify metadata for the related elements.

The stylesheet will use both global and local variables to generate an XHTML web page, in which title
and URI values from the metadata are transformed into <a> elements content and href attribute values

that link to the related pages.

xsl_choose.xml is shown in Listing 3-2.

Listing 3-2

<?xml version="1.0" encoding="UTF-8"?>
<reference>
<body>
<title>xsl:choose</title>
<purpose>
<p>An instruction that specifies a choice between alternatives which are
defined by multiple <element>xsl:when</element> instructions, and an
optional, terminal, <element>xsl:otherwise</element> element. Each
<element>xsl:when</element> instruction has a <attr>test</attr>
attribute containing an expression to evaluate.</p>
</purpose>
<usage>
<p>A single <element>xsl:when</element> has the same result as though you
had used <element>xsl:if</element> for a single test.</p>
</usage>
<contains label="contains">
<link href="xsl_when"/>
<link href="xsl_otherwise"/>
</contains>
<containedby label="containedby">
<link href="xsl_instruction"/>
</containedby>

</body>
</reference>

_ Using Variables

Make another copy of local.xsl, saved as content_model.xsl.

At the top level, specify a global variable named resourcelist. In the select attribute, use the XSLT
document () function to refer to the metadata file, reslist-xsl.xml, to be loaded by the processor. This
function returns the document node specified. When the stylesheet is run, you can use the variable

51

Chapter 3: Templates, Variables, and Parameters

$resourcelist (identified with the $ prefix) for operations on the metadata entries in this second source
tree:

<xsl:variable name="resourcelist"
select="document ('reslist_xsl.xml"')"/>

Next, add the following template rule to the new stylesheet. The <h2> literal result element is followed by
an <xsl:choose> instruction that selects the section heading, based on the value of the label attribute.
The paragraph element, <p>, will contain the XHTML links. In an <xs1: for-each> instruction, which
will step through the <1ink> element nodes, the <1ink> elements inside both containers are selected for
processing with the select attribute value “//1ink”:

<xsl:template match="contains ! contained by">
<h2>
<xsl:choose>
<xsl:when test="@label='contains'">Contains</xsl:when>
<xsl:otherwise>Contained by</xsl:otherwise>
</xsl:choose>

</h2>
<p>
<xsl:for-each select="//link">
<xsl:apply-templates select="."/>
</xsl:for-each>
</p>

</xsl:template>

The metadata entries contained in the $resourcelist variable are based on the Atom 1.0 recommen-
dation, though they are not identical. The entry for the <xs1:when> element shows the structure. The
xml:id attribute and the <title> and <content> elements exemplify the values to be processed:

<entry xml:id="xsl_when">
<title>xsl:when</title>

<content src="../xslt_reference/"/>
<category term="element_reference" scheme="resource"/>
</entry>

In another template rule you can handle the links by first declaring two template variables:

<xsl:template match="1link">
<xsl:variable name="1inkID" select="@href"/>
<xsl:variable name="linkmeta"
select="S$resourcelist//entry[@xml:id=$1inkID]"/>
<a>
<xsl:attribute name="href">
<xsl:value-of
select="concat ($linkmeta/content/@src, $1inkID, '.html")"/>
</xsl:attribute>
<xsl:value-of select="$linkmeta/title"/>

</xsl:template>

52

Chapter 3: Templates, Variables, and Parameters

Naming the first variable $1inkID gives us a meaningful, reusable value to work with, and selects the
href attribute on the <1ink> element. The second variable, named $1inkmeta, gives us a simplified value
for the complex pattern $resourcelist//entry[@xml:1d=$1inkID].

Let’s break down the second select expression. $resourcelist is the same global variable shown earlier
in this section. It causes the file reslist_xsl.xml to be loaded and parsed. “//” selects all the entry ele-
ment nodes, qualified by a predicate that matches the xm1:id attribute in the metadata with the $1inkID
variable you specified first.

Inside the <a> element you set the href attribute value using the concat () function you learned about in
Chapter 2. You also set the title in the link content.

Because the link template rule is being invoked from inside the <xs1: for-each> loop in the first template
rule, both of the $1inkID and $1linkmeta select expressions in the second rule are evaluated each time

the context node changes from one link element to another. This is not a change in the values of the two

variables; rather, they are fresh instances within the scope of a given link node to be processed.

Before running the modified transform, change the stylesheet version to “2.0” and the output method to
“xhtml”.

Listing 3-3 shows the updated stylesheet.

Listing 3-3
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">

<xsl:output method="xhtml" encoding="UTF-8"
doctype-system="http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"/>

<xsl:variable name="resourcelist"
select="document (concat ('reslist_',reference/@scheme,'.xml'))"/>

<xsl:template match="/">
<html>
<body>
<hl>
<xsl:value-of select="reference/body/title"/>
</hl>
<xsl:apply-templates select="reference/body"/>
</body>
</html>
</xsl:template>

<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="usage">
<h2>Usage</h2>

Continued

53

Chapter 3: Templates, Variables, and Parameters

Listing 3-3: (continued)

<xsl:apply-templates select="p"/>
</xsl:template>

<xsl:template match="contains | containedby">
<h2>
<xsl:choose>
<xsl:when test="@label='contains'">Contains</xsl:when>
<xsl:otherwise>Contained by</xsl:otherwise>
</xsl:choose>
</h2>
<p>
<xsl:for-each select="1link">
<xsl:apply-templates select="."/>
<xsl:text> </xsl:text>
</xsl:for-each>
</p>
</xsl:template>

<xsl:template match="p">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

<xsl:template match="attr | element">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

<xsl:template match="attr | element" mode="index">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

<xsl:template match="code">
<xsl:copy-of select="."/>
</xsl:template>

<xsl:template match="1link">
<xsl:variable name="1inkID" select="@href"/>
<xsl:variable name="linkmeta"
select="$resourcelist//entry[@xml:1d=$1inkID]"/>
<a>
<xsl:attribute name="href">
<xsl:value-of

select="concat ($linkmeta/content/@src, $1inkID, ' .html')"/>
</xsl:attribute>
<xsl:value-of select="$linkmeta/title"/>

</xsl:template>
</xsl:stylesheet>

54

Chapter 3: Templates, Variables, and Parameters

When you run the stylesheet with xs1_choose.xml as source, set the stylesheet processor to be Saxon-B
version 9x. You should see the following XHTML output at the end of the page:

<h2>Contains</h2>

<p>
xsl:when
xsl:otherwise </p>
<h2>Contained by</h2>
<p>
xsl:instruction
</p>

Parameters

Like variables, parameters can be defined globally at top level. They can also be specified within tem-
plates or user-defined functions, and passed as part of the calling process. The scoping rules are identical
too. Here is the schema definition:

<xs:element name="param">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="as" type="xsl:sequence-type"/>
<xs:attribute name="required" type="xsl:yes-or-no"/>
<xs:attribute name="tunnel" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Global Parameters

Generally, my preference is to use parameters rather than variables to set global values because they can
also be passed in from an IDE interface or the command line, on a per-stylesheet basis if required.

The <xs1:param> element defines the name and value of a global parameter. As with a variable, the name
attribute is required, and the value can be specified either by the select attribute or in the content of the

element.

In the next exercise, you'll make use of a set of global parameters to do some “preprocessing,” and
experiment with the Oxygen IDE to view or modify the values you have set.

55

Chapter 3: Templates, Variables, and Parameters

_ Setting Global Values

You can place global parameters in the main stylesheet module, or in a reusable included stylesheet.

Save a copy of content_model.xsl as global.xsl, delete the existing $resourcelist variable definition,
and add the following global parameters:

<xsl:param name="identifier" select="reference/@xml:id"/>
<xsl: param name="resourcelist"

select="document (concat ('reslist_', reference/@scheme,'.xml'))"/>
<xsl:param name="meta"

select="Sresourcelist//entry[@xml:id eq $Sidentifier]"/>
<xsl:param name="title" select="S$meta/title"/>
<xsl:param name="style">reference.css</xsl:param>

$identifier is a copy of the xml:id attribute on the reference element. For the $resourcelist variable,
the document URI is concatenated from the prefix “reslist_", the scheme attribute on the reference
element, and the file extension *.xml”. In turn, $meta and $title will extract the document title from
the metadata entry that matches the xml:id attribute value. The $style variable value is used to specify
a CSS stylesheet.

There are some variations in the manner global parameters are passed in by different processors, so check
your documentation for the details.

With the Oxygen IDE you can set parameter values for each transformation scenario that you define.
The user interface lists all the parameter values that are currently set in the main stylesheet and any
included and imported stylesheets, with their default values. You can modify the default values for any
processing run.

Take the following steps to set up parameters:

1. Open xs1_choose.xml in the XML editor.

2. Choose XML > Configure Stylesheet Transformation.
3. Onthe XSLT tab, link it to global.xs1.
4

Click the Parameters button. The Configure parameter dialog, shown in Figure 3-1, will open,
listing the existing parameters.

o

Double-click in the Value column to override a default parameter value. The changed parameter
is highlighted.

6. Click Add to enter a new parameter name, and then enter the parameter value in the Value

column.

Click Remove to remove a new parameter, or Disable to revert to the default value.

56

Chapter 3: Templates, Variables, and Parameters

=Co nfigure parameters \

Mamne Value

_{l 1l 1ES

[Ok, Cancel

Figure 3-1

Template Parameters

In contrast to the similarities between a global variable and a parameter, the use of <xsl:param> in
template rules or named templates differs considerably from the use of variables.

In templates, the <xs1:param> instruction must come immediately after the <xs1:template> declaration.
The required attribute indicates whether or not the parameter is required. The default value is “no”.

The <xsl:with-param> instruction specifies the target parameter name and the value to be passed
to a template. Zero or more such instructions may be used inside the <xsl:apply-template>,
<xsl:call-template>, <xsl:apply-imports>, and <xsl:next-match> elements. This is the schema
definition:

<xs:element name="with-param">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xXs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
<xXs:attribute name="as" type="xsl:sequence-type"/>
<xs:attribute name="tunnel" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

It is an error to pass a parameter value that is not declared on a template rule or a named template. If the
required attribute on the template is set to “yes”, the processor will stop, reporting an error. To avoid this

57

Chapter 3: Templates, Variables, and Parameters

potential problem, you can optionally provide a default parameter value in a template — for example, a
debug message to alert you to occasions when you have forgotten to pass them.

Any parameters are followed by a sequence constructor that is evaluated to produce a sequence of items,
which are then written to a result tree:

<xsl:with-param name="title" select="$title"/>

In the next Try It Out, you'll pass parameter values to a named template that generates the <head> ele-
ment in the output.

_ Passing Values to Templates

Save a copy of global.xsl as param.xsl.

Set up a template named ““head”” with some default values, immediately following the template’s start
tag:

<xsl:template name="head">
<xsl:param name="title">title</xsl:param>
<xsl:param name="style"/>css</xsl:param>

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="$style"/>
</xsl:attribute>
</link>
</head>
</xsl:template>

In the main template, use the <xsl:call-template> instruction to pass the $title and $style values
you defined earlier using <xs1:with-param>:

<xsl:template match="/">
<html>
<xsl:call-template name="head">
<xsl:with-param name="title" select="S$title"/>
<xsl:with-param name="style" select="$style"/>
</xsl:call-template>
<body>
<hl>
<xsl:value-of select="S$title"/>
</hl>
<xsl:apply-templates select="reference/body"/>
</body>
</html>
</xsl:template>

58

Chapter 3: Templates, Variables, and Parameters

Before you run the modified transform, remember to remove the <title> element from the source XML;
you no longer need it for any of the quick reference documents, provided you accept the dependency on
the metadata.

The modified output should look like the following:

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>xsl:choose</title>
<link rel="stylesheet" type="text/css" href="reference.css"/>
</head>

Tunnel Parameters

Before leaving this discussion of parameters, I want to mention tunnel parameters, which can also be
passed using the <xs1:with-param> instruction. When a tunnel parameter is passed to a template, it is
silently passed on to any templates called from the first one:

<xsl:apply-templates select="//figure">
<xsl:with-param name="default_scheme" select="S$scheme" tunnel="vyes"/>
</xsl:apply-templates>

The tunnel attribute specifies whether or not this is a tunnel parameter.

To declare an interest in this parameter value in a template, you add a matching attribute value to the
nested <xsl :param> element:

<xsl:template match="figure">

<xsl:param name=" default_scheme" tunnel="yes" required="vyes"/>
<!-- do something with the parameter value —

<xsl:apply-templates select="object"/>
</xsl:template>

The parameter name must be unique within the sending and receiving contexts, but otherwise you need
not worry about name clashes on any intermediate stages in the chain.

Summary

In this chapter you looked in more detail at the structure of both template rules and named templates,
exploring modes and priorities as they apply to template rules.

You learned how to specify variables and parameters at both global and local levels. You also saw how
to pass global parameters using an IDE, and how to use the <xs1:with-param> instruction in the case of

local parameter values.

Along the way, you developed a more complex stylesheet that made use of the XSLT document () function
to access metadata about the main document and other linked documents.

59

Chapter 3: Templates, Variables, and Parameters

Key Points

Q XSLT templates take two forms: template rules that specify match-
ing patterns, and named templates that are called explicitly with the
<xsl:call-template> instruction.

Q In addition to pattern matching, template rules may use modes to specify
multiple templates for the same basic pattern.

0 You can use priority attribute settings in template rules to make the most
important criteria explicit, rather than rely on specificity rules used by the
processor.

Q Variables and parameters appear to be similar in many respects, especially
at a global level. However, within templates their purpose and use differ
noticeably.

Exercises

You'll find solutions to these exercises in Appendix A.

1. List some of the characteristics that distinguish template rules from named templates.

2. Inthemodes.xsl stylesheet, I suggested one way of formatting index values for element
names. Try out two additional modes — one that produces a simple space-separated list lay-
out, and one that indexes additional element names.

60

Using Logic

The declarative nature of XSLT programming and the complex nature of many XML source
documents often leads to stylesheets that make extensive use of template rules.

In some cases, however, you will want to use a more imperative style of programming, exercising
specific control over the processor. One of these cases is when you want to use logic to test for
simple or complex conditions, and direct processing accordingly. Another is when the source data
is repetitive in nature, and the most straightforward thing to do is iterate over it.

In this short chapter you’ll do the following:

0 Learn more details about how you can control processing using <xsl:1f>, <xsl:choose>,
and conditional expressions in XPath.

O Learn when best to use <xsl:for-each> for iterative processing, rather than
<xsl:apply-templates>.

QO Apply the <xsl:attribute-set> declaration to define attribute values to be used in creat-
ing tabular output in XHTML.

Q Process CDATA sections to display code examples that illustrate the use of XSLT elements.

Conditional Processing

There are two instructions in XSLT that enable you to perform actions based on data values con-
ditionally. The <xs1:if> instruction provides a simple test, with a single outcome if the test is
positive; the <xs1:choose> instruction supports the selection of one choice when there are several
possibilities. They are conceptually similar to the if and case constructs you have encountered in
other languages.

Chapter 4: Using Logic

A Simple Choice

The <xs1:if> instruction has a required test attribute containing an XPath expression. If the
attribute value evaluates to the Boolean value “true”, then the sequence constructor inside

the instruction is processed and the resulting node sequence is returned. Otherwise, an empty sequence
is returned and processing continues. The XML schema definition looks like the following:

<xs:element name="if" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="test" type="xsl:expression" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The next example shows a test from a website build stylesheet. The code constructs a link in the table of
contents. If the current document has a match in the table of contents, then a highlight style “currentref”
is applied to the link in the class attribute on the <a> element, providing the user with a visual guide to
his or her location in the site.

The href attribute on the link is constructed by concatenating URI and identifier values from metadata,
in a similar manner to what you used to create links in Chapter 4. The variable $thistopic contains the
document’s identifier. The XSLT current () function returns the current context item:

<a>
<xsl:attribute name="href">
<xsl:value-of select="concat ($topic/content/@src,@href,'.html')"/>
</xsl:attribute>
<xsl:if test="$thistopic=current()/@href">
<xsl:attribute name="class">currentref</xsl:attribute>
<xsl:value-of select="$topic/title"/>
</xsl:if>

You can also use <xsl:if> to simply test whether a node exists, before continuing with some
processing:

<xsl:1f test="//purpose">

<h2>Purpose</h2>

<xsl:apply-templates select="//purpose"/>
</xsl:if>

Multiple Choices

For more complex situations you can make use of the <xs1:choose> instruction. It may have occurred
to you that the last example was logically incomplete. What happens if there is no match between the

62

Chapter 4: Using Logic

table-of-contents entry and the current topic? A link is still needed, but in the basic unhighlighted style.
Here is a little more context for the link test, showing how it is set within <xs1:choose>:

<xsl:choose>
<xsl:when test="@href">
<xsl:variable name="topic"
select="Sresourcelist//entry[@xml:id=current ()/@href]"/>

<a>
<xsl:attribute name="href">
<xsl:value-of
select="concat ($topic/content/@src,@href, ' .html')"/>
</xsl:attribute>
<xsl:1if test="Sthistopic=current()/@href">
<xsl:attribute
name="class">currentref</xsl:attribute>
<xsl:value-of select="$topic/title"/>
</xsl:if>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>

With this kind of structure there are no attributes to set. The content of <xs1:choose> is a sequence of
one or more <xsl:when> instructions, and an optional, single <xs1:otherwise> instruction.

Each of the <xs1:when> instructions has a required test attribute value, evaluated in just the same way
as described previously for <xs1:1if>. These expressions are evaluated in document order: when one
expression evaluates to “true”, all the subsequent tests are ignored.

You may use <xsl:otherwise> to handle a fallback result, should all the “when” tests fail, provided it
appears last inside <xsl:choose>.

All three schema definitions follow:

<xs:element name="choose" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:when" maxOccurs="unbounded"/>
<xs:element ref="xsl:otherwise" minOccurs="0"/>
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

63

Chapter 4: Using Logic

<xs:element name="when">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="test" type="xsl:expression" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="otherwise" type="xsl:sequence-constructor"/>

Using XPath for Conditional Tests

If using <xs1:choose> testing starts to make your code hard to follow, you can shrink it considerably
by using an if-then-else comparison inside a select attribute. Depending on the result of the evaluation,
either the then or the else branch is returned. Both branches must be present, so you have to use an
empty else() sequence, even if you don’t need it.

In the following example, one attribute value is used to determine which of two other attribute values is
selected:

<xsl:value-of select="if (@scheme eqg ‘resource’) then @Qterm else @label"/>

Iteration

You have already seen something of the use of <xsl:for-each> in earlier chapters. Typically it is
used to select a sequence of nodes and iterate over them. Examples include report writing from
uniform data structures, and XML-based e-commerce documents containing product information or
billing data.

Whether you use this approach or simply use the more declarative <xs1:apply-templates>and template
rules is often a question of personal preference. I tend to use <xsl: for-each> for data-oriented process-
ing when there is a very predictable source content, such as news feeds or other tablelike representations.
Sometimes it simply helps to see what your code is doing.

Using <xs1:for-each> is not like applying a for-next loop, where you can set the size of the loop or
test for a terminal value. Rather, you use this instruction to select a sequence of nodes for processing in
an identical manner. The term iteration is meaningful only in the context of a node sequence, in which
variables will fall out of scope and cannot be updated.

Using Attribute Sets

Attribute sets provide a convenient way to group attribute definitions together for subsequent use in
result trees. Quite often they are used to apply style properties to elements in XHTML pages, but they
can be used for any purpose.

64

Chapter 4: Using Logic

You declare attribute sets with the <xsl:attribute-set> element, with one or more nested
<xsl:attribute> elements:

<xsl:attribute-set name="row">
<xsl:attribute name="scope">row</xsl:attribute>
</xsl:attribute-set>

Having made this declaration, you can use it in a literal result element with a use-attribute-sets
attribute as illustrated in the next snippet. Note that because the elements themselves are in the XHTML
namespace, you need to specify the xs1: namespace prefix explicitly on the attributes:

<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="description"/>
</td>

Here is the XSLT schema definition for <xs1:attribute-set>. You'll see that one of its own attributes is
use-attribute-sets, so you can combine attribute sets in a declaration:

<xs:element name="attribute-set" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xXs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:attribute"/>
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The next Try It Out uses as a source another quick reference document describing the <xsl:for-each
group> instruction, which you’ll learn about in Chapter 5. Many of these reference documents con-
tain attribute descriptions, which are a good example of highly structured content suited to processing
with the <xs1:for-each> instruction. This source document also provides a good use case for applying
attribute sets.

The structure provides <name>, <description>, <type>, <values>, and <required> elements within a
set of <property> elements, nested inside a <properties> container.

Listing 4-1 shows the attribute descriptions from xs1_for-each_group.xml:

Listing 4-1

<properties type="attribute">
<property xml:id="select">
<name>select</name>
<description>The sequence of items to group</description>
<type>xsl:expression</type>
<required state="required"/>

Continued

65

Chapter 4: Using Logic

Listing 4-1: (continued)

</property>
<property xml:id="group_by">
<name>group-by</name>
<description>The common value or values to use</description>
<type>xsl:expression</type>
<required state="optional"/>
</property>
<property xml:id="group_adjacent">
<name>group-adjacent</name>
<description>The common value to use if items are adjacent</description>
<type>xsl:expression</type>
<required state="optional"/>
</property>
<property xml:id="starting">
<name>group-starting-with</name>
<description>The pattern that starts a group of following items</description>
<type>xsl:pattern</type>
<required state="optional"/>
</property>
<property xml:id="ending">
<name>group-ending-with</name>
<description>The pattern that ends a group of preceding items</description>
<type>xsl:pattern</type>
<required state="optional"/>
</property>
<property xml:id="collation">
<name>collation</name>
<description>The URI of a collation to use for string
comparison</description>
<type>xs:anyURI</type>
<required state="optional"/>
</property>
</properties>

In the stylesheet, you will modify an existing template by specifying several attribute sets and combining
them. You will also add two templates to process the <property> elements, which will be displayed in a
<table> element.

_ Quick Reference Properties

First save a copy of param.xsl as for-each.xs1.

Make four attribute set declarations as follows:

<xsl:attribute-set name="col">
<xsl:attribute name="scope">col</xsl:attribute>

66

Chapter 4: Using Logic

</xsl:attribute-set>

<xsl:attribute-set name="row">
<xsl:attribute name="scope">row</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="th_first" use-attribute-sets="col">
<xsl:attribute name="class" >firsthdr</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="td_first" use-attribute-sets="row">
<xsl:attribute name="class">firstcell</xsl:attribute>
</xsl:attribute-set>

In the first two declarations, the name attribute specifies “col” and “row” as values, two of those allowed
for scope settings for columns in table cells acting as column and row headers.

The second and third declarations use the first two, and specify class attribute values.

Now add templates to process the property values from the source XML:

<xsl:template match="properties">
<xsl:call-template name="attribute"/>
</xsl:template>

<xsl:template name="attribute">
<h2>Attribute<xsl:if test="count(//property) gt 1">s</xsl:if>
</h2>
<table cellspacing="0">
<tr>
<th xsl:use-attribute-sets="th_first">Name</th>
<th xsl:use-attribute-sets="col">Description</th>
<th xsl:use-attribute-sets="col">Type</th>
<th xsl:use-attribute-sets="col">Default</th>
<th xsl:use-attribute-sets="col">Options</th>
<th xsl:use-attribute-sets="col">Use</th>
</tr>
<xsl:for-each select="//property">
<xsl:sort select="name"/>
<tr>
<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="name"/>
</th>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="description"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="type"/>
</td>
<td xsl:use-attribute-sets="row">

67

Chapter 4: Using Logic

68

<xsl:value-of select="default"/> </td>

<td xsl:use-attribute-sets="row">
<xsl:value-of select="values"/> </td>

<td xsl:use-attribute-sets="row">
<xsl:value-of select="required/@state"/> </td>

</tr>
</xsl:for-each>
</table>
</xsl:template>

The first template matches the <properties> element and calls the named template “attribute” with
<xsl:call-template>.

In the called template, select all the property nodes, and sort them on the <name> element content. Then
set out literal result elements for the <h2> and <table> elements. An <xsl:if> test pluralizes the head-
ing if appropriate. In each <tr> element after the fixed <th> column headings, we iterate over each
<property> element in turn.

Note two details. First, although there are no default attribute values in the schema declaration for
<xsl:for-each-group>, some other elements do contain defaults, so we need to provide for them with
a match for the <default> element. Second, the entity value “ ” is included to generate spaces in
any table cells that may be empty; some browsers behave badly unless this is present.

As you write out the table cells, add attributes to them to provide style classes, and the column
and row scope values for nonvisual user agents. This output is generated with the attribute
xsl:use-attribute-sets on the <th> and <td> elements.

The next snippet shows the XHTML output for the attribute table:

<h2>Attributes</h2>
<table cellspacing="0">
<tr>
<th scope="col" class="firsthdr">Name</th>

<th scope="col">Description</th>
<th scope="col">Type</th>
<th scope="col">Default</th>
<th scope="col">0Options</th>
<th scope="col">Use</th>
</tr>
<tr>
<th scope="row" class="firstcell">collation</th>
<td scope="row">The URI of a collation to use for string comparison</td>
<td scope="row">xs:anyURI</td>
<td scope="row"> </td>
<td scope="row"> </td>
<td scope="row">optionalé </td>

</tr>
<tr>
<th scope="row" class="firstcell">group-adjacent</th>

Chapter 4: Using Logic

<td
<td
<td
<td

<td
</tr>
<tr>
<th
<td
<td
<td

<td
<td
</tr>
<tr>
<th
<td
<td

<td
<td
<td
</tr>
<tr>
<th
<td

<td
<td
<td
<td
</tr>
<tr>
<th

<td

<td

<td

<td

<td
</tr>
</table>

scope="row">The common value to use if items
scope="row">xsl:expression</td>
scope="row"> </td>
scope="row"> </td>

are adjacent</td>

scope="row">optional </td>

scope="row" class="firstcell">group-by</th>
scope="row">The common value or values to use</td>
scope="row">xsl:expression</td>
scope="row"> </td>

scope="row"> </td>
scope="row">optional </td>

scope="row" class="firstcell">group-ending-with</th>
scope="row">The pattern that ends a group of preceding items</td>
scope="row">xsl:pattern</td>

scope="row"> </td>
scope="row"> </td>
scope="row">optional </td>

scope="row" class="firstcell">group-starting-with</th>
scope="row">The pattern that starts a group of following items</td>

scope="row">xsl:pattern</td>
scope="row"> </td>
scope="row"> </td>
scope="row">optional </td>

scope="row" class="firstcell">select</th>
scope="row">The sequence of items to group</td>
scope="row">xsl:expression</td>
scope="row"> </td>
scope="row"> </td>
scope="row">required </td>

Monitoring the Context

As the XSLT processor iterates over the nodes, the context changes with each step. For example, if there
is a variable value to output, then you need to calculate the variable value inside the <xs1:or-each>
selection expression, or use the current () function to capture some content.

69

Chapter 4: Using Logic

You can see this in operation by using the position() function to track progress through a sequence.
You can do this with temporary changes to the cells containing the attribute names:

<th xsl:use-attribute-sets="td_first">

<xsl:value-of select="concat('[',position(),'] ', name)"/>
</th>

The related last () function provides the number of items to process. You can use the following test for
position to improve the output of multiple links in the XHTML. It inserts the ™ | ” character as punctuation
following the content if you haven’t finished processing:

<xsl:for-each select="1link">
<xsl:apply-templates select="."/>

<xsl:1if test="position() ne last()">
<xsl:text>|</xsl:text>
</xsl:if>
</xsl:for-each>

Figure 4-1 shows both the improved punctuation and the output table with the first column cells
numbered.

Contains

#sl:sort | sequence constructor

Attributes

Name Descripliun Type Defaull Oplions Use

[1] collation The URI of a collation to xs:anyURI optional
sk for string
CUMmparisurn

[2] group adjacent The common value to wsl:enpression optional
use if items are
adjacent

[2] group by The common value or wsl:enpression optional
values to use

[4] group-ending-with The pattarn that ends a2 usl:pattarn optional
group of preceding
items

L&] group-starting-with The pattarn that starts usl:pattarn optional
a group of following
items

[8] salect The saquence of items xsl:expraccion required
to group

Figure 4-1

Processing XML Code

70

Most documents in the XSLT Quick Reference contain examples like the following snippet. The
<examples> element contains a <codeblock> element, which in turn contains a CDATA section with a
code example:

<examples>
<codeblock><! [CDATA [

Chapter 4: Using Logic

<xsl:for-each-group select="*"
group-adjacent="if (self::speaker) then 0 else 1">
<td class="noborder" width="50%">
<xsl:for-each select="current-group() ">

<xsl:apply-templates select="."/>
<xsl:1if test="current-group()='0"'">
<xsl:value-of select="."/>

</xsl:if>
<xsl:if test="position() ne last()">

</xsl:if>
</xsl:for-each>
</td>
</xsl:for-each-group>]]></codeblock>
</examples>

The next Try It Out illustrates how to process this section of a reference document. You'll add two more
templates to the for-each.xsl stylesheet to handle the output.

_ Processing CDATA

Add the following templates to handle the output of the code:

<xsl:template match="examples">
<h2>Example<xsl:if test="count (codeblock) gt 1">s</xsl:if>
</h2>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="codeblock">
<pre class="code">
<xsl:value-of select="."/>
</pre>
</xsl:template>
The count () test in the first template adds an “s” to the output if it contains more than one <codeblock>
element.

In the second template, the <pre> element wraps the example. The XSLT processor will automatically
escape the output, replacing the “<” and “>" characters with “&1t; ” and “> .

Here is the XHTML output:

<h2>Example</h2>
<pre class="code"><xsl:for-each-group select="*"
group-adjacent="if (self::speaker) then 0 else 1">
<td class="noborder" width="50%">
<xsl:for-each select="current-group() ">

<xsl:apply-templates select="."/>
<xsl:if test="current-group()='0"'">

71

Chapter 4: Using Logic

&1lt;span class="speaker"><xsl:value-of select="."/>&1lt;/span>
< /xsl:if>
<xsl:if test="position() ne last()">

&1lt;br/>
< /xsl:if>
&1t; /xsl:for-each>
&1t; /td>
&1lt; /xsl:for-each-group></pre>

Summary

This chapter explained how to make use of XSLT control structures. You learned the use of <xs1:if> for
simple cases, and how to apply <xs1:choose>, <xsl:when>, and <xsl:otherwise> for more complex con-
ditions. As an alternative, you learned that it is often possible to use if-then-else conditional expressions
in XPath 2.0.

The chapter also illustrated ways of combining <xs1:for-each> for iterative content, together with
<xsl:apply-templates>. You learned how to use <xsl:attribute-set> to apply styling and scope
attribute values in tabular output, and how to process code in CDATA sections to XHTML.

Key Points

Q When required, you can use the <xs1:if> and <xs1:choose> instructions to
direct the action of the XSLT processor.

Q When you are dealing with uniform data structures, the <xs1-for-each>
instruction is often the best choice for driving the transformation process.

Q Attribute sets can be specified and combined to provide a concise way of
specifying attribute output.

Exercises

You'll find solutions to these exercises in Appendix A.

1. List the types of source material and output types that lend themselves to using
<xsl:for-each> in stylesheets.

2. Prepare some attribute sets suitable for applying different text and background color combi-
nations to a <note> element in HTML output, and show an example of how to use them in a
template. The type attribute on the note element can be used to determine the style. Possible

e

attribute values are “note”’, ““caution”’, and ““warning’’.

72

Chapter 4: Using Logic

The precise colors are not critical, but I suggest black/white, blue/gray, and red/yellow
combinations for text and background. Figure 4-2 shows the sort of result I have in mind,
though not the colors, obviously.

This is a note

Figure 4-2

The CSS stylesheet reference. css will handle the basic note style correctly.

73

Sorting and Grouping

Sorting content in various orders and grouping it into categories is standard fare in all manner of
lists and reports. XSLT provides several useful tools that will help you get the results you want.

The sort instruction can be used in many stylesheet contexts with several sort options, and the
<xsl:for-each-group> instruction makes it possible to group elements in a number of ways using
very compact syntax.

In this chapter you'll do the following:
0 Examine the options available to you for sorting and grouping content using <xsl:sort>,
<xsl:perform-sort>, and <xsl: for-each-group>.
Q Learn about the significance of datatypes and languages in sorting.
0 See how to use variables in attribute value templates to create runtime values.

Q Process part of a Shakespearian play marked up in XML.

Sorting Content

In earlier chapters you have used <xsl:sort> a couple of times with the default behavior, which is
to sort as text, and to order it A-Z. Because that works well on many occasions, I did not discuss
order options, multiple instructions, and so on. This section will fill in some details.

The <xsl:sort> instruction provides a single sort key component in a possible set of keys known
as a sort key specification. For example, in the following code snippet, each of the individual
sort instructions is a key component, and the pair of components together make up the key
specification:

<xsl:for-each select="//product">
<xsl:sort select="@store"/>
<xsl:sort select="@sku"/>

</xsl:for-each>>

The instruction can apply to any sequence, not just nodes.

Chapter 5: Sorting and Grouping

Here is the XSLT schema definition:

<xs:element name="sort">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="lang" type="xsl:avt"/>
<xs:attribute name="data-type" type="xsl:avt" default="text"/>
<xs:attribute name="order" type="xsl:avt" default="ascending"/>
<xs:attribute name="case-order" type="xsl:avt"/>
<xs:attribute name="collation" type="xsl:avt"/>
<xs:attribute name="stable" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Any keys must appear immediately after the <xsl:apply-templates>, <xsl:for-each>,
<xsl:for-each-group>, or <xsl:perform-sort> instructions.

The XSLT processor does all the sorting before processing any of the other instructions in a sequence
constructor. The order of sort keys is significant; they will be processed from the first/major key to the
last/minor key.

Just as you'd expect, the select attribute contains an XPath expression. You can, alternatively, use an
enclosed sequence constructor such as <xsl:value-of select="@sku”>. The default is select="." if
neither is provided.

The order attribute defaults to the value "ascending"; the alternative is "descending".

TIE0ut Sorting

76

To experiment with sorting, open the products.xml file in the code folder:

<?xml version="1.0" encoding="UTF-8"?>

<products>
<product sku="gdk943-46298r" color="red" units="50" store="Center"/>
<product sku="gdk943-46298w" color="white" units="851" store="West"/>
<product sku="gdk943-46298g" color="green" units="143" store="North"/>
<product sku="gdk943-46298b" color="blue" units="19" store="North"/>
<product sku="gdk943-46298p" color="purple" units="23" store="South"/>
<product sku="gdk943-46298r" color="red" units="70" store="Center"/>
<product sku="gdk943-46298g" color="green" units="29" store="East"/>
<product sku="gdk943-46298w" color="white" units="203" store="South"/>

</products>

The requirement is to sort the content first by the stock keeping unit (SKU), and then by units available.
The output is an XHTML table.

The core of the stylesheet looks very much like the table layout you used in Chapter 4 to list element
attributes. This time the column headings are for ““SKU,” ““Units,” ““Color,”” and “‘Store.”

Chapter 5: Sorting and Grouping

You might want to open for-each.xsl from that chapter’s code and copy across some reusable compo-
nents. The attribute set definitions are portable and can serve in the table, and the “head” template code
will come in handy too.

Add the following code in the main template:

<xsl:template match="/">
<html>
<xsl:call-template name="head">
<xsl:with-param name="title" select="title"/>
<xsl:with-param name="style" select="S$style"/>
</xsl:call-template>

<body>
<hl>
<xsl:value-of select="S$title"/>
</hl>
<table cellspacing="0" width="50%">
<tr>

<th xsl:use-attribute-sets="th_first">SKU</th>
<th xsl:use-attribute-sets="col">Color</th>
<th xsl:use-attribute-sets="col">Units</th>
<th xsl:use-attribute-sets="col">Store</th>
</tr>
<xsl:for-each select="//product">
<xsl:sort select="@sku"/>
<xsl:sort select="@color"/>
<tr>
<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="@sku"/>
</th>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="@units"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="@color"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="@store"/>
</td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>...

You'll see there are dependencies on the “head” template, on the $title and $style parameters, and on
the attribute set definitions that are used to set the table’s cell properties. Be sure to add this code to your
template. The complete code is in products_sort.xsl.

7

Chapter 5: Sorting and Grouping

The sorted table rows should look like Listing 5-1.

Listing 5-1

<hl>Stock report</hl>
<table cellspacing="0" width="50%">
<tbody><tr>

<th
<th
<th
<th
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>
<tr>
<th
<td
<td
<td
</tr>

78

scope="col" class="firsthdr">SKU</th>
scope="col">Units</th>
scope="col">Color</th>
scope="col">Store</th>

scope="row" class="firstcell">gdk943-46298b</th>
scope="row">19</td>

scope="row">blue</td>

scope="row">North</td>

scope="row" class="firstcell">gdk943-46298g</th>
scope="row">143</td>

scope="row">green</td>

scope="row">North</td>

scope="row" class="firstcell">gdk943-46298g</th>
scope="row">29</td>

scope="row">green</td>

scope="row">East</td>

scope="row" class="firstcell">gdk943-46298p</th>
scope="row">23</td>

scope="row">purple</td>

scope="row">South</td>

scope="row" class="firstcell">gdk943-46298r</th>
scope="row">50</td>

scope="row">red</td>

scope="row">Center</td>

scope="row" class="firstcell">gdk943-46298r</th>
scope="row">70</td>

scope="row">red</td>

scope="row">Center</td>

scope="row" class="firstcell">gdk943-46298w</th>
scope="row">851</td>

scope="row">white</td>

scope="row">West</td>

Chapter 5: Sorting and Grouping

<tr>
<th scope="row" class="firstcell">gdk943-46298w</th>
<td scope="row">203</td>
<td scope="row">white</td>
<td scope="row">South</td>

</tr>

</tbody>
</table>

Datatypes

The data-type attribute is strictly required only for version 1.0 stylesheets. With an XSLT 2.0 stylesheet,
the preferred approach is to cast the value in the select attribute to the type you require using the
appropriate XML Schema value — for example, select="xs:integer(.)".

However, you can use the data-type attribute if you wish. One of three values can be used: "text",
"number", or a user-defined type expressed as a QName.

The default value is "text", so if you had numeric values in some product data, such as what is shown
in the following example, and you sorted on the units attribute value without setting a type, the resulting
order would be 143, 19, 50, 851. This is because when treated as text, the key values are converted to
strings before sorting.

<products>
<product sku="gdk943-46298r" color="red" units="50"/>
<product sku="gdk943-46298w" color="white" units="851"/>
<product sku="gdk943-46298g" color="green" units="143"/>
<product sku="gdk943-46298b" color="blue" units="19"/>
</products>

With data-type="number" or select= "xs:integer (@units)" you will get the items sorted by numeric
value. The value "number" causes values to be cast as xs:double before sorting.

If numbers and text are mixed in the source data and you specify data-type= "number", then the num-
bers will appear after the unsorted text values, and the opposite if the order is descending.

The result with a given user-defined data-type value is implementation-defined, so you need to check
the processor documentation for details about any supported values.

_ Numeric Sort

In this Try It Out you'll experiment with three different combinations of type and sort orders, using the
units attribute value in products.xml as sort keys.

First cast the units attribute value as an integer using the xs:integer () function and then sort the
products in descending order. To use this casting method you need to have declared the XML Schema
namespace in the <xsl:stylesheet> element.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

79

Chapter 5: Sorting and Grouping

La

80

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

<xsl:for-each select="//products">
<xsl:sort select="xs:integer (Qunits)" descending/>

</xsl:for-each>
The products sort as 852, 203,143, and so on in the Units column.

Next, change the order by removing the order attribute entirely; recall that “ascending’” is the default
value. The order should now be 19, 23, 29, and so on.

Finally, remove the xs:integer () function, leaving select= "@units". The values are treated as strings,
resulting in 143, 19, 203, and so on.

nguage Settings

Collating sequences are used in XSLT to determine the order in which to sequence string values for
different languages. Not only do languages vary considerably in their sort requirements, with accented
characters and such coming into play; there are often special rules to apply for publications such as
dictionaries and telephone directories.

It is probable that only the English collating sequence will be supplied with the processor; certainly this
is the case with the Saxon processor. However, if alternative sequences are available, you can set the
collation attribute to a URI that specifies how strings are to be compared. The value is an attribute
value template, which is an XPath expression contained in curly brackets ({}), and can contain a variable
or parameter. Therefore, you can use a value like the following to represent the URI:

<xsl:sort collation="{$fr uri}" select="surname"/>

An attribute value template is an XPath expression, where the expression is enclosed in curly brackets
({}). It is intended to contain values that can be determined only at runtime. The XSLT schema defines
the type xs1:avt, which you will see used for all attributes that allow an attribute value template.

The syntax of attribute value templates, and specific rules for each attribute, are described in the
XSLT 2.0 Recommendation.

Instead of the collation attribute, you can use the lang attribute to specify the language of the key, and
thus provide a hint to the processor about which collating rules to use. Valid language codes are those
allowed for the xml: lang attribute: the ISO 639-1 language codes, optionally paired with the ISO 3166-1
country values, such as "en-GB", "fr-CA" and "pt-BR".

The case-order attribute may also be relevant. Generally it is applied only if two compared words are
equal when case is ignored, but in German, for instance, an initial capital can change the meaning of a
word. Depending on requirements, the order can be specified.

By default, uppercase letters sort before lowercase; but you can use "lower-first" as the value of the
case-order attribute to change the default. It determines whether uppercase letters ("upper-first") are

Chapter 5: Sorting and Grouping

sorted before equivalent lowercase letters, or vice versa, and logically applies only to the text datatype.
The effect of these values is reversed if the order is descending.

Perform a Sort

<xsl:perform-sort> may be used to sort items independently of other parts of a process to order infor-
mation for subsequent use. Most often you will use it to create the content of a variable or parameter.

The element always contains one or more <xsl:sort> instructions. You may use either the select
attribute or the element content to define the sequence to be processed.

Here is the schema definition:

<xs:element name="perform-sort" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:sort" minOccurs="1" maxOccurs=" unbounded"/>
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The next code snippet shows the cast in the play Love’s Labour’s Lost by William Shakespeare. I've
enclosed a copy of the play as 3L.xml, as you'll be using part of it in the next section on grouping.

I've made some changes to the original download, applying the current version of the markup (known
as P5) recommended by the Text Encoding Initiative (TEI). This project provides comprehensive
schemas covering different forms of literary text. You can see the recommendations for dramatic texts at
www.teil-c.org/release/doc/tei-p5-doc/html/DR.html#DRFAB

If you want, you can download individual plays from The Plays of Shakespeare,
marked up by Jon Bosak in XML format, from www.ibiblio.org/bosak/.

Note that the <div> element name is a valid TEI element name with a similar purpose to the one in
HTML:

<div type="cast">
<castList>
<head>Dramatis Personae</head>

<castItem>Ferdinand, King of Navarre.</castItem>

<castGroup>

81

Chapter 5: Sorting and Grouping

<castItem>Biron</castItem>

<castItem>Longaville</castItem>

<castItem>Dumain</castItem>

<roleDesc>Lords attending on the King.</roleDesc>
</castGroup>

<castGroup>

<castItem>Boyet</castItem>

<castItem>Mercade</castItem>

<roleDesc>Lords attending on the Princess of France.</roleDesc>
</castGroup>

<castItem>Don Adriano, a fantastical Spaniard.</castItem>
<castItem>Sir Nathaniel, a curate.</castItem>
<castItem>Holofernes, a schoolmaster.</castItem>

<castItem>Dull, a constable.</castItem>
<castItem>Costard, a clown.</castItem>
<castItem>Moth, page to Armado.</castItem>
<castItem>A Forester.</castItem>
<castItem>The Princess of France.</castItem>

<castGroup>
<castItem>Rosaline</castItem>
<castItem>Maria</castItem>
<castItem>Katherine</castItem>
<roleDesc>Ladies attending on the Princess.</roleDesc>
</castGroup>

<castItem>Jaquenetta, a country wench.</castItem>
<castItem>Lords, attendants, &c.</castItem>
</castList>
</div>

If you wanted to do some further processing on the cast list immediately, you could sort from within
<xsl:apply-templates> or <xsl:for-each>. However, if that were not the case, you could create a
variable $cast to contain a pre-sorted temporary tree created with <xsl:perform-sort>. The following
code is included in cast.xs1:

<xsl:variable name="cast">
<xsl:perform-sort select="//castItem">
<xsl:sort select="."/>
</xsl:perform-sort>
</xsl:variable>

Later on you could list the cast or do some other processing:
<h2><xsl:value-of select="//castList/head"/></h2>
<ul class="unmarked">

<xsl:for-each select="$cast/castItem">
<xsl:value-of select="."/></1i>

82

Chapter 5: Sorting and Grouping

</xsl:for-each>

The output should look like what is shown in Figure 5-1.

Grouping

Dramatis Personae

& Forester,

Biron

Boyet

Costard, a clown,

Don Adriano, a fantastical Spaniard.
Dull, a constable,

Durmain

Ferdinand, King of Navarre.
Holofernes, a schoolmaster,
Jaquenetta, a country wench.
Katherine

Longaville

Lords, attendants, 8.

Maria

Mercade

Moth, page to Armado.
Eosaline

Sir Mathaniel, a curate.

The Princess of France.

Figure 5-1

With the <xs1:for-each group> instruction, you can select a sequence, group the items, and treat the
processing of each group separately. By comparison, <xs1:for-each> processes each selection in an

identical manner.

The select attribute is required, and the result of the selection expression is known as the population.

The optional grouping attributes can then be used to allocate items to groups. The collation attribute
works in an identical manner to that on the <xs1:sort> instruction. The schema definition follows:

<xs:element name="for-each-group" substitutionGroup="xsl:instruction">

<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:versioned-element-type">

<XS:

sequence>

<xs:element ref="xsl:sort" minOccurs="0" maxOccurs="unbounded" />
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />

</Xs:sequence>
<XS:
<XS:
<XS:
:attribute

<XSs

attribute
attribute
attribute

name="select" type="xsl:expression" use="required"/>
name="group-by" type="xsl:expression"/>
name="group-adjacent" type="xsl:expression"/>
name="group-starting-with" type="xsl:pattern"/>

83

Chapter 5: Sorting and Grouping

<xs:attribute name="group-ending-with" type="xsl:pattern"/>
<xs:attribute name="collation" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Common Values

A typical pattern with XML data reporting is to use the <xsl-for-each-group> instruction with the
group-by attribute, and to run an inner loop with <xs1:for-each> to output the grouped values in
a table.

TAAEOUERT Grouping 1

In this exercise, the goal is to group the product information in the products. xml file by store, and output
each store’s stock in a tabular layout with a total of the units.

Use the same general stylesheet structure as you did in the last Try It Out.

Add the following code after the <h1> element:

<xsl:for-each-group select="//product" group-by="@store">
<h2><xsl:value-of select="current-grouping-key()"/></h2>
<table cellspacing="0">
<tr>
<th xsl:use-attribute-sets="th_first">SKU</th>
<th xsl:use-attribute-sets="col">Color</th>
<th xsl:use-attribute-sets="col">Units</th>
</tr>
<xsl:for-each select="current-group() ">
<tr>
<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="@sku"/>
</th>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="€@color"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="@units"/>
</td>
</tr>
</xsl:for-each>
<tr>
<th xsl:use-attribute-sets="td_first">Total</th>
<td xsl:use-attribute-sets="row"> </td>
<td xsl:use-attribute-sets="row">
<xsl:value-of select="sum(current-group()/@units)"/>
</td>
</tr>
</table>

84

Chapter 5: Sorting and Grouping

</xsl:for-each-group>

In the example, the products are grouped by the store attribute. In the <h2> element, the XSLT function
current-grouping-key () returns the value shared by the members of the group — in this case, the store
name.

The inner <xsl:for-each> loop uses the XSLT current-group () function to refer to each grouping. In

addition to tabulating the values, the expression sum(current-group () /@units) will create a total value
for each group. Figure 5-2 shows the output.

Stock report

Center

sKU Color Units
gdk943-46298r red &0
gdk943-46298r red 70
Total 120
West

SKU Color Units
gdk943-46298w white 851
Total 851
North

SKU Color Units
gdk943-46298g green 143
gdk243-46298h blue 19
Total 162
South

sKU Color Units
gdk943-46298p purple 23
gdk943-46298w white 203
Total 226
East

SKU Color Units
gdk943-46298g green 29
Total 29
Figure 5-2

The complete code is in products_group.xsl.

Adjacent Items

The group-adjacent attribute is suited to situations in which the order of items and ““togetherness’ is
significant, as it is in many documents. It doesn’t sort the selected elements, but leaves them in their
original order and groups any adjacent items together.

This can be useful if you have a series of values that you know are adjacent, so you can avoid the
additional processing required by group-by.

85

Chapter 5: Sorting and Grouping

This is the case in the next Try It Out, where you'll make use of one of the better scenes in Love’s Labour’s
Lost, a work that is renowned for its plays on words. The next snippet shows part of it. The file is
act5scenel.xml.

<stage>Enter Don Adriano, Moth, and Costard</stage>

<sp>
<speaker>Don Adriano</speaker>
<1>Chirrah!</1>

</sp>

<stage>To Moth</stage>

<sp>
<speaker>Holofernes</speaker>
<1>Quare chirrah, not sirrah?</1>
</sp>

<sp>

<speaker>Don Adriano</speaker>

<1>Men of peace, well encountered.</1>
</sp>

<sp>

<speaker>Holofernes</speaker>

<1>Most military sir, salutation.</1>
</sp>

<sp>
<speaker>Moth</speaker>
<l><stage>Aside to Costard</stage> They have been at a great feast</1>
<1>0f languages, and stolen the scraps.</1>

</sp>

<sp>
<speaker>Costard</speaker>
<1>0, they have lived long on the alms-basket of words.</1>
<1>T marvel thy master hath not eaten thee for a word;</1>
<l>for thou art not so long by the head as</1>
<l>honorificabilitudinitatibus: thou art easier</1l>
<l>swallowed than a flap-dragon.</1>

</sp>

Each <sp> (speech) element contains a <speaker> element followed by one or more <1> (line) elements.
<stage> directions may occur at the same level as speeches, and within lines. They can also occur at the
same level as lines, though that is not evident in this particular scene.

86

Chapter 5: Sorting and Grouping

TAAEOUERY Grouping 2

The example that follows is partly based on one in Michael Kay’s XSLT 2.0 and XPath 2.0 Programmer’s
Reference (Wrox, 2008). The goal is to create a tabular listing of speakers in column 1, and sequences of
lines in column 2.

You can use the group-adjacent attribute to separate speakers and lines. This attribute generates an
atomic value for each group, so it can be true or false, a number, a string — whatever you choose:

<xsl:template match="sp">
<xsl:for-each-group select="*" group-adjacent="if (self::speaker) then 0 else 1">
</xsl:template>

In the preceding grouping within the template for speeches, all the child elements are first selected using
select="*". Then in the group-adjacent attribute value, an i f-the-else expression assigns <speaker>
elements a grouping key of "0" if it is on the self: : axis; everything else (lines and stage directions)
under <sp> is assigned a value of "1".

If you were to tabulate the grouping key values from this scene using the current-grouping-key ()
function alone, you would get output with zeros in the first column for each speaker, and ones in the
second column for each of that speaker’s lines:

1
1111111
111111
1
11111111111
1
11

O O O O O o o -

However, what you want to do is tabulate the <speaker> and <1> element content and any relevant
<stage> elements, so in each row you use the <xsl:for-each> and the current-group () function to
loop through the items, creating a table cell for the speaker name and another for line/stage directions.
In the second cell, use a position () function test to add a
 element for each new line:

<xsl:template match="sp">
<table width="100%" class="noborder">
<tr>
<xsl:for-each-group select="*"
group-adjacent="if (self::speaker) then 0 else 1">
<td class="noborder" width="50%">
<xsl:for-each select="current-group() ">

<xsl:apply-templates select="."/>
<xsl:if test="current-group()='0"'">

87

Chapter 5: Sorting and Grouping

<xsl:value-of select="."/>
</xsl:if>
<xsl:if test="position() ne last()">

</xsl:if>
</xsl:for-each>
</td>

</xsl:for-each-group>
</tr>
</table>
</xsl:template>

In the output, the stage directions in this section will appear, either in their own table cells or at the start
of a line. To distinguish them from the remaining text, you handle them in separate templates, marking
them with square brackets " []": one for inline and in-speech instances, and another for in-scene cases:

<xsl:template match="div[@type="'scene']/stage">
<table width="100%" class="noborder">

<tr>
<td class="noborder" colspan="2" width="50%">[<xsl:value-of
select="."/>] </td>
</tr>
</table>
</xsl:template>
<xsl:template match="stage">[<xsl:value-of select="."/>] </xsl:template> >

Figure 5-3 shows part of the resulting XHTML table.

[Enter Don Adriano, Moth, and Costard]

DON ADRIANOD Chirrah!

[To Math]

HOLOFERNES Quare chirrah, not sirrah?

DoN ADRIANO Men of peace, well encountered.

HOLOFERNES Maost military sir, salutation.

MOTH [Aside to Costard] They have been at a great feast

of languages, and stolen the scraps.

COSTARD 0, they have lived long on the alms-basket of words,
I marvel thy master hath not eaten thee for a word;
for thou art not so long by the head as
honoarificabilitudinitatibus: thou art easier
swallowed than a flap-dragon.

Figure 5-3

The stylesheet adjacent.xsl in Listing 5-2 will process just one scene or the entire text of
the play.

88

Chapter 5: Sorting and Grouping

Listing 5-2
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:param name="style">reference.css</xsl:param>
<xsl:param name="interval" select="5"/>

<xsl:template match="/">
<html>
<xsl:call-template name="head">
<xsl:with-param name="title" select="TEI/text/front/docTitle"/>
<xsl:with-param name="style" select="$style"/>
</xsl:call-template>

<body>
<hl>
<xsl:value-of select="TEI/text/front/docTitle"/>
</hl>
<h2>
<xsl:value-of select="TEI/text//castList/head"
/>
</h2>
<ul class="unmarked">
<xsl:for-each select="//castList/castItem">

<xsl:value-of select="."/>
</1i>
</xsl:for-each>

<xsl:apply-templates/>
</body>
</html>
</xsl:template>

<xsl:template name="head">
<xsl:param name="title"/>
<xsl:param name="style"/>

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="S$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="$style"/>
</xsl:attribute>
</link>
</head>
</xsl:template>

<xsl:template match="div[@type='act']">
<h2>
<xsl:value-of select="format-number (@n, 'Act 0')"/>

Continued

89

Chapter 5: Sorting and Grouping

Listing 5-2: (continued)

</h2>
<xsl:apply-templates select="* except head"/>
</xsl:template>

<xsl:template match="div[@type='scene']">

<h3>
<xsl:value-of select="format-number (€n, 'Scene 0: "')"/>
<xsl:value-of select="head"/>

</h3>

<xsl:apply-templates select="* except head"/>
</xsl:template>

<xsl:template match="sp">
<table width="100%" class="noborder">
<tr>
<xsl:for-each-group select="*"
group-adjacent="1if (self::speaker) then 0 else 1">
<td class="noborder" width="50%">
<xsl:for-each select="current-group () ">

<xsl:apply-templates select="."/>
<xsl:if test="current-group()='0"'">
<xsl:value-of select="."/>

</xsl:if>
<xsl:if test="position() ne last()">

</xsl:if>
</xsl:for-each>
</td>

</xsl:for-each-group>
</tr>
</table>
</xsl:template>

<xsl:template match="speaker">

<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="TEI/teiHeader"/>

<xsl:template match="TEI/text/front"/>

<xsl:template match="div[@type="'scene']/stage">
<table width="100%" class="noborder">

<tr>
<td class="noborder" colspan="2" width="50%">[<xsl:value-of
select="."/>] </td>
</tr>
</table>

</xsl:template>

<xsl:template match="stage">[<xsl:value-of select="."/>]
</xsl:template>
</xsl:stylesheet>

90

Chapter 5: Sorting and Grouping

Starting and Ending Conditions

The two remaining grouping attributes use patterns, rather than expressions, for selection; and they can
be used to define conditions that begin or end a group.

Starting

To group items that include and follow a specific node, you use the group-starting-with attribute. You
might want to do this if you have to convert from a flat structure to a nested output.

An example, which you will work with in the next exercise, is an XHTML page whose headings are at
the same level as paragraphs.

WO starting

Open one of the quick reference web pages you generated in Chapter 1.

The goal is to return it as closely as possible to the original quick reference structure. To do so, you
need to define the <h2> element as the starting node, and group all the following paragraphs before the
next <h2>.

To reconstruct the headings, capture the <h2> content in the $1abel variable, and use an attribute value
template in the <xs1:element> instruction:

<xsl:template match="body">
<xsl:for-each-group select="*" group-starting-with="h2">
<xsl:variable name="label" select="."/>
<xsl:element name="{$label}">
<xsl:apply-templates select="current-group()"/>
</xsl:element>
</xsl:for-each-group>
</xsl:template>

If you haven’t saved the output from local.xsl, run it again using xs1_stylesheet.xml as source and
save the result document. Then use the stylesheet xhtml2ref.xs1, shown in Listing 5-3, to process that
XHTML output.

Listing 5-3

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xpath-default-namespace="http://www.w3.0rg/1999/xhtml">

<xsl:output method="xml" encoding="UTF-8"/>

<xsl:template match="/">
<reference>
<title>
<xsl:value-of select="html/body/hl"/>
</title>
<body>
<xsl:apply-templates select="html/body"/>
</body>

Continued

91

Chapter 5: Sorting and Grouping

92

Listing 5-3: (continued)

</reference>
</xsl:template>

<xsl:template match="hl | h2"/>

<xsl:template match="body">
<xsl:for-each-group select="*" group-starting-with="h2">
<xsl:variable name="label" select="."/>
<xsl:element name="{$label}">
<xsl:apply-templates select="current-group()"/>
</xsl:element>
</xsl:for-each-group>
</xsl:template>

<xsl:template match="p">
<p>
<xsl:apply-templates/>
</p>
</xsl:template>

<xsl:template match="code">
<code>
<xsl:value-of select="."/>
</code>
</xsl:template>

</xsl:stylesheet>
Note a few points about this stylesheet.

The value of the xpath-default-namespace attribute is set to "http://www.w3.0rg/1999/xhtml". You’'ll
recall that this is required when a default namespace is declared on an input document, but there isn’t
one in our XHTML source. In fact, it is hidden away in the XHTML DTD (Thanks, W3C!). Just try to
remember this gotcha when you are transforming an XHTML source, and nothing is processed as a
result.

Note the “do nothing”” templates for <h1> and <h2>, which will stop unwanted text output.

You can’t properly reconstruct the original <element> or <attr> elements from the XHTML source
because the original transform local.xsl “lost” information that could have been captured. You could
make the XHTML more “information-rich” by applying class attributes in local.xsl.

To do so, you can delete the template that currently matches the <code> element and add “code” to the
template match attribute with the pattern "attr | element". You can capture the element names to assign
to the class attributes by using the XPath name () function:

<xsl:template match="attr | element | code">
<code>
<xsl:attribute name="class"><xsl:value-of select="name()"/></xsl:attribute>

<xsl:value-of select="."/>

Chapter 5: Sorting and Grouping

</code>
</xsl:template>

Then, in xhtml2ref.xs1, you could use these class values to name these elements, in the same manner as
the headings.

Ending

The group-ending-with attribute matches group-starting-with, but seems to have fewer use cases. The
order of most XML documents is “top down,” with headings coming first rather than last in sequences,
so there aren’t too many common applications.

Summary

By now you should have a grasp of what is required to sort and group content for analysis. In the
section on <xsl:sort>, you learned how to apply ascending and descending orders, and how to handle
numbering.

You have seen that you can use <xs1:perform-sort> independently of other parts of a process to order
information for subsequent use.

Grouping content is a common requirement in processing XML data, especially where there are clear
categories to make use of. In the section on <xs1: for-each-group>, you learned how to use the group-by
attribute to manipulate data grouping. Working with the group-adjacent attribute illustrated how to
maintain order within a grouping operation. You also saw how to use group-starting-with to add
structure to a ““flat” XHTML file.

Key Points

O A sort specification can contain multiple <xs1:sort> keys, which are pro-
cessed in order before other instructions in a sequence constructor.

O Unless you are sorting text, you need to cast sort key selections in
<xsl:sort> to the XML Schema type that matches the data to be sorted.
With user-defined datatypes, the required syntax is implementation-defined.

O When you are dealing with uniform data structures, the <xs1-for-each>
instruction is often the best choice for driving the transformation process.

0 Attribute sets can be specified and combined to provide a concise way of
specifying attribute output.

Exercises

You'll find solutions to these exercises in Appendix A.

1. In what circumstances would you use <xsl:sort> instructions inside <xs1:apply-
templates>, as opposed to using it inside <xs1:perform-sort>?

93

Chapter 5: Sorting and Grouping

94

2.

Given that the default data-type attribute value used in an <xs1:sort> instruction is
"text", what is the correct syntax for an instruction to sort on xs:dateTime values in
elements named <update>? Apart from this value, are other related settings needed to make
the instruction work correctly?

In the last Try It Out in this chapter, I suggested some changes that could be made to the
stylesheet local.xsl, because it “lost” information that could have been captured by apply-
ing class attributes. Try making these changes and verify that the class attributes are set
correctly by looking at the XHTML source code. Then modify xhtml2ref.xsl to pick up
those class values and output correct element names, rather than <code> elements.

Strings, Numbers, Dates,
and Times

This chapter looks more closely at some of the more useful XSLT elements and XPath functions that
you can employ to manipulate string, numeric, and datetime values.

In this chapter you'll do the following:

0 Learn about codepoint conversion and more about collations.

Q Use functions that support pattern-matching techniques — such as regular
expressions — to find and replace text, to normalize text values, and to escape URISs.

Q Generate simple and hierarchical numbering using <xs1:number> and format the gener-
ated values.

0 Use another pair of tools — the <xsl:decimal-format> declaration and the XSLT
format-number () function — to convert and format numeric values in source data.

0O Work with dates and times generated from your system, which you can then process and
format.

Q Learn how to apply durations and timezone values.

String Processing

Back in Chapter 2 you were given a quick look at some of the functions that are available to you
when you want to handle text strings. This section expands on that subject with a set of working
examples for typical use cases.

Pay close attention here, because as I mentioned then, you will likely use string functions more often
than any other category in your stylesheets, because XML is fundamentally about handling text.

About Collations

Some operations on strings need to take into account the collation sequence in use by the processor.
Examples include sorting, establishing equality, and using functions such as distinct-values(),

Chapter 6: Strings, Numbers, Dates, and Times

which removes duplicate items in a sequence. The use of a collation is primarily determined by language,
but sometimes also by special requirements. (Recall the discussion of language in the section on sorting
in Chapter 5.)

The minimum collation that XSLT processors are required to implement is the simple Unicode codepoint
collation, in which strings are compared character by character using the numeric codes. This is the
default collation for XPath operators and functions, but not necessarily for sorting.

If you specify a particular collation it may affect the way strings are compared. More demanding XSLT
applications will have quite specific rules. The rules for comparison within a collation based on an algo-
rithm published by the Unicode consortium, the Unicode Collation Algorithm, are more sophisticated.
They involve assigning a set of weights, which first distinguish between two different characters, then
between accents, and finally between uppercase and lowercase. The weighting method for non-Latin
scripts is different, but the same principles apply.

General Functions

The string () function converts a single argument to a string. If no argument is provided, then it is the
same as providing the current context item " . . If a sequence of more than one item is provided, then an
error occurs. The following table shows some examples.

Expression Result

string(12.9) “12.9”

string (7=7) “true”’

string(.) Returns the value of the context item
string (*) Returns an error

To obtain the length of a string, you can use string-length (). It returns an integer value with the
number of characters.

Codepoints

96

In the terminology used for character encoding, a codepoint is a numeric value in a range that makes up
the set of codes, and it is intended to be distinct from a particular encoding or the representation of a
character as a glyph. For example, ASCII includes 128 codepoints, and extended ASCII includes 256.

Two XPath functions handle the conversion of Unicode codepoints to and from strings. For example, you
might need to generate values by algorithm, such as hexadecimal values from integers.

The codepoints-to-string () function takes a sequence of integers as input values and returns the
equivalent string; the string-to-codepoints function reverses the process:

codepoints-to-string((88, 83, 76, 84))

The preceding example will return “XSLT.” (Note that there are two pairs of parentheses in the example:
one for the function, and another to contain the sequence of codepoints.)

Chapter 6: Strings, Numbers, Dates, and Times

Comparison

The compare () function enables you to perform a simple comparison between two arguments of any
type. The optional collation URI may be used to identify a collation other than the default in use.

The function first converts the arguments to strings and returns an integer value, in order to be capable of
expressing either argument as being greater, lesser, or equal. Possible values are -1 if the first argument
is less than the second, +1 if the first value is greater than the second, and 0 if the strings are equal.
The following example returns "-1" in the variable $result:

<xsl:variable name = "result" select= "compare(less, greater)"/>
The codepoints-equal () function makes it possible to compare the individual characters in two strings
using the Unicode codepoint collation, independent of the default collation in the context. It is therefore

useful for language-independent values such as part identifiers and billing references.

The result returned is a Boolean value that is true if the strings are identical in terms of Unicode code-
points.

Concatenation

The concat () function takes two or more comma-separated values, converts them into strings, and joins
them with no punctuation or spacing.

Assuming that there are elements <street>, <city>, <state>, and <zip< in a source document, the
following snippet will list them separated by commas. Typically, you'll use a select attribute as in the

following example, which must include any inline punctuation in single quotes:

<xsl:variable name="address"
select="concat (street,', ',city,', ',6state,', ',zip)"/>

Alternatively, you can use the <xs1:value-of> instruction with the separator attribute value to provide
any punctuation. The next snippet will have the same result:

<xsl:value-of select="street, city, state, zip" separator=", "/>
The string-join() function also allows you to provide a separator between values as a final argument.
In this case, the strings are provided in a sequence as a single argument, followed by an optional separa-
tor. It has the disadvantage that you need to explicitly convert non-string values to strings beforehand,
whereas concat () does that work for you.

The next snippet uses string-join with the */”” separator to output a file path:

<p><xsl:value-of select="string-join(('..',6 'xslt_reference', 'xsl_sort.xml'),
l/l)l|/></p>

The output will look like this:

<p>../xslt_reference/xsl_sort.xml</p>

97

Chapter 6: Strings, Numbers, Dates, and Times

Simple Substrings

98

You can use several useful string functions to handle partial strings. To test whether or not one string is
contained within another, you can use the contains () function. It takes two arguments, the first of which
is the containing string. The result is a Boolean value, so it is typically used as a test inside a conditional
instruction like <xs1:1f>. For example, if $title has the value "A History of France", then the function
will return true:

<xsl:if test="contains($Stitle, 'France')>
</xsl:if>

The functions substring-before () and substring-after () return the part of a string that occurs before
or after the first occurrence of a substring, respectively. The next example extracts the date part of a string
representation of a datetime value:

<xsl:variable name="tagdate"
select="substring-before(created, 'T')"/>

If the <created> element contained "2008-01-04T16:51:35", then the variable $tagdate would be set to
"2008-01-04".

The starts-with() and ends-with() functions test whether or not one string starts with or ends with
another, respectively. The next example will return true if $name is set to the text "Brokeback Mountain
is a great film!" If $name begins with "Brother David" or "Browning", the result will be the same.

<xsl:variable name="name">Brokeback Mountain is a great film!</xsl:variable>
<xsl:if test="starts-with(Sname, 'Bro')">Yes, I agree!</xsl:if>

You can use index and length values on strings with the more general substring() function, which

is useful when you need to work character by character and you know the structure of the input. The
function takes the form substring (input, start, length). The character-position index begins at 1. The
length argument is optional; if you omit it, the entire string following the index value is returned.

For example, you might select the three-digit area-code prefix from a North American telephone number
as follows. If the number 604.873.7011 in British Columbia is assigned to the $code variable, the following
code will pick out the prefix "604":

<xsl:value-of select="substring($code,1,3)"/>

The translate () function replaces one substring with another, and takes three arguments. The first is
the string to modify, the second is the substring to replace, and the third (which may be empty) is the
list of replacement characters. If the third argument is empty, then the effect is to delete the replaced
substring. The following snippet uses translate() to convert a string from lower to upper case.

translate($Sinput, 'abcdefghijklmnopgustuvwxyz', 'ABCDEFGHIJKLOMNOPQRSTUVWXYZ')
Many uses of the translate() function, like the preceding one, are often seen in XSLT 1.0 stylesheets.

The same results can be achieved more readily with functions that are not available in XSLT 1.0, such as
matches () and replace () or the uppercase () and lowercase () functions.

Chapter 6: Strings, Numbers, Dates, and Times

Using Regular Expressions

Regular expressions provide a powerful way to express patterns, including potentially very complex
ones, within text. For more precise matching, the XPath functions matches (), replace (), and tokenize ()
make comparisons using regular expressions, which are more powerful than simple substring operations.

They have support in many programming and schema languages — for example, in ECMAScript and
RELAX NG. In XPath the pattern-matching syntax is based on that defined in the XML Schema spec-
ification, but it differs in that the XPath patterns need only match a substring, rather than the entire
string.

Expression Basics

You have probably come across regular expressions somewhere in your programming life. Discussing
them in any detail is outside the scope of this book, given their limited use in XSLT as a whole. However,
in case you haven’t seen them before, here is an outline of the syntax, which may help with understanding
the use of three XPath functions described later in this section.

There is not much point in using a regular expression if you are just searching for a series of characters
inside some content. The simple regular expression qwe matches “qwe,” and can just as readily be done
with contains ('qwe', 'qwe').

Regular expressions (or regex for short) are intended to help you to find content that matches a pattern,
rather than a literal string. The expressions are concise, and quite powerful.

Square brackets can be used to define a group of characters. The regex [qwe] r matches two characters
where the first is ““q,” **

e i

w,” or “e,”” and the second is ““r.”” Ranges can be expressed as [A-z] or [0-9].
To negate an expression, you use the "~ " metacharacter inside a group; the regex[" qwe]r matches
everything except those characters, and " [" a-z] " matches anything except lowercase letters.

To quantify the number of occurrences, you use "?" for zero or one, "*" for zero or more, and "+" for
one or more. You can also do explicit matches with " {value}" — for example, (q|w|e) {3} matches any
three-character union of the three characters: “qqq’” or “weq” but not “eeee.”

Subexpressions can be used to divide complex ones into manageable parts — for example, a telephone
number like mine, which has the pattern 99999-999999 will be matched with ([0-9]1{5})-[0-91{6}).
In XPath, regular expressions are not anchored as they are in other languages, so ian matches “ian,”
““Debian,” and “piano.” The anchor metacharacters " " " and "$" may be used to anchor the match to the
beginning and ending characters of the string, respectively. Therefore, ~ ian will not match only “ian,”
and ian$ will not match “ian” and ““Debian.”

You can modify how expressions are processed by setting one or more modes with four flags. The flags
can be supplied in any order in an optional argument in the matches (), replace(), or tokenize ()

functions. The flag values are the characters i, m, s, and x:

0 i:Switches to case-insensitive mode and the match is made regardless of case. For example, the
regex ian matches “ian,” “Ian,” and “TAN.”

99

Chapter 6: Strings, Numbers, Dates, and Times

O m: Switches on multiline mode. By default, the anchor characters "~ " and "$" match the
beginning and ending characters of the string, respectively. Multiline mode treats the strings as
though they are separated into lines marked by #x0A and the newline character, and ~ and $
now match the start and end of any line.

O s: When this flag is used, the dot character (.) matches any character, rather than the default of
any character except a newline #x0A.

O x: This flag causes whitespace in the regex to be ignored unless it is inside square brackets," []".

Matching

The matches () function determines whether or not an input string matches a regular expression. The
next example tests for a match with a string “November 22, 2006.”” The escape expression "\s" means
any whitespace character:

<xsl:if test="date[matches(.,'” [A-Z][a-z]4+\s[0-9]4+,\s[0-9]+S$")])">
</xsl:test>

The following table shows a breakdown of the parts.

Expression Description

The match is to be anchored at the start of the string.

[A-z] [a-z]+ A character in the range A-Z, followed by one or more characters in the
range a—z followed by any whitespace character.

\s Any whitespace character.

[0-9]+, One or more digits in the range 0-9, followed by a comma.

\s Any whitespace character.

[0-9]1+ One or more digits in the range 0-9.

$ The match is to be anchored at the end of the string.
Tokenizing

To split a string into its substring components or tokens, you can use the tokenize () function. The first
argument is the input string, and the second is a regex used to match the separators in the input. As the
string is processed the separators are discarded:

<p>Year: <xsl:value-of select="tokenize('2009-04-18', '-')[1]"/></p>
In the preceding example, tokenize () will separate the string variable $date in the form yyyy-mm-dd
into its parts. The second argument, "-", is the separator to use, and the function returns a sequence of

three tokens as "2009", 04", "18". The predicate "[1] " selects the first item in the sequence to return:

<p>Year: 2009</p>

100

Chapter 6: Strings, Numbers, Dates, and Times

Replacing

The XPath replace() function can either replace a pattern entirely with other text, or it can be used to
remove a matching pattern with an empty string. The function takes three arguments: the input string,
the regex, and the replacement string.

The following example will replace the day of the month in the string "2009-01-22" with “22.” The
escape expression "\d" means any digit, and the regex here is any two digits anchored at the end of the
string:

replace ($date, '\d\d$', '22")

The <xsl:analyze-string> instruction can also be used to process an input string using a reqular
expression in the regex attribute value. It is used when text is not marked up as XML but nonetheless
has a regular structure. You'll have a look at this instruction and related elements when you begin
processing text without markup in Chapter 10.

If you're interested in playing around with plenty of pattern examples, take a look at the excellent website
at http://regexlib.com.

Normalizing Values

Normalization can apply to specific processes on string values, like tidying up extra whitespace, and to
resolving conflicting encodings.

The term normalization, unfortunately, has no fixed definition, and means different things in different
contexts. Generally speaking it means performing some processing operations in a particular way, but
exactly what happens depends on the specific process.

Whitespace

When content entered by users has not been validated, it is good practice to remove leading and trailing
whitespace before you start working with string values. The normalize-space () function does just that;
in addition, it replaces multiple internal spaces with single-space characters.

Given some source content like ““A History of France” in a list of book titles, you could ready it for
matching against another title, or for accurate sorting, by setting a value like this:

<xsl:value-of select="normalize-space(Stitle)"/>

Unicode Values

A characteristic of some Unicode characters is that there is more than one way of encoding them. This
situation is a result of reconciling the differing needs of two interest groups: one favoring fixed-length
encoding, the other preferring variable-length encoding. It is quite possible to search for a character and
not find it because it has a representation that differs from the one you first thought of.

The solution to this awkward problem is to apply normalization. There are, in fact, no fewer than five

official algorithms available for this purpose. Details of four algorithms — C, D, KC, and KD — can be
found at www.unicode.org/reports/trl5/. The fifth is known as ““fully normalized,” which is defined
by the W3C at www.w3.org/TR/charmod-norm/.

101

Chapter 6: Strings, Numbers, Dates, and Times

If you have text with strings to match that might have alternative Unicode encodings for the same char-
acter, you can normalize the encoding with the normalize-unicode () function. It takes the input string,
and an optional normalization form value, and returns a normalized version. The default value for the
optional normalization-form parameter is NFC (normalization form C), which replaces multiple code-
point values with single ones.

For example, the character A can be encoded either as a single codepoint x00C5 or by two codepoints,
%0041 followed by x030A. NFC normalization will use x00c5. NFD will use x0041x030A.

Normalization form values can also be applied to output as a whole in the <xsl:output> and
<xsl:result-document> elements using the normalization-form attribute.

Escaping URIs

Often, some values in content that is intended as part of a URI will need escaping, often called percent
encoding, before use. For example, the filename for part of a feed URI like bxs1t & xpath.atom needs
fixing. The spaces and the & character are not valid. Non-ASCII characters are another example where
escaping is required.

XPath 2.0 provides a number of functions that you can use for escaping URIs in your output. To apply
percent encoding to characters in a URI, you can use the encode-for-uri () function. It first encodes the
characters in UTF-8, and then represents each byte as two hexadecimal digits:

<p><xsl:value-of select="encode-for-uri('bxslt & xpath.atom')"/></p>
The percent encoded output will look like this:
<p>bxslt%20%26%20xpath.atom</p>

In an XSLT application using the HTML or XHTML output methods, the final stage of the process, serial-
ization, occurs when the result tree is written out according to the specified output method. At this time,
the processor will automatically escape characters according to the HTML rules. Non-ASCII characters
are escaped, but the space character is not.

However, if you have an SVG image or MathML embedded in your XHTML, the URIs will need special
handling. This is because URIs may be contained in attributes defined as such in the HTML/XHTML
specifications.

All URIs need encoding if you have deliberately disabled automatic escaping of URI attributes on an
<xsl:output> declaration. This is done by setting the escape-uri-attributes value to no. In this case,
you can use the “manual” escape-html-uri () function.

Ideally, to get the correct result, escaping should be applied individually to each URI component, the file
path, the fragment identifier, the parameters, and so on, before assembly with the appropriate delimiters.

International Resource Identifiers (IRI), essentially URIs with non-ASCII characters, are not too com-
mon yet, though they are specified in some standards (e.g., Atom 1.0), supported in some APIs (e.g.,
Microsoft’s NET Framework System.Uri class), and recognized by most browsers. But if you need to
convert an IRI to a URI, you can use the iri-to-uri () function. Like encode-for-uri (), it generates a

102

Chapter 6: Strings, Numbers, Dates, and Times

valid URI by encoding the characters that are allowed in an IRI but not in a URI. For example, the IRI
www.w3.org/International/articles/idn-and-iri/JP#iii/41& %9 &l html is not a valid URI because
it includes Japanese characters. To convert the IRI, you would apply the function as follows:

<xsl:variable name="iri">http://www.w3.org/International/articles/
idn-and-iri/JP#iui/3lE W0 &0 html</xsl:variable>
<xsl:value-of select="iri-to-uri($iri)"/>

The last part of the resulting URI will look like this:

JP%E7%B4%8D%E8%B1%86/%E5%BC%95%E3%81%8DYES%89%B2%E3%82%8A%E7%B4%8D¥E8%B1%86 . html

Numbers

Broadly speaking, there are two different methods you can apply in working with numbers in XSLT.
You can generate numbers in the stylesheet using the very powerful <xs1:number> instruction — for
example, to number headings in the output. Existing numeric values in source documents are handled
differently, by converting them to strings and applying named formatting specifications.

Generating Numbers

The <xs1:number> instruction can be used to generate a sequential number for the current node, typically
something like a series of headings. You can also use <xs1:number> to format the generated numbers for
output, based on settings made in built-in formatting attributes. For attribute values, there is a range of
tokens you can apply for styling — for example, in Arabic or Roman numbers, or ordinal values.

Here is the schema specification:

<xs:element name="number" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:attribute name="value" type="xsl:expression"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="level" type="xsl:level" default="single"/>
<xs:attribute name="count" type="xsl:pattern"/>
<xs:attribute name="from" type="xsl:pattern"/>
<xs:attribute name="format" type="xsl:avt" default="1"/>
<xs:attribute name="lang" type="xsl:avt"/>
<xs:attribute name="letter-value" type="xsl:avt"/>
<xs:attribute name="ordinal" type="xsl:avt"/>
<xs:attribute name="grouping-separator" type="xsl:avt"/>
<xs:attribute name="grouping-size" type="xsl:avt"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The select attribute selects the node for which the sequence number will be generated.

103

Chapter 6: Strings, Numbers, Dates, and Times

The level attribute determines the way the number is generated based on the current location in the tree
of nodes. The possible values are "single", "any", and "multiple".

The default value is "single", which is used to number peer nodes in a hierarchy, such as all the <h1>
elements. This is normally the node sequence integer value, though it is possible to use the value attribute
if you want to provide a different number to be formatted.

The value "any" is used for sequential numbers on nodes that can appear anywhere in a document,
regardless of the main hierarchy, like those that identify tables, figures, and examples.

The "multiple" value will output composite numbering, such as "4.2.3", depending on the position of
the node in a hierarchy.

Format Attribute Tokens

The format attribute value specifies the output format of a number. You can set a token that specifies
which format you want to apply. If you specify nothing, the default value of 1" will be used. The
numeric tokens apply also to any equivalent Unicode digits, and the alphabetical token will generate
numbers in the appropriate language, as shown in the following table.

Token Format Example

1 Integers 1,2, 3.

001 Numbers with leading zeros 001, 002, 003...

a Lowercase Latin letters a,b,c..

A Uppercase Latin letters A, B, C...

i Lowercase Roman numerals i, ii, iii...

I Uppercase Roman numerals I 11, I1I...

w Number in lowercase words one, two, three...

A Number in uppercase words ONE, TWO, THREE...
Ww Number in titlecase words One, Two, Three...

Using the ordinal attribute can add variety to numbers. When set to "yes" it will generate "1st, 2nd,
3rd...", and with the token "ww" it will render "First, Second, Third..."

Single-Level Numbers

To learn how simple numbers work, refer to the example based on the Shakespeare text from Chapter
5, act5scenel.xml. The goal here will be to number the lines in the scene at defined intervals, to help

104

Chapter 6: Strings, Numbers, Dates, and Times

readers to locate specific content. Not every line needs to be numbered, so you'll set the interval to five

lines.

Open the stylesheet adjacent.xs1 and save it as number_lines.xs1 with the following changes.

_ Numbering Lines

First, add a parameter declaration $interval to to specify how frequently you want to show the line
number; I suggest every fifth line. Then, create a simple tabular layout with the text of each line, followed
by the line number, provided it is a multiple of the interval value:
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:param name="style">reference.css</xsl:param>
<xsl:param name="interval" select="5"/>

<xsl:template match="sp">

<table width="100%"

class="noborder">

<td class="noborder" width="100%">
<xsl:value-of select="speaker"/>

</td>

<xsl:apply-templates/>

</table>
</xsl:template>

<xsl:template match="1">

<tr>

<td class="noborder" width="70%">
<xsl:apply-templates/>

</td>

<td class="noborder" width="30%">
<xsl:variable name="1n">
<xsl:number level="any" from="div[@type="'scene']"/>
</xsl:variable>
<xsl:1f test="$1ln mod $interval=0">
<xsl:value-of select="$1n"/>

</xsl:if>

</td>
</tr>
</xsl:template>

</xsl:stylesheet>

Inside a table cell, set up the numbering inside the $1n variable using the "any" value for the level
attribute , and set the from attribute value to start the numbering within each scene. Then you select a
multiple of the interval inside an <xs1:if> instruction.

Figure 6-1 shows part of the resulting output.

105

Chapter 6: Strings, Numbers, Dates, and Times

Scene 1: The King of Navarre's Park

[Enter Holofernes, Sir Mathaniel, and Dull]
HOLOFERMES

Satis quod sufficit.

SIR MATHAMIEL

I praise God for you, sir: your reasons at dinner
have been sharp and sententious; pleasant without
scurrility, witty without affection, audacious without
impudency, learned without opinion, and strange with- 5
out heresy. I did converse this quondam day with

a companion of the king's, who is intituled, nomi-
nated, or called, Don Adriano de Armado.

HOLOFERMES
Mowvi hominem tangquam te: his humour is lofty, his
discourse peremptory, his tongue filed, his eye 10

ambitious, his gait majestical, and his general

behavior wain, ridiculous, and thrasonical, He is

too picked, too spruce, too affected, too odd, as it

were, too peregrinate, as I may call it.

SIR MATHAMIEL

A most singular and choice epithet. 15
[Draws out his table-book]

HOLOFERMES

He draweth out the thread of his verbosity finer

than the staple of his argument. I abhaor such

fanatical phantasimes, such insociable and

point-devise companions; such rackers of

orthography, as to speak dout, fine, when he should 20
say doubt; det, when he should pronounce debt,--d,

e, b, t, not d, e, t: he clepeth a calf, cauf;

half, hauf; neighbour vocatur nebor; neigh

abbreviated ne, This is abhominable,-—which he

would call abbominable: it insinuateth me of 25
insanie: anne intelligis, domine? to make frantic, lunatic.

Figure 6-1

Multiple-Level Numbers

Using level="multiple" works well if you have a nested structure, such as parts, chapters, and sections.
You use the count attribute to specify the levels to include. For example, if the document has four parts,
Part 4 has three chapters, and the third chapter has five sections, you want the value generated for the
very last section to be 4.3.5:

106

Chapter 6: Strings, Numbers, Dates, and Times

<xsl:template match="section">
<xsl:number
format=1.1.1
level="multiple"
count="part | chapter | section"/>

</xsl:template>

To get this result, you set the format attribute value to "1.1.1", the level attribute value to "multiple",
and the count attribute to contain the union of the three levels: count= "part | chapter | section".

If the listing format needs to change to account for a different category of heading at the same level as a
chapter (say “appendix”’), then you can use a variable to establish the format, and use it in the format
attribute, with an attribute value template that allows you to set a value at runtime:

<xsl:template match="section">
<xsl:variable name="format" select="
if (ancestor:chapter)
then '1.1.1"
else 'A.1.1'/>
<xs1:number
format="{$format}"

level="multiple"
count="part | appendix | chapter | section"/>

</xsl:template>

Formatting Source Numbers

As well as generating numbers, you can convert existing numeric values in source documents or data to
strings, and format them for display.

Converting a Number

You use the XSLT format-number () function to do the string conversion. It takes three arguments: the
number to be converted, a picture string that defines the formatting, and an optional QName that identifies
an <xsl:decimal-format> declaration.

A picture string provides a character template that defines both the visible format of the number and the
characters to use from the declaration. The default values for each character are shown in the following
table.

Name Default Description

decimal-separator . Character used as the decimal point

digit # Placeholder character for significant digits

grouping-separator , Character that separates groups (hundreds, thousands, and so on)

Continued

107

Chapter 6: Strings, Numbers, Dates, and Times

Name Default Description

minus-sign - Character used as the minus sign

pattern-separator ;i Character used to separate positive and negative number patterns
per-mille % Character for the per thousand sign, #x2030

percent % Character for the percent sign

zero_digit 0 Placeholder character for leading and trailing zeros

The following example uses the default values for the <xs1:decimal-format> declaration. In the picture
string "#, ##0.00", the digit or "#" characters are placeholders for digits in the result string, and the
zero-digit or "0" characters show how to handle significant digits.

Declaring a Format

The <xsl:decimal-format> declaration specifies the display appearance of a number that you have
converted to a string with the format-number () function.

The schema definition follows:

<xs:element name="decimal-format" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="name" type="xsl:QName"/>

<xs:attribute name="decimal-separator" type="xsl:char" default="."/>
<xs:attribute name="grouping-separator" type="xsl:char" default=","/>
<xs:attribute name="infinity" type="xs:string" default="Infinity"/>
<xs:attribute name="minus-sign" type="xsl:char" default="-"/>

<xs:attribute name="NaN" type="xs:string" default="NaN"/>
<xs:attribute name="percent" type="xsl:char" default="%"/>
<xs:attribute name="per-mille" type="xsl:char" default="‰"/>
<xs:attribute name="zero-digit" type="xsl:char" default="0"/>
<xs:attribute name="digit" type="xsl:char" default="#"/>
<xs:attribute name="pattern-separator" type="xsl:char" default=";"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The name attribute identifies the declaration and is used to bind the declaration to the format-number ()
function in one of its arguments. You can declare a default (unnamed) decimal format. If you do not
provide the third parameter in format-number (), these default settings will be used. If there is no default
declaration, then a built-in decimal format is used by the processor.

You'll see from the preceding specification that most of the attributes are characters used for signs and
separators that will represent the number. For example, the default decimal-separator attribute value
is a period (.), but in some European countries a comma (,) is preferred, along with the period as the
grouping-separator attribute value for thousands:

<xsl:decimal-format decimal-separator="," grouping-separator="."/>

108

Chapter 6: Strings, Numbers, Dates, and Times

Having defined your formatting template, you can go on to pass the formatted values.

_ Formatting Numbers

As an optional final step to the previous Try It Out, use the values in the act and scene <div> elements to
output numbering using format-number ().

You can render the act and scene headings with the following code. In this case, you can rely on the
built-in setting of the zero-digit attribute on <xsl:decimal-format>, whichis "0":
<h3>
<xsl:value-of select="format-number (€n, 'Scene 0: ')"/>

<xsl:value-of select="head"/>
</h3>

Dates and Times

Between XPath and XSLT there are plenty of functions that you can use to manipulate date and time
values. Three of them provide contextual values from your system, which you can then process and
format in different ways. As well as dates and times, you can work with durations and timezone values.

Contextual Dates

The XPath functions current-date (), current-dateTime (), and current-time () return values from
your system clock and provide a current context value to which external values can be compared.

Along with any values in the source data, they will get you to the starting point for your calculations.

Here’s a fragment that timestamps an update to some feed metadata. It returns an xs:dateTime such as
"2008-11-04T16:01:12.4512":

<updated>
<xsl:value-of select="current-dateTime()"/>
</updated>

All the datetime functions will return the same result from multiple calls in any given transformation, so
you can’t get one value for the beginning of a process and another for the end, for example.

Formatting

To format the information, you can use the one of the XSLT formatting functions such as format-date(),
format-dateTime (), or format-time (). All of these return the information as a string. In the next
example, the picture string " [M]/[D]/[¥]" returns the month/day/year format.

<xsl:variable name="date"
select="format-date(current-date(), "' [M]/[D]/[Y]")"/>

109

Chapter 6: Strings, Numbers, Dates, and Times

Altogether, you can use four arguments after the value to be formatted. The first is the picture string,
discussed in the following section. The other three optional arguments are the language in ISO format,
a code for the calendar to be used, and the ISO country code associated with the event expressed in the
value. The XSLT specification contains a list of calendar codes. The optional values must be supplied
together or not at all.

Picture Strings

Picture strings contain variable markers enclosed in square brackets, “’[]”. Any other content outside
the brackets is copied to the output. Names are language-dependent. The details are presented in the
following table.

Marker Component Default

Y Year Four digits

M Month 1-12

D Day of the month Name

d Day of the year 1-366

IF! Day of the week Name

A Week of the year =53

w Week of the month 1-5

H Hour (24-hour clock) 00-23

h Hour (12-hour clock) 1-12

P A.M. OT P.M. Language-dependent

m Minutes in hour 00-59

s Seconds in minute 00-59

f Fractional seconds

Z Timezone +/- hours

z Timezone GMT +/- hours

C Calendar Name
Baseline from which date is calculated Name

Date-Formatting Tokens

In addition to the tokens available for formatting numbers generated by <xs1:number>, the following
tokens may be used for datetime formatting.

110

Chapter 6: Strings, Numbers, Dates, and Times

Token Format Output

N Component name in uppercase MONDAY, TUESDAY...
n Component name in lowercase Monday, Tuesday...

t Traditional numbering Language-dependent

0 Ordinal numbering 1st, 2nd, 3rd...

The following example returns the current datetime — for instance, "January twenty-sixth at
16:30 P.M.":

<xsl:variable name="datetime" select="current-dateTime()"/>

<xsl:value-of
select="format-dateTime (Sdatetime, '[MNn] [Dwo] at [HO01]:[mO0l1l] pm')"/>

Language, Calendar, and Country

In practice, what you can get from the optional settings is quite restricted. The details of what is output
are entirely implementation-dependent.

If a particular language is supported, the language argument will affect the output, so that using a value
of "fr", for example, will produce Lundi, Mardi, Mercredi, and so on, and the way the ordinal numbers
are generated, such as ler, 2éme, 3éme, and so on.

Saxon, for instance, looks for a user-defined Java class file that will provide language localization, and if
the calendar code value is anything other than AD (Anno Domini) or 150 (ISO 8601 calendar) the default
is used. Labels are output showing that the defaults are returned. The country code is used only if a
timezone is specified by name, using [ZN], in the picture string. The next example shows how to use the
optional values for Spanish, the Jewish calendar code a1 (Anno Mundi), and Spain:

<xsl:value-of
select="format-date (current-date(),'[Y]-[MO1]-[D01l]"','es', 'AN', 'ES')"/>

The Saxon output follows, indicating that it has used the AD calendar and English as defaults, rather
than what was required:

[Calendar: AD] [Language: en]2009-05-15

Combining and Converting Values

The XPath function dateTime () can be used to construct an xs:dateTime from two input strings, an
xs:date and an xs: time. Note the use of the xs: namespace prefix, and recall that you need to include
the XML Schema namespace declaration xmlns:xs="http://www.w3.0rg/2001/XMLSchema" in your
stylesheet:

dateTime (xs:date('2009-01-23"'), xs:time('00:11;37")

There is a wide range of conversion functions, such as year-from-date (), minutes-from-dateTime (),
and hours-from-time (). Which ones you use is just a matter of which inputs you have, and what you

111

Chapter 6: Strings, Numbers, Dates, and Times

want returned. Here’s an example that illustrates how to extract the year value 2007 from a string
containing a date:

<xsl:value-of select="year-from-date(xs:date('2007-11-03"))"/>

First the string is converted to a date using the xs:date() function, and then the year is extracted with
year-from-date().

Durations

Often it is necessary to work out the elapsed time since an event, and you can use a number of
duration-related functions in your calculations.

XPath uses the xs:duration datatype, where the characters have the following meanings.

Character Meaning

P Period (required)

ny Number of years

nM Number of months
nD Number of days

T Begins a time section
nH Number of hours

nM Number of minutes
ns Number of seconds

For these calculating durations you can use the subtraction operator (-) with two date values:
<xsl:value-of select="(xs:date("2008-06-24") - xs:date("2008-06-22"))"/>

The result is an xs:dayTimeDuration value of P2D (two days). Duration functions work in the opposite
direction too. For example, you can use hours-from-duration() to get 48:

<xsl:variable name="hours"
select="hours-from-duration (xs:dayTimeDuration('P2D"'))"/>

Time zones

Timezone values are always expressed as a dayTimeDuration in the range -PT14H to +PT14H,
representing a period of —14 to 414 hours, or 28 hours.

112

Chapter 6: Strings, Numbers, Dates, and Times

These values are a difference from Coordinated Universal Time (UTC), commonly known as Greenwich
Mean Time (GMT), rather than a named time like “Western Daylight Time”” in Western Australia, or
“British Summer Time” in the United Kingdom.

I live in the United Kingdom, so the implicit-timezone () function always returns a timezone value
from my system, specifically PTOH unless it is summertime, when the value is PT1H. In Perth, Australia,
which is eight hours ahead of me, it will return +pT08:00.

Three functions, adjust-date-to-timezone, adjust-dateTime-to-timezone, and adjust-time-to-
timezone, will take an input in one of the formats, with the timezone shift expressed in the second argu-
ment. Adjustment can take the form of adding or subtracting a timezone, or, if there is an existing zone
value, replacing it:

<xsl:variable name="datetime" select="current-dateTime()"/>
<xsl:variable name="zone" select="xs:dayTimeDuration('PT2H')"/>
<xsl:variable name="est" select="xs:dayTimeDuration('-PT5H")"/>

<xsl:template match="/">
<xsl:value-of
select="adjust-dateTime-to-timezone ($datetime + S$zone, (Sest))"/>
</xsl:template>

Another trio of similar functions extract the timezone from date, time, and datetime values. They return
a dayTimeDuration as you would expect. The next example uses the timezone in Western Australia,
returns "480", and illustrates how you can express the difference in minutes:

<xsl:variable name="zone"
select="timezone-from-dateTime (xs:dateTime ('2009-01-26T12:00:004+08:00"'))"/>
<xsl:value-of select="S$zone div xs:dayTimeDuration('PTIM')"/>

Summary

In this chapter you reviewed a set of XSLT elements and functions and some XPath functions for handling
strings, numbers, and datetime values.

Probably the most commonly used string-manipulation functions are concat () and the
substring-before() and substring-after () functions. You saw how these could be applied,

and you looked at codepoint conversion and how regular expressions could be used with the match(),
tokenize (), and replace () functions.

Your work on numbering involved applying the <xs1:number> instruction to numbering the lines of
a play, and formatting the act and scene numbers using the XSLT format-number () function with the

default <xsl:decimal-format> settings.

You reviewed the contextual values you can obtain from a transform using the current-date(),
current-dateTime (), and current-time () functions. You also learned how to format these values

113

Chapter 6: Strings, Numbers, Dates, and Times

using picture strings and tokens with format-date () and related functions. Finally, you learned how to
operate on duration and timezone values.

Key Points

Q There are several character-encoding issues to be aware of when
working with strings. One of these is that collations other than the
processor’s defaults may be required to deal with language-specific or
application-specific requirements.

Q There are basic differences between the way that you work with numbering
and number formatting when numbers are generated in a stylesheet, and
when numeric values in an existing source document are used.

Q Obtaining current date and time values from the system using functions like
current-date () is often the basis for combining and comparing values, and
for calculating datetime relationships such as durations.

Exercises

You'll find solutions to these exercises in Appendix A.

1. a. What is the attribute on <xsl:number> that determines the way in which nodes are
numbered?

b. Create a code fragment that shows how to select and sequentially number some foot-
notes if the element name in the XML source is <fn>, and the HTML output is some-
thing like the following example.

<p>[4] This is the fourth footnote.</p>

2. What are some implementation-related limitations on the use of the format-date(),
format-dateTime (), and format-time () functions?

3. TIllustrate the use of the following date-related functions, making use of the XPath 2.0
Function Reference of Appendix F if required:

month-from-dateTime ()
years-from-duration ()
timezone-from-time ()

114

Multiple Documents

For a good many XSLT applications you will find yourself working with different combinations of
source, stylesheet, and result documents.

Because numerous development tasks are performed repeatedly, it makes sense to divide your
stylesheets into reusable modules. You will also encounter cases where content can be reused,
especially when that content takes the form of structured data, or is related to creating common
web-page output like menus or footers.

You will also sometimes want to override rules in an existing stylesheet. By importing code into a
new stylesheet, you can selectively customize it.

Finally, sometimes you'll need to produce multiple result documents, perhaps dividing a long
document into smaller ones, or archiving content in one format while publishing in another.

In this chapter you'll take a look at ways to deal with all three circumstances. You'll learn how to
do the following:

0 Create and include modular stylesheets.

0 Opverride existing stylesheets by importing them into a new one that provides alternative
parameters, variables, and template rules.

0O Load multiple XML sources using a single XSLT and XPath function, which will load one
or more additional XML sources.

O Build temporary trees using <xsl:variable>.

Q Create multiple result documents with <xsl:result-document>.

Modular Stylesheets

Writing stylesheet modules to contain frequently used code is a time-saving practice. It is also the
case that stylesheets can become quite long and complex, and modularity can help distinguish
different parts of a process.

The importing module is often called the principal or main stylesheet module.

Chapter 7: Multiple Documents

Including Modules

In Chapters 4 and 5 you may have noticed that some of the code could well have been applied to
creating almost any XHTML web page — for instance, setting up parameters or the XHTML <head>
element.

A good way to handle this sort of page “furniture’”” and indeed any reusable content is to create several
stylesheet modules, and include them as required. As time goes on, you can build up a library of routines
to handle many common tasks.

The kind of content to consider includes the following:

O Global parameters and variables

QO Any content that is parameterized

Q Styling information, including banners and logos
a

Menus and other navigation features

The <xs1:include> declaration provides the way to do this. It enables you to include any module within
another, using the required href attribute to identify the stylesheet to import. This value can be an abso-
lute or relative URI, and the included stylesheet must be a valid XSLT document. Here is the schema
definition.

<xs:element name="include" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="href" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The included stylesheet is loaded by the processor and its declarations are inserted into the main
stylesheet at the inclusion point. Included modules retain their base URI, so you need to be careful
with relative paths if the base differs from the including document. Suppose that the relative path of an
included stylesheet is * . . /common/head.xs1”. Relative paths in head.xs1 will be interpreted in relation
to that location, not relative to the including stylesheet.

Also note that namespaces are not inherited from the main stylesheet. So if head.xs1 processes
an element from the atom: namespace, the included module requires its own declaration in the
<xsl:stylesheet> element.

Creating Modules

You can quickly rework a transform you've already created to illustrate the point. Let’s go back to
for-each.xsl, save it as main.xs1, and modularize it.

116

Chapter 7: Multiple Documents

_ Including Stylesheet Modules

There are several candidates for removal from main.xs1:

QO The named template head
Q The attribute sets listing
Q The global parameters

Place all the new stylesheets in the same directory as main.xsl. Create a new stylesheet head.xs1, and
move across the code shown next:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:template name="head">
<xsl:param name="title"/>
<xsl:param name="style"/>

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="S$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="S$style"/>
</xsl:attribute>
</link>
</head>
</xsl:template>

</xsl:stylesheet>

The attribute sets can also be segregated into a stylesheet that deals with tabular structures. So you can
create table.xsl, which can start off like the following example. There may be more to add later, just
because table data is so pervasive:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">

<xsl:attribute-set name="col">
<xsl:attribute name="scope">col</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="row">
<xsl:attribute name="scope">row</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="th_first" use-attribute-sets="col">

<xsl:attribute name="class">firsthdr</xsl:attribute>
</xsl:attribute-set>

117

Chapter 7: Multiple Documents

<xsl:attribute-set name="td_first" use-attribute-sets="row">
<xsl:attribute name="class">firstcell</xsl:attribute>
</xsl:attribute-set>

</xsl:stylesheet>
Then you can separate the parameter block out to params.xs1 as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">

<xsl:param name="identifier" select="reference/@xml:id"/>
<xsl:param name="resourcelist"
select="document (concat ('reslist_', reference/@scheme,'.xml'))"/>
<xsl:param name="meta" select="Sresourcelist//entry[@xml:id eq $identifier]"/>
<xsl:param name="title" select="S$meta/title"/>
</xsl:stylesheet>

All that is needed in the reduced version of main.xs1 is three lines of code to load the inclusions. It will
now work in exactly the same way as step5.xsl:

<xsl:include href="params.xsl"/>
<xsl:include href="head.xsl"/>
<xsl:include href="table.xsl"/>

What you have gained is three reusable modules. Two of them are specific to web output, but the param-
eter list is quite general. Switching to a different resource list or another CSS style will be quick.

To prove the case, you could now go back to some of the other stylesheets, such as atom-1ist.xsl and
products.xsl, and see how they might be updated to take advantage of the new modules.

A Datetime Module

Modules can also contribute to overcoming limitations that can arise with version 1.0 stylesheets. Since
XSLT 2.0 will work in a backward-compatible manner with version 1.0 stylesheets, you can use version
2.0 features to handle specific processing tasks.

Date and time functions are a good example. In a version 2.0 module you can set some variables to
formatted current-date (), current-dateTime (), and current-time () values.

Provided that you use a version 2.0 processor to run the main version 1.0 stylesheet module, it can import
the date module. It is handy for version 2.0 modules too. The file date.xsl in Listing 7-1 contains the
code.

Listing 7-1

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:variable name="date"

118

Chapter 7: Multiple Documents

select="format-date (current-date(), ' [Y]-[MO1]-[DO1]")"/>

<xsl:variable name="time"
select="format-time (current-time (), ' [H]:[m]:[s]z"')"/>

<xsl:variable name="date_time"
select="format-dateTime (current-dateTime (), ' [Y]-[MO1]-[DOL]T[H]: [m]:[s]lz"')"/>

</xsl:stylesheet>

Imported Stylesheets

What can you do if you need to selectively override the behavior of an existing stylesheet? <xs1:include>
has a cumulative effect, so it can’t be used to replace existing functionality. <xs1:import>, however, does
just what you need.

The declaration <xs1:import> also imports one module into another, but differs from <xs1:include>
in that the declarations in the main or importing stylesheet have a higher import precedence than the
imported ones. This means that if there is a template rule in two modules that matches a source node,
the rule in the importing module is used. Often this is known as an overlay or customization layer — for,
example, changing some styling or adding specific processing.

All your import declarations must appear before any other top-level elements in the stylesheet.
This is the schema definition. Again, you use the required href attribute to locate the imported
document:

<xs:element name="import">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="href" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Global Parameters

A simple change of some parameter values is often all you need to do with an existing
stylesheet.

_ Importing a Style

Suppose that you wanted to use a different CSS stylesheet to reference.css than you have used so far,
without modifying the original transform.

The importing stylesheet, say new_style.xs1, can begin by being quite minimal:

<xsl:import href="main.xsl"/>
<xsl:param name="style">new.css</xsl:param>

119

Chapter 7: Multiple Documents

Because the parameters specifying the CSS file have the same name in both stylesheets, the importing
stylesheet value “new.css” will be used.

Run the quick-reference example xsl_for_each_group.xml (which you met in Chapter 4) with
new_style.xsl. The essentials of the layout will be the same, with different font specifications applied.
You can see the changed styles in Figure 7-1.

Templates

The same import and override technique can be applied to templates. This time in new_style.xsl
you’ll add a replacement named template to provide a simplified attribute listing, with only name and
description and type properties in three columns. This is the named template attribute.

_ Importing a Template

Here are the changes to make to the called template attribute, cutting it down to a three-column listing.

<xsl:template name="attribute">

<h2>Attribute<xsl:if test="count(//property) gt 1">s</xsl:if>

</h2>

<table cellspacing="0">

<tr>

<th xsl:use-attribute-sets="th_first">Name</th>
<th xsl:use-attribute-sets="col">Description</th>
<th xsl:use-attribute-sets="col">Type</th>

</tr>
<xsl:for-each select="//property">
<xsl:sort select="name"/>
<tr>
<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="name"/>
</th>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="description"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="type"/>
</td>
</tr>

</xsl:for-each>

</table>
</xsl:template>

Run new_style.xsl again. The result should look like Figure 7-1.

120

Chapter 7: Multiple Documents

Purpose

Aninstruction that selects g sequence of items for uniform processing, and groups them
according to common values, adjacency, or in relation to other elements.

Usage
Crouping depends on which of the four attributes is spedcified. The attribute value is
known as the group key.

The X5LT functions current-group () and current-grouping-key () may be used 1o
process grouped items inside an xsl: for-each iINSTUION,

Contains
sequence-construcor | xslsort

Attributes

Name Description Type
collation The URI of a collation to use for string comparison xsanylR|
group-adjacent The common value to use if items are adjacent xsliexpression
group-hy The common value or values o use xalexpression
group- The pattern that ends a group of preceding items x3lpattern
ending-with

group- The pattern that starts a group of following items xalpattern
starting-with

seledt The sequence of items to group xsliexpression
Figure 7-1

Activating an Imported Rule

In some situations you might want to selectively make use of specific templates from an imported
stylesheet, rather than override them, or have to duplicate them in the importing stylesheet. This is more
likely to be required when your customization layer is quite complex, but where perfectly useful features
already exist in the imported stylesheet.

The <xs1:apply-imports> instruction does the trick. Here is the schema definition:

<xs:element name="apply-imports" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<Xs:sequence>
<xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

121

Chapter 7: Multiple Documents

<xsl:apply-imports> searches for a rule that matches the current node and current mode and applies
it, just like <xs1:apply-templates>. However, it looks for matches only in the immediately imported
stylesheets.

Note too that you can pass parameters just as you can with <xsl:call-template> and
<xsl:apply-templates>

Here is an example of an importing stylesheet that you could provide to a reseller who required some
specific customizations of your basic stylesheets. The importing stylesheet will allow them to replace the
values in the original with the ones the need to use. Suppose this reseller uses different path variables
than the original, such as jlog for logging rather than log4j. These paths are identified in the XML
source with the type attribute on the <filepath> element. This snippet shows how:

<p>Several appenders are included in the <filepath
type="log">basic_logdj.xml</filepath> file.</p>

In the importing stylesheet, replacement variables such as $1og are declared (the expression ™ [root]” in
the path values is a placeholder representing the application root directory, and can be modified to suit
the reseller’s circumstances).

In the filepath template, <xsl:choose> is used to test for each of the specified types. If they are matched
in the source, then the reseller’s values will be applied to the output. Other filepath processing in the
imported stylesheet should stand as is, so <xs1:apply-imports> is invoked inside <xsl:otherwise>:

<xsl:variable name="prod">product_name</xsl:variable>
<xsl:variable name="log">jlog.xml</xsl:variable>
<xsl:variable name="root">[root]/$prod</xsl:variable>
<xsl:variable name="bin">[root]/Sprod/bin</xsl:variable>

<xsl:template match="filepath">

<xsl:choose>

<xsl:when test="@type='log'">
<xsl:value-of select="$log"/>

</xsl:when>

<xsl:when test="@type='root'">
<xsl:value-of select="$root"/>

</xsl:when>

<xsl:when test="@type='bin'">
<xsl:value-of select="$bin"/>

</xsl:when>

<xsl:otherwise>
<xsl:apply-imports/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Using <xsl:next- match>

There is another way to select a template that is the next lowest in priority after the current one, and it
does not just apply in the case of imported stylesheets. Whereas <xs1:apply-imports> requires multiple

122

Chapter 7: Multiple Documents

stylesheet modules to be in place, the <xs1:next-match> instruction also allows several rules within a
single module, which can contribute to making the stylesheet logic clearer.

The key to using this instruction is the priority of the relevant template rules. These are priorities that are
either assigned by the processor or explicitly written in a stylesheet. As I suggested in Chapter 3 where
you first met them, it is a good idea to make your intentions clear by setting priority attribute values.

In the next example, the first rule provides a general way to handle code elements — that is, just output
plain text. The next two rules apply different class attributes depending on the context:

<xsl:template match="code" priority="1">
xsl:apply-templates select="* | text()"/>
</xsl:template>

<xsl:template match="p/code" priority="2">
<code class="black"><xsl:next-match/></code>
</xsl:template>
<xsl:template match="summary/code" priority="2">
<code class="blue"><xsl:next-match/></code>
</xsl:template>

Source Documents

Just as it can make sense to use a modular structure for your stylesheets, it is often the case that source
documents are structured for reuse.

You saw an example in global.xsl in Chapter 3 when you accessed the metadata in reslist_xsl.xml:

<entry xml:id="xsl_when">
<title>xsl:when</title>

<content src="../xslt_reference/"/>
<category term="element_reference" scheme="resource"/>
</entry>

You used the XSLT document () function in order to obtain information for a relative URI:
<xsl:variable name="resourcelist" select="document ('reslist_xsl.xml')"/>

Another case that I encountered was a complex set of warnings and cautions, maintained by a team of
technical specialists, lawyers, and translators who were independent of the authors creating the main
content. The solution was to develop a helper file for the warnings and cautions, and provide the authors
with a guide that they used to reference individual entries as needed.

Using the document() Function

Typically you provide a single argument to the document () function: the required URI of the document
to load. It returns an XML document node. In the example shown earlier, this node was assigned to the
$resourcelist variable, which was then used to locate a matching Atom <entry> element node in the
sequence of metadata entries.

123

Chapter 7: Multiple Documents

The first argument to the function may be a sequence containing xs:string or xs:anyURI values, so a
sequence of document nodes may be retrieved at once if necessary. You could, for example, load all the
files refererred to with the href attribute using document (//@href).

If a base URI is needed to resolve the first URI, then you can pass it as a second argument. Assigning the
document node to a variable changes the base to that of the variable, which is usually the same base as
the main stylesheet.

More likely, you will find yourself working with a series of cross-references containing relative or abso-
lute URIs.

_ Loading Glossary Terms

In this exercise you'll process a set of (very) short documents, each containing a glossary term and related
alternative terms, acronyms, definitions, and cross-references, as shown in the following snippet. The files
to transform are element.xml, namespace.xml (shown in the sample), css.xml, and attr.xml:

<?xml version="1.0" encoding="UTF-8"?>

<term xml:id="namespace" type="class">
<label>Namespace</label>
<definition>A URI reference which identifies an XML markup
vocabulary.</definition>

</term>

To include them in an article’s glossary, process the set of term references in the source document
glossref.xml, which looks like this:

<?xml version="1.0" encoding="UTF-8"7?>
<termtable>

<dfn term="element.xml"/>

<dfn term="namespace.xml"/>

<dfn term="css.xml"/>

<dfn term="attr.xml"/>
</termtable>

Your code to handle this list will select each <dfn> element in turn and load the file to process. The file in
Listing 7-2 is gloss.xs1, and the output is shown in Figure 7-2.

Listing 7-2
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">

<xsl:output method="xhtml" encoding="UTF-8"/>

<xsl:template match="termtable">
<h2>Glossary</h2>
<xsl:for-each select="dfn">
<xsl:apply-templates select="document (@term)"/>
</xsl:for-each>
</xsl:template>
<xsl:template match="term">

124

Chapter 7: Multiple Documents

<p>

<xsl:value-of select="label"/>
: <xsl:value-of select="definition"/>
</p>
</xsl:template>

</xsl:stylesheet>

Glossary

Element: &n XL vocabulary component.
Namespace: & TTRI reference which identifies an 331 marloup vocabulary.

C8S: A mechamsm for adding stvle properhes such as fonts, colors, spacing to marked up content.

Attiibute: An element property.
Figure 7-2

Rather than return an entire document, you can use a fragment identifier to return a single node other
than the root node. A fragment identifier identifies part of a resource, and follows a # character. They are
commonly used in web pages to define local link targets, such as Example.

Support for this feature is implementation-defined. Here’s what the Saxon processor documentation says
about it:

If the fragment identifier is a valid NCName (no colon name), it is assumed to be the ID of a node
in the document, which is then located using the id () function: if no node is found, the result is

an empty sequence. If the fragment identifier is not a valid NCName, it is silently ignored and the
document node is returned.

XPath Alternatives

XPath 2.0 provides two light functions that you can use to return additional XML source content. One is
a simplified version of the document () function. The other permits you to load multiple documents, but
the XSLT specification leaves almost all the details to individual implementations.

The doc() Function

A simplified version of the document () function is the XPath doc () function. There is only one argument

in this case, there being no option to pass a base URI There is, however, a base-uri () equivalent in
XPath.

Bear in mind that the XPath interface can be used in contexts other than XSLT, so some aspects of its
behavior may depend on the implementation and configuration. Calling the function when the source
document is missing might throw an error, so you can first verify that the XML source is there with

125

Chapter 7: Multiple Documents

the doc-available () function, which returns a Boolean value, or even report the missing document, as
Listing 7-3 illustrates.

Listing 7-3
<xsl:1f test="doc-available(@term) ">

<xsl:apply-templates select="doc (@term)"/>
<xsl:if>

<xsl:choose>
<xsl:when test="doc-available(@term) ">
<xsl:apply-templates select="doc (@term)"/>
</xsl:when>
<xsl:otherwise>The resource <xsl:value-of select="@term"/>
was not found.</xsl:otherwise>
</xsl:choose>

The collection() Function

The XPath collection () function returns a collection of documents or a sequence of nodes within
documents, given a URIL The implementation details are important, so check your processor doc-
umentation. The specification is quite abstract, so depending on the implementation, the collection
could, for example, be a container for documents in an XML database, a file directory, or a XML
catalog file.

The Saxon processor provides for the latter two alternatives, as well as allowing you to implement your
own collectionURIResolver class

The function also takes a string as input. If a file is identified, Saxon treats this as an XML catalog file in
the form shown in the next snippet, which lists the documents in the collection. If the stable attribute
if set to "true", then a document pool is first checked to determine whether the document is already
loaded. If it is not, then the document is loaded and added to the pool.

The URIs listed in the <doc> elements are treated like URIs passed to the doc () function, and the
same results will be returned in subsequent calls with the same URI. Setting the stable attribute
to “false” causes the document to be dereferenced directly, and the document is not added to the
document pool, which means that a subsequent retrieval of the same document will not return the
same node:

<collection stable="true">
<doc href="element.xml"/>
<doc href="namespace.xml"/>
<doc href="css.xml"/>
<doc href="attr.xml"/>
</collection>

If the collection URI identifies a directory, then the contents of the directory are returned. The
processing options are a little more complex than I want to cover here, so I'll refer you to the
Saxonica site at www.saxonica.com/documentation/sourcedocs/collections.html for the
details.

126

Chapter 7: Multiple Documents

_ Loading a Collection

The collection example just shown is included in the code as glossref2.xml. With a very small change
to gloss.xsl (Inamed it gloss_collection.xsl), you can process this collection as follows:

<xsl:template match="collection">
<h2>Glossary</h2>
<xsl:apply-templates select="collection('glossref2.xml"')"/>
</xsl:template>

Setting or Changing Context

When you are processing multiple documents, you might find it useful to set a global variable that locates
the document node of the main source file:

<xsl:variable name="main" select="/"/>

This ensures that you can refer to any part of the main source tree when the context is in one of the other
document nodes, using $main. Later, you can always get back to this entry point with something like the
following code:

<xsl:for each select="main">
</xsl:for-each>

This approach to naming the document nodes of key documents can be applied to any or all of the
multiple documents you have in play — for example, a helper file or a clone of a file used to process an
internal cross-reference — without losing the current context. It may not always be possible to use global
values, but it is better if you can identify as many resources as possible up front.

Output Documents

Generating multiple outputs is common in publishing operations. Sometimes it is a matter of breaking
large files into separate chunks. Perhaps a more typical scenario is when a large website is published and
hundreds of XML pages are generated in both XHTML and PDF formats; a feed update is published for
new and updated documents in Atom and RSS; and XML or text “housekeeping documents” are created
in the background.

In cases like this, the <xsl-result-document> instruction comes into play. You use it to create a new
document node with a specific URI defining the location of the output. The enclosed sequence constructor
forms the content of the document, and the content is output as the final result of the transform. This is
the schema definition:

<xs:element name="result-document" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">

127

Chapter 7: Multiple Documents

<xs:attribute name="format" type="xsl:avt"/>
<xs:attribute name="href" type="xsl:avt"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
<xs:attribute name="method" type="xsl:avt"/>
<xs:attribute name="byte-order-mark" type="xsl:avt"/>
<xs:attribute name="cdata-section-elements" type="xsl:avt"/>
<xs:attribute name="doctype-public" type="xsl:avt"/>
<xs:attribute name="doctype-system" type="xsl:avt"/>
<xs:attribute name="encoding" type="xsl:avt"/>
<xs:attribute name="escape-uri-attributes" type="xsl:avt"/>
<xs:attribute name="include-content-type" type="xsl:avt"/>
<xs:attribute name="indent" type="xsl:avt"/>
<xs:attribute name="media-type" type="xsl:avt"/>
<xs:attribute name="normalization-form" type="xsl:avt"/>
<xs:attribute name="omit-xml-declaration" type="xsl:avt"/>
<xs:attribute name="standalone" type="xsl:avt"/>
<xs:attribute name="undeclare-prefixes" type="xsl:avt"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="output-version" type="xsl:avt"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

You specify the URI of the output file in the href attribute.

The format attribute may be used to specify the name of the <xs1:output> declaration, which will
be used to determine the output attributes. This means that if necessary, you can use multiple named
<xs1l:output> elements, one for each different result document. If no value is set, then any unnamed
declaration you have made will be used.

You'll note that many of the serialization attribute names are mostly identical to those in <xs1:output>.
That’s because these attributes may be used to override those in a top-level output specification. For
example, if you had an unnamed <xs1:output> declaration with the method attribute set to "xm1", you
could override it as follows:

<xsl:result-document href="output.html" method="xhtml">

</xsl:result-document>

Further, you'll see that these values may be supplied at runtime as an attribute-value template that
returns the appropriate type. For instance, the href attribute could be set from a variable $output:

<xsl:result-document href="S$Soutput" method="xhtml">

</xsl:result-document>

The <xs1:document> instruction also creates a document node and adds it to the result sequence, but it
is not the final output from a transform. Most often it is used to perform validation on temporary trees.

128

Chapter 7: Multiple Documents

Preparing a Feed Update

Suppose you have been using the metadata file reslist_xsl.xml as the basis for an Atom feed for the
XSLT Quick Reference, and you have made some recent enhancements and fixes to a number of source
documents. Naturally, you want to publish an update to the feed listing. Essentially, this is a two-part
process. First, you need to take the most recent version of the file and timestamp any new and revised
entries with the current datetime value, and then archive the updated version. Second, you use the first
output to create the feed update. Initially, you'll focus on creating the new archive.

This is a perfect task for <xsl:result-document> because there will be two distinct outputs. You will
also be able to make use of the support in XSLT 2.0 for temporary trees, which can be used to store nodes
in variables until you are ready to process them. You will store the first output (the archive data) inside a
template variable before using it in the second part of the process.

_ Making a Temporary Tree

There are two inputs to part one of the transform: a task list task_xs1.xml itemizing the changes, and
the preceding version of the quick-reference resource listing, which has a suffix of *_update.xml” in the
filename. Here’s the task list structure:

<?xml version="1.0" encoding="UTF-8"?>

<tasklist scheme="xsl">
<topicref href="xsl_output" status="modified"/>
<topicref href="xsl_apply_imports" status="modified"/>
<topicref href="xsl_result_document" status="new"/>
</tasklist>

In the transform update.xsl, include date.xs1, shown in Listing 7-1 earlier. Among other values, it sets
the $date-time variable:

<xsl:include href="date.xsl"/>

<xsl:variable name="resourcelist"

select="document (concat ('reslist_', tasklist/@scheme, '_update.xml'))"/>
<xsl:variable name="outputfile"

select="concat ('reslist_', tasklist/@scheme, '_new.xml')"/>
<xsl:variable name="update" select="."/>

Also, set up variables identifying the resource list and the output file; the naming comes from selecting
the scheme attribute on the <tasklist> element. Assign the task list to the $update variable.

The template variable $archive will contain a temporary tree to hold the updated resource listing:

<xsl:variable name="archive">
<collection xml:id="{Sresourcelist/collection/@xml:1id}" lastupdate="{S$date}">
<xsl:copy-of select="S$resourcelist/collection/title"/>
<xsl:for-each select="S$resourcelist//entry">
<xsl:variable name="match"

129

Chapter 7: Multiple Documents

select="current () /@xml:id=Supdate//topicref/@href" />
<xsl:choose>
<xsl:when test="S$match">
<xsl:variable name="match2"
select="%update//topicref[@href=current ()/@xml:id]"/>
<entry xml:id="{@xml:id}">
<xsl:choose>
<xsl:when test="S$match2[@status='new']">
<xsl:apply-templates select="title | summary | content |
category"/>
<published><xsl:value-of select="S$date_time"/></published>
</xsl:when>

<xsl:otherwise>
<xsl:apply-templates select="title | summary | content |
category | published"/>
<updated><xsl:value-of select="S$date_time"/></updated>
</xsl:otherwise>
</xsl:choose>
</entry>
</xsl:when>
<xsl:otherwise>
<xsl:copy-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</collection>

</xsl:variable>

When a matching entry is found in the task list, most of the entry content is unconditionally copied to
the output. If the status attribute on the <topicref> element in the task list is set to “new”, then the
<published> element is added to the output using the current-dateTime () function; otherwise, the
<updated> element value is set or reset.

Any entries that are not referenced in the task list are copied without change.

Next, the $outputfile variable is used to set the href attribute on the <xsl-result-document> instruc-
tion that copies the archive to the first result tree. The code is in update.xs1 if you want to run it with
task_xsl.xml as the source at this stage:

<xsl:result-document href="{$outputfile}">
<xsl:copy-of select="S$Sarchive"/>
</xsl:result-document>

In order to generate the Atom feed, you have to make only a few changes to the data in the tem-
porary tree. Most of the work is associated with creating identifiers and converting relative URIs to
absolute ones.

130

Chapter 7: Multiple Documents

_ Atom Feed Tree

Before you add the second result tree, there are some more variables to define. The $doc_url,
$term_url, and $tagdomain variables are global (because this is an exercise, the xm.net domain is
fictitious):

<xsl:variable name="doc_url">http://xm.net/docs/</xsl:variable>

<xsl:variable name="term_url">http://xm.net/terms/</xsl:variable>
<xsl:variable name="tagdomain">xm.net</xsl:variable>

Still in update.xsl, inside another <xsl:result-document> instruction, define the top-level feed
elements:

<xsl:result-document href="xslt_update.atom">

<feed xmlns:atom="http://www.w3.0rg/2005/Atom">
<author>Tan Williams</author>

<id>
<xsl:value-of
select="concat('tag:', $tagdomain, ', ', $date,':',collection/@xml:id)"
/>
</id>

<link rel="self" type="application/atom+xml">
<xsl:attribute name="href">
<xsl:value-of select="concat ($doc_url,collection/@xml:1id,'.atom')"/>
</xsl:attribute>
</link>

<title>
<xsl:value-of select="collection/title"/>
</title>
<updated>
<xsl:value-of select="current-dateTime()"/>
</updated>
</feed>
</xsl:result-document>
The <id> elements for both feed and entry elements are constructed according to the recommenda-
tion for tag URIs, which has been published as RFC 4151 (see also www.taguri.org/). In the case of
the <entry> elements, the <published> date value is used with the tagdomain variable and the docu-
ment’s xml:1id attribute value to uniquely identify each entry in the output, as shown in the following
example:

<id>tag:xm.net,2008-11-04:xsl_apply_ imports</id>.

Now you can use the $archive entry nodes to generate the Atom entries. According to the Atom specifi-
cation, the order of elements is not significant, so you can suit yourself in that respect.

131

Chapter 7: Multiple Documents

Note how the relative URI expressed in the src attribute on the source <content> element is expanded
to an absolute value by concatenation with the $doc_url variable to form the <atom:1ink> element:

<xsl:for-each select="$archive//entry">
<xsl:sort select="xs:dateTime (published)" order="descending"/>
<xsl:sort select="xs:dateTime (updated)" order="descending"/>
<xsl:variable name="tagdate" select="substring-before(published, 'T')"/>

<entry>
<xsl:copy-of select="title"/>
<id>
<xsl:value-of
select="concat('tag:', $Stagdomain, ', ',6 Stagdate,':',@xml:id)"/>
</id>

<link rel="alternate" type="application/xhtml-+xml">
<xsl:attribute name="href">
<xsl:value-of

select="concat ($doc_url, substring-after (content/@src,'../"),
current () /@href, ' .html')"
/>
</xsl:attribute>
</1link>

<xsl:copy-of select="updated"/>
<xsl:copy-of select="published"/>
<xsl:for-each select="category">
<category term="{@term}">
<xsl:attribute name="scheme">
<xsl:value-of select="concat (Sterm url, @scheme)"/>
</xsl:attribute>
</category>
</xsl:for-each>

</entry>
</xsl:for-each>

The same approach is used to expand the URI for the scheme attribute in the <category> element, this
time using the $term_url variable.

Now you can run the complete stylesheet shown in Listing 7-4 with task_xsl.xml as source to get both
the archive listing and the Atom feed.

Listing 7-4
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" exclude-result-prefixes="xs">
<xsl:include href="date.xsl"/>

<xsl:output method="xml" encoding="UTF-8" indent="vyes"/>

<xsl:variable name="resourcelist"
select="document (concat ('reslist_', tasklist/@scheme, ' _update.xml'))"/>

132

Chapter 7: Multiple Documents

<xsl:variable name="outputfile"
select="concat ('reslist_', tasklist/@scheme, ' _new.xml')"/>
<xsl:variable name="update" select="."/>

<xsl:variable name="doc_url">http://xm.net/docs/</xsl:variable>
<xsl:variable name="term_url">http://xm.net/terms/</xsl:variable>
<xsl:variable name="tagdomain">xm.net</xsl:variable>

<xsl:template match="/">
<xsl:variable name="archive">

<collection xml:id="{Sresourcelist/collection/@xml:id}"
lastupdate="{S$date}">
<xsl:copy-of select="Sresourcelist/collection/title"/>

<xsl:for-each select="S$resourcelist//entry">

<xsl:variable name="match"
select="current () /@xml:id=Supdate//topicref/@href" />

<xsl:choose>
<xsl:when test="S$match">
<xsl:variable name="match2"
select="S%update//topicref[@href=current () /@xml:id]"/>
<entry xml:id="{@xml:id}">

<xsl:choose>
<xsl:when test="S$match2[@status='new']">
<xsl:apply-templates
select="title | summary | content | category"/>
<published>
<xsl:value-of select="$date_time"/>
</published>
</xsl:when>
<xsl:otherwise>
<xsl:apply-templates
select="title | summary | content | category
| published"/>
<updated>
<xsl:value-of select="$date_time"/>
</updated>
</xsl:otherwise>
</xsl:choose>
</entry>
</xsl:when>
<xsl:otherwise>
<xsl:copy-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</collection>

</xsl:variable>

Continued

133

Chapter 7: Multiple Documents

Listing 7-4: (continued)

<xsl:result-document href="{S$Soutputfile}">
<xsl:copy-of select="$archive"/>
</xsl:result-document>

<xsl:result-document href="xslt_update.atom">

<feed xmlns:atom="http://www.w3.o0rg/2005/Atom">
<author>Ian Williams</author>

<id>
<xsl:value-of
select="concat('tag:', $tagdomain,',', Sdate,':",
Sarchive/collection/@xml:id)"
/>
</id>

<link rel="gelf" type="application/atom+xml">
<xsl:attribute name="href">
<xsl:value-of
select="concat ($doc_url, Sarchive/collection/@xml:id, '.atom"')"
/>
</xsl:attribute>
</1link>
<title>
<xsl:value-of select="$archive/collection/title"/>
</title>
<updated>
<xsl:value-of select="$archive/collection/@lastupdate"/>
</updated>

<xsl:for-each select="$archive//entry">
<xsl:sort select="xs:dateTime (published)" order="descending"/>
<xsl:sort select="xs:dateTime (updated)" order="descending"/>

<xsl:variable name="tagdate"
select="substring-before (published, 'T"')"/>

<entry>
<xsl:copy-of select="title"/>
<id>
<xsl:value-of
select="concat('tag:',6 $tagdomain,',',6 Stagdate,':"',@xml:id)"
/>
</id>

<link rel="alternate" type="application/xhtml+4xml">
<xsl:attribute name="href">
<xsl:value-of
select="concat ($doc_url, substring-after (content
/@src,'../"),
current () /@href, ' .html')"
</xsl:attribute>
</link>
<xsl:copy-of select="updated"/>
<xsl:copy-of select="published"/>
<xsl:for-each select="category">

134

Chapter 7: Multiple Documents

<category term="{@term}">
<xsl:attribute name="scheme">
<xsl:value-of select="concat ($Sterm_url, @scheme)"/>
</xsl:attribute>
</category>
</xsl:for-each>

</entry>
</xsl:for-each>
</feed>
</xsl:result-document>

</xsl:template>

<xsl:template
match="title | summary | content | updated | published |category">
<xsl:copy-of select="."/>

</xsl:template>

</xsl:stylesheet>

Listing 7-5 shows part of the Atom output, which you can publish at the feed URI in the feed link
http://xm.net/docs/xsl.atom.

Listing 7-5
<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns:atom="http://www.w3.0rg/2005/Atom">
<author>Tan Williams</author>
<id>tag:xm.net,2009-02-05:xs1</1id>
<link rel="self" type="application/atom+xml"
href="http://xm.net/docs/xsl.atom" />

<title>XSLT elements</title>
<updated>2009-02-05</updated>
<entry>
<title>xsl:result-document</title>
<id>tag:xm.net,2009-02-05:xs1_result_document</id>
<link rel="alternate" type="application/xhtml+xml"
href="http://xm.net/docs/xslt_reference/.html"/>
<published>2009-02-05T13:11:217%</published>
<category term="element_reference" scheme="http://xm.net/terms/resource"/>
</entry>
<entry>
<title>xsl:output</title>
<id>tag:xm.net,2008-12-19:xs1_output</id>
<link rel="alternate" type="application/xhtml+xml"
href="http://xm.net/docs/xslt_reference/.html"/>
<updated>2009-02-05T13:11:21%</updated>
<published>2008-12-19T20:13:287Z</published>
<category term="element_reference" scheme="http://xm.net/terms/resource"/>
</entry>
<entry>
<title>xsl:apply-imports</title>

Continued

135

Chapter 7: Multiple Documents

Listing 7-5: (continued)

<id>tag:xm.net,2008-11-04:xsl_apply imports</id>
<link rel="alternate" type="application/xhtml-+xml"
href="http://xm.net/docs/xslt_reference/.html"/>
<updated>2009-02-05T13:11:21%Z</updated>
<published>2008-11-04T06:58:28%</published>
<category term="element_reference" scheme="http://xm.net/terms/resource"/>
</entry>
<entry>
<title>xsl:stylesheet</title>
<id>tag:xm.net,2008-11-04:xs1_stylesheet</id>
<link rel="alternate" type="application/xhtml-4xml"
href="http://xm.net/docs/xslt_reference/.html"/>
<published>2008-11-04T06:58:28%</published>
<category term="element_reference" scheme="http://xm.net/terms/resource"/>
</entry>

</feed>

Splitting a Document

Multiple outputs are also appropriate when a single source needs to be divided into smaller chunks. To
illustrate, we'll split our play source for Loves Labour’s Lost into separate scenes with an output file for
each one. This is a case of “right-sizing” the web outputs, rather than working with temporary trees. The
main (first) document will form an index with a link to each scene.

You start with a copy of adjacent.xs1 from Chapter 5, saved as scenes.xsl. Perhaps you'll recall that
this stylesheet uses <xsl:for-each-group> to group adjacent speakers and their lines. The principal
change takes place in the template rule that handles <div> elements for scenes.

_ “Chunking” a Source File

The goal here is to chunk the play at scene boundaries into files with appropriate names, with a different
result document for each scene, and to use the division points between acts as the basis for a first page
index.

First, inside the scene template, define a $file variable in the form [act-number] [scene-number] .html:

<xsl:template match="div[@type="'scene']">

<xsl:variable name="file"
select="concat('a',parent::div/@n,'s"',@n, "' .html"')"/>

<xsl:result-document href="{$file}">
</xsl:result-document>

</xsl:template>

136

Chapter 7: Multiple Documents

The parent: : axis is used to obtain the act number. Each time a scene is matched, the $file variable is
recalculated and the variable value is used to set the href attribute in an attribute value template on the
following <xsl:result-document> instruction:

<xsl:variable name="title">
<xsl:value-of select="format-number (parent::div/@n, 'Act 0 ')"/>
<xsl:value-of select="format-number (€n, 'Scene 0: ')"/>
</xsl:variable>

Next, a $title variable is assigned for use in the <title> element and the <h1> that replaces the previous
<h3> element.

Finally, the <xs1:apply-templates> instruction is wrapped in the HTML document structure:

<html>
<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="$style"/>
</xsl:attribute>
</link>
</head>
<body>
<hl>
<xsl:value-of select="$title"/>
<xsl:value-of select="head"/>
</hl>
<xsl:apply-templates select="* except head"/>
</body>
</html>

The same approach is used to create the links on the top-level page. These take place inside the <div>
elements that mark the acts. This time, the $file variable is applied to the href attribute in the link:

<xsl:template match="div[@type='act']">
<h2>
<xsl:value-of select="format-number (€@n, 'Act 0')"/>
</h2>
<xsl:for-each select="div[@type='scene']">
<xsl:variable name="file"
select="concat('a',parent::div/@n,'s',@n, "' .html")"/>

<xsl:value-of select="format-number (@n, 'Scene 0: ')"/>
<xsl:value-of select="head"/>

<xsl:if test="position() ne last()">

137

Chapter 7: Multiple Documents

</xsl:if>
</xsl:for-each>
<xsl:apply-templates select="* except head"/>
</xsl:template>

When you run the full play 3L.xml with scenes.xsl, the first page will contain an index with links to
alsl.html, als2.html, and so on. Figure 7-3 shows the first page, 3L.html.

Summary

Love's Labour's Lost

Dramatis Personae

Ferdinand, kKing of Mawvarre.
Don Adriano, a fantastical Spaniard.
Sir Mathaniel, a curate,
Holofernes, a schoolmaster,
Dull, a constable.

Costard, a clown,

Moth, page to Armado.

& Forester,

The Princess of France.
Jaquenetta, a country wench.
Lords, attendants, &c.

Act1

Scene 1: The King of Mavarre's park.
Scene 2! The same.

Act2

Scene 1) The same.

Act3

Scene 1) The same,

Act4

Scene 1 The same,
Scene 2 The same.
Scene 3 The same.

Act5

Scene 10 The same.
Scene 2 The same.

Figure 7-3

In this chapter you learned how to make use of <xsl:include> to create modular stylesheets, making
content reusable in different contexts. You also learned how to incorporate a customization layer by

138

Chapter 7: Multiple Documents

creating an importing module that overrides parameter values and template rules in imported
stylesheets.

You used the XSLT document () function to access additional source documents, and learned how this
function is complemented by the XPath equivalents doc () and collection().

Then you moved on to create multiple outputs from a single source. In the first example, a small driver
file was used to initiate a feed update process. A template variable was used to contain a temporary
tree, which was then used to output both a new archive file and the updated feed. The second example
illustrated how you can “chunk” a long XML document into smaller web segments, with a linking
index page.

Key Points

O There is a basic distinction between the purpose of <xs1:include>, which
aggregates stylesheet code from several modules, and <xs1:import>, which
has the effect of customizing or overlaying the imported module code.

0 Stylesheet modules are especially useful for creating reusable document
parts. You can even mix XSLT version 1.0 and version 2.0 modules using a
version 2.0 processor, because it is backward compatible.

0 Having imported a stylesheet, you can still make selective use of template
rules in it by using the <xs1:apply-imports> instruction.

0O The <xsl:result document> element creates a final result document. You
can create multiple outputs with this instruction by referring to a named
<xs1:output> declaration and optionally overriding some of the output
attribute values.

Exercises

You'll find solutions to these exercises in Appendix A.

1. What design factors and XSLT language features lend themselves to modularization?

2. If you have already declared an <xs1:output> element named ““archive,” show how you
would override the declared method and indent attributes in an <xs1:result document>
instruction.

3. Name two XSLT elements that you can use to make use of existing template rules in an
imported stylesheet.

4. Complete the following table, comparing the features of the XSLT document () function and
XPath’s doc () function.

139

Chapter 7: Multiple Documents

140

Values

Input

URI resolution
Fragment identifier
Missing document
Result

Other implementation issues

document()

doc()

Processing Text

So far in this book you've mainly been matching nodes in XML source documents to rules in
stylesheets, but there is much to learn about what can be done with the text nodes that make up
much of an element’s content, and about processing raw text, too.

XML parsers and XSLT processors deal with whitespace-only text nodes in particular ways, and
there are XSLT declarations that you can use to control how whitespace is handled inside elements.

Although XSLT is primarily designed to generate XML markup, you will find that you can use XSLT
to produce plain text without markup in any convenient output format.

You may also be surprised to learn that you can do simple raw-text processing with XSLT by load-
ing a text file and analyzing the content to find markers that you can use to construct XML elements
or attributes.

In this chapter you will do the following:

Q Learn what to expect in default whitespace character processing.
0 Use XSLT declarations to manage, strip, or preserve whitespace in output.

O Make use of the <xsl:text> instruction to create a CSV file that can be read by a
spreadsheet.

0 Load and parse regular expressions in CSV data to create XML markup.

Q Compare transforming CSV content with XSLT to alternatives available in a spreadsheet.

Controlling Whitespace

Whitespace-only text nodes consist entirely of any sequence of the four characters tab, newline,
carriage return, or space. In XML, whitespace in element-only (or empty) elements is not considered
significant. However, in elements with #°CDATA content it is significant.

In XSLT the same rules apply; there is no certainty that different XML parsers will remove the same
amounts of whitespace before the XSLT processor gets to see the source data.

Chapter 8: Processing Text

XML parsers will always normalize, or reduce, multiple newlines to the single newline character "x0a".
They will also normalize attribute values, replacing tabs or newlines with a single space, "x20".

In addition, some XML parsers (MSXML, for example) will also remove whitespace-only text nodes — for
example, <para> </para> becomes <para/> by default before building the source tree, so you need to
check the vendor documentation to establish the details, and configure the parser accordingly.

Schema processors will also obey any schema specifications for whitespace handling.

The XSLT processor automatically merges adjacent text whitespace nodes. You can control the way

the processor handles whitespace-only nodes by specifying the list of containing elements in a source
document for which you wish space to be removed or preserved, using two declarations, as described in
the following sections.

Stripping Space

The top-level <xsl:strip-space> declaration identifies the whitespace-only text nodes that are
not significant and can be removed. This will prevent unwanted nodes — for example, those
in element-only content — from being copied to the output. If there is a whitespace node in an
element identified in the elements attribute, it will be stripped from the tree. This is the schema
declaration.

<xs:element name="strip-space" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="elements" type="xsl:nametests" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

The type of each element listed in the attribute is xs1:nametests, which the XPath 2.0 recommendation
in turn specifies in the following BNF notation:

NameTest ::= QName | Wildcard
Wildcard ::= "*"
| (NCName ":" "*")
| ("*" *:" NCName)

So, for example, :title, atom:*, and atom:content are all valid nametests.

In general, it is advisable to remove whitespace-only nodes, especially in XML data, and elements with
element-only content, using the following:

<xsl:strip-space elements = "*"/>

For example, this will prevent any unnecessary space nodes from being counted and returned from the
use of the position() function, which you were relying on to generate results based on relevant nodes.

142

Chapter 8: Processing Text

It is not, however, a good idea for elements with mixed content — that is, with both elements and
#PCDATA, because of the risk that text will be run together in some cases. In the next example, the
space between the <city> and <state> elements should be preserved; otherwise, the output will read
"BangorME".

<p>Helives in <city>Bangor</city> <state>ME</atate>.</p>

<xsl:strip-space> will not remove extraneous space in content containing mixed text and whitespace
nodes. To clean up this type of content, use the normalize-space () function that you met in Chapter 6.
Recall that it removes leading and trailing spaces, and replaces multiple internal spaces with single-space
characters. The normalize-space () function is shown here:

<xsl:value-of select="normalize-space(S$title)"/>

Preserving Space

The <xsl:preserve-space> declaration has the opposite effect, and defines the nodes that are signifi-
cant. The default processor action is to preserve whitespace in input documents and those loaded with
the document () function, so you need to use it only when you want to override a value specified with
<xsl:strip-space>. You cannot override a removal action by a parser; once the space is gone it cannot
be recovered by the XSLT processor. Here is the declaration:

<xs:element name="preserve-space" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="elements" type="xsl:nametests" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Again, you use the elements attribute, this time listing the ones to preserve. For example, to preserve
space in <atom:content> elements, use the following top-level declarations:

<xsl:strip-space elements = "*"/>
<xsl:preserve-space elements = "atom:content"/>

Using <xsl:text >

If you want to control whitespace inside a literal result element, you can use the <xs1:text> instruction:

<xs:element name="text" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xsl:text-element-base-type">
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no" default="no"/>
</xXs:extension>
</xs:simpleContent>
</xXs:complexType>
</xs:element>

143

Chapter 8: Processing Text

The following example will appear in the output with all the double spacing in place. Without the
<xsl:text> wrapper, all the whitespace would be collapsed:

<p><xsl:text> some text here </xsl:text></p>

Use of the disable-output-escaping attribute is deprecated, because there is no certainty that the
result tree will be serialized, rather than used directly.

XML to Text

Converting XML to delimited data that you can use in another application, such as a spreadsheet or a
word processor, is very straightforward.

The next example makes use of the products.xml source file again, converting the attributes in each
<product> element to a comma-separated text row in a CSV format, like the following row of data:

gdk943-46298r,red, 50, Center

_ products.csv

To convert products.xml to products. csv, start a new stylesheet called products2csv.xsl.

The first step is to set the method attribute on the <xs1:output> declaration to "text", and strip space in
all elements with <xsl:strip-space>:

<xsl:output method="text"/>
<xsl:strip-space elements="*"/>

You need to insert a comma between values in each row. So far, you haven’t made use of the separa-
tor attribute in the <xsl:value-of> element instruction, which can be used to insert any string value
between items in a sequence.

To do so, add a $delimiter parameter to define the value as ", ". Then set a variable $headers to contain
header values for each column:

<xsl:param name="delimiter" select=""','"/>

<xsl:variable name="headers">
<header>SKU</header>
<header>Color</header>
<header>Units</header>
<header>Store</header>

</xsl:variable>

This enables you to select $headers/header as a sequence and use the $delimiter value as an
attribute-value template in the separator attribute. In the product template rule, output the attribute
values, commas, and a newline for each row:

<xsl:template match="/">

<xsl:value-of select="S$headers/header" separator="{$delimiter}"/>
<xsl:text>
</xsl:text>

144

Chapter 8: Processing Text

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="product">
<xsl:value-of select="@sku"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@color"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@units"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@store"/>
<xsl:text>&#fxa;</xsl:text>

</xsl:template>

Run products.xml using the new stylesheet. The file products.csv should look like what is shown in
Listing 8-1.

Listing 8-1

SKU, Color,Units, Store
gdk943-46298r,red, 50, Center
gdk943-46298w,white, 851, West
gdk943-46298g,green, 143 ,North
gdk943-46298b,blue, 19,North
gdk943-46298p,purple, 23, South
gdk943-46298r,red, 70, Center
gdk943-46298g,green, 29, East
gdk943-46298w,white, 203, South

The complete stylesheet code is shown in Listing 8-2.

Listing 8-2

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:output method="text"/>
<xsl:strip-space elements="*"/>

<xsl:param name="delimiter" select=""','"/>

<xsl:variable name="headers">
<header>SKU</header>
<header>Color</header>
<header>Units</header>
<header>Store</header>

</xsl:variable>

<xsl:template match="/">
<xsl:value-of select="S$headers/header" separator="{$delimiter}"/>

Continued

145

Chapter 8: Processing Text

Listing 8-2: (continued)

<xsl:text>
</xsl:text>
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="product">
<xsl:value-of select="@sku"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@color"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@units"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="@store"/>
<xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

Text to XML

XSLT 2.0 has a couple of very useful features that enable the process of turning delimited text into XML
markup. The first of these loads a raw unparsed text file, and the second allows you to use a regular
expression to analyze the content.

Loading Unparsed Text

The XSLT function unparsed-text () returns the content of an external text file as a string, so it is equiva-
lent to the document () function for XML content. The href parameter is a string containing the URI of the
file to be loaded. An optional encoding parameter may also be supplied with the value of the character
encoding of the input file:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">

<xsl:variable name="filename" select=""'census.csv'" />

<xsl:if test="unparsed-text-available($filename) ">
<xsl:value-of select="unparsed-text ($filename)"/>

</xsl:if>
</xsl:template>
</xsl:stylesheet>

To avoid an error in subsequent processing you can use the unparsed-text-available function, which
will test to see whether the call will be successful.

Analyzing the Input

To process this text input you can use the <xsl:analyze-string> instruction. The content model allows
for two elements, which you use to define sequence constructors for processing substrings that either
match or don’t match a regular expression.

Two attributes are required: the select attribute contains the text to analyze, and the regex attribute is
the regular expression to use. Optionally, you can use the flags attribute to determine how that

146

Chapter 8: Processing Text

expression is interpreted. Recall from Chapter 6 that these flags control case sensitivity, the position of
anchors, and how newlines and whitespace characters will be treated:

<xs:element name="analyze-string" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:matching-substring" minOccurs="0"/>
<xs:element ref="xsl:non-matching-substring" minOccurs="0"/>
<xs:element ref="xsl:fallback" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="regex" type="xsl:avt" use="required"/>
<xs:attribute name="flags" type="xsl:avt" default=""/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:element>

To illustrate, your next task will be to process something a little unusual.

The FreeCEN project aims to capture all nineteenth-century UK. census data and put it in
the public domain. The project relies on volunteers entering the information in a well-defined
spreadsheet format, and submitting it as CSV files. After validation, the content is loaded
into a database for web access. The spreadsheet version of the data can be used for analysis
by local historians. Figure 8-1 is a typical document image from which the content is tran-

scribed.

Eecbiostical Distriet of | oW B 1 ~ Tomaef— - Vidope o
*u ’ -
Rt T Te 2 s e | B
loa. the Night of the 30th. 1851| Hosd of Family [y Ocoupation b
| Ll i 72 V0. VT RS VBT, A2 Vs
N eorpidnil Lsiini |Lace FING e Zrscamani i | Bt anbenlovsz
P, e e LT R T LR oy i e T
/. I, LA /A PN PN G i W ‘é
Ll Wi 22 Vit A /;‘f..bﬁn..t_ﬁi”b e
_ Ul fpnia? Btk |52 2 37 S o e 2 s
5 Diare oFo ke 2 5 a N LA, AV P Vidd Keas
TR by Sons b | po |22, L\ NEn P il Daia Lo Woie
L % j:l_ ‘ o |4l i, . JJF 00 \D“’-—v Fe L)
Cuteorsea S Ddokes lqr 33 7= ,QA;...{-J,..,}V fe w.r -
M—lﬂ B ,."}..\. _ﬁz_u.' " J ; . 355 Y Le Feal K
L Wi/ R Ly g 22 h £t Ly ool
> Haege etinit s hvs' | tiazes! | Y | LA L
Vit toetcd B Vit e Porvovee A O) e E s B K W i W Irre LN, A0Sy 1
i e, 31.-.".;1; Fiid 26) 17 1N ¢ T 29 ihies L an :
L_ o T L Rrciice Boagiteiy o ien _) - ;r Fe K e B
‘ Lt Moily | Zou | JNlu G dE__ge "+
i et ia e, Sz D -12 - AP AP o B Sanie
3 "4 o, N xpr =
AP P I Lo gl 2. 2 /,,',(,“,m,! (} . e gt i]
: Pty Lotk 1 e INU bl ™~ g p] A POUTA
E o e Y ot ot Pewen..| 2 |7 | : a ¢yt 1

Figure 8-1

147

Chapter 8: Processing Text

The following snippet shows a simplified example of data from an 1851 census enumerator’s book. The
first two values are the folio and page numbers from the source document. The third value is the house
number. Following that are the occupants’ names, relation to head of household, marital status (married,
unmarried, widowed), sex, age, occupation, parish, and county of birth. The last value is a sequence
number that can be used to restore the data to the original order after any spreadsheet processing. Note
the spaces in some rows where information on occupation is not given in the original document:

1,Monins,John,Head,w,m, 64,Rector of Ringwould Kent,Margate, KEN, 1

1,Monins, Georgiana,Daughter,u, f,39,Gentlewoman, Canterbury, KEN, 2

1,Monins,John, Son,u,m,35,Farmer 100 acres 6 labourers,Canterbury, KEN, 3
1,Byass,Mary Maria,Visitor,u, f,21,Gentlewoman, Deal, KEN, 4

1,Jell, Susannah White, Servant,u, f,41,House servant cook,Ringwould, KEN, 5
1,Pittock,Alice Jarvist, Servant,u, f,31,House servant house maid,Ringwould, KEN, 6
1,Fagg,Mary, Servant,u, f,17,House servant house maid, Deal, KEN, 7

1,Pittock,Mary Jane, Servant,u, f,18,House servant kitchen maid,Walmer, KEN, 8
1,Curling,John, Servant,m,m, 46,House servant coachman,Ringwould, KEN, 9
2,Parker,Edward S,Head,m,m,33,Blacksmith,Ringwould, KEN, 10

2,Parker,Cary Mary,Wife,m, f,35,Blacksmith wife,Deal,KEN, 11

2,Parker,William S,Son,u,m,12, ,Ringwould,KEN, 12
2
3
3
3
3
3
3
3
3
3
3
3

’

’

,Parker,Mary Ann,Daughter,u,f,11, ,Ringwould,KEN, 13
,Broadley,William,Head,w,m,57,Farmer 200 acres 11 labourers,Ringwould, KEN, 14
,Broadley, Ann, Daughter,u, £,21, ,Barham,KEN, 15
,Broadley,Rachel,Daughter,u, f,18, ,Barham,KEN, 16
,Broadley,John, Son,u,m, 11, Scholar,Barham, KEN, 17
,Gaslinge, Ann, Servant,u, f,22,House servant, Staple,KEN, 18
,Sutton,Richard, Servant,u,m,43,Farm labourer,Ringwould, KEN, 19
,Constable,George, Servant,u,m,21,Farm labourer,Gunstone, KEN, 20
,Fagg, Thomas, Servant,u,m, 18, Farm labourer, Barham, KEN, 21
,Benefield, John, Servant,u,m,19,Farm labourer, Barham, KEN, 22
,Lawrence, George, Servant,u,m, 18, Farm labourer, Sholden, KEN, 23
,Knott,William, Servant,u,m,17,Farm labourer, St Margarets,KEN, 24

’

’

’

’

’

’

S N N N N N N N N N N N N N S
PR RPRRPRPEPERERPRRPRPRPERERPRRPRERERERRER

’

You can read more about the FreeCEN project at http://freecen.rootsweb.com/.

TRAEOUERT CSV to XML

This stylesheet will need two passes through the data: one to encapsulate the content into elements
representing rows and cells, and the other to create a result document containing semantic markup.

To identify the unique data source for the census information, add a parameter named $identifier. The
value for this section of the 1851 census is "H0107163". Also set a value "census.csv" for the input file-
name parameter $uri. Inside the main template set the $census variable using the $uri parameter value:

<xsl:param name="identifier"/>
<xsl:param name="uri"/>
<xsl:template match="/">

<xsl:variable name="census" select="unparsed-text (Suri)"/>

<xsl:variable name="data">

<list>
<xsl:analyze-string select="$census" regex="\n">
<xs]l:non-matching-substring>
<row>
<xsl:analyze-string select="." regex="," flags="x">

148

Chapter 8: Processing Text

<xsl:non-matching-substring>
<col>
<xsl:value-of select="normalize-space(.)"/>
</col>
</xsl:non-matching-substring>
</xsl:analyze-string>
</row>
</xsl:non-matching-substring>
</xsl:analyze-string>
</list>
</xsl:variable>
</xsl:template>

The $data variable will contain a temporary tree to hold the first pass at building the XML struc-
ture. The <list> element is the root of the tree in the variable. The first <xsl:analyze-string>
instruction breaks the source into lines by processing everything except line endings inside a
<xsl:non-matching-substring> element, with the attribute setting regex= "\n". Each line will make a
<row> element.

The second instruction does the same with everything except commas, creating a <col> element for each
comma-separated value. The flags="x" setting tells the processor to ignore whitespace when matching.
This is also a good opportunity to normalize space in the values.

The second pass uses an <xsl:result-document> element to contain the final output. Given the known
structure of the CSV file from the FreeCEN specifications, it is simple to add semantic markup in the
literal result elements, and set the content using the position of the <col> elements:

<xsl:result-document href="census.xml">
<census id="{$identifier}">
<xsl:for-each select="$data//row">
<person>

<folio>

<xsl:value-of select="col[1l]"/>
</folio>
<page>

<xsl:value-of select="col[2]"/>
</page>
<number>

<xsl:value-of select="col[3]"/>
</number>
<surname>

<xsl:value-of select="col[4]"/>
</surname>
<firstname>

<xsl:value-of select="col[5]"/>
</firstname>
<relation>

<xsl:value-of select="col[6]"/>
</relation>
<condition>

<xsl:value-of select="col[7]"/>
</condition>
<sex>

<xsl:value-of select="col[8]"/>
</sex>

149

Chapter 8: Processing Text

<age>
<xsl:value-of select="col[9]"/>
</age>
<occupation>
<xsl:value-of select="col[10]"/>
</occupation>
<birthplace>
<xsl:value-of select="col[11l]"/>
</birthplace>
<county>
<xsl:value-of select="col[12]"/>
</county>
<sortkey>
<xsl:value-of select="col[13]"/>
</sortkey>
</person>
</xsl:for-each>
</census>
</xsl:result-document>

To process the text file in the Oxygen IDE, create a dummy XML file with just a single root element (the
element name doesn’t matter) and associate it with the stylesheet census.xs1. You will be able to modify
the parameters that identify the census document and the URI of the CSV file in the user interface for the
scenario, making it more portable over data sources.

Part of the result is contained in Listing 8-3. Listing 8-4 shows the code for census.xml.

Listing 8-3

<?xml version="1.0" encoding="UTF-8"7?>
<census 1d="HO0107163">

<person>
<folio>4</folio>
<page>1l</page>
<number>1</number>
<surname>Monins</surname>
<firstname>John</firstname>
<relation>Head</relation>
<condition>w</condition>
<gex>m</sex>
<age>64</age>
<occupation>Rector of Ringwould Kent</occupation>
<birthplace>Margate</birthplace>
<county>KEN</county>
<sortkey>1l</sortkey>

</person>

<person>
<folio>4</folio>
<page>1</page>
<number>1</number>
<surname>Monins</surname>
<firstname>Georgiana</firstname>
<relation>Daughter</relation>

150

Chapter 8: Processing Text

<condition>u</condition>
<sex>f</sex>
<age>39</age>
<occupation>Gentlewoman</occupation>
<birthplace>Canterbury</birthplace>
<county>KEN</county>
<sortkey>2</sortkey>

</person>

<person>
<folio>4</folio>
<page>1l</page>
<number>1</number>
<surname>Monins</surname>
<firstname>John</firstname>
<relation>Son</relation>
<condition>u</condition>
<sex>m</sex>
<age>35</age>
<occupation>Farmer 100 acres 6 labourers</occupation>
<birthplace>Canterbury</birthplace>
<county>KEN</county>
<sortkey>3</sortkey>

</person>

<person>
<folio>4</folio>
<page>1</page>
<number>3</number>
<surname>Knott</surname>
<firstname>William</firstname>
<relation>Servant</relation>
<condition>u</condition>
<sex>m</sex>
<age>17</age>
<occupation>Farm labourer</occupation>
<birthplace>St Margarets</birthplace>
<county>KEN</county>
<sortkey>24</sortkey>

</person>

</census>

Listing 8-4

<?xml version="1.0"7?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:param name="identifier"/>
<xsl:param name="uri"/>
<xsl:template match="/">
<xsl:variable name="census" select="unparsed-text (Suri)"/>
<xsl:variable name="data">
<data>
<xsl:analyze-string select="S$census" regex="\n">
<xsl:non-matching-substring>
<row>

Continued

151

Chapter 8: Processing Text

Listing 8-4: (continued)

152

<xsl:analyze-string select="."
<xsl:non-matching-substring>

<col>

regex=","

flags="x">

<xsl:value-of select="normalize-space(.)"/>

</col>

</xsl:non-matching-substring>
</xsl:analyze-string>

</row>

</xsl:non-matching-substring>
</xsl:analyze-string>

</data>

</xsl:variable>

<xsl:result-document href="census.xml">

<census xml:id="{$identifier}">
<xsl:for-each select="$data//row">
<person>

<folio>
<xsl:value-of
</folio>
<page>
<xsl:value-of
</page>
<number>
<xsl:value-of
</number>
<surname>
<xsl:value-of
</surname>
<firstname>
<xsl:value-of
</firstname>
<relation>
<xsl:value-of
</relation>
<condition>
<xsl:value-of
</condition>
<sex>
<xsl:value-of
</sex>
<age>
<xsl:value-of
</age>
<occupation>
<xsl:value-of
</occupation>
<birthplace>
<xsl:value-of
</birthplace>
<county>
<xsl:value-of
</county>

select="col[1]"/>

select="col[2]"/>

select="col[3]"/>

select="col[4]"/>

select="col[5]"/>

select="col[6]"/>

select="col[7]"/>

81" />

select="col[

select="col[9]"/>

select="col[1l0]"/

select="col[11]"/

select="col[1l2]"/

>

>

>

Chapter 8: Processing Text

<sortkey>
<xsl:value-of select="col[13]"/>
</sortkey>
</person>
</xsl:for-each>

</census>
</xsl:result-document>

</xsl:template>

</xsl:stylesheet>

Outputting XML to CSV with <xs1:text> is just a starting point. JavaScript Object Notation (JSON) and
other code formats are all possibilities given enough motivation and ingenuity.

Alternatives to XSLT

Because the two main examples in this chapter use the CSV format as either a target or a source format,
you could argue that using XSLT and my examples are somewhat redundant. Moving data to and from
spreadsheets in XML format is common enough, after all.

Of course, I have the excuse of illustrating how to output text or parse it to construct XML; but I also
want to use this next short section to illustrate a number of points.

First, basic processing of spreadsheet data in XML form is not really more helpful than working with CSV
and XSLT. Second, while you can develop a solution that doesn’t require XSLT at all, it requires specific
product knowledge and experience of XML Schema construction.

The next case uses the census example and Microsoft Excel 2003 Professional Edition. (Like many users,
I'm still in an MS Office time warp.)

There are basically two options:

0 Save the content in the generic XML format known as SpreadsheetML, which has been around
even longer than Excel 2003, and then transform the result to your census target.

0 Use your own custom schema design and map it to list objects in the spreadsheet.

Omitting the containing top-level XML instance markup, which is verbose, the following snippet repro-
duces the SpreadsheetML data output by the Save As function in Excel. It still requires a transform to get
it to the target format, so it isn’t any improvement on census.xs1:

<Table ss:ExpandedColumnCount="13" ss:ExpandedRowCount="24" x:FullColumns="1"

x:FullRows="1">

<Row>
<Cell><Data ss:Type="Number">4</Data></Cell>
<Cell><Data ss:Type="Number">1l</Data></Cell>
<Cell><Data ss:Type="Number">1l</Data></Cell>
<Cell><Data ss:Type="String">Monins</Data></Cell>
<Cell><Data ss:Type="String">John</Data></Cell>
<Cell><Data ss:Type="String">Head</Data></Cell>
<Cell><Data ss:Type="String">w</Data></Cell>
<Cell><Data ss:Type="String">m</Data></Cell>

153

Chapter 8: Processing Text

<Cell><Data ss:Type="Number">64</Data></Cell>
<Cell><Data ss:Type="String">Rector of Ringwould Kent</Data></Cell>
<Cell><Data ss:Type="String">Margate</Data></Cell>
<Cell><Data ss:Type="String">KEN</Data></Cell>
<Cell><Data ss:Type="Number">1l</Data></Cell>

</Row>

<Row>

<Cell><Data ss:Type="Number">4</Data></Cell>
<Cell><Data ss:Type="Number">1l</Data></Cell>
<Cell><Data ss:Type="Number">1l</Data></Cell>
<Cell><Data ss:Type="String">Monins</Data></Cell>
<Cell><Data ss:Type="String">Georgiana</Data></Cell>
<Cell><Data ss:Type="String">Daughter</Data></Cell>
<Cell><Data ss:Type="String">u</Data></Cell>
<Cell><Data ss:Type="String">f</Data></Cell>
<Cell><Data ss:Type="Number">39</Data></Cell>
<Cell><Data ss:Type="String">Gentlewoman</Data></Cell>
<Cell><Data ss:Type="String">Canterbury</Data></Cell>
<Cell><Data ss:Type="String">KEN</Data></Cell>
<Cell><Data ss:Type="Number">2</Data></Cell>

</Row>

</Table>
Option two requires a schema and a bit of careful work in Excel, but this approach can make good sense

for many use cases, avoiding transforms partly or entirely. A lot depends on your goals and what skills
you can bring to bear.

You can follow that course for the next example, and decide for yourself whether it has significant advan-
tages or is even quicker. It is all done in the Excel user interface once the schema is prepared.

XML Maps

XML maps are objects created by Excel each time you add an XML schema to a workbook. A map
describes the relationship between schema objects and spreadsheet locations. A workbook can support
multiple maps, all of which have distinct names. Mapping enables a spreadsheet to exist independently
of the underlying data, and separates the data in a workbook from its presentation. You can use the XML
Maps dialog in Excel to define new mappings by adding, removing, and renaming schemas.

_ Generate the Schema

For this activity, you'll generate a census schema in the Oxygen IDE from the output created earlier.
Schemas created this way are not always ideal, as they are inferred from a document instance, but the
results will do for your purposes in this case.

First, generate an XML schema:

1. Open census.xml in the Oxygen IDE.
2. Choose XML > Convert.

154

Chapter 8: Processing Text

3. Choose W3C XML Schema in the dialog shown in Figure 8-2 and browse to a location to save the
file as census.xsd.

4. C(Click Convert.

= Schema Converter (Trang) - E

Qukput
() RELAX MG Schema - $ML
() RELAY NiG Schema - Campact

() ¥ML 1.0 DTD

(5] W3C XML Schema
Options
Encoding: | UTF-8 | v_l
Line vidth; | 100 [v]
Indent size: |2 |ﬂ

_E:,I;ecﬁne,I;woricspace,limla,&sl_sleps,l’mus.xsd =

@:] [.ﬁdvanceduptionsl [Convert][Close
Figure 8-2

The schema census.xsd in Listing 8-5 is generated. Note that the schema imports xml . xsd, which should
be in the same folder as census.xsd when you associate it with the Excel file.

Listing 8-5
<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault=
"qualified">
<xs:element name="census">
<xs:complexType>
<XS:sequence>
<xs:element maxOccurs="unbounded" ref="person"/>
</Xs:sequence>
<xXs:attribute name="id" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="person">
<xs:complexType>
<XS:sequence>
<xs:element ref="folio"/>
<xs:element ref="page"/>
<xs:element ref="number"/>
<xs:element ref="surname"/>
<xs:element ref="firstname"/>
<xs:element ref="relation"/>
<xs:element ref="condition"/>
<xs:element ref="gex"/>
<xs:element ref="age"/>

Continued

155

Chapter 8: Processing Text

<XS:
:element

<Xs

<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
:element
<XS:
:element

<XSs

<Xs

<XS:
<Xs:

<xs:element ref="occupation"/>
<xs:element ref="birthplace"/>
<xs:element ref="county"/>
<xs:element ref="sortkey"/>
</Xs:sequence>
</xs:complexType>
</xs:element>

element

element
element
element
element
element
element

element

element
element

</xs:schema>

name="folio" type="xs:integer"/>
name="page" type="xs:integer"/>
name="number" type="xs:integer"/>
name="surname" type="xs:NCName" />
name="firstname" type="xs:string"/>
name="relation" type="xs:NCName" />
name="condition" type="xs:NCName"/>
name="gsex" type="xs:NCName" />
name="age" type="xs:integer"/>
name="occupation" type="xs:string"/>
name="birthplace" type="xs:string"/>
name="county" type="xs:NCName" />
name="sortkey" type="xs:integer"/>

XML Data in Excel

The XML features in Excel 2003 are, naturally enough, optimized for tabular data, so consistent uniform
data structures are good candidates. The looser the XML structure, and the more inconsistent the data,
the less likely it is a candidate for viewing or processing in a spreadsheet. You could end up with very
sparse tables in extreme cases.

However, this is not a problem with the census data. To associate the schema with spreadsheet cells,
you'll define an XML list with the columns containing the person-element data, add the schema you
have created, and drag matching element names to the column headings.

The spreadsheet census.x1s includes column headings to help you follow what to do, and an Identifier
heading is added above a cell to contain the id attribute on the census element.

Try It Out | Using the Excel GUI

Open the spreadsheet census.x1s.

N B

P w

156

Select the repeating elements and the headings in the spreadsheet, shown in Figure 8-3, by the
bold border.

Choose Data » List » Create List.
Now choose Data » XML » XML Source.

In the XML Maps dialog, shown in Figure 8-4, add census.xsd. Choose the <census> element as
the root. The XML Source pane opens next to the spreadsheet, showing the schema structure.

Select the element names under the person element one by one and drag them to the head of the
matching columns.

Chapter 8: Processing Text

HO107163.

census.xml, the output from the previous Try It Out.

Alal ¢ | o | E] E I 6 [H[UV] J | K LM

& < gibd) a*s. & ‘sﬁfy
o & &
dea 0 0" g s ngge @
(2191 1 Moning Juhin wad w m 64 Reclor of Ringwould Kent Margate KEN
i 4 1 1 Monins Georgiana Daughter u f 39 Gentlewoman Canterbury KEN
4 | 1 1 Monins John Son u m 35 Farmer 100 acres & lobourers Canterbury KEN
551 1 1 Byass Mary Maria Visitor u f 21 Gentlewoman Deal KEN
| 6 | 1 1.Jell Susannah White Senant u f 41 House senant cook Ringwould KEN
| 7] 1 1 Pittock Alice Janast Servant u f 31 House senant house maid (Ringwould KEN
| 8 | 1 1 Fagg Mary Seraml w f 17 Howse senvant house maid Deal KEN
% 1 1 Pittock Mary Jane Senant u f 18 Howse senvant kitchen maid Walmer KEN
10 | 1 1 Curiing John Serant m m 46 House senant coachman Ringwould ~ KEM
[11] 1 2 Parker Edward 5 Head m m 33 Blacksmith Ringwould ~ KEN
12 | 1 2 Parker Cary Mary Wife m f 35| Blackamith wife Deal KEN
[13] 1 2 Parker William 3 Son u m 12 Ringwould ~ KEN
14| 1 2 Parker Mary Ann Daughter v f 1" Ringwould KEN
11% 1 3 Broadley William Head w m 57 Fanmer 200 acres 11 labourers Ringwould | KEN
| 16 | 1 3 Broadley Ann Daughter u 1 Barham KEN
[17] 1] 3 Broadley Rachel Daughter v f 18 Barham KEN
18| 1 3 Broadley John Son u m 11 Schaolar Barham KEN
| 19] 1 3 Gaslnge Ann Servant u f 22|House senant | Staple KEN
{20 | 1 3 Sutton Richard Senant u m 43 Fam labourer Ringwould KEN
_H.- 1 3 Constable | Guorge Serant w m 21 Fanm laboures Gunstene KEN
| 22 | 1] 3 Fagg Thomas Seramt . u m 18 Famm labourer Barham KEN
23] 1 3 Bencficld John Seramt u m 19 Farm labourar Barham KEN
24 | 1 3 Lawrence George Serant u m 18 Famm labourer Shalden KEN
25 1 3 Knott William Senant u m 17 Farm labourer |5t Margarets KEN
26

Drag the id attribute on the census element to the cell under the Identifier heading containing

In the XML Source pane, click Verify for export. You should get a positive response.
Choose Data » XML > Export and save the output as census2 .xml, which should be identical to

%

2k

e U S B

To import data, use the Inport
14 Data button on the List
toobar,

Verify Map for Export...
&) Tioe for mapoing XML

Figure 8-3

Summary

M

XML maps in this workbook:
Name | Root | MNamespace

<1

[Lename...]

)

Deket= | F ok

Figure 8-4

In this chapter you saw how whitespace-only text nodes are processed by default, and how to use
<xsl:strip-space> and <xsl:preserve-space> to get control over processing inside element content.

Perhaps it was surprising to find that you can do simple raw-text processing with XSLT.

157

Chapter 8: Processing Text

Loading and handling unparsed text is also possible, as you learned by processing some CSV census
data. If you have a good grasp of regular expressions, it is possible to detect patterns in a range of text
sources using <xsl:analyze-string>. A more sophisticated application of text-to-XML conversion is
illustrated in Michael Kay’s family-tree case study in Chapter 19 of XSLT 2.0 and XPath 2.0 Programmers
Reference (Wrox 2008). In an activity in the next chapter, you'll use the XML census data introduced here
to generate linking identifiers in a simple family tree.

To compare using spreadsheet data associated with an XML schema with XSLT conversion from CSV,
you experimented with some Microsoft Excel 2003 XML features. There’s more to learn here, and I
encourage you to look into the detailed documentation from both the import and export perspectives.

Key Points

Q Itis important to understand how both XML parsers and XSLT processors
deal with whitespace-only text nodes.

Q You can control XSLT processor handling of whitespace using
<xsl:strip-space> and <xsl:preserve-space> to specify sets of
elements to exclude or include.

O Be careful not to use <xsl:strip-space> with mixed content elements.

Q Itis easy to write out delimited text files with the <xs1: text> instruction, but
you clearly have to have a good knowledge of the target format.

Q Regular expressions (regex) can be used to both detect patterns in raw text
input and generate arbitrary XML markup.

Exercises

You'll find solutions to these exercises in Appendix A.

1. Why are the <xsl:strip-space> and <xsl:preserve-space> declarations useful?

2. Write an <xsl:preserve-space> declaration for appropriate elements you have seen in the
XSLT Quick Reference examples.

3. Using census.xml as source, write a transform to convert it back to the original CSV format.

158

Identifie s and Keys

XSLT and XPath between them provide several ways to locate items, and to index and link them
using identifiers and keys that express relationships between elements.

The id() function in XPath 2.0 enables you to find element nodes having attributes of type xs: ID,
and it can be useful when the source schema or DTD is accessible. However, there are some limita-
tions that result from the rules set by the XML specification for attribute values.

The <xs1:key> declaration and the matching XSLT key () function overcome these limitations,
enabling you to locate source-tree nodes by matching either elements or attributes of any type.

When there are no obvious identifier values to use in the source data, you can use the XSLT
generate-id() function to associate nodes with one another. In any single execution of a
stylesheet, this function will always cause an identical unique value to be generated for a given
node. This property can be used to associate related items and generate linking information.

In this chapter you will do the following:
Q Review some characteristics of the ID and IDREF datatypes used in XML documents to

uniquely identify items and refer to them.

0 Learn how to use the XPath 2.0 id () function on ID attributes to locate source items, and
appreciate its limitations.

QO Use <xsl:key> and the key () function to work with more complex cross-reference struc-
tures, and locate non-unique items for processing.

Q Apply the generate-id() function to index the lines of a play, and link individuals in a
family tree.

Q Consolidate your knowledge of both <xs1: for-each-group> and <xsl:number>.

ID Datatypes

XML Document Type Definitions (DTDs) and XML schemas both support the datatypes 1D,
IDREF, and IDREFS, which are most often applied as attributes. Here are some example schema
declarations.

Chapter 9: Identifiers and Keys

XML attributes specified as type 1D have useful properties. Each element has at most one single unique
identifier, and each value must be unique within the XML document:

<xs:attribute name="ID" type="xs:ID" use="required"/>

Attributes of type IDREF or IDREFS must refer to a matching ID or set of IDs. In the case of IDREFS type,
the attribute contains a space-separated list of 1D values:

<xs:attribute name="link" type="xs:IDREF" use="optional"/>
<xs:attribute name="links" type="xs:IDREFS" use="optional"/>

In a DTD, an 1D attribute might be declared like this:
<!ATTLIST entry id ID #REQUIRED>
In an XML schema this declaration has an identical meaning:
<xs:element name="entry">
<xs :attribute name="id" type="xs:ID" use="required"/>
</xé élement>

In XSLT you can use the XPath id () function to select elements with such IDs as long as the source nodes
have the is-id property.

There are three ways for this value to be set when the source document is parsed:
O The source document must contain a DTD declaring an attribute as having type ID. An external

DTD may not be parsed.

O A schema-aware processor must recognize the attribute as an xs: ID type or as one derived from
xs:ID.

Q The attribute must be named xml:id.
Attributes named xml:1d are predefined as type 1D, and an XSLT processor is required to set the is -id

property when the source document is parsed. The W3C recommendation is xml:id Version 1.0. You can
read the specification details at www.w3 .org/TR/xml-id/.

Using the id() Function

The id() function enables you to select a node from the current document by specifying its unique ID
value. You can also specify multiple ID values to select multiple documents. If you want to search within
a different document, you can specify its root node as a second argument

The function takes two parameters, the first of which contains the required ID value or values. The first

parameter may be a string containing one or more space-separated ID values, or a node with one or more
values, or a sequence.

160

Chapter 9: Identifiers and Keys

The second parameter is optional and defines the document node to be searched. If it is not supplied,
then the search takes place in the same document as the context item.

WEOUET Finding Ds

On each metadata <entry> element in the XSLT quick-reference file reslist_xsl.xml, the xml:id
attribute is used as an identifier. It makes a fairly obvious candidate for using the id() function. As a
reminder of the structure, here are entries for some elements and functions discussed in this chapter:

<entry xml:id="xsl_key">

<title>xsl:key</title>

<summary>Declares a named key to be used with the <code>key()</code>
function.</summary>

<content src="../xslt_reference/"/>

<category term="element_reference" scheme="resource"/>

<category term="key" scheme="xsl"/>
</entry>

<entry xml:id="fn_generate_id">
<title>generate-id</title>
<summary>Generates an XML Name that uniquely identifies a node.</summary>
<content src="../xslt_reference/"/>
<category term="function_reference" scheme="resource"/>
<category term="id" scheme="xsl"/>

</entry>
<entry xml:id="fn_key">
<title>key</title>

<summary>Returns the nodes with a given value for a named key, which was defined
using the <element>xsl:key</element> declaration.</summary>

<content src="../xslt_reference/"/>

<category term="function_reference" scheme="resource"/>

<category term="key" scheme="xsl"/>
</entry>

Open the files xs1_for_each_group.xml and main.xsl again and make the following one-line change to
the stylesheet, saving it as use_id.xs1:

<xsl:template match="1ink">
<xsl:variable name="1inkID" select="@href"/>
<xsl:variable name="linkmeta"
select="1id($1inkID, Sresourcelist)"/>

<a>
<xsl:attribute name="href">
<xsl:value-of select="concat ($linkmeta/content/@src,$1inkID, '.html")"/>
</xsl:attribute>
<xsl:value-of select="$linkmeta/title"/>

</xsl:template>

161

Chapter 9: Identifiers and Keys

Well, on the face of it this isnt very different from the replaced select attribute value:

Sresourcelist//entry[@xml:id=$1inkID].
1d($1inkID, $resourcelist)"/>

Why bother with this change? The answer is that the first method causes the processor to perform a
sequential search for this particular predicate. The second method will initiate a search in which the
processor builds an index of IDs on the first search. Assuming that more than one search takes place, the
index will improve performance.

The XPath function idref () works in a similar fashion as 1d(), except that it locates all the nodes that
contain IDREF or IDREFS values that refer to a given ID setting:

idref ($xref, Ssource) " />
idrefs(Sa $b S$c,S$source)"/>

Keys

Useful as they are, there are some limitations to using XML IDs. The requirement that IDs be unique
means that you have to use simple attribute values with XML names (e.g., no initial numbers or illegal
characters). For example, a value like “9780470477250” (the 13-digit ISBN for this book) is an invalid ID,
despite being universally used in bookselling transactions.

Keys, declared with <xs1:key>, can express node relationships with fewer limitations than IDs They can
be of any datatype, and do not have to be unique in the document being searched. Keys can also return
results from nodes containing multiple values, such as the names of contributors to a scientific paper.

In the declaration, you specify the name of a key and a matching pattern. The related key () function can
then be used to return the results of any match values:

<xs:element name="key" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="match" type="xsl:pattern" use="required"/>
<xs:attribute name="use" type="xsl:expression"/>
<xs:attribute name="collation" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Two attributes are required. The name attribute is simply the name of a given key, and the match attribute
defines the nodes to which the key applies. This is a pattern just like the one in the <xs1:template>
match attribute. The use attribute is optional. It sets the value to be used in the key for each matching
node. The following snippet names the key as "part_id", and specifies nodes matching the <part>
element, and the sku attribute as the value to use for the key:

<xsl:key name= “part_id” match= “part” use= “@sku”/>

162

Chapter 9: Identifiers and Keys

As a mutually exclusive alternative to the use attribute, you can define a key in a contained sequence
constructor.

The optional collation attribute has the same purpose as it does in <xsl:sort> and on several
string-comparison functions. You saw how collations may be applied in Chapters 5 and 6. The value is
the URI of the collation to use.

The key() Function

Matching is straightforward. The key () function takes up to three parameters (name, value, top). The
first two are required parameters, the name and the value to find. The name parameter identifies the key
to use, and will return any nodes matching the value. The third, optional top parameter may be used to
specify the document node to be searched.

TAIEOUENY Using a Key

This time, use xs1_for_each_group.xml again and match the xml:id attribute using a key. Modify
main.xsl again, saving it as use_key.xsl. First, add a key declaration that will match the <entry> ele-
ments in the XSLT quick-reference metadata using the "@xml:id" as the value in the use attribute:

<xsl:key name="identifier" match="entry" use="@xml:id"/>
Now modify the link template rule to make use of the key () function:

<xsl:template match="1ink">
<xsl:variable name="1inkID" select="@href"/>
<xsl:variable name="linkmeta"
select="key('identifier',6 $1inkID, Sresourcelist)"/>

<a>
<xsl:attribute name="href">
<xsl:value-of select="concat ($linkmeta/content/@src,$1linkID,"'.html")"/>
</xsl:attribute>
<xsl:value-of select="$linkmeta/title"/>

</xsl:template>

The name parameter is ‘identifier’, the value to match is the $1inkID variable (this will correspond to
the xm1: id attribute value), and the document node is $resourcelist.

In this case it is essential to use the third parameter because by default the key () function looks in the
document containing the context node, and the context node is not in $resourcelist.

I haven’t shown the complete code for use_id.xsl and use_key.xsl here, as the changes are so
small, but you’ll find them in the code folder for this chapter in the downloadable code for this book
on Wrox.com.

You've no doubt see news feeds on the Web that contain tags at the end to categorize the entries. These

tags have two characteristics. They aren’t likely to be unique in a single feed and there are usually multi-
ple tags per entry. The next example shows you how multiple-value, non-unique keys can work.

163

Chapter 9: Identifiers and Keys

You will use the Atom syndication feed file you met in Chapter 1. However, this time you’ll define a
category key for the entries. Your goal is to filter the listing using a global parameter setting. Filtering the
list focuses attention on the subset of entries that is of interest, and supplying a parameter value enables
you to change the results of a search quite readily.

_ Using Multiple Values

Your source file is atom.xml. Previously, with atom_list.xs1, you output an unfiltered HTML table that
listed authors, titles, and dates. Save a copy as atom_key_filtered.xsl. In the modified stylesheet, set
up an <xsl:param> declaration $£ind to hold the parameter value "xrx", which is one of the categories
found in the feed. Declare a key named category that matches entries using the term attribute values on
the <category> elements:

<xsl:param name="find">xrx</xsl:param>
<xsl:key name="category" match="entry" use="category/@term"/>

Modify the table used to list the entries as follows, adding a column to display the categories, and using
the key () function to select the entries into the $cat variable:

<table cellspacing="0">
<tr>
<th xsl:use-attribute-sets="th_first">Author</th>
<th xsl:use-attribute-sets="col">Title</th>
<th xsl:use-attribute-sets="col">Date</th>
<th xsl:use-attribute-sets="col">Categories</th>
</tr>
<xsl:variable name="cat" select="key('category',s$find)"/>
<xsl:for-each select="$cat">

<xsl:sort select="author/name"/>
<xsl:sort select="updated"/>
<tr>
<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="author/name"/>
</th>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="title"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="updated"/>
</td>
<td xsl:use-attribute-sets="row">
<xsl:for-each select="category">
<xsl:value-of select="@term"/>
<xsl:if test="position() ne last()">, </xsl:if>
</xsl:for-each>
</td>

</tr>

</xsl:for-each>
</table>

164

Chapter 9: Identifiers and Keys

The results should look like Figure 9-1. All the categories for an entry are listed in the table. Try changing
the value of the $find parameter to get different results — for example, ““iso,” ““odf,” and “xml.”” A look
at the category column in the output for “xml” will suggest others.

O'Reilly News: XML

Author [Title |Date Categories

Dan McCreary Waming: X¥=x+ 1 |2008-11-18T13: 18:47Z concurrency,
May RBe Hazardnus wml, wnuery, wre,
to Your Brain uslt

Philip Fennell XForms for 2008-12-01T18:19:42Z |prototyping,
Prototyping xforms, xml, xrx

Philip Feannell ¥Forms, a pause for 2009-12-17718:05:12Z|=forms, wml, urx
reflection

Figure 9-1

Generating ldentifie s

When there are no formal identifiers in your source data and you want to relate existing nodes data to
create a relationship, you can always generate identifiers.

The XSLT function generate-id() can be used to generate an XML name that uniquely identifies a
node. In any given transformation the result is guaranteed to be different for every node to which it
is applied. This makes generate-id () useful for creating link relationships in both XML and HTML
output when the source is a single document. For example, you could generate an ID for a heading at
one point in the stylesheet. Then, later (or even earlier, as the order is not significant) you can confi-
dently refer to the heading again in an <a> element, because you know the same ID will be generated
again.

There are three other aspects of using generate-id() that you should be aware of. First, the form of the
identifier is implementation-specific, so you can’t expect different processors to return the same values for
the same source nodes. Second, while you can rely on the same processor producing unique identifiers
within a given run of a stylesheet, you can’t bank on it producing identical results in different runs on
the same source. Third, it is possible, if unlikely, for a processor to generate an ID that was previously
created in a source document (manually or otherwise). The processor is not obliged to check, and in such
a case problems might arise.

Indexing Lines

The next example illustrates how to create an alphabetical index of first lines in an act of Love’s Labour’s
Lost using generate-id (). There are no identifiers of any kind on the lines, so there is no way to
refer to them. If an ID is added to each line, then an indexing step in the process can create the cross-
references.

165

Chapter 9: Identifiers and Keys

_ generate-id()

Open the XML source a5s1.xml. To add the index you'll modify number_lines.xsl. Save the changes as
index_lines.xsl.

Each index line will be displayed as a link to the relevant line in the main body of the play, and will be
processed twice to ensure that there are match identifiers.

To make the index, you need to loop through the lines selecting the first <1> element in each speech
using the [1] predicate, and sort the lines in the default order. To create the links, add an <a> element,
using the generate-id() function to form the value of the href attribute,. The value should be preceded
by g

<xsl:apply-templates> should have a mode attribute value of "index" so that the contents of <sp>
elements will be processed differently from those in the main body of the play.

Next, follow each line with the name of the speaker. Because the speaker is at the same level as the lines
in a speech, you need to select the speech on the parent: : axis, and then the speaker under it:

<h2>Index of first lines</h2>
<xsl:for-each select="//sp/1[1]">

<xsl:sort select="."/>
<p>
<xsl:apply-templates select="." mode="index"/>

 [<xsl:value-of select="parent: :sp/speaker"/>]</p>
</xsl:for-each>

The index mode template prevents line numbers from appearing in the index:

<xsl:template match="sp" mode="index">
<table width="80%" class="noborder">
<td class="noborder speaker" width="80%">
<xsl:value-of select="speaker"/>
</td>
</table>
</xsl:template>

To make a link target for each index line, go to the template rule for the <1> element. All you need to do
here is use generate-id() again, but this time inside an id attribute. The result will be an exact match
with the identifier generated in the first pass through the lines. There is an overhead associated with
adding an ID to every line, so apply a position() test for the first line. For this test to work you have to
explicitly apply this template inside the <sp> template rule with a select attribute:

<xsl:template match="sp">
<table width="80%" class="noborder">
<td class="noborder speaker" width="80%">
<xsl:value-of select="speaker"/>
</td>
<xsl:apply-templates select="1"/>

166

Chapter 9: Identifiers and Keys

</table>
</xsl:template>

<xsl:template match="1">
<tr>
<td class="noborder" width="60%">
<xsl:if test="position() eq 1">
<xsl:attribute name="id" select="generate-id()"/>
</xsl:if>
<xsl:apply-templates/>

</td>
<td class="noborder" width="20%">
<xsl:variable name="1ln">
<xsl:number level="any" from="div[@type='scene']"/>
</xsl:variable>
<xsl:if test="$1ln mod Sinterval=0">
<xsl:value-of select="$1In"/>
</xsl:if>
</td>
</tr>
</xsl:template>

In the following snippet, note in the XHTML code how the generated identifiers (in this case, "dle446")
match up, first in the index where the target URL is set, and then in the play’s text, where it is the target
ID value:

<p>Arts-man, preambulate, we will be singled from the
[Don Adriano]

<tbody>
<tr>
<td class="noborder speaker" width="80%">Don Adriano</td>
</tr>
<tr>
<td class="noborder" id="dle446" width="60%">Arts-man, preambulate, we
will be singled from the</td>

<td class="noborder" width="20%"/>
</tr>

</tbody>

Figure 9-2 shows part of the web page for the Act 5 alphabetical index. Clicking on a line takes you to the
location of the speech in the play where the line occurs.

167

Chapter 9: Identifiers and Keys

Index of first lines

& most singular and choice epithet. [Sir Nathaniel]

Allons! we will employ thee, [Holofernes]

An 1 had but one penny in the world, thou shouldst [Costard]
An excellent device! =so, If any of the audience [Moth]
Arts-rman, preambulate, we will be singled from the [Don Adriano]
At your sweet pleasure, for the mountain, [Don Adriano]

Ba, most silly sheep with a horn. ¥ou hear his learning. [Moth]
Ba, pueritia, with a horn added. [Holofernes]

Bon, bon, fort bon, Priscian! a little scratch'd, [Holofernes]
Chirrah! [Don Adriano]

Faor the rest of the Worthies?-- [Don Adriano]

He draweth out the thread of his verbosity finer [Holofernes]
Horns, [Moth]

I do, sans question. [Holofernes]
Figure 9-2

Listing 9-1 shows the code for index_lines.xsl.

Listing 9-1

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:param name="style">reference.css</xsl:param>
<xsl:param name="interval" select="5"/>

<xsl:template match="/">
<html>

<xsl:call-template name="head">
<xsl:with-param name="title" select="TEI/text/front/docTitle"/>
<xsl:with-param name="style" select="S$Sstyle"/>
</xsl:call-template>

<body>
<hl>
<xsl:value-of select="TEI/text/front/docTitle"/>
</hl>
<h2>
<xsl:value-of select="TEI/text//castList/head"/>
</h2>
<ul class="unmarked">

168

Chapter 9: Identifiers and Keys

<xsl:for-each select="//castList/castItem">

<xsl:value-of select="."/>
</1li>
</xsl:for-each>

<h2>Index of first lines</h2>
<xsl:for-each select="//sp/1[1]">

<xsl:sort select="."/>
<p>
<xsl:apply-templates select="." mode="index"/>

 [<xsl:value-of select="parent: :sp/speaker"/>]</p>
</xsl:for-each>

<xsl:apply-templates/>
</body>
</html>
</xsl:template>
<xsl:template name="head">
<xsl:param name="title"/>
<xsl:param name="style"/>

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="$style"/>
</xsl:attribute>
</1link>
</head>
</xsl:template>
<xsl:template match="div[@type='act']">
<h2>
<xsl:value-of select="format-number (@n, 'Act 0: ')"/>
</h2>
<xsl:apply-templates select="* except head"/>
</xsl:template>
<xsl:template match="div[@type="'scene']">

<h3>
<xsl:value-of select="format-number (€n, 'Scene 0: ')"/>
<xsl:value-of select="head"/>

</h3>

<xsl:apply-templates select="* except head"/>
</xsl:template>

<xsl:template match="sp">
<table width="80%" class="noborder">
<td class="noborder speaker" width="80%">
<xsl:value-of select="speaker"/>
</td>
<xsl:apply-templates select="1"/>

Continued

169

Chapter 9: Identifiers and Keys

Listing 9-1: (continued)

</table>
</xsl:template>

<xsl:template match="sp" mode="index">
<table width="80%" class="noborder">
<td class="noborder speaker" width="80%">
<xsl:value-of select="speaker"/>
</td>
</table>
</xsl:template>

<xsl:template match="1">
<tr>
<td class="noborder" width="60%">
<xsl:if test="position() eq 1">
<xsl:attribute name="id" select="generate-id()"/>
</xsl:if>
<xsl:apply-templates/>
</td>
<td class="noborder" width="20%">
<xsl:variable name="1n">
<xsl:number level="any" from="div[@type='scene']"/>
</xsl:variable>
<xsl:1if test="$1ln mod $interval=0">
<xsl:value-of select="$1n"/>
</xsl:if>
</td>
</tr>
</xsl:template>

<xsl:template match="TEI/child::teiHeader | speaker"/>
<xsl:template match="TEI/text/front"/>

<xsl:template match="div[@type='scene']/stage">
<table width="100%" class="noborder">

<tr>
<td class="noborder" colspan="2" width="50%">[<xsl:value-of
select="."/>] </td>
</tr>
</table>

</xsl:template>

<xsl:template match="1g/head">[<xsl:value-of select="."
/>1
</xsl:template>

<xsl:template match="stage">[<xsl:value-of select="."/>] </xsl:template>
</xsl:stylesheet>

Census to GEDCOM XML

In the summary of Chapter 8, I mentioned Michael Kay’s family tree case study. In the later stages of the
study, the content is first transformed to GEDCOM 6.0 XML, and then to XHTML.

170

Chapter 9: Identifiers and Keys

The GEDCOM specification is maintained by the LDS Church, and is widely used in transferring
genealogical data between applications. An important characteristic of the GEDCOM 6.0 structure is that
it distinguishes elements for individuals from those for events in their lives, and links individuals into
family elements. A census record contains all three types of information, and is quite capable of being
fed into a family-tree structure.

The next Try It Out takes a set of person elements in the census output you generated in the last chapter,
and builds a small family tree. There’s more work with generate-id (), and a reminder of grouping and
numbering too. It also illustrates the diverse results you can get with a little XSLT.

The source XML contains records for three households, but not all household members are part of
the family; some are visitors and servants. Transforming data for more than one family is not typical
of genealogical work, but it is useful if you want to study the history of families in one location over
time — an emerging approach in local studies.

The GEDCOM 6.0 DTD is quite complex taken as a whole. I've picked only a few elements for this
example. Details are available from www. familysearch.org/GEDCOM/GedXML60 . pdf.

Ty it Out | Building Family Trees

This task targets three of the main elements: <FamilyRec>, <IndividualRec>, and <EventRec>. The
schema elements are shown in the next snippet. The child elements and attributes that I have highlighted
are those that you will use in the transform. I won’t be discussing other GEDCOM elements. Here is the
code:

<xs:element name='FamilyRec'>
<xs:complexType>
<xS:sequence>
<xs:element ref='HusbFath' minOccurs='0"' maxOccurs='1"'/>
<xs:element ref='WifeMoth' minOccurs='0"' maxOccurs='1"/>
<xs:element ref='Child' minOccurs="'0"' maxOccurs="'unbounded' />

<xs:element ref='BasedOn' minOccurs='0' maxOccurs='1l"'/>
<xs:group ref="CommonFields"/>

</xs:sequence>

<xs:attribute name='Id' type='xs:ID' use='required'/>

</xs:complexType>

</xs:element>

<xs:element name='IndividualRec'>

<xs:complexType>
<XS:sequence>
<xs:element ref='IndivName' minOccurs='0"' maxOccurs="'unbounded'/>
<xs:element ref='Gender' minOccurs='0' maxOccurs='1"'/>

<xs:element ref='DeathStatus' minOccurs='0' maxOccurs='1"'/>
<xs:element ref='PersInfo' minOccurs='0' maxOccurs="unbounded' />
<xs:element ref='AssocIndiv' minOccurs='0"' maxOccurs="'unbounded'/>
<xs:element ref='DupIndiv' minOccurs="'0"' maxOccurs="unbounded' />
<xs:group ref="CommonFields"/>

</Xs:sequence>

<xs:attribute name='Id' type='xs:ID' use='required'/>

</xs:complexType>

171

Chapter 9: Identifiers and Keys

</xs:element>
<xs:element name='EventRec'>
<xs:complexType>
<XS:sequence>
<xs:element ref='Participant' maxOccurs='unbounded'/>
<xs:element ref='Date' minOccurs='0' maxOccurs='1"'/>
<xs:element ref='Place' minOccurs='0' maxOccurs='1"'/>

<xs:element ref='Religion' minOccurs="'0"' maxOccurs='1l"'/>
<xs:group ref="CommonFields"/>

</Xs:sequence>

<xs:attribute name='Id' type='xs:ID' use='required'/>
<xXs:attribute name='Type' type='xs:string' use='required'/>

<xs:attribute name='VitalType' type='VitalTypeType' use='optional'/>
</xs:complexType>
</xs:element>

Following is some sample output of the GEDCOM file showing part of the result document.
Only one individual record, the related birth-event record, and the relevant family record
are shown. I have highlighted lines where you use the generate-id() function to establish
relationships.

You will use <xs1:number> to generate the required 14 attribute values for events and families, with the
numbering triggered by the sequence of persons in the source document census.xml. I've highlighted
these too.

<GEDCOM>

<IndividRec Id="dle575">

<IndivName>
<NamePart Type="given name" Level="3">William</NamePart>
<NamePart Type="surname" Level="1">Broadley</NamePart>
</IndivName>
<Gender>M</Gender>
<PersInfo Type="occupation">
<Information>Farmer 200 acres 11 labourers</Information>
<Date>30 MARCH 1851</Date>
</PersInfo>
<PersInfo Type="residence">
<Date>30 MARCH 1851</Date>
<Place>
<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">KEN</PlacePart>
<PlacePart Level="4">Ringwould</PlacePart>
</PlaceName>
</Place>
</PersInfo>
<ExternalID Type="User" Id="H0107163/4/1"/>
</IndividRec>
<EventRec Type="birth" Id="E014">

172

Chapter 9: Identifiers and Keys

<Participant>
<Link Target="IndividualRec" Ref="dle575"/>
</Participant>
<Date>CAL 1794</Date>
<Place>
<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">KEN</PlacePart>
<PlacePart Level="4">Ringwould</PlacePart>
</PlaceName>
</Place>
</EventRec>

<FamilyRec Id="F014">

<HusbFath>
<Link Target="IndividualRec" Ref="dle575"/>

</HusbFath>
<Child>
<Link Target="IndividualRec" Ref="dle619"/>
</Child>
<Child>
<Link Target="IndividualRec" Ref="dle662"/>
</Child>
<Child>
<Link Target="IndividualRec" Ref="dle705"/>
</Child>
</FamilyRec>

</GEDCOM>
I think it is fairly easy to see how most of the census data relates to the individual and event records, but
I want to mention some less obvious points.

Places in GEDCOM are named in a hierarchy of levels for sorting purposes. They occur in both individual
and event records.

In individual records, you can record residence information. You can use the ISO country code for United
Kingdom (GBR), and another for Kent (KEN), an encoding of the county name used in U.K. historical
data. The parish name is Ringwould. The exact day of the census is also known: 10 March 1851. The
<ExternalD> element can be used to record a source identifier, and in this case I suggest you combine
the census ID with the manuscript folio and page numbers from the census file.

For the event records, which will cover only the birth-event type, you need to calculate the approximate
birth year of a person by subtracting the age from the census year, 1851. The individual’s county and
parish of birth are recorded in the census so those values go in the event details.

The mappings in the following table show how data from the census will populate the GEDCOM indi-

vidual and event records. The family record carries only relationship data. Other data will have to be
provided by or derived from parameter values.

173

Chapter 9: Identifiers and Keys

Census IndividualRec EventRec

surname IndividName/NamePart Participant/Link
firstname IndividName/NamePart

sex Gender

occupation PersInfo/Information

age Date (calculated)
county PlacePart@Type
parish PlacePart@Type

Start your transform with four date and place parameter values, which can, of course, be modified for
other census contexts. The value "KEN" in the $censuscounty parameter is an encoding of the Kent county
name used in U.K. historical data recording.

All the XML output is placed inside an <xml-result-document> instruction and a <GEDCOM> root element.
In the $families variable, persons with the "Head", "Wife", "Daughter", or "Son" relation value are
selected. All other relationships are ignored, as they aren’t supported in GEDCOM:

<xsl:param name="censusyear">1851</xsl:param>
<xsl:param name="censusdate">30 MARCH 1851</xsl:param>
<xsl:param name="censusplace">Ringwould</xsl:param>
<xsl:param name="censuscounty">KEN</xsl:param>

<xsl:result-document href="gedcom60.xml">
<GEDCOM xml:id=" ">
<xsl:variable name="families"
select="//person[relation="'Head' or relation='Wife'
or relation='Daughter' or relation='Son']"/>
<xsl:for-each select="S$families">

</xsl:for-each>
</GEDCOM>
</xsl:result-document>

An 14 attribute is required, and often a sequential number is used, prefixed with the initial letter
of the element name. That is fine for the event and family entries, and you can use <xsl:number>.
However, to create an <IndividualRec> element, you should use the generate-id()function
you learned about earlier to set the value of the 14 attribute. You'll use the same approach with
link values in the <EventRec> and <FamilyRec> elements, making it possible to relate both to
individuals.

In the <PersInfo> element, the Type attribute and an <Information> element will contain the details
about occupation and residence. Because not every person is given an occupation in the census data, you

should nest that output inside an <xs1:1f> instruction.

The <ExternalID> element provides a reference to the census page containing the original data.

174

Chapter 9: Identifiers and Keys

<IndividRec Id="{generate-id()}">
<IndivName>
<NamePart Type="given name" Level="3">
<xsl:value-of select="firstname"/>
</NamePart>
<NamePart Type="surname" Level="1">
<xsl:value-of select="surname"/>
</NamePart>
</IndivName>
<Gender>
<xsl:value-of select="upper-case(sex)"/>
</Gender>
<xsl:1f test="string-length (occupation) gt 1">
<PersInfo Type="occupation">
<Information>
<xsl:value-of select="occupation"/>
</Information>
<Date>
<xsl:value-of select="S$censusdate"/>
</Date>
</PersInfo>
</xsl:if>
<PersInfo Type="residence">
<Date>
<xsl:value-of select="S$censusdate"/>
</Date>
<Place>
<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">
<xsl:value-of select="S$censuscounty"/>
</PlacePart>
<PlacePart Level="4">
<xsl:value-of select="birthplace"/>
</PlacePart>
</PlaceName>
</Place>
</PersInfo>
<ExternalID Type="User"
Id="{concat (ancestor: :census/@xml:id, '/',folio,'/"',page)}"/>
</IndividRec>

The only event information to work out is the calculated birth year of a person. In the event records, you
can work out an assumed birth year of a person by subtracting the age from the $censusyear variable
value. GEDCOM recommends using the "CAL" prefix to indicate that the date is calculated:

<EventRec Id="" Type="birth">
<Participant>
<Link Target="IndividualRec" Ref="{generate-id()}"/>
</Participant>
<Date>
<xsl:value-of select="concat('CAL ', Scensusyear - age)"/>
</Date>
<Place>

175

Chapter 9: Identifiers and Keys

<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">
<xsl:value-of select="county"/>
</PlacePart>
<PlacePart Level="4">
<xsl:value-of select="birthplace"/>
</PlacePart>
</PlaceName>
</Place>
</EventRec>

The <FamilyRec> element consists mainly of references to individuals. On a second pass through the
data, use <xsl:for-each-group> and the house <number> element to collect <person> nodes together.

You can then use an <xs1:choose> filter to categorize the links as father, mother, or child:

<xsl:for-each-group select="$families" group-adjacent="number">

<FamilyRec>
<xsl:attribute name="Id">
<xsl:value-of select=" concat('F', format-number (current-grouping-

key(),'000"))"/>
</xsl:attribute>
<xsl:for-each select="current-group() ">
<xsl:choose>
<xsl:when test="relation='Head'">
<HusbFath>
<Link Target="IndividualRec" Ref="{generate-id()}"/>
</HusbFath>
</xsl:when>
<xsl:when test="relation='Wife'">
<WifeMoth>> <Link Target="IndividualRec" Ref="{generate-id()}"/>
</WifeMoth>
</xsl:when>
<xsl:when test="relation='Daughter' or relation='Son'">
<Child>
<Link Target="IndividualRec" Ref="{generate-id()}"/>
</Child>
</xsl:when>
</xsl:choose>
</xsl:for-each>
</FamilyRec>
</xsl:for-each-group>

GEDCOM is rather verbose, so I'm not listing the output. The complete stylesheet is census2ged.xs1,
and is shown in Listing 9-2.

176

Chapter 9: Identifiers and Keys

Listing 9-2

<?xml version="1.0"7?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">
<xsl:param name="censusyear">1851</xsl:param>
<xsl:param name="censusdate">30 MARCH 1851</xsl:param>
<xsl:param name="censuscounty">KEN</xsl:param>
<xsl:param name="censusplace">Ringwould</xsl:param>
<xsl:template match="/">

<xsl:result-document href="gedcom60.xml">
<GEDCOM>
<xsl:variable name="families"
select="//person[relation="'Head' or relation='Wife' or relation=
'Daughter'or relation='Son']"/>
<xsl:for-each select="$families">

<IndividRec Id="{generate-id()}">
<IndivName>
<NamePart Type="given name" Level="3">
<xsl:value-of select="firstname"/>
</NamePart>
<NamePart Type="surname" Level="1">
<xsl:value-of select="surname"/>
</NamePart>
</IndivName>
<Gender>
<xsl:value-of select="upper-case(sex)"/>
</Gender>
<xsl:if test="string-length (occupation) gt 0">
<PersInfo Type="occupation">
<Information>
<xsl:value-of select="occupation"/>
</Information>
<Date>
<xsl:value-of select="$censusdate"/>
</Date>
</PersInfo>
</xsl:if>
<PersInfo Type="residence">
<Date>
<xsl:value-of select="$censusdate"/>
</Date>
<Place>
<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">
<xsl:value-of select="$censuscounty"/>

Continued

177

Chapter 9: Identifiers and Keys

Listing 9-2: (continued)

</PlacePart>
<PlacePart Level="4">
<xsl:value-of select="Scensusplace"/>
</PlacePart>
</PlaceName>
</Place>
</PersInfo>
<ExternalID Type="User"
Id="{concat (ancestor: :census/@xml:id, '/',folio, '/"' , page)}"
/>
</IndividRec>

<EventRec Type="birth">
<xsl:attribute name="Id">
<xsl:text>E</xsl:text>
<xsl:number level="any" format="001"/>
</xsl:attribute>
<Participant>
<Link Target="IndividualRec" Ref="{generate-id()}"/>
</Participant>
<Date>
<xsl:value-of select="concat ('CAL ', $Scensusyear - age)"/>
</Date>
<Place>
<PlaceName>
<PlacePart Type="country" Level="1">GBR</PlacePart>
<PlacePart Type="county" Level="2">
<xsl:value-of select="county"/>
</PlacePart>
<PlacePart Level="4">
<xsl:value-of select="birthplace"/>
</PlacePart>
</PlaceName>
</Place>
</EventRec>
</xsl:for-each>

<xsl:for-each-group select="S$families" group-adjacent="number">
<FamilyRec>
<xsl:attribute name="Id">
<xsl:text>F</xsl:text>
<xsl:number level="any" format="001"/>
</xsl:attribute>
<xsl:for-each select="current-group() ">
<xsl:choose>
<xsl:when test="relation='Head'">
<HusbFath>
<Link Target="IndividualRec" Ref="{generate-id()}"
/>
</HusbFath>
</xsl:when>
<xsl:when test="relation='Wife'">

178

Chapter 9: Identifiers and Keys

<WifeMoth>> <Link Target="IndividualRec"
Ref="{generate-id()}"/>
</WifeMoth>
</xsl:when>
<xsl:when test="relation='Daughter' or relation='Son'">
<Child>
<Link Target="IndividualRec" Ref="{generate-id()}"
/>
</Child>
</xsl:when>
</xsl:choose>
</xsl:for-each>
</FamilyRec>
</xsl:for-each-group>

</GEDCOM>
</xsl:result-document>

</xsl:template>

</xsl:stylesheet>

Summary

This chapter introduced some useful concepts about the use of XML IDs and other identifying values in
source data.

You learned about two options open to you when locating source-data nodes: the XPath 2.0 1d () function,
to find uniquely identified items; and <xs1:key> and the key () function, to work with more complex
cross-reference structures and locate non-unique items for processing.

You saw that when there are no identifiers in source data, you can make use of the generate-id()
function to associate related nodes and generate links between them.

Key Points

QO XML IDs, while useful, have some limitations when it comes to naming and
processing.

O Using the id() function is more efficient than a linear search using a predi-
cate like entry[@xml:id=$1inkID] because the processor will usually create
an index.

O The key () function is also efficient for the same reason, and it enables locat-
ing element and attribute nodes of all types, including multiple non-unique
values.

QO The generate-id() function is guaranteed to produce the same identifier for
a given node every time, but only within the same invocation of a stylesheet.

179

Chapter 9: Identifiers and Keys

Exercises

You'll find solutions to these exercises in Appendix A.

1. Under what conditions will an XSLT processor recognize an xs: ID type and set the is-id
property on a source node when parsing an input document?

2. What is the purpose of the collation attribute on the <xs1:key> declaration?

3. How consistent would you expect the results to be for a given node from the generate-id ()
function on the following?

0 A different processing run

O A different processor

180

10

Debugging, Validation,
and Documentation

Quite often the stylesheets that you write are for simple (and sometimes one-off) projects. You can
just run the transform and inspect the results until it works correctly. If you hit a problem, you can
inspect the code and fix it. Sometimes, however, the solution to a problem is not obvious.

Any good XSLT development environment will provide useful debugging features to help you
locate problems in your code. Typically, you can step through code, set breakpoints, inspect vari-
ables, and trace execution. Then, XSLT itself provides inline messaging and error-tracing features.

Until quite recently it was not possible to validate either source or result documents within an XSLT
processor. Validation, apart from passing or failing the document concerned, can help you identify
stylesheet errors that you might otherwise find difficult to find, or even miss entirely.

Systematic documentation is often delivered only with the largest and most established projects.
However, it is very easy to add documentation to a stylesheet and process it using XSLT.

In this chapter you'll do the following:

0 Experiment with the XSLT Debugger in the Oxygen IDE.
O Write trace text with <xs1:message> and <xs1:comment>.
Q Survey the features of two XPath error-handling functions.
a

Learn to validate both output and input in your stylesheets using the schema-aware ver-
sion of the Saxon processor.

0 Use XSLTdoc, an open-source package that makes inline documentation a snap.

Debugging XSLT

A good XSLT development environment should provide debugging features that help locate prob-
lems in your code quickly. In the Oxygen IDE this involves moving from an XML editing view (or
perspective) of the code to a debugging view. In the Eclipse Edition, the menu command sequence
is Window » Open Perspective » Oxygen XSLT Debugger.

Chapter 10: Debugging, Validation, and Documentation

The default configuration shows the XML source, the XSLT code, and the output in three separate
views. Figure 10-1 illustrates the layout.

"= oXygen XSLT Debugger - meta/xs|_steps/products.xml - Eclipse SDK

mEx)

Fiéc Edit Mavigatc Scarch Drojoct Debug Run HML Window Help

‘Saxon-B9.1.0.6

vl B E »> L1 0B

il @@&@'@R XEwfEer DA B BEH BEELE W & |8 ctygen st ., |
a%'za'sf HENeles = (5 oxygen L
e products. sl 52 ___ = products_bugs.xsl £1 i 3 Output - T Mavigator | n
<7xm] wversjon="1,0" <?xm] version="1.0" m |
encoding="UTF-8"7> encodmg— UTF-8"7> =
<products> T:sTylesheet (=
<pr0duct =200
sku= gdk943 46298r‘ ‘ s1="http:/ . w3. 0
4 red” uniLs=="50" r 9/1999/)\S|_/Tr Aarisfurm®
e “canter’ e
<pr0duct xmins ‘http: ,/Nww w3.0rgy
gk 943-462 00" 4001/><ML_achema
= wh‘lte units="851"
store="west" /> <xs1 routput
<Pr‘0duct method="xhtm1" />
< gdk943 46298[‘;
‘green” units="143" <xsT]rparam
~"Morth" /> nzma-"style"sreferance. css</
<pr0duct xs1:params>
gok943-46258b" <xs1:param
ar = b'lue Junits="10" l] name= t'lt'le ‘»stock [
Text &nd]m.lhar] | Text rid] mumr,
4517 Debugger =0
HHL |Dmducts.ml M %L |Dr0dudsJ3ur.|s.st ILI Oukput = @@3

= vari Hma](‘x)CDnt]) Brea' 3% &ea]c)hhss| g Sta\:k|"'§TraJ:e| Terrml[{"‘;}hlmie b L.__thl = cons |§ Error | =m]

. Mamz Yalue " @ Empty .

] i [2] |
Figure 10-1

If you have just found a bug, some of the relevant files will already be open when
you change to this view. If not, you can select the primary input and code files, and
choose the XSLT processor. There is a full range of step-through controls that you can
use. You can also set multiple breakpoints. Once the correct files are selected, you can
step through the code, inspecting values in a series of inspection tabs at the bottom of
the view. They include variable values, messages, process trace history, template hits,

and so on.

182

Chapter 10: Debugging, Validation, and Documentation

The best way to understand the potential of a debugger is to work through a simple example,
which will be the subject of your next exercise. You will work with the source file products.xml,
introduced in Chapter 5. The stylesheet is products_bugs.xs1. You will step through the code,
sample the variable inspection process, and view a performance profile.

This example is based on the Eclipse Edition of the IDE, which differs somewhat from the desktop
editions. For example, in the desktop edition the tabs are at the bottom of the views, and the step
icons are in the toolbar below the menus.

_ Debugging products.xsl

You'll perhaps recall that the original (bug-free) stylesheet tabulates product information using
<xsl:for-each-group>. This version contains a minor, typically irritating, bug. See if you can spot
it before you start.

1.

2.

Assuming you are in the Oxygen IDE XML editor, choose Window > Open Perspective
» Oxygen XSLT Debugger.

In the center section of the XSLT Debugger view, open products.xml and products_bugs.xsl
and select Saxon-B 9.1.0.5 as a processor, using the drop-down lists. Refer to Figure 10-1 again
to see how it should appear.

Choose Debug > Step In. In the stylesheet, the $style parameter declaration is
highlighted.

Repeat step 3 twice, and click the Trace view tab at the bottom right to see a listing of the process
sequence.

From the Variables view tab on the far left, click the $style parameter. Check the Nodes/Values
Set view at the bottom right, in which you should see the value of "reference.css". Do the same
with the $title parameter, which should show "Stock report". The screen should look like
Figure 10-2.

Continue stepping into the code until the head template is called and the $title parameter
has been evaluated there. Check the Nodes/Values Set view again. The variable is empty,

as is the <title> element in the output window. The problem is in the calling template; the
<xsl:with-parameter> instruction select attribute value is incorrectly "title" when it should
be "$title", as shown in the next snippet:

<xsl:with-param name="title" select="S$title"/>

Continue stepping into the code until the value of $title is set inside the <h1> element. The
value is correct because the original global variable remains in scope.

Choose Debug > Run to End to complete the transform.

183

Chapter 10: Debugging, Validation, and Documentation

"= oXygen XSLT Debugger - metalxs|_steps/products.xml - Eclipse SDK

=Jokd

Fiéc Edit Mavigatc Scarch DProject Debug Run HML Window Help

L T Qé@r&@’@’l@i XL QAR EE|BEAE 55 | % okygen Al ... |
L S it T I = R () oxygen xiL
BB products.xml 57 || & products_bugs.sel 32 = 1)/ 2 ouput 75 Navigator | =)
<pruducts> |E|
<product <xs1:param =
u="gdk943-46298r" E name="style">reference. css</
o= “red" .:|L_— i1+ b 3
store="center" /> |
< roduct !
4 gdk943 —46208w"
7 Sro_vgsyn
5 <xsl:attribute-set
<Pr‘0duc name="col">
slu="gdk943-46298 <xs]:attribute
"green” |-.--—3=“143" name="scope”>col</xsT rattri
E a-"North" /> hutea:x
<pr0 uct </xsl:attribute-sets
gdk943 46298b
0 b'l Lle WU c="10 l] cwslattribute-set |r~*|
Text erdlmimrl | Text - Grid | Author |
'@ %5LT Debuager L =0
1 g %51 | prod s, sl Output | 2 = @Q} -

o8) R = Ly S 11 B =b xshtemplate [products_bugs.xsl : Line 25]

.(?F'u'aﬁ-- __Ei-‘d"ma](ﬂ(ont"l b Brea' E14 Brea]g—?li'hess| & | E Sta\:k|'3'?TraJ:e| Terrq)”{"‘i}hlude ‘ L,_ Probl | = cons | =| Error |
:_ Name Yalue = *F #document/Fragment - Stock repart
| PL} style AN} MNode Set(1) °1" #text - Stock report
| POY e (N} | Node Set(1)
<] &

Figure 10-2

agn

Profilin

Some IDEs provide profiling features that analyze the amount of time the processor spends in
various parts of your code. For small documents this may not be a critical matter, as you are usually
working in millisecond values; but if you have a lot of information processing to do, profiling can
be useful in tuning the performance of your stylesheet.

In the Oxygen IDE, two views show the results of profiling after a transform is run. The Hotspots
view shows a list of all instruction calls that lie above the threshold defined in the profiler settings.

Each shows the time in milliseconds or microseconds spent in the hotspot together, and how many
times they have been invoked.

184

Chapter 10: Debugging, Validation, and Documentation

The Invocation view shows a top-down call tree representing how XSLT instructions are processed.

The following Try It Out illustrates the Oxygen IDE’s profiling features.

_ Profiling use_key.xsl

This time you'll use the stylesheet use-key.xsl and run it with xs1_for-each-group.xml. Here are
the steps:

1. Start the debugger and load these files as you did in the previous example.

2. In the center-right section of the interface, toggle the clock icon to turn on profiling. The Invo-
cation view is shown at the bottom left, and the Hotspots view is displayed at the bottom right.
Figure 10-3 shows the icon toggled to on.

W QE

Figure 10-3

3. Choose Debug > Run.

4. Expand the headings in both the Invocation and the Hotspots listing. Figure 10-4 shows the anal-
ysis, highlighting the time spent evaluating the resource metadata values.

(W)= Waria | &0 XWa | €0 Cont | % Brea | 37 Brea |5 Mess | "2 Invo = O[5 stack | 17 Trace |3~ Templa | (52 Modes/ |[2. Proble | E] Conso | =] Emors | dbiHatsp . = O
= M Tnwneabion bree (Total Hme 38 ms) Instruction Percent... Time | Calls
M T139% - 27 me - 0L13% - lme 1 inw. vel:bmplate (match="{") S 45, 3Hotspots
® 6D 18.63% - 7ms - 18.49% - 7 ms 1 inv. ¥sl:param (name="meta"} (select=" B A b 27,4% o ol
(_:) 1.5% - O ms - 1.5% - Ome 1 inv, wel:param (name="tite") (select:'ime&qf & m'ww(mwmw m_% ?I'M i1
£ 0.1% - O ms - 0.1% - Ome Linv. xsl:param (name—"scheme") (selact—"ref| # iy wlvahs-ol (seled="requi el @stale™ 7.92% s 6
£ 0.07% - 0 me - 0.07% - 0 me 1 inv. xeliparam (name="ctyle") |
© 0.07% Oms - 0,07% 0 ms 1 inv. xsl:param {name="map") {sclect="doc|
© 0.04% - 0ms - 0.04% - O ms 1 inw. =shiparam {name="copyright"™)
| .
|isd 4 (2]j] /(2]

Figure 10-4

You may well get different results from mine when you profile this stylesheet. Running a profile
several times with a given source seems to produce slightly different results.

Verifying XHTML Output

Back in Chapter 1 you used a processing instruction to invoke a stylesheet from a browser:

<?xml-stylesheet href="stepl.xsl" type="text/xsl"?>

When you want to generate XHTML, this is often a convenient way to do a visual check of your out-
put. For example, one of the default processing scenarios in the Oxygen IDE makes use of it. Having
said that, there aren’t too many other occasions when you’ll need to use a processing instruction.

185

Chapter 10: Debugging, Validation, and Documentation

If you want to add a similar instruction to a result document, you can use the <xsl:processing
-instruction> element to write a processing-instruction node to the output. Here’s the schema
definition:

<xs:element name="processing-instruction" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

You start with the name attribute, which can be expressed as an attribute-value template. Because
there could be more than one processing instruction in a source document, this name identifies the
processing instruction. In this case the identifier is "xml-stylesheet". As you can see from the
schema definition, you have the option of a select attribute or a contained sequence constructor to
build the instruction.

You then need to create the pseudo-attributes. As you may recall from Chapter 1, these are not
strictly attributes, so you cannot make use of the <xs1:attribute> instruction. However, you can
insert the text using <xsl:text>.

<xsl:processing-instruction name="xsl-stylesheet">
<xsl:text>href="stepl.xsl" type="text/xsl"</xsl:text>
</xsl:processing-instruction>

Using Messages

With the <xs1:message> instruction you can output a diagnostic message that can assist in debug-
ging. You can also stop the execution of a transform using the terminate attribute value of "yes",
which can take the form of an attribute value template:

<xs:element name="message" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="terminate" type="xsl:avt" default="no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

Unlike several other elements, using both the select attribute and the sequence-constructor meth-
ods is allowed. If you use both, the results will be joined together in a single message.

The order of execution, the format, and the destination of the output are implementation-defined.
The specification merely suggests the following;:

186

Chapter 10: Debugging, Validation, and Documentation

An implementation might implement xs1 :message by popping up an alert box or by writing to a
log file.

TIEOUET Messages

If you are using the chapter code, remove the following comment around the <xs1:message>
instruction in head.xsl. Otherwise, add the code to your working copy. Then process any one
of the XSLT reference files against use_key.xs1 to see the message output.

<head>
<meta http-equiv="Content-Type" content="text/xml;charset=UTF-8"/>
<title>
<xsl:value-of select="$title"/>
</title>

<link rel="stylesheet" type="text/css">
<xsl:attribute name="href">
<xsl:value-of select="$style"/>
</xsl:attribute>
<!--<xsl:message>Head section link processed</xsl:message-->

</link>
</head>

Figure 10-5 shows the output, "Head section link processed", which in the case of the Eclipse
Oxygen IDE is in the debugger’s Messages view. The same information appears in the XSLT editor’s

Text view.
|40 aria |G Hwa ;<X>Cunt | % Brea 32 Brea |@Mess o .T:Imm| = mi]
Mescage Terminate Resource
Head section link processed no file:JC:eclipsefworkspaceme...
£ ! £
Figure 10-5

Commenting Output

To insert a comment in the output you use the <xs1:comment> instruction to enclose the comment
text. Comments can appear anywhere inside an <xs1:template> instruction.

Because the order of execution of <xsl:message> instructions is uncertain, it may sometimes be
more useful to place comment instructions in the result tree to provide diagnostics. For example,
variables are often not evaluated until they are first used, so the results are hard to predict. How-
ever, you can get some idea of the sequence by stepping through the code in debug mode.

Comments have a wider utility, too. You can use them to date output, and to comment
out JavaScript code in XHTML pages and even XML markup, as the following snippet
shows.

187

Chapter 10: Debugging, Validation, and Documentation

<xsl:comment>Date created: <xsl:value-of select="format-date(current-date(),
"[Y]-[MO1]-[DO1]")"/>
</xsl:comment>

The preceding instruction produces the following output:

<!-- Date created: 2009-02-18 -->

Using the error() Function

If you are developing a large XSLT application for end users and you need to localize messages
for users in different natural languages, it is worth considering making use of the XPath error ()
function.

This function enables you to specify user-defined error codes similar to those defined for XSLT
and XPath. These codes, which are defined as QNames, take the form shown in the first part of the
following example:

XTDE1110 The collation attribute of xsl:for-each-group must be a collation
recognized by the processor

The general idea is that user-defined error messages should follow the same pattern, using codes
like this to look up localized messages for different languages.

You can use this function to handle conditions such as invalid parameters passed to a function. The
function takes up to three arguments in the form error (code, description, object), all of which
are optional. The code, which must be cast as an xs : QName, should be in a user-defined namespace.
The description is a string, and the object is some identifying value related to the error. The next
example shows an error code in the namespace associated with the xm: prefix:

error (xs:QName ('xm:821"'), 'Invalid parameter value')

Type and Schema Validation

There’s a certain amount of validation you can do using XSLT’s built-in datatypes. If you apply them
using the as attribute on <xsl:param> elements, for example, an XSLT processor will verify that the
values passed are of the correct type. If not, it will report errors, thus helping to detect coding mistakes.

Better still, you can use a schema-aware processor, such as the Saxon and AltovaXML 2008 processors. A
schema-aware processor is one that can take advantage of the schemas you have defined for both input
and output documents, thereby extending the range of type checking, including user-defined schema

types.

Types in XSLT

Until now I haven’t paid much attention to how you can declare the type of values in XSLT stylesheets:
This applies to templates, variables, parameters, and functions. Here’s an example, which uses the as
attribute to define two parameters as type xs:string in a function:

188

Chapter 10: Debugging, Validation, and Documentation

<xsl:function name="xm:getentries-by-category">
<xsl:param name="category" as="xs:string"/>
<xsl:param name="scheme" as="xXs:string"/>

</xsl:function>

There is no need to declare a type, but if you do, the processor has more information to work with, and
will be able to check and report on any errors.

For built-in XSLT types you don’t need a schema-aware processor, nor do you require validated source
documents. Therefore, types like xs: integer, xs: string, and xs:date can all be declared, indicating that
exactly one occurrence of the type is allowed. Otherwise, you can also show the number of occurrences
allowed with the suffix characters shown in the following table.

Character Occurrences
* Zero or more
+ One or more
? Zero or one

Examples include element () for an element node, attribute () + for a sequence of one or more attribute
nodes, and xs:string? for a string or an empty sequence.

Using a Schema-Aware Processor

With a schema-aware processor, the basic XSLT type system is extended to include all of the atomic types
in the XML Schema — for example, derived types such as xs:nonNegativeInteger and xs: token, and
any user-defined types specified in the particular schema in use.

You can use such a processor to validate both the input and the output of your stylesheet. Both aspects of
validation require a declaration in your stylesheet defining the schema to be used, but they may be done
independently of one another.

When an XML document is validated, apart from basic pass or fail results, element and attribute nodes
in the resulting tree of nodes are associated with the type information present in the schema. This results
in correct calculations — for example, when typed numeric values are compared or sorted. It also results
in errors being reported at compile or run time, when incorrectly typed values are passed to a template
or a function.

Importing Type Definition

To make the schema and user-defined types available, you use the <xs1:import-schema> declaration to
identify the schema. You can import multiple schema documents if required. Here’s the XSLT schema
definition:

<xs:element name="import-schema" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">

189

Chapter 10: Debugging, Validation, and Documentation

<XSs:sequence>
<xs:element ref="xs:schema" minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="namespace" type="xs:anyURI"/>
<xs:attribute name="schema-location" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

There are two ways to import a schema. One is to use the combination of the namespace and
schema-location attributes. The namespace attribute is essential if there are any user-defined types in
your schema. The schema-location attribute tells the processor where to find the schema:

<xsl:import-schema namespace="http://www.w3.0rg/1999/xhtml"
schema-location="xhtmll-strict.xsd"/>

All the schemas that are relevant must be imported to one of the stylesheet modules in use. You cannot
rely on one schema importing another: you must import them explicitly.

The other way is to embed the schema in <xs:import-schema> as a nested element, in which case you
must omit the schema-location attribute, You may also omit the namespace attribute setting, as it is
provided by the embedded schema declaration. If you do include the namespace attribute, then it must
match the target namespace of the inline schema.

Validating XSLT Output

Output validation by itself is most often required in situations where your organization is publishing the
information you are processing. In this context, validating the input usually takes place at the authoring
stage in the production cycle. After all, that is the basic reason for having a schema in the first place.

If you validate output, any resulting errors will help you identify problems in the stylesheet, in some
cases at compile time, before it is executed. This is certainly a better option than validating the result
after the document is serialized, when errors thrown by a subsequent validation test will be identified in
relation to their position in the result document. Fixing problems will take longer because you'll have to
locate them in the output file, and try to find the matching cause in the stylesheet.

Ty it Out | Validating XHTML

In the next example, you'll validate the output from products.xml, which you met in Chapter 5. First,
make a change to the <products> element, referring to the schema products.xsd:

<products xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="products.xsd">

Here’s the schema itself:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault
="qualified">
<xs:element name="products">
<xs:complexType>

190

Chapter 10: Debugging, Validation, and Documentation

<XS:sequence>
<xs:element maxOccurs="unbounded" ref="product"/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="product">
<xs:complexType>
<xs:attribute name="color" use="required" type="xs:string"/>
<xs:attribute name="sku" use="required" type="xs:string"/>
<xs:attribute name="store" use="required" type="xs:string"/>
<xs:attribute name="units" use="required" type="xs:integer"/>
</xs:complexType>
</xs:element>
</xs:schema>

The original stylesheet, products.xs1, needs only a little modification to prepare it for validation. An
XHTML namespace declaration is required on the <xsl:stylesheet> and <xsl:import-schema> ele-
ments. This time you’ll use the "strict" version of the W3C schema, and set the output method to
"XHTML".

The value "strict" means that there must be an element declaration for the output root element, in this
case <html>, in the schema; and the content must conform to the structure of its child elements. I suggest
you use a local copy of the schema, rather than access it over the Internet, to improve performance.

You will also need to import the schema xml.xsd, which defines an xml:lang attribute used in XHTML:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns="http://www.w3.0rg/1999/xhtml">
<xsl:import-schema namespace="http://www.w3.0rg/1999/xhtml"
schema-location="xhtml-strict.xsd"/>
<xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2001/xml.xsd" />
<xsl:output method="xhtml"/>
</xsl:stylesheet>

Everything will be output inside an <xs1:result-document> element. The value "strict" must also be
set for the validation attribute:

<xsl:result-document validation="strict">
<html

</html>
</xsl:result-document>

To run this stylesheet you need to change the default XSLT 2.0 transformer to the schema-aware version
in the Oxygen IDE. Figure 10-6 shows the interface.

1. Choose Window > Preferences.
2. Expand the tree to Oxygen > XML » XSLT-FO-XQuery > XSLT.

191

Chapter 10: Debugging, Validation, and Documentation

3. Set the XSLT 2.0 Validate with drop-down to Saxon-SA (version). The version I used was

9.1.0.5.
- - _\
= Preferences s @
XSLT i -
Import A1 3AXP XSLT Transfurnmer
Inkel® »ML Softwar
¥ML Catalog To use your own transformer, set the value of the
¥ML Instance Genet system property “javax.xml.transform.TransformerFactory™
AML Parser Value
S ¥SLT - B - ¥Query
Custom Engines
Debugger Engine used for XSLT validation
FO Processars
Sroiier _ || %5LT 1.0 validate with | Saxons 5.5 v|
#aih %Ll 2,U vabdate vath | SaX0n-sa 9.1,0.5 v|
[¥Query —
- XSLT |
% Plin-in Develnnment -]
< | i | &l IRestore DeFaulIsI [Apply]
Figure 10-6

In the source code for this stylesheet, products_valid_out.xsl, I deliberately inserted an invalid
attribute on the <h2> element. If you use this code, you should see the following error, which the
Saxon processor reports at compile time:

[Saxon-SA 9.1.0.5] Attribute align is not permitted in the
content model of the complex type of element h2
@see: http://www.w3.org/TR/xslt20/#err-XTTE1510

The validation attribute allows three values other than strict. All four values also apply to the
validation attribute on <xsl:document>, <xsl:copy>, and <xsl:copy-of>. You can also specify a
default value in the default-validation attribute on the <xsl:stylesheet> element.

lax causes the processor to validate the output against the schema only if the schema definition for the
element is found.

preserve means that no validation is done at the top level. Any type annotations are passed on to the
tree being constructed. This may be useful in cases where further processing is done on the tree, but
clearly not in the case of serialized output.

strip removes any type annotations. Elements in the constructed tree will be annotated as xs:untyped,
and attributes as xs :untypedAtomic.

Specifying User-Define Types
In a stylesheet, user-defined types are prefixed using a namespace prefix. For example, the products.xsd
schema contains the following simple type definition derived from xs:string:

<xs:simpleType name="storetype">
<xs:restriction base="xs:string">

192

Chapter 10: Debugging, Validation, and Documentation

<xXs:enumeration value="North"/>
<xs:enumeration value="South"/>
<xs:enumeration value="East"/>
<xs:enumeration value="West"/>
<xs:enumeration value="Center"/>
</xs:restriction>
</xs:simpleType>

The store attribute is specified to have this type:

<xs:element name="product">
<xs:complexType>
<xs:attribute name="sku" use="required" type="xs:string"/>
<xs:attribute name="color" use="required" type="xs:string"/>
<xs:attribute name="units" use="required" type="xs:integer"/>
<xs:attribute name="store" use="required" type="storetype"/>

</xs:complexType>
</xs:element>

To use this type in a stylesheet, a select expression must be constructed using a function that returns the
value as that type. This is the same approach as casting the data-type attribute on <xs1:sort> using the
relevant built-in schema type, which you learned about in Chapter 5. The difference is that you would
use the user-defined type in the function, as shown in the next snippet, where the product namespace
prefix is p:

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:p="http://sportsproducts.eu/2009/XMLSchema">

<xsl:variable name="store" as="p:storetype" select="p:storetype('North') />

</xsl:stylesheet>

Complex types cannot be used directly in an as attribute value, but can be used in a sequence type
descriptor that qualifies a node in the form of the type test element (element_name, element_type).

Often, complex types are not named in schemas, which is the case in the <product> element in the schema
products.xsd. For such an anonymous type you can use another construct, which casts the parameter
value as an element, as follows:

<xsl:param name="instance" as="xs:schema-element (product)"/>

Source-Document Validation

The xsi:schemaLocation attribute on a source-document root element can be used by an XSLT processor
to find the relevant schema. However, not all processors need it. The Saxon processor gets the schema
location from the imported schema, and therefore does not require the attribute. The Altova processor
apparently does, using it as an implicit request for validation. Consider using it if you want the stylesheet
to be portable between processors.

193

Chapter 10: Debugging, Validation, and Documentation

Try It Out | Validating XML Input

This time you'll validate the source file products.xml. Save another copy of products.xsl as
products_valid_in.xsl. To validate a source document you import its schema into the stylesheet:

<xsl:import-schema

schema-location="products.xsd"/>

Then, outside the <html> element, you refer to the top-level element as follows, rather than the usual
“/”” matching the document node:

<xsl:template match="document-node (schema-element (products)) ">

</xsl:template>

The schema products.xsd implicitly specifies U.S.-style spelling with the name of “Center”” for a store
location. A U.K. author might make an error in this attribute value, as shown here:

<product sku="gdk943-46298r" color="red" units="70" store="Centre"/>

Try this or some other typing error on a store attribute value, and run the stylesheet. The processor
should throw the following runtime error:

[Saxon-SA 9.1.0.5] Value "centre" contravenes the
enumeration facet "Center, West, East, South, Nor..." of
the type storetype

Validating Elements and Attributes

You don’t have to validate at the document level. Rather, you can invoke validation of element and
attribute nodes independently. This can be useful if you have valid schema definitions for some output
elements but not the whole schema, or because you want to validate elements in a temporary tree. Both
the <xsl:element> and the <xsl:attribute> instructions have validation and type attributes that
work on those nodes individually, rather than on an entire document. The same attributes are available
on literal results elements.

Suppose you want to validate a metadata entry in a literal result element that you intend to write out to
the quick reference. The validation and type attributes are available but in this case they have the xs1:
namespace prefix, xsl:validation and xsl:type.

The following example would validate the element and all of its children against the schema. If it had a
named type you could alternatively use <entry xml:id="xsl_stylesheet" xsl:type="metatype">:

<entry xml:id="xsl_stylesheet" xsl:validation="strict">
<title>xsl:stylesheet</title>
<summary>The root element of a stylesheet.</summary>

<content src="../xslt_reference/"/>
<category term="element_reference" scheme="resource"/>
</entry>

194

Chapter 10: Debugging, Validation, and Documentation

In the case of attributes, the validation attribute, although allowed, is not very useful in comparison
to its value in testing elements, because global attribute declarations are uncommon in schemas.

On the other hand, attributes are frequently typed and can be validated against a schema type
definition.

Conditional Validation

The use-when attribute can be used to determine whether an element and its children should be included
in the stylesheet. For example, you might want to validate depending on a system property or the avail-
ability of an element. To test for a schema-aware processor, you might use the following condition to
make a stylesheet more portable by placing it on all relevant declarations and instructions:

<xsl:import-schema schema-location="products.xsd"
use-when="system-property('xsl:is-schema-aware')="'yes'"/>

The functions element-available () and function available() enable you to perform selective valida-
tion as well as testing, and include or exclude code. The element-available () function is typically used
to test for vendor or third-party extensions, such as <saxon:output> in the next example:

<xsl:when test= "element-available('saxon:ouput) ">

</xsl:when>

In the same way, doc-available() and unparsed-text-available () provide a way to trap errors
related to missing source material (you saw both in Chapters 7 and 8):

<xsl:if test="doc-available(@term)">
<xsl:apply-templates select="doc (@term)"/>
<xsl:if>

The type-available() function returns true if a type is available for use in the static context.

In practice, its use is limited to testing XML Schema types and vendor extension types, as
user-defined types imported with <xs1:import-schema> are not available in the static context with
xs1l:use-when.

Documenting Your Stylesheets

Every programming book you read tells you to document your code, right? So I'll say it too, even if I
don’t always do it myself. (Similarly, when I joined the Canadian navy a long time ago, a petty officer
told me, Do as I say, not do as I do!”’)

I think the minimum needed is something in the form of conventional XML comments in your stylesheets,
to help you recall what was intended when you wrote it. This kind of comment is, of course, distinct from
<xs1:comment>, which puts comments in the XSLT result tree.

Comments come into their own on smaller projects, and are fine for simple notes designed for personal
use, like this one:

<!-- head.xsl
< xhtml head section -->

195

Chapter 10: Debugging, Validation, and Documentation

However, it is worth looking at alternatives that provide a systematic way of documenting code for a
wider user group. The benefits of doing so are perhaps obvious for large sets of stylesheet modules,
where specific tools can help you to keep track of relationships and code locations (which might other-
wise be hard to do).

One such tool is XSLTdoc, an open-source tool developed with European Space Agency funding by P&P
Software, and written in XSLT 2.0.

XSLTdoc is a stylesheet itself that processes stylesheets as XML source. In your stylesheet, you document
the code using just a few elements in the XSLTdoc namespace, as shown in the following examples,
where xd: is the namespace prefix:

<xd:doc>
<xd:short>Defines the CSS stylesheet for reference pages.</xd:short>
</xd:doc>
<xsl:param name="style">reference.css</xsl:param>
<xd:doc>
<xd:short>Generates a heading and selects the content of the paragraphs
<code>purpose</code> element.</xd:short>
</xd:doc>
<xsl:template match="purpose">
<h2>Purpose</h2>
<xsl:apply-templates select="p"/>
</xsl:template>

Usually the <xd:doc> elements immediately precede the item you want to document, such as the param-
eter and template shown here.

When your documentation is complete, you then run your source stylesheet using XSLTdoc to produce
a series of linked XHTML pages, containing the documentation that you embedded. XSLTdoc takes care
of all the formatting and linking.

For the next Try It Out, you'll use it to document one of the stylesheets you have already created.

Ty It Out | Using XSLTdoc

Start by downloading the package from http://sourceforge.net/project/showfiles.php?group
_id=124907&package_id=136566. The latest version at the time of writing was version 1.2.1.

Unzip the download and copy it to the same location as your XML project in the Oxygen IDE. Next,
copy the stylesheet use_key.xs1 to the XSLTdoc/xs1 folder, along with the included modules head.xs1,
params.xsl, and table.xsl. The included stylesheets will be processed automatically.

Rename use_key.xsl to use_key_doc.xsl.
In use_key.xsl and the other three modules, it is necessary to define a new namespace to dis-

tinguish between documentation and your XSLT source code. The URI for this namespace is
http://www.pnp-software.com/XSLTdoc

196

Chapter 10: Debugging, Validation, and Documentation

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xd="http://www.pnp-software.com/XSLTdoc" version="2.0">

<xsl:stylesheet>

Generally, you should enclose your documentation inside an <xd:doc> element, immediately before the
item concerned, though there are a couple of exceptions that I'll describe shortly. For simple text, the first
sentence is treated as a short description, with any remaining sentences providing details. If you need to
include XHTML in the documentation, then you must use the <xd:short> and <xd:detail> elements to
contain these two sections. Inside these elements, you may also use the <xd:xml> element to contain any
sample code.

The next snippet shows suggested documentation for the attribute named template:

<xd:doc>
<xd:short>Generates a heading and lists the element attributes in a
table.</xd:short>
<xd:detail>A plural of the label is generated if the count of
<code>property</code> elements is greater than 1. The table elements make use of
attribute sets specified in <code>table.xsl</code>. A non-breaking
space in each table cell ensures that table style is
maintained.</xd:detail>
</xd:doc>
<xsl:template name="attribute">
<h2>Attribute<xsl:if test="count (//property) gt 1">s</xsl:if></h2>

</xsl:template>

To describe global parameters, you can use the same approach with the optional addition of the type
attribute. However, template and function parameters must have an identifying name attribute too. This
is because they cannot immediately precede the function they describe; recall the XSLT rule that param-
eters must immediately follow a template or function declaration. I grouped the following descriptions
together before the head named template in head.xs1:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xd="http://www.pnp-software.com/XSLTdoc" version="2.0">
<xd:doc type="stylesheet">
<xd:short>Specifies the processing of parameters passed to the named
template <code>head</code>.</xd:short>
</xd:doc>
<xd:doc>
<xd:param name="title">The value of the <code>title</code>
element.</xd:param>
<xd:param name="style">The value of the <code>href</code> attribute on the
<code>link</code> element.</xd:param>
</xd:doc>
<xsl:template name="head">
<xsl:param name="title"/>
<xsl:param name="style"/>

197

Chapter 10: Debugging, Validation, and Documentation

</xsl:template>
</xsl:stylesheet>

You can also document a stylesheet as a whole, as I did in the preceding code, after the <xs1:stylesheet>
element (because only processing instructions should precede the root element), using the type attribute
to identify it. The following snippet shows two additional elements you can use, which I did for the main
module:

<xd:doc type="stylesheet">
<xd:author>ianw</xd:author>
<xd:copyright>TIan Williams 2002-2009</xd:copyright>
</xd:doc>

Save a copy of the sample XSLT configuration file XSLTdocConfig.xml in the same folder. I called my
copy test_config.xml.

Edit the copied configuration file following the next example. Apart from a title and introduction, the
important values to set are the relative or absolute paths of the target and source directories, and the
name of the root stylesheet.

I set the <TargetDirectory> path attribute, used for the XSLTdoc pages, to "../doc2" (keeping it sepa-
rate from the doc directory, which contains the XSLTdoc documentation):

<?xml version="1.0" encoding="UTF-8"?>
<XSLTdocConfig>
<Title>Documenting XSLT</Title>
<Introduction>
This is a test page for XLSTDoc from Chapter 10 of Beginning XSLT and XPath.
The source is use_key.xsl. Included modules are processed automatically.
</Introduction>
<TargetDirectory path="../doc2"/>
<SourceDirectory path="./"/>
<RootStylesheets>
<File href="use_key_doc.xsl"/>
</RootStylesheets>

<AdditionalCSS>
<File href="print.css" media="print"/>
</AdditionalCSS>
</XSLTdocConfig>

Set up the transformation scenario with test_config.xml as the source document, and xsltdoc.xsl as
the stylesheet. Make sure you use the basic version of the Saxon processor.

After running the transform, copy the stylesheets xs1ltdoc.css and xmlverbatim.css from XSLTdoc/css

to the doc2 directory, and open index.html in your browser. The result should look something like
Figure 10-7.

198

Chapter 10: Debugging, Validation, and Documentation

Main Page Stylesheet List Function/Template List

Documenting XSLT

This Iz a test page for XLSTdoe from Chapter 10 of Beginning XSLT and XPath. The source
15 stepd wsl Induded modules are processed automancally.

Generated with ¥5LTdoc 1.2.1 CSS | XHTML | @ 2009, PEF Software

Figure 10-7

From here you can follow the Stylesheet List link to find a module, or browse for functions and templates.
Figure 10-8 shows part of the documentation from use_key_doc.xs1. Clicking on a source link takes you
to a web page with the code highlighted.

Match Templates Summary

f = dource
N short description available

attr | element - source
element and attribute names are enclosed in & code element.

code - suures
code slements are copied as is,

codeblock - source
=ample code 1= copled Inside a pre element,

conlgins | contginedby | relaled - source
Generates a heading based on the 1abel attribute. Processes contained 1ink elements,

examples - source
N short description available

link - souxce
Link values are obtained by selecting metadata with the key function. The document
ote and the relative path are gencrated.

P - source
Mo short description avallable

properties - source
Mo short descripoion availlable

PUrpOse - source
Generates a heading and selects the content of the paragraphs purpose clement.

usage - source
Generates a heading and selects the content of the paragraphs useage element.

Figure 10-8

Summary

In this chapter you learned how to debug XSLT output and analyze processor performance in an IDE. You
worked with the schema-aware version of the Saxon processor to validate both source and output doc-
uments, and learned how to apply validation to entire documents or individual elements and attributes.
To document your code you used an inline documentation tool that uses XSLT on an XSLT source.

199

Chapter 10: Debugging, Validation, and Documentation

Key Points

Q A debugger IDE can be a valuable tool, helping you trace the XSLT process,
track variable and parameter values, and monitor code performance using
profiling.

0 You can do limited stylesheet validation using the built-in types from XML
Schema.

Q Using a schema-aware processor on both inputs and outputs will increase
the robustness of your code.

Q Validation can be applied to entire documents, individual elements, or
attributes.

Q The use-when attribute allows you to apply conditional validation in some
circumstances.

Q Providing stylesheet documentation is an important part of delivering your
code to end users.

Exercises

You'll find solutions to these exercises in Appendix A.

1. Demonstrate how to incorporate an xs1-stylesheet processing instruction in an XML
result document.

2. Why can using <xs1:comment> rather than <xs1:message> sometimes make it easy to trace
problems in your stylesheet code?

200

—

11

A Case Study

This case study builds on the work you have already done with the templates for processing the
XSLT 2.0 quick-reference documents found in Appendix D. The goal is to transform and combine a
complete set of XSLT element and function reference documents in a single website that provides
simple, clear navigation, and that makes use of the reference-document stylesheet code you have
worked with so far.

However, this time the processing of links between reference pages is handed over to a small library
of stylesheet modules that operate on both resource and subject metadata.

As a preliminary to explaining how the library modules can be used, I discuss the reference and
metadata schemas. The reference stylesheets contain some minor changes to accommodate the use
of the link modules. The link stylesheet module itself and a related function module together pro-
vide link processing. Terms are processed in a similar way to create a glossary or inline definitions.

Two examples complete the book. The first creates a quick-reference site for both XSLT elements
and XSLT functions. The second outputs a sitemap conforming to the Sitemaps protocol for con-
sumption by web crawlers.

Schema Overview

I'll be discussing several XML Schema structures in this chapter. The structure is modular with
several interdependencies. The following table lists the modules A-Z, with their purpose and

dependencies.
Schema Purpose Requires
common . xsd Elements that are common to most of
the other schemas
iso_lang.xsd Defines two subsets of ISO 639

language codes

Continued

Chapter 11: A Case Study

Schema Purpose Requires

links.xsd Defines the link components used in
other schemas

meta.xsd Resource and subject metadata common . xsd,
elements iso_lang.xsd, links.xsd
reference.xsd Describes the structure and common . xsd, 1inks.xsd

relationship of elements in any XML
Schema — in this case, the
quick-reference documents (Appendix

D)
reslist.xsd Container for resource metadata meta.xsd
xml . xsd Definitions of some XML attributes,

including xml:id

Common Elements and Attributes

The schema module common . xsd contains declarations used in both the reference and metadata modules.
This schema module imports xml . xsd, where the xml:id attribute is defined.

Common Attributes

The core attribute group specifies attributes that are common to all elements: an identifier using xm1:id,
and class and title attributes that can be used to apply styling and labeling.

The metadata attribute group contains a single scheme attribute to be applied to root elements in several
document types:

<xs:attributeGroup name="core">
<xs:attribute ref="xml:id" use="optional"/>
<xs:attribute name="class" type="xs:string" use="optional"/>
<xs:attribute name="title" type="xs:string" use="optional"/>
</xs:attributeGroup>

<xs:attributeGroup name="metadata">
<xs:attribute name="scheme" type="xs:string" use="optional"/>
</xs:attributeGroup>

Block Elements

The schema common . xsd defines a few block elements for paragraphs and notes. Both elements may be
used in reference documents and term definitions:

<xs:element name="p">
<xs:complexType mixed="true">
<xs:sequence minOccurs="0" maxOccurs="unbounded">

202

Chapter 11: A Case Study

<xs:group ref="phrase" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="note">
<xs:complexType mixed="true">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:group ref="phrase"/>
</Xs:sequence>
<xs:attribute name="type" use="required">
<xs:simpleType>
<xXs:restriction base="xs:string">
<xs:enumeration value="note"/>
<xs:enumeration value="tip"/>
<xs:enumeration value="caution"/>
<xs:enumeration value="warning"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

Inline Elements

Several elements can be used in inline markup in paragraphs and notes. They may also appear in resource
metadata summaries and term definitions. You have already seen the <attr>, <code>, and <element>
elements in reference-document examples. The <acronym> element may be used to contain abbreviations
and acronyms such as “IS0” and “CSS”. and , both used for emphasis, may be familiar
from XHTML.:

<Xs:group name="phrase">
<xs:choice>
<xs:element ref="acronym"/>
<xs:element ref="attr"/>
<xs:element ref="code"/>
<xs:element ref="element"/>
<xs:element ref="em"/>
<xs:element ref="strong"/>
</xs:choice>
</Xs:group>

<xs:simpleType name="inline">
<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:element name="acronym" type="inline"/>
<xs:element name="attr" type="inline"/>
<xs:element name="code" type="inline"/>
<xs:element name="element" type="inline"/>
<xs:element name="em" type="inline"/>
<xs:element name="strong" type="inline"/>

203

Chapter 11: A Case Study

The Quick-Reference Schema

Until now, you have used some examples from the quick-reference documentation to develop stylesheets,
and I've said very little about the formal structure of the reference documents themselves.

They contain a subset of a more complex reference vocabulary th.

at has been in regular production use

since 2004, not only for the creation of XML Schema documentation, but also for user interface, API, and
web-service help. You can see some recent examples of reference documents at the Volantis Systems

support gateway, for instance: http://gateway.volantis.com/d

ocs/admin/mcs_config_er.html

This larger vocabulary was partly based on early versions of the Darwin Information Typing Architecture
(DITA), an XML-based architecture for authoring, producing, and delivering technical information.

DITA had its origins in IBM, and is now an OASIS standard.

You can read more about current DITA developments and download the current version of the open
toolkit at http://dita.xml.org/book/dita-wiki-knowledgebase.

The quick-reference schema, reference.xsd, includes both common.xsd and links.xsd.

You are already familiar with the basic structure of the XSLT quick-reference documents that you worked
with earlier in this book, most recently in Chapter 9, so I won’t look too closely at some of the simpler

elements. Figure 11-1 shows an overview.

—~— @ @ attributes

@D

—)®

reftable
T linklistT: @
ype linklis ype

)@
L G@oe

contains

e @

o @
Type ImkhstType

containedby

Type linklistType

0. properties@

{ examples}@

Figure 11-1

204

related
T linklistT ®
ype linklis ype

Chapter 11: A Case Study

In this section I want to focus on what I call link containers and how they are specified, how attributes are
defined in <property> elements, and how you can verify that link targets actually exist when you refer
to them.

Link Container Elements

In the reference schema the elements in the following snippet are specified as type linklistType, which
is defined in the included schema links.xsd:

<xs:element name="contains" type="linklistType"/>
<xs:element name="containedby" type="linklistType"/>
<xs:element name="common" type="linklistType"/>
<xs:element name="reftable" type="linklistType"/>
<xs:element name="related" type="linklistType"/>

You have seen the first two elements in your work so far, and you’ll meet the others later in this chapter.
They all have an identical structure — for example, in the reference for <xsl:choose> you find this
content model:

<contains label="contains" display="inline">
<link href="xsl_when"/>
<link href="xsl_otherwise"/>

</contains>.

The 1inklistType is a deliberately general structure, supporting several different kinds of link con-
tainer. They can be defined in any document type, using any convenient element name, and all the type
properties will be available:

<xs:complexType name="1linklistType">
<xs:sequence>
<xs:element name="description" type="xs:string" minOccurs="0"/>
<xs:element ref="link" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="display" use="optional" default="block">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="block"/>
<xs:enumeration value="inline"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="label" type="xs:string" use="optional"/>
<xs:attribute name="role" use="optional">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="navigation"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

The essential part of the 1inklistType type is the <link> element, which can have attributes from
two groups. The linkattr group is intended for general navigation links. The cmattr group state

205

Chapter 11: A Case Study

attribute can be used in addition in content-model containers to indicate whether an element is optional
or required:

<xs:element name="link" type="linkType"/>

<xs:complexType name="linkType" mixed="true">
<xs:attributeGroup ref="linkattr"/>
<xs:attributeGroup ref="cmattr"/>
</xs:complexType>

<xs:attributeGroup name="linkattr">
<xs:attribute name="href" type="xs:anyURI" use="optional"/>
<xs:attribute name="scheme" type="xs:string" use="optional"/>
<xs:attribute name="contexts" use="optional"/>
<xs:attribute name="rel" use="optional">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="external"/>
<xs:enumeration value="next"/>
<xs:enumeration value="previous"/>
<xs:enumeration value="start"/>
<xXs:enumeration value="up"/>
</xXs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>

<xs:attributeGroup name="cmattr">
<xs:attribute name="state" use="optional" default="optional">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="optional"/>
<xs:enumeration value="required"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>

Property Elements

The <properties> element contains one or more <property> elements, which require a name
and a description. The remaining elements are optional. The term “property” is used rather
than “attribute,” because in the broader schema from which this one is derived, properties are
generic values that can be called attributes in one context, parameters in another, and properties in
a third.

Within the <common> element is a link container that enables you to list attributes common to many
elements in a schema. Examples from the XSLT schema are generic element attributes and validation

attributes, which may be expressed on any XSLT or literal result elements.

Figure 11-2 shows the properties structure.

206

Chapter 11: A Case Study

- @ @ attributes

~—— @ @ attributes
Type xs:string

%= property)
property L(&x
description L@
&

& s
Type _ xsistring

default
Type xs:string

EunR)e

=@

common
Type linklistType >

Figure 11-2

The definition of the <property> element follows. In the description element you can see how use is
made of the phrase group from common.xsd. This makes it possible to incorporate inline markup in
descriptions.

<xs:element name="property">
<xs:complexType>
<XS:sequence>
<xs:element ref="name"/>
<xs:element ref="description"/>
<xs:element ref="type" minOccurs="0"/>
<xs:element ref="values" minOccurs="0"/>
<xs:element ref="default" minOccurs="0"/>
<xs:element ref="required" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="core"/>
</xs:complexType>
</xs:element>

<xs:element name="required">
<xs:complexType>
<xs:attribute name="state" use="optional" default="optional">
<xs:simpleType>
<xs:restriction base="xs:string">

207

Chapter 11: A Case Study

<xs:enumeration value="optional"/>
<xs:enumeration value="required"/>
<xXs:enumeration value="deprecated"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

<xs:element name="name" type="xs:string"/>

<xs:element name="description">
<xs:complexType mixed="true">
<xs:choice>
<xs:group ref="phrase" minOccurs="0"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="type">
<xs:complexType mixed="true">
<xs:choice>
<xs:element ref="link" minOccurs="0"/>
</xs:choice>
</xs:complexType>
</xs:element>

<xs:element name="default" type="xs:string"/>
<xs:element name="values" type="xs:string"/>

Link Verificatio

Because link relationships illustrating the content model are important in schema documentation, it is
useful for authors to be able to verify that link-target values are correct. For the quick reference, this is
done automatically during validation by checking the resource metadata file reslist_xsl.xml. If there
is an xml:1id attribute in a metadata entry that matches the target in the <1ink> element in the reference
document, the file will validate correctly.

The cross-file validation is done by including statements in the reference schema in a language known
as Schematron. This is a schema language based on finding patterns in the parsed document. One of its
characteristics is the use of <assert> elements that enable you to confirm that a document conforms to a
particular schema. See www. schematron. com for further information.

Some IDEs, such as Oxygen, allow the inclusion of Schematron assertions inside XML Schema
<xs:app-info> elements. The next snippet shows how this is used in the quick-reference schema. In this
example, the xm1:1d value on the <reference> element is also validated:

<xs:annotation>

<xs:appinfo>
<sch:pattern name="metadata_values">

208

Chapter 11: A Case Study

<sch:rule context="reference">
<sch:assert test="@xml:id and @scheme">Both attributes must be
present for metadata processing</sch:assert>
<sch:assert test="document (concat('../reslist_',6@scheme,'.xml"'))//entry
[@xm]l:id=current()/@xml:id]"
>There is no matching identifier in the cited
collection</sch:assert>
</sch:rule>
</sch:pattern>

<sch:pattern name="1link_values">
<sch:rule context="1link">

<sch:assert test="document (concat('../reslist_ ', ancestor::reference
/@scheme, ' .xml ")) //entry[@xml:id=current () /Chref] | document
(concat('../reslist_',@scheme,'.xml'))//entry[@xml:id=current ()
/@href]"

>There is no matching identifier in the cited
collection</sch:assert>
</sch:rule>
</sch:pattern>
</xs:appinfo>
</xs:annotation>

XML Schema 1.1, now at working draft stage, has borrowed the idea of assertions from Schematron.
Assertions allow Boolean conditions to be defined for any simple or complex type in XPath 2.0 syntax,
as shown in the following example:

<xs:complexType name="arrayType">

<XS:sequence>

<xs:element name="entry" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>

<xs:attribute name="length" type="xs:int"/>

<xs:assert test="@length eqg fn:count(./entry)"/>
</xs:complexType>

This assertion says that the value of the 1ength attribute must be the same as the number of occurrences
of <entry> subelements. You can read about this development at www.w3 .org/TR/xmlschemall-1.

For details about a preliminary schema processor implementation for Saxon 9.1, see www . saxonica.com
/documentation/schema-processing/schemall/assertions.html.

Metadata Schemas

The metadata schema meta.xsd describes the structure of two types of metadata: resource metadata and
subject metadata.

By resource metadata I mean simple descriptive records for information resources of the kind you find
on the Web. In this book you met these records first in Chapter 1 when you transformed an Atom feed

209

Chapter 11: A Case Study

into RSS 1.0 format. The quick reference makes use of metadata with entries for each document title in

reslist_xsl.xml, such as the <entry> element that follows. You have used them for both linking and
for a feed in earlier chapters.

<entry xml:id="xsl_namespace_alias">
<title>xsl:namespace-alias</title>
<summary>Declares a namespace from a stylesheet to be associated with a
different namespace in the output.</summary>
<content src="../xslt_reference/"/>
<category term="element_reference" scheme="resource"/>
<category term="namespace" scheme="xml"/>
</entry>

Subject metadata describes concepts and can also be used to categorize ideas into a concept hierarchy.
Examples range from basic glossaries to more complex thesaurus structures. The next snippet shows the

definition for the term ““Attribute set”, one of those used in the glossary for this book, which I'll discuss
soon:

<term xml:id="attributeSet">
<label>Attribute set</label>
<definition>A named collection of attribute definitions that can be reused,

defined by an <element>xsl:attribute-set</element> element.</definition>
</term>

The metadata schema and the related stylesheet library are independent of the reference schema and
stylesheets. The schemas can be used alongside any XML vocabulary (not just technical-documentation
vocabularies) to capture resource and subject metadata. The stylesheets can be used with other stylesheets
to generate references, links, glossaries, and subject indexes.

Resource Metadata

The resource-metadata design is intended to do the following:

0 Separate metadata from the resources described
0 Support linking to other resource and subject metadata

O Generate feed documents and metadata structures in target resources conforming to vocabular-
ies such as DITA, XHTML, and eBooks

The schema is based on Atom 1.0. Atom was originally designed as a mechanism for syndicating feeds

from news sources, blogs, and other dynamic websites. In that respect it is like the many versions of RSS.
But the design of Atom is more recent and includes XML features such as namespaces; as a result, it has a
flexible extensibility mechanism that allows elements and relationships from other namespaces. Because

of this, the use of Atom has been extended to many purposes, such as packaging descriptions of a variety
of web resources.

The resource schema meta.xsd differs from Atom 1.0 in some respects, largely because this schema is for
maintaining resource information, as opposed to publishing it in a single feed format. I've highlighted
these differences in the following sections. Figure 11-3 shows the entry content model.

210

Chapter 11: A Case Study

—— @ @ attributes

0..00 @

title
& Type xs:string
summary

Type summaryType

(content
\Type extension of empty,

-
0..co category
\Jype extension of ‘empty‘,

published
Type xs:string

updated
Type xs:date

Figure 11-3

Collection

The schema reslist.xsd defines a container for resource metadata elements. The optional <categories>
element can be used to list the categories supported in a collection. The lang attribute makes use of
iso_lang.xsd (mentioned in the following section) to define the language used in the text of the entries.
xml:id attributes are constrained to be unique in the <xs:unique> declaration:

<xs:element name="collection">
<xs:complexType>
<XS:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element ref="entry" maxOccurs="unbounded" />
<xs:element ref="categories" minOccurs="0"/>
</Xs:sequence>
<xs:attribute name="lang" type="iso_639_3" use="optional"/>
<xs:attributeGroup ref="core"/>
<xs:attributeGroup ref="metadata"/>
</xs:complexType>
<xs:unique name="entry_id">
<xs:selector xpath="entry"/>
<xs:field xpath="@xml:id"/>
</xs:unique>
</xs:element>

211

Chapter 11: A Case Study

The name of the <collection> element container for the metadata entries for a particular scheme is
borrowed from the Atom Publishing Protocol (APP). APP provides (defines) a complex repository
structure, and ways to POST and GET data from an Atom XML metadata store. You can find details at
www . atomenabled.org/developers/protocol.

Language Values

Language-code values used in metadata are defined in iso_lang.xsd, which currently provides valida-
tion for two subsets of ISO 639 language codes covering the 23 official European Union languages. The
iso_639_3 type is from the most recent alpha-3 version, and is used in lang attributes:

<xs:simpleType name="iso_639_3">
<xs:restriction base="xs:string">
<xs:enumeration value="bul"/>
<xs:enumeration value="ces"/>
<xs:enumeration value="dan"/>
<xs:enumeration value="deu"/>
<xs:enumeration value="ell"/>
<xs:enumeration value="eng"/>

</xs:restriction>
</xs:simpleType>

Identifier

An identifier that is unique to each entry in a collection is required, whereas an <atom:id> element is
required to be a URI, and globally unique.

Instead of the <atom:1id> element, an xml:1id attribute is used on the <entry> element. This brings some
XSLT-processing benefits, which I outlined in Chapter 9. Additional identifiers, if required, can be sup-
ported using the <dc:identifier> element from the Dublin Core namespace. Entries can be used to
describe physical resources like this book. For example, if I described it for use in a citation, I could write
the following:

<entry xml:id="b_xslt_xpath" scheme="wrox">
<dc:indentifier scheme="isbn">978-0-470-447250</dc:identifier>

;}éntry>
Authors and Contributors

Instead of using the Atom person construct for <atom:author> and <atom:contributor>, the <agent>
element containing an optional <role> specification is used. Here’s how a partial example from
reslist_xsl.xml might look using these elements:

<entry>
<title>xsl: choose<title>
<agent term=" williams_i" scheme="persons">
<role term="contributor" scheme="roles"/>
</agent>

</entry>

212

Chapter 11: A Case Study

The optional term attribute, defined in the termReference attribute group in links.xsd, can contain

a URI that refers to individual or organization descriptions in an external file. This can be useful in
domains where the same names recur frequently. Alternatively, you can provide a literal value in the ele-
ment content. The schema definitions look like this. Role definitions can be user-defined and completely
open-ended:

<xs:attributeGroup name="termReference">
<xs:attribute name="term" type="xs:NCName" use="required"/>
<xs:attribute name="scheme" type="xs:anyURI" use="optional"/>
</xs:attributeGroup>

<xs:element name="agent">
<xs:complexType>
<XS:sequence>
<xs:element ref="role" minOccurs="1" maxOccurs="unbounded"/>
</xXs:sequence>
<xs:attributeGroup ref="termReference"/>
</xs:complexType>
</xs:element>

<xs:element name="role">
<xs:complexType>
<xs:attributeGroup ref="termReference"/>
</xs:complexType>
</xs:element>

Dates

Publication-date values provided on information resources, even web resources, can vary considerably
in structure and format. For example, those for the references that I included in Appendix G vary in
completeness from giving just the year to a full xs:dateTime value, and they provide the information in
several formats, too.

If you are publishing a feed, you can timestamp a description to fit the <atom:published> and
<atom:update> element type, which is xs:dateTime. The <datetime> element fulfills that purpose.
But metadata authors describing external resources may need to use the <date> element with the W3C
datetime format of yyyy-mm-dd, and the user-defined type vardate with a simple pattern that allows for
partial values:

<xs:simpleType name="vardateType">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]1{4} (-[0-91{2})?(-[0-91{2})?"/>
</xXs:restriction>
</xs:simpleType>

<xs:element name="date" type="vardateType" minOccurs="0">
<xs:annotation>
<xs:documentation>The date of first
publication</xs:documentation>
</xs:annotation>
</xs:element>

<xs:element name="datetime" minOccurs="0">

213

Chapter 11: A Case Study

<xs:complexType>
<xs:attribute name="type" use="optional">
<xs:simpleType>
<xs:restriction base="xs:string">
<xXs:enumeration value="published"/>
<xs:enumeration value="updated"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>

Content

The <content> element defines the resource URI and the type of resource. Both attributes are declared in
the resourcereference attribute group in links.xsd:

<xs:attributeGroup name="resourceReference">
<xs:attribute name="src" type="xs:anyURI" use="required"/>
<xs:attribute name="type" use="optional" default="text/xml">
<xs:simpleType>
<xXs:restriction base="xs:string">
<xs:enumeration value="text/plain"/>
<xXs:enumeration value="text/xml"/>
<xs:enumeration value="text/html"/>
<xs:enumeration value="image/png"/>
<xs:enumeration value="image/gif"/>
<xs:enumeration value="image/jpg"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:attributeGroup>

<xs:element name="content">
<xs:annotation>
<xs:documentation>Locates the content of a resource</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:attributeGroup ref="resourceReference"/>
</xs:complexType>
</xs:element>

Subject Metadata

The subject metadata schema design is intended to do the following:
0 Capture information about concepts such as attribute value template and collation, and organize
them in a hierarchy of categories.
O Support linking to other resource and subject metadata, such as subject indexes.

0 Generate inline definitions, glossaries, and subject indexes, topic maps, and Simple Knowledge
Organization System (SKOS) vocabularies.

214

Chapter 11: A Case Study

Figure 11-4 shows the content model for individual terms.

—— @ @ attributes

label
Type extension of ‘xs:string’,

0..co(altlabel
D
Type extension of ‘xs:string’.
(object 2

definition
Type summaryType

@D @)

G ®
0..00
relatedterm@

\— @ constraints

Figure 11-4

The next snippet shows the container <terms> element declaration. Each scheme contains a list of terms
that must be unique within the scheme. Uniqueness is enforced in the same way that it is in reslist.xsd.
Cross-references to broader terms are also validated.

<xs:element name="terms">
<xs:annotation>
<xs:documentation>Introduction followed by one or more
terms</xs:documentation>
</xs:annotation>
<xs:complexType>
<xXs:sequence>
<xs:element ref="p" minOccurs="0"/>
<xS:sequence>
<xs:element ref="term" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:element ref="related" minOccurs="0"/>
</Xs:sequence>
<xs:attributeGroup ref="core"/>
<xs:attribute name="scheme" type="xs:anyURI"/>
<xs:attribute name="lang" type="iso_639_3" use="optional"/>
</xs:complexType>
<xs:unique name="term_id">
<xs:selector xpath="term"/>

215

Chapter 11: A Case Study

<xs:field xpath="@xml:id"/>
</xs:unique>
<xs:keyref name="term_ref" refer="term_id">
<xs:selector xpath="term/broader"/>
<xs:field xpath="@term"/>
</xs:keyref>
</xs:element>

In each <term> element, the <label> contains the preferred term, while alternative terms such
as synonyms, acronyms, and equivalents in other languages are contained in the <altlabel>
element.

If the 1ang attribute is set to distinguish a label in another language, then that attribute value is con-
strained to be unique within a given term. This does not, however, prevent you from using same lan-
guage alternatives, such as synonyms, in the main language of the scheme:

<xs:element name="term">
<xs:complexType>
<xS:sequence>
<xs:element ref="label"/>
<xs:element ref="altlabel" minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="object" minOccurs="0"/>
<xs:element ref="definition"/>
<xs:element ref="note" minOccurs="0"/>
<xs:element ref="broader" minOccurs="0"/>
<xs:element ref="relatedterm" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute ref="xml:id" use="required"/>
<xs:attribute name="type" type="xs:string" use="optional"/>
</xs:complexType>
<xs:unique name="alt_lang">
<xs:selector xpath="altlabel"/>
<xs:field xpath="@lang"/>
</xs:unique>
</xs:element>

References to other terms are expressed in <broader> and <relatedterm> elements, usually but
not necessarily in the same scheme. Narrower relationships can be inferred and generated during
processing.

<xs:element name="broader">
<xs:complexType>
<xs:attributeGroup ref="termReference"/>
</xs:complexType>
</xs:element>

216

Chapter 11: A Case Study

Reference Stylesheets

As you have already seen in the quick-reference stylesheets, a collection of metadata entries in a sin-
gle scheme is used to maintain and process resource information, such as title and file location, and to
construct links to other pages.

This case study makes use of the metadata library stylesheets, rather than directly accessing the resource
collection using the key () function.

To begin, you will work with a stylesheet to transform a single reference file using the library.

_ Updating the Reference Stylesheets

To use the library, some modifications are required to the stylesheets that you last used to process
quick-reference files: use_key.xs1, and params.xsl.

Two more parameters must be added to params.xs1. Their order does not matter:

<xsl:param name="scheme" select="reference/@scheme"/>
<xsl:param name="labels" select="document ('labels.xml"')"/>

The $scheme parameter identifies the resource scheme to use; the $1labels parameter loads a document
containing values to use for labeling headings.

Save the main stylesheet use_key.xsl as reference_single.xsl. Most of the link processing takes
place in 1inks.xsl1, which in turn relies on some functions in a separate stylesheet, so the following
declarations need to be made to reference_single.xsl:

<xsl:include href="../xsl/function.xsl"/>
<xsl:include href="../xsl/link.xsl"/>

Two more link containers are processed. <common> is added to the matches with <contains> and
<containedby> to handle links to common attributes, and <related> will process related topics listed at
the end of reference documents.

Here is the way to invoke the linking process; the parameters for the document identifier and scheme,
and the label, are passed when calling a named template getlinks in links.xsl. The label and display
attribute values on the container are also passed. How these values are processed is discussed in the next
section:

<xsl:template match="contains | containedby | common">
<xsl:call-template name="getlinks">
<xsl:with-param name="source_id" select="Sidentifier" tunnel="yes"/>
<xsl:with-param name="default_scheme" select="S$scheme" tunnel="yes"/>

217

Chapter 11: A Case Study

<xsl:with-param name="label" select="@label"/>
<xsl:with-param name="display" select="@display"/>
</xsl:call-template>
</xsl:template>

<xsl:template match="related">
<xsl:call-template name="getlinks">
<xsl:with-param name="source_id" select="S$identifier" tunnel="vyes"/>
<xsl:with-param name="default_scheme" select="$scheme" tunnel="yes"/>
<xsl:with-param name="label" select="@label"/>
<xsl:with-param name="display" select="@display"/>
</xsl:call-template>
</xsl:template>

This version of the stylesheet should also incorporate the small enhancement to the generated inline
markup that I suggested at the end of Chapter 5. This involves deleting the template that currently
matches the <code> element and adding the <code> element name to the template match attribute with
the pattern “attr | element | code”. This will capture the element names to assign to the output class
attributes by using the XPath name () function:

<xsl:template match="attr | element | code">

<code>
<xsl:attribute name="class"><xsl:value-of select="name()"/></xsl:attribute>
<xsl:value-of select="."/>

</code>

</xsl:template>

Now you can process a reference document using all the stylesheet features. Open xs1_for_each_
group.xml in the code folder for this chapter. It contains more data than the earlier version you worked
with. Note the following content changes. There are link references to common attribute groups, to a
top-level document introducing the schema, and to a couple of related XSLT functions:

<properties>
<common label="attrgroup" display="inline">
<link href="ge_attr"/>
<link href="version_attr"/>
</common>
</properties>

<related role="navigation" label="related" display="block">
<link href="xsl_er"/>
<link href="fn_current_group"/>
<link href="fn_current_grouping key"/>

</related>

Run the reference file with reference_single.xsl. The result should look like what is shown in
Figure 11-5.

218

Chapter 11: A Case Study

xsl:for-each-group

Purpose

A instruction that selects a sequence of items for uniform processing, and groups them according to common values,
adjacency, or in relation to other elements.

Usage
Grouping depends on which of the four attributes is specified. The attribute value is known as the group key.

The ®SLT functions current-groupt) and current-grouping-key() may be used to process grouped items inside an
=51 :for-each instruction.

Contains elements

sequence-constructor | xshisort

Attributes

Name Description Type Default Options Use

collation The URI of a collation to use for string xs:anyURI optional
corparisan

group-adjacent The common value to use if iterms are usl expression optional
adjacent

group-by The common value or values to use wsl expression optional

group-ending-with The pattern that ends a group of uslpattern optional
preceding items

group-starting-with The pattern that starts a group of uslpattern aptional
following items

select The sequence of items to group wslexprassion required

Attribute groups
Generic element attributes | Yersion attributes

Example

<xs]:for-each-group select="+"
group-adjacent="if (self::speaker) then 0 else 1">»
<td class="noborder"” width="30%">
<xs]:for-each select="current-group(J">

<xs]iapply-templates select="."/>
<xs1:if test="current-group(d="0"">
<xs1:ivalue-of select="."/+</span=>
</ xsT 9 f >
<xs19f test="positiont) ne Tast(d">
<hbr/>
< s it
</ws] i for-eachs
</ td>

< x5 for-each-groups
Related topics

HSLT elements
current-group
current-grouping-key

Figure 11-5

219

Chapter 11: A Case Study

Link Module

The stylesheet module 1ink.xsl contains the transforms for processing links between XHTML reference
instances. Parameter values passed from the link containers <contains>, <containedby>, <common>, and
<related> are processed, with <h2> heading labels generated from a helper file. Use is made of a short
stylesheet, function.xsl, containing user-defined functions.

Link Parameters

The getlinks template requires four parameter values when it is called from reference_single.xsl:

<xsl:template name="getlinks">
<xsl:param name="source_id" required="yes"/>
<xsl:param name="default_scheme" required="vyes"/>
<xsl:param name="label" required="yes"/>
<xsl:param name="display" required="yes"/>

<h2>
<xsl:value-of select="$labels//label [@name=S$label]"/>
<xsl:1if test="count (current()//link)é>1l">s</xsl:1f>
</h2>

</xsl:template>

They are the source document identifier, the scheme in use, and the value of the 1abel and display
attributes on the container element:

<xsl:template match="contains | containedby | common">
<xsl:call-template name="getlinks">
<xsl:with-param name="source_id" select="Sidentifier" tunnel="yes"/>
<xsl:with-param name="default_scheme" select="$scheme" tunnel="vyes"/>
<xsl:with-param name="label" select="@label"/>
<xsl:with-param name="display" select="@display"/>
</xsl:call-template>
</xsl:template>

Labeling Headings

Fixed-output headings for link-container elements can sometimes be problematic — for example, having
to use “Contained by” when it really should read “In substitution group.” It would be useful if authors
could define their own labels in some way, which also makes it easy to localize the headings for other
languages.

The label attribute on link containers is designed to get around this problem. When the heading is
output it will be more meaningful:

<containedby label="substitution">
<link href="xsl_declaration"/>
</containedby>

220

Chapter 11: A Case Study

The $1abels parameter in params.xsl is used to load the helper document labels.xml. Here is an
example:

<labels>
<label name="example">Example</label>
<label name="related">Related topic</label>
<label name="contains">Contains element</label>
<label name="containedby">Contained by element</label>
<label name="attrgroup">Attribute group</label>
<label name="external">External link</label>
<label name="substitution">In substitution group</label>
<label name="replacedby">Substitute</label>

</labels>
By editing this file, authors can produce as many labels as required. All they need to do is use the value
of the name attribute in their source documents.

Scheme Selection

The value of the scheme attribute on the <reference> element of the document being processed is used
to define the default metadata scheme, but the link may be to another scheme. The next snippet shows
the identifier for the XSLT 2.0 specification, and identifies the scheme as ““external’”:

<link href="w3c_xslt_2" scheme="external"/>

In these cases the default value is overridden with that of the scheme attribute on the <1ink> element.
This takes place inside an <xs1:choose> instruction:

<xsl:variable name="newlist">
<xsl:for-each select="1link">
<xsl:choose>
<!--not the default scheme-->
<xsl:when test="@scheme">
<xsl:copy-of select="xm:getentry-by-id(@href, @scheme)"/>
</xsl:when>
<xsl:otherwise>
<xsl:copy-of select="xm:getentry-by-id(@href, $default_scheme)"/>
</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</xsl:variable>

A temporary tree variable $newlist is defined to contain any matching metadata entries, and the scheme
and the resource identifier are used as arguments to call the stylesheet function xm:getentry-by-id in

function.xsl.

Each entry in the $newlist tree is then processed with a call to the named template makelink, which
handles styling of the output.

221

Chapter 11: A Case Study

Some XML Schemas have recursive structures, so the first <xs1:when> test in the following code avoids
creating a ““self”” link:

<p>
<xsl:for-each select="$newlist/entry">

<xsl:choose>
<!-- list but don't link recursive schema references -->
<xsl:when test="$source_id=@xml:id">
<xsl:value-of select="title"/>
</xsl:when>

<xsl:otherwise>
<xsl:call-template name="makelink">
<xsl:with-param name="class" select="$display"/>
<xsl:with-param name="url"
select="concat (content/@src,@xml:id,"'."', $Sextension)"/>
<xsl:with-param name="linktitle">
<xsl:value-of select="title"/>
</xsl:with-param>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>

<xsl:choose>
<xsl:when test="$display='inline'">
<xsl:call-template name="separate">
<xsl:with-param name="separator"
> | </xsl:with-param>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:if test="position() ne last()">

</xsl:if>
</xsl:otherwise>
</xsl:choose>

</xsl:for-each>
</p>

The $display parameter is handled after the link is rendered. If the author intended the link style to be
“inline,” then the separator | ” is output (the default value is a comma). Otherwise, where the display
style is “block,” a
 element is output:

<xsl:template name="separate">
<!--default is comma+space-->
<xsl:param name="separator">, </xsl:param>
<xsl:if test="position() ne last()">
<xsl:value-of select="$separator"/>
</xsl:if>
</xsl:template>

222

Chapter 11: A Case Study

Function Module

The stylesheet module function.xsl declares the xm: namespace:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xm="http://xm.net/2007/xsl/function" version="2.0">

</xsl:stylesheet

The prefix xm:is required on the name attribute on any <xsl: function> elements, and on any calls made
to this module. The stylesheet function xm:getentry-by-id takes the id and scheme parameter values
passed to it, and returns a sequence containing the required metadata entry:

<xsl:function name="xm:getentry-by-id">
<xsl:param name="id" as="xs:string"/>
<xsl:param name="scheme" as="xs:string"/>

<xsl:variable name="linklist"
select="document (concat ('../reslist_', $scheme,'.xml"'))"/>
<xsl:variable name="linkmeta" select="$linklist//entry[@xml:id=$id]"/>
<xsl:sequence select="$linkmeta"/>
</xsl:function>

I'll return to this module in the following sections.

Term Module

The stylesheet module terms.xsl contains the transforms for terms, and is similar in some respects to
links.xsl. It also requires function.xsl.

Term containers in a main stylesheet can range from inline definitions and short glossaries to complete,
controlled vocabularies used for categories.

The <termtable> element enables you to generate a simple glossary as a standalone page or embedded
in another page, selecting content from one or more schemes.

The following example shows some of the terms from the glossary at the back of this book. These terms
are listed in xs1_terms.xml using <dfn> elements:

<reference xml:id="xsl_terms" scheme="xsl">
<body>

<p>A short glossary of terms selected from those published for XSLT and
XPath from the W3C glossary.</p>

<termtable label="glossary">
<dfn term="attributeSet"/>
<dfn term="attributeValueTemplate"/>
<dfn term="axisStep" scheme="xpath2"/>
<dfn term="characterMap"/>
<dfn term="collation"/>
<dfn term="constructorFunction" scheme="xpath2"/>
<dfn term="contextItem" scheme="xpath2"/>

223

Chapter 11: A Case Study

<dfn term="contextPosition" scheme="xpath2"/>
<dfn term="currentDateTime" scheme="xpath2"/>
<dfn term="currentGroup"/>

<dfn term="currentGroupingKey"/>

<dfn term="declaration"/>

<dfn term="emptySequence" scheme="xpath2"/>
<dfn term="extensionFunction"/>

<dfn term="filterExpression" scheme="xpath2"/>
<dfn term="functionParameter" />

<dfn term="globalVariable"/>

<dfn term="groupingKeys"/>

<dfn term="implicitTimezone" scheme="xpath2"/>
<dfn term="importPrecedence"/>

<dfn term="instruction"/>

<dfn term="lexicalQName"/>

</termtable>
</body>
</reference>

Notice that some <dfn> elements have a scheme attribute value of “xpath2”. These settings override the
default value “xs1” expressed in the scheme attribute on the <reference> element. This feature makes it
possible to select terms from more than one scheme.

Figure 11-6 shows part of the resulting page.
XSLT glossary

This is short glossary of terms selected from those published for ®5LT and ®Path from
the W3C glossary.

Glossary

Attribute set

& named collection of attribute definitions that can be reused, defined by an
xsT:attribute-set element.

Attribute value template

A type of attribute value that may contain an expression surrounded with curly
brackets {}, usually used to set a value with information that is only available at
runtime.

Axis step

An axis step has an axis which specifies a direction of travel in the node tree such
as parent:: or child:: , and a node test, which defines the nodes to select using
the node name or type,

Character map

& character map allows a given character in the final result tree to be substituted by
a string of characters during serialization.

Collation

& set of rules, for comparing strings, and determining how they should be ordered.
Collations, which are language or application specific, are specified by a URL

Constructor function

The constructor function for a given type is used to convert instances of other
atomic types into the given type.

Context item

The item, an atomic value or node, currently being processed, When the context
item is a node, it is also called the context node.

Figure 11-6
224

Chapter 11: A Case Study

Term Parameters

In the stylesheet terms.xs1 the named template getterms requires a $default_scheme parameter when
it is called. As with links, this is normally the value of the scheme attribute on the root element of the
document being processed. Labeling works the same way.

In the next exercise you will create a glossary using terms from the glossary in this book.

_ Creating a Glossary

To incorporate a glossary in a reference document, you need only add one template matching the
<termtable> element to reference_single.xsl.Save it as reference_gloss.xsl and add the following
code.

First include term.xs1 in the main stylesheet:
<xsl:include href="term.xsl"/>

Then add the template:

<xsl:template match="termtable">
<xsl:call-template name="getterms">
<xsl:with-param name="default_scheme" select="S$scheme"/>
<xsl:with-param name="label" select="@label"/>
</xsl:call-template>
</xsl:template>

This value together with the term identifier is used to call the xm:getterm-by-id function in the
function.xsl stylesheet, which returns a term entry containing the term label and description:

<xsl:copy-of select="xm:getterm-by-id(@href, $default_scheme)"/>
It is possible to override this value with an alternative scheme attribute value on a term element:

<xsl:template name="getterms">
<xsl:param name="default_scheme" required="yes"/>
<xsl:param name="label" required="yes"/>

<h2>
<xsl:value-of select="$labels//label[@name=S$label]"/>
<xsl:if test="count (current()//link)>1">s</xsl:if>
</h2>

<xsl:variable name="newlist">
<xsl:for-each select="dfn">
<xsl:choose>
<xsl:when test="@scheme">
<xsl:copy-of
select="xm:getterm-by-id(current () /@term, current () /@scheme) " />
</xsl:when>
<xsl:otherwise>
<xsl:copy-of
select="xm:getterm-by-id(current () /@term, Sdefault_scheme)" />
</xsl:otherwise>

225

Chapter 11: A Case Study

</xsl:choose>
</xsl:for-each>
</xsl:variable>

<table class="gloss">
<tbody>
<xsl:for-each select="$newlist/term">
<xsl:sort select="label"/>
<tr>
<th class="gloss">
<xsl:value-of select="label"/>
<xsl:if test="altlabel">
<xsl:text> [</xsl:text>
<xsl:for-each select="altlabel">
<xsl:value-of select="."/>
<xsl:if test="position()!=last()">, </xsl:if>]
</xsl:for-each>
</xsl:if>
<xsl:apply-templates select="object"/>
</th>
</tr>
<tr>
<td class="gloss">
<xsl:apply-templates select="definition"/>
</td>
</tr>
</xsl:for-each>
</tbody>
</table>
</xsl:template>

When you run xsl_terms.xml with reference_gloss.xsl, the returned terms are sorted by the <label>
element in the source terms document. Any alternative label is output in brackets, " []".

Displaying Inline Terms

Authors can optionally incorporate terms and their definitions in the output by referring to a term and
its scheme, and specifying a style in a class attribute. If the class attribute is set to "popup", then a
mouse-over action by an online user displays a pop-up containing the definition. In other circumstances
the definition is shown inline.

Ty It Out | A Definition Pop-up

To test this feature, add a definition to a copy of the reference file xs1_character_maps.xml. The change
to the source file is simple. In the <purpose> element paragraph, replace the text ““character map” as
follows:

<dfn class="popup" term="characterMap" scheme="xsl"/>

226

Chapter 11: A Case Study

This refers to the characterMap identifier in the default term scheme. When the page is rendered using
reference_single.xsl, the term will be highlighted as a link, and a pop-up will display the definition. As
things stand now, there is no existing link target, but I think you can see how a link to a page containing
the term is

formed:

<xsl:template match="dfn">

<xsl:variable name="def">

<xsl:copy-of select="xm:getterm-by-id(@term, @scheme) " />
</xsl:variable>
<xsl:choose>

<xsl:when test="@class="'popup'">

<xsl:variable name="pop" select="normalize-
space ($def/term/definition) "></xsl:variable>

<xsl:attribute name="href"
select="concat('../terms_', @scheme,'/', @term,"'."," ' .html"')"/>
<xsl:value-of select="$def/term/label"/>

<xsl:1if test="S$def/term/altlabel"> [<xsl:value-of
select="%def/term/altlabel"/>] </xsl:1if>
</xsl:when>
<xsl:otherwise>
<xsl:value-of
select="concat ($def/term/label,': ', $def/term/definition)"/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Building the Site

As I outlined in the introduction to this chapter, the overall goal is to combine all the XSLT reference
pages in a single website.

Figure 11-7 shows the web-page layout, with tabs providing top-level navigation, and a table of contents
with links to individual topics on the left.

The top-level navigation tabs each correspond to a <map> element, with the tab text coming from the

element’s tab attribute value. The folder attribute determines where the output will be written. Each
<section> element forms a division within the table of contents.

227

Chapter 11: A Case Study

Elements A-Z

#sl: analyze-string
w5l apply-imports

w5l apply-templates
#sl attribute
wslattribute-set
wslicall-template
wslicharacter-map
wslichoose
wslicomment
wslcopy-of

wslicopy

usl: decimal-farmat
usl:declaration

wsl: document

xsl: element

xsl: fallback

wsl: for-each

wsl: for-each-group
#sl: function

wshif
wsliimpart-schema
wsliimpart

wsliinclude
#sliinstruction
®slikey
#slimatching-substring
®sl:message
®slinamespace
®sl:namespace-alias
w5l next-match
#slinon-matching-substring
w5l number
wsliotherwise
wslioutput
wslioutput-character
wsliparam
wslparform-sort
uslpreserve-space
wsliprocessing-instruction

Qv erview XSLT Elements ®SLT Functions

xsl:copy-of

Purpose

Copies a sequence of nodes to the result sequence.

Usage

This instruction creates a deep copy of the current node and its descendants,
It is useful for copying the content of s temporary tree to a resultdocument or
for copying a subtree of s source document to the output directly.

In substitution group

ssliinstruction

Attributes
Name Description Type Default Options Use
copy-namespaces Whether or xs:token yes yes, no optional
not to copy
namespace
nodes
select The ®sliexpression required
sequence of
items to
process
Example

<xs5]:template match="codeblock">
<pre class="code">
<xs]:copy-of select="."/>
</ prex
</xs1:templates>

Related topics

KELT elements
®shicopy

Figure 11-7

Generating the Reference Pages

To generate the site, a driver file that lists the identifiers to be processed, site_xsl.xml, is used. The
href attribute values on <topicref> elements are used to locate metadata, to write the table of contents,
and to open and process the individual documents. The next example shows a partial listing of the XML

source:

<?xml version="1.0" encoding="UTF-8"?>

<site id="xsl" scheme="xsl" sitetitle="XSLT 2.0 Elements & Functions">
<map id="map_xsl_ref" folder="xslt_reference" scheme="xsl" tab="XSLT Reference">

<section label="Introduction">
<topicref href="xsl_er"/>
<topicref href="xsl_functions"/>
<topicref href="xsl_terms"/>

228

Chapter 11: A Case Study

</section>
</map>
<map id="map_elements" folder="xslt_reference" scheme="xsl" tab="XSLT Elements">
<section label="Elements A-Z">
<topicref href="xsl_analyze_string"/>
<topicref href="xsl_apply_imports"/>
<topicref href="xsl_apply_templates"/>
<topicref href="xsl_attribute"/>
<topicref href="xsl_attribute_set"/>
<topicref href="xsl_call_template"/>

</section>
<section label="Attribute groups">
<topicref href="ge_attr"/>
<topicref href="version_attr"/>
<topicref href="valid_attr"/>
</section>
</map>
<map id="map_xsl_functions" folder="xslt_reference" scheme="xsl"
tab="XSLT Functions">
<section label="Functions A-Z">
<topicref href="fn_current"/>
<topicref href="fn_current_group"/>
<topicref href="fn_current_grouping_key"/>
<topicref href="fn_document"/>

</section>
</map>
</site>

The main stylesheet, site.xsl, provides the basic structure in a series of XHTML <div> elements,
the table of contents, and the reference content. The layout is entirely defined by the CSS stylesheet
style.css

<xsl:include href="ref2xhtml.xsl"/>

<xsl:param name="container">test_xsl</xsl:param>
<xsl:param name="logo">logo_xsl</xsl:param>

<xsl:variable name="sitetitle" select="site/@sitetitle"/>

<xsl:variable name="resourcelist"
select="document (concat ('../reslist_"',site/@scheme,'.xml"'))"/>

<xsl:variable name="scheme" select="site/@scheme"/>

<xsl:param name="id" select="/*/topicref[l]/@href"/>

<xsl:param name="dir">file:///c:/eclipse/</xsl:param>

<xsl:template match="/">

It includes ref2xhtml.xs1, which writes out each of the individual reference pages and sets up a number
of parameter and variables:

<xsl:variable name="file">
<xsl:value-of select="concat (€href,'.html"')"/>

229

Chapter 11: A Case Study

</xsl:variable>
<xsl:variable name="folder" select="ancestor::map/@folder"/>

<xsl:result-document href="{$dir}/{Scontainer}/{$folder}/{s$file}">

The href attribute on the <xsl:result-document> instruction contains the target document location,
constructed from $container, $folder, and $file parameters and variables.

Navigation Tabs

Top-level navigation is output in a table, which provides for a logo and an unnumbered list for each tab.
The tab label and the first topic link in each section are obtained, and the current tab is highlighted so
that it appears to be in front of the other tabs:

<table class="header">
<tr>
<td class="logo">

</td>
<td class="navcontainer">
<ul class="navlist">
<xsl:call-template name="tabs">
<xsl:with-param name="mapID"
select="ancestor: :map/@id" />
</xsl:call-template>

</td>
</tr>
</table>

<xsl:template name="tabs">
<xsl:param name="mapID"/>
<xsl:for-each select="//map">

<xsl:variable name="1inkID" select="section[l]/topicref[l]/@href"/>

<xsl:call-template name="navtab">
<xsl:with-param name="id" select="$1inkID"/>
<xsl:with-param name="mapID" select="S$mapID"/>
<xsl:with-param name="label" select="@Qtab"/>
</xsl:call-template>

</1li>
</xsl:for-each>

</xsl:template>
<xsl:template name="navtab">
<xsl:param name="id"/>

<xsl:param name="mapID"/>
<xsl:param name="label"/>

230

Chapter 11: A Case Study

<xsl:variable name="linkmeta" select="Sresourcelist//entry[@xml:id=$id]"/>
<a>
<xsl:1if test="S$SmapID=current()/@id">
<xsl:attribute name="class">current</xsl:attribute>
</xsl:if>
<xsl:attribute name="href">
<xsl:value-of select="concat ($linkmeta//content/@src,$id,'.html')"/>
</xsl:attribute>
<xsl:attribute name="title">
<xsl:value-of select="$linkmeta/title"/>
</xsl:attribute>
<xsl:value-of select="$label"/>

</xsl:template>

Table of Contents

The content of this section is the same on each page, with one exception: the link to the relevant page is
highlighted if it matches the current metadata identifier:

<div id="pageNav">
<xsl:for-each select="ancestor::map//section">
<div class="relatedLinks">
<h3>
<xsl:value-of select="@label"/>
</h3>
<xsl:apply-templates select="current()//topicref"
mode="toc">
<xsl:with-param name="thistopic"
select="$identifier"/>
<xsl:with-param name="thismeta" select="Smeta"
tunnel="vyes"/>
<xsl:with-param name="reslist"
select="$resourcelist" tunnel="vyes"/>
</xsl:apply-templates>
</div>
</xsl:for-each>
</div>

<xsl:template match="topicref" mode="toc">
<xsl:param name="thistopic">default</xsl:param>
<xsl:for-each select=".">
<xsl:variable name="topic"
select="$resourcelist//entry[@xml:id=current ()/@href]"/>
<a>
<xsl:attribute name="href">
<xsl:value-of select="concat ($topic/content/@src,@href,'.html')"
/>
</xsl:attribute>
<xsl:1if test="S$thistopic=current ()/@href">
<xsl:attribute name="class">currentref</xsl:attribute>
</xsl:if>

<xsl:value-of select="S$topic/title"/>

231

Chapter 11: A Case Study

<xsl:apply-templates/>
</xsl:for-each>
</xsl:template>

Content Section

The reference-page content is processed with an <xsl:apply-templates> instruction, with
tunnel-parameter values for the document identifier and the scheme:

<div id="content">
<hl>
<xsl:value-of select="$title"/>
</hl>

<h2>Purpose</h2>
<xsl:apply-templates select="Smeta/summary"/>

<xsl:apply-templates select="S$Sresource//body/*">
<xsl:with-param name="source_id" select="S$identifier" tunnel="vyes"/>
<xsl:with-param name="default_scheme" select="$scheme" tunnel="yes"/>
</xsl:apply-templates>
</div>

You may recall that tunnel parameters, if declared in a template, are passed through a chain of calls.
This means that the $source_id and $default_scheme parameters will be visible to templates in
ref2xhtml.xsl and links.xsl.

The section stating the purpose of an element or function is at this time obtained from the metadata
<summary> element.

Function-Reference Pages

Function-reference pages differ somewhat from their element-reference equivalents. There is a <syntax>
element to process. The heading is not the same, and there are fewer columns in the property table.

The type attribute on the <properties> element is used to call the appropriate template:

<xsl:template match="syntax">
<h2>Signature</h2>
<p>

<xsl:value-of select="//syntax"/>

</p>
</xsl:template>

<xsl:template match="properties">
<xsl:choose>

<xsl:when test="@type='attribute'">
<xsl:call-template name="attribute"/>

</xsl:when>

<xsl:when test="@type='parameter'">
<xsl:call-template name="parameter"/>

</xsl:when>

232

Chapter 11: A Case Study

</xsl:choose>
</xsl:template>

<xsl:template name="parameter">

<h2>Parameter<xsl:if test="count(//property) gt 1">s</xsl:if>

</h2>

<table cellspacing="0">

<tr>

<th xsl:use-attribute-sets="th_first">Name</th>
<th xsl:use-attribute-sets="col">Description</th>
<th xsl:use-attribute-sets="col">Type</th>
<th xsl:use-attribute-sets="col">Use</th>

</tr>

<xsl:for-each select="//property">
<!-- don't sort -->
<tr>

<th xsl:use-attribute-sets="td_first">
<xsl:value-of select="name"/>

</th>

<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="description"/>

</td>

<td xsl:use-attribute-sets="row">
<xsl:apply-templates select="type"/>

</td>

<td xsl:use-attribute-sets="row">
<xsl:value-of select="required/@state"/> </td>

</tr>
</xsl:for-each>
</table>
</xsl:template>

Landing and Glossary Pages

The Overview tab provides landing pages for each of the principal sections of the site, and a page for the
glossary, and these have different content than the reference tabs. On the landing pages, the <reftable>
element enables you to create a table of links with brief details of the entries. Listing 11-1 is the source for
the XSLT-function overview.

Listing 11-1

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="../xsl/dita_topic2html.xsl" type="text/xsl"?>
<reference xml:id="xsl_functions" scheme="xsl">
<body>
<purpose>

<p>This section provides details of functions that may only be used with
XSLT stylesheets. These are distinct from XPath functions and user defined
functions defined with the <element>xsl:function</element> instruction.</p>
</purpose>
<reftable>
<link href="fn_current"/>
<link href="fn_current_group"/>
<link href="fn_current_grouping_key"/>

Continued

233

Chapter 11: A Case Study

Listing 11-1: (continued)

<link
<link
<link
<link
<link
<link
<link
<link
<link
<link
<link
<link
</reftable>
</body>
</reference>

href="fn_document"/>
href="fn_element_available"/>
href="fn_format_date"/>
href="fn_format_number"/>
href="fn_function_available"/>
href="fn_generate_id"/>
href="fn_key"/>
href="fn_regex_group"/>
href="fn_system_property"/>
href="fn_type_available"/>
href="fn_unparsed_text"/>
href="fn_unparsed_entity"/>

XSLT functions

This section provides details of functions that may only be used with X5SLT
stylesheets, These are distinct from XPath functions and user defined functions
defined with the xs1:function instruction.

Name
current
current-group

current-grouping-key

document
element-available

format-date, format-
dateTime, format-time

farmat-number
function-awvailable

generate-id
key

regex-group

system-property

type-available

unparsed-gntity-
public-id, unparsed-
entity-uri
unparsed-text,
unparsed-
text-gvailable

Figure 11-8

234

Purpose

Returns the current context item

Returns the sequence of items in the current group
within an xsl:for-each—group instruction

Returns the value of the group-by or group-adjacent
expression for the group being processed with an
xsl:for-each-group instruction. There is no key when
grouping by patterns.

Returns the document node of the XML document
located at the URI provided in the href argument
Returns true if a named XSLT instruction is available for
use,

Three functions that format date and time values,

Formats numbers for display using a picture string.

Returns true if a named ®SLT, user-defined or
extension function is available for use.

Generates an XML Name that uniquely identifies a node.

Returns the nodes with a given value for a named key,
which was defined using the x=1:key declaration.

Identifies an ordered substring returned as part of a
regular expression obtained from matching with
®x=l:analyze-string

Returns details about the current processor in a string
containing the value of a named environment property,
Tests if a given schema type is available.

Twa functions that access the public and system
identifiers of parsed entities in the DTD of a source
document.

Two functions that test for the existence of a text file,
and load it for processing.

Chapter 11: A Case Study

The link elements are processed with a call to 1inks.xsl:

<xsl:template match="reftable">
<xsl:param name="default_scheme" tunnel="yes"/>
<xsl:call-template name="maketable"/>
</xsl:template>

Figure 11-8 shows the output for the page.

Earlier in this chapter you created the code to handle a glossary, with a template to match the
<termtable> element. To create the glossary page in the Overview tab, you reuse this code in
ref2xhtml.xsl

Creating a Sitemap

Sitemaps are an easy way to provide information about pages on your website. A sitemap is an XML file
that lists URLs with additional information that gives hints to web crawlers about file locations. A typical
sitemap entry using the <url> element looks like the following snippet:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>"http://xm.net/docs/"xslt_reference/xsl_analyze_string.html</loc>
<lastmod>2009-05-05</1lastmod>
<changefreg>yearly</changefreqg>
<priority>0.5</priority>
</url>

</urlset>

The <urlset> element contains a single sitemap with a <url> element for each page. The <loc> element
contains the URL of the page, constrained to be no more than 2,048 characters.

An optional <lastmod> element gives the date of last modification in W3C datetime format, which allows
you to omit the timestamp part. You can also indicate the update frequency in the optional <changefreg>
element with values such as hourly, daily, weekly, and so on.

By setting an optional <priority> element value you can specify which pages you regard as most impor-
tant. Valid values range from 0.0 to 1.0, with a default priority of 0.5.

To index multiple sitemaps for a series of websites, you can use a structure like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<sitemap>
<loc>http://xm.net/xslt2_elements.xml</loc>
<lastmod>2009-01-05</lastmod>
</sitemap>
<sitemap>
<loc>http://xm.net/xpath2_functions.xml</loc>
<lastmod>2008-11-01</lastmod>

235

Chapter 11: A Case Study

</sitemap>
</sitemapindex>

You can find more details about the sitemap protocol at http://sitemaps.org.
The XML source for the sitemap is the same one you used to build the site: site.xml.

A standalone stylesheet, sitemap.xsl, again uses <topicref> elements in the source file to locate the
<content> elements in the metadata entries and retrieve the relative URL

Listing 11-2 shows how it works.

Listing 11-2
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="2.0">

<xsl:output method="xml" encoding="UTF-8"/>
<xsl:param name="date"

select="format-date(current-date(), ' [Y]-[M01]-[DOL1]")"/>
<xsl:param name="resourcelist"
select="document (concat ('../reslist_',6site/@scheme,'.xml"'))"/>

<xsl:param name="uri">"http://xm.net/docs/"</xsl:param>

<xsl:template match="/">
<xsl:variable name="output_file"
select="concat ('sitemap_', $date,'.xml')"/>
<xsl:result-document href="{Soutput_file}">
<xsl:variable name="resourcelist"
select="document (concat ('../reslist_',6site/@scheme,'.xml"'))"/>

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

<xsl:for-each select="//topicref">
<xsl:variable name="identifier" select="@href"/>
<xsl:variable name="meta"
select="S$resourcelist//entry[@xml:id=Sidentifier]"/>
<xsl:variable name="source"
select="substring-after (concat ($Smeta/content/@src,@href),'../")"/>
<url>
<loc>
<xsl:value-of select="concat ($uri, $source,'.html')"/>
</loc>
<lastmod>
<xsl:value-of select="S$date"/>
</lastmod>
<changefreg>yearly</changefreqg>
<priority>0.5</priority>
</url>
</xsl:for-each>
</urlset>
</xsl:result-document>
</xsl:template>
</xsl:stylesheet>

236

Chapter 11: A Case Study

The $outputfile variable is used to set the href attribute in an <xs1l:result docment> element. The
metadata for each entry in the resource listing is processed to obtain the relative URI of the file, which is
concatenated with the $uri parameter that identifies the site.

Summary

In this case study you extended your experience of XSLT by building a website for a sizeable number of
reference documents. Rather than work from scratch, you made use of existing metadata schemas and
an XSLT library that simplified the processing of links between documents. You also learned how to
construct a simple glossary from more than one data source.

237

Answers to Exercises

This appendix contains suggested solutions to the exercises at the end of most of the chapters in this
book.

Chapter 1

No exercises

Chapter 2

This chapter introduced XPath 2.0.

Question 1

Name some common XPath axes used to select element and attribute nodes.

Solution
Arguably the most commonly used axes are those that are used to select elements up and down the
tree, probably in the following order. The child: : axis is implicit in the majority of selections, with
the attribute: : axis coming in a close second.

a child::

attribute::

parent::

descendant: :

ancestor::

0O 000 o

self::

Appendix A: Answers to Exercises

Question 2

Assume that the context is in an element node. Write the expression that selects the xml: id attribute node
for the element using the full and shortcut syntaxes (you can use any element name you like).

Solution

In this example I used the reference element at the root of the quick-reference documents.

<xsl:value-of select= “reference/@xml:id”/>
<xsl:value-of select= “reference/attribute::xml:id"/>

Question 3

After reviewing the string functions in XPath, create a simple XSLT stylesheet that you can use as a
function test bed. Include several additional examples inside <p> elements using the following code as a
guide:

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform version="2.0">
<xsl:output method="xml" indent="yes" encoding="utf-8"/>
<xsl:template match="/">

<output>
<p>
<xsl:value-of
select="string-join(('my', 'string', 'join', string(4.00)), '/')"/>
</p>
</output>

</xsl:template>
</xsl:stylesheet>

Hint: You can transform the stylesheet using itself as the source document.

Solution

Here are some examples of functions I think you will use quite frequently. There is no right or wrong
solution, and you may have chosen other functions.

<?xml version="1.0" encoding="iso0-8859-1"7?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" version="2.0">
<xsl:output method="xml" indent="yes" encoding="utf-8"/>
<xsl:template match="/">
<output>
<p>
<xsl:value-of select="concat('the ', 'quick ', 'brown ', 'fox'"')"/>
</p>
<p>
<xsl:value-of
select="contains ('Love"s Labour"s Lost', 'lab')"
/>
</p>
<p>
<xsl:value-of select="ends-with('reslist.xml', '.xml')"/>

240

Appendix A: Answers to Exercises

</p>
<p>
<xsl:value-of select="normalize-space(' the quick brown fox ')"/>
</p>
<p>
<xsl:value-of select="substring-before('reslist_xsl.xml', '.xml')"/>
</p>
</output>
</xsl:template>

</xsl:stylesheet>

These are the results I obtained, which will be the same regardless of the source document that you use:

<?xml version="1.0" encoding="utf-8"?>
<output>

<p>the quick brown fox</p>
<p>false</p>

<p>true</p>

<p>the quick brown fox</p>
<p>reslist_xsl</p>

</output>

Chapter 3

This chapter described the use of templates, variables, and parameters.

Question 1

List some of the benefits of using both template rules and named templates.

Solution

Template rules:

Q

(]

They work like filters, comparing nodes to the rules automatically even if the source document
is complex and unpredictable.

Different modes of processing can be applied for a given match.
Priorities can be used to cover cases when several templates match the same source.

By default all the matching content will be output, so capturing it is fairly simple using
literal-result elements.

Named templates:

They are called by name, so they allow a degree of control not available in template rules.
They are useful for frequently used process steps.

The context does not move to a called template, so it can be used somewhat like a subroutine or
procedure.

Parameters can be specified and values passed, with values set at run time.

241

Appendix A: Answers to Exercises

Question 2

In the modes . xs1 stylesheet I suggested one way of formatting index values for element names. Try out
two additional modes — one that produces a simple space-separated list layout, and one that indexes
additional element names.

Solution

Part one of the question requires only a simple change to the index mode template. Instead of a list, I
used <p> as the container, and followed it with an <xs1:text> instruction with a single space in it:

<xsl:template match="element" mode="index">
<xsl:for-each select=".">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>

</xsl:for-each>
</xsl:template>

Part two first requires a change to the <xsl:apply templates> instruction that invokes the template. I
added the source <attr> element to the select attribute value.

In the index mode template, I added the <attr> element to the match attribute and retained the list
arrangement from the original version. (I could have added the <code> element too, but as it happens
there isn’t an instance in the source for this stylesheet.) In the listing, each index entry is prefixed with
the name of the source element, using the XPath name () function, which comes in handy on occasions
like this.

<body>
<xsl:apply-templates select="reference/body"/>
<p>Element index: <xsl:apply-templates
select="//element | //attr" mode="index"/>

</p>
</body>

<xsl:template match="element |attr" mode="index">

<xsl:for-each select=".">

<xsl:value-of select="name()"/>
<xsl:text>: </xsl:text>
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
</1li>
</xsl:for-each>

</xsl:template>

Chapter 4

This chapter discussed using logic to drive the XSLT process.
242

Appendix A: Answers to Exercises

Question 1

List the types of source material and output types that lend themselves to using <xs1:for-each> in
stylesheets.

Solution

I tend to use iteration to process regularly structured and populated source content that you typically find
in data-oriented material. Examples include name and address information, news feeds, bibliographies,
and glossaries, which return output in tabular form.

Question 2

Prepare some attribute sets suitable for applying different text and background color combinations to

a <note> element in HTML output, and show an example of how to use them in a template. The type
attribute on the <note> element can be used to determine the style. Possible attribute values are “note”,
“caution”, and “warning”.

The precise colors are not critical, but I suggest black/white, blue/gray, and red/yellow combinations
for text and background. Figure 4-1 shows the sort of result I have in mind, though not the colors, unfor-
tunately.

|This is a note ‘

|This is a caution ‘

|This i5 a warning ‘

Figure 4-1
The CSS stylesheet reference.css will handle the basic note style correctly.

Solution

This solution makes use of the way that you can override or supplement a CSS stylesheet with local style
properties on HTML elements. Here is the definition of the note style in reference.css.

.note{
padding: 5px;
margin-bottom: 6pt;
border: 1px solid #cccccec;

}

The first <xsl:attribute-set> definition sets the class attribute, and the second to fourth make use of
it in the use-attribute-sets attribute, before declaring a style attribute with different values for color
and background-color:

<xsl:attribute-set name="note">
<xsl:attribute name="class">note</xsl:attribute>

</xsl:attribute-set>

<xsl:attribute-set name="warn" use-attribute-sets="note">

243

Appendix A: Answers to Exercises

<xsl:attribute name="style">color: red; background-color: #FFFF99;</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="caution" use-attribute-sets="note">
<xsl:attribute name="style">color: blue; background-color: #F5f7f7</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="plain" use-attribute-sets="note">

<xsl:attribute name="style">color: black;
background-color: #FFFFFF</xsl:attribute>
</xsl:attribute-set>

The code matching the <note> element node looks like this:

<xsl:template match="note">
<xsl:choose>
<xsl:when test="@type='warning'">
<p xsl:use-attribute-sets="warn">
<xsl:value-of select="."/>
</p>
</xsl:when>
<xsl:when test="@type='caution'">
<p xsl:use-attribute-sets="caution">
<xsl:value-of select="."/>
</p>
</xsl:when>
<xsl:otherwise>
<p xsl:use-attribute-sets="plain">
<xsl:value-of select="."/>
</p>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Chapter 5

This chapter covered sorting and grouping of source nodes.

Question 1

In what circumstances would you use <xsl:sort> instructions inside <xsl:apply-templates>, as
opposed to using it inside <xsl:perform-sort>?

Solution

I would use sorting in <xsl:apply-templates> if I intended to process the sorted output immediately
using the instructions in any matching templates.

244

Appendix A: Answers to Exercises

<xsl:perform-sort> is best applied inside a variable, when you want to “‘park” the sorted nodes as is
without further processing.

Question 2

Given that the default data-type attribute value used in an <xsl:sort> instruction is “text”, what is
the correct syntax for an instruction to sort on xs:dateTime values in elements named <update>? Apart
from this value, are other related settings needed to make the instruction work correctly?

Solution

The correct syntax for <xsl:sort> is as follows, assuming the context item is being sorted:
<xsl:sort select="xs:dateTime(.)"/>

Because this function is in the XML Schema namespace, you must declare it in the <xsl:stylesheet>
element:

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

Question 3

In the last Try It Out in this chapter, I suggested some changes that could be made to the stylesheet
local.xsl, because it “lost” information that could have been captured by applying class attributes.
Try making these changes and verify that the class attributes are set correctly by looking at the XHTML
source code. Then modify xhtml2ref.xsl to pick up those class values and output correct element
names, rather than <code> elements.

Solution

Here is the original change to generate the class attribute values that I suggested for local.xsl:

<xsl:template match="attr | element | code">
<code>
<xsl:attribute name="class">
<xsl:value-of select="name()"/>
</xsl:attribute>
<xsl:value-of select="."/>
</code>
</xsl:template>

Here is the replacement code template for xhtml2ref.xsl:

<xsl:template match="code">
<xsl:choose>
<xsl:when test="@class='element'">
<element>
<xsl:value-of select="."/>

245

Appendix A: Answers to Exercises

</element>
</xsl:when>
<xsl:when test="@class='attr'">
<attr>
<xsl:value-of select="."/>
</attr>
</xsl:when>
<xsl:otherwise>
<code>
<xsl:value-of select="."/>
</code>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Chapter 6

This chapter showed how to work with strings, numbers, dates, and times.

Question 1

a. What is the attribute on <xs1:number> that determines the way in which nodes are numbered?

b. Give a code fragment that shows how to select and sequentially number some footnotes if the
element name in the XML source is <fn>, and the HTML output is something like the following
example:

<p>[4] This is the fourth footnote.</p>
Solution

a. The level attribute determines the method of numbering.

b. Here I number footnotes using the value of “any” in the level attribute. The square brackets
set off the numeric values, followed by a space inside <xsl:text>:

<xsl:template match="fn">
<p>
[<xs]l:number level="any"/>]
<xsl:text> </xsl:text>
<xsl:value-of select="."/>
</p>
</xsl:template>

Question 2

What are some implementation-related limitations on the use of the format-date (), format-dateTime (),
and format-time () functions?

246

Appendix A: Answers to Exercises

Solution

The settings for the optional arguments, language, calendar, and country, are dependent. If they are not
supported, then you may get unexpected results. It is advisable to check your processor documentation
and test to see if it is worth using these values.

Question 3

INlustrate the use of the following date-related functions, making use of the XPath 2.0 Function Reference
of Appendix F if required:

month-from-dateTime ()
years-from-duration ()

timezone-from-time ()

Solution

In this solution I used the following values:

<output>
<p><xsl:value-of
select="month-from-dateTime (xs:dateTime ('2009-04-12T18:20:00Z"'))"/></p>
<p><xsl:value-of select="years-from-duration(xs:duration('P15M'))"/></p>
<p><xsl:value-of select="timezone-from-time (xs:time('13:00:00405:00"))"/></p>
</output>

The results looked like this:

<outut>
<p>4</p>
<p>1</p>
<p>PT5H</p>

</output>

Chapter 7

This chapter demonstrated ways to handle multiple source and output documents.

Question 1

What design factors and XSLT language features lend themselves to modularization?

Solution

Typically you will use stylesheets to contain frequently used code, and avoid using long and complex
stylesheets that make it hard to understand different parts of a process. Examples include global param-
eters, styling, and navigation features.

247

Appendix A: Answers to Exercises

A second aspect of modularization is the requirement to replace or partly override parts of an existing
stylesheet by writing an importing module.

Question 2

If you have already declared an <xs1:output> element named “archive,”” show how would you override
the declared method and indent attributes in an <xsl:result document> instruction.

Solution

In this solution the format attribute on a <xsl:result-document> refers to the <xsl:output> declara-
tion’s name attribute, and overrides the two values:

<xsl:output name="archive" method="xml" indent="no" encoding="UTF-8"/>

<xsl:template match="/">
<xsl:result-document format="archive" method="xhtml" indent="yes">

</xsl:result-document>
</xsl:template>

Question 3

Name two XSLT elements that you can use to make use of existing template rules in an imported
stylesheet.

Solution

The two instructions are <xsl:apply-templates> and <xsl:next-match>.

Question 4

Complete the following table, comparing the features of the XSLT document () function and XPath’s
doc () function.

Values document() doc()

Input

URI resolution
Fragment identifier
Missing document
Result

Other implementation issues

248

Appendix A: Answers to Exercises

Solution

This is the table I prepared for this solution.

Values
Input

URI resolution
Fragment identifier
Missing document
Result

Other implementation
issues

Chapter 8

document()

Multiple document URIs

Base URI other than the context
can be optionally specified

Fragment identifier will return
element node

Behavior is
implementation-defined

A sequence of nodes

Fragment identifier support is
implementation-specific

doc()
Single document URI

base-uri () function may be
required in addition

Not supported

doc-available () function
required to verify URI exists

Document node for the URI

Behavior may depend on the
implementation and
configuration

This chapter illustrated several aspects of processing plain text with XSLT.

Question 1

Why are the <xs1:strip-space> and <xsl:preserve-space> declarations useful?

Solution

You can use one or both of the elements to provide a list of elements where you wish to remove or return

whitespace-only text.

Question 2

Write an <xs1:preserve-space> declaration for appropriate elements you have seen in the XSLT Quick

Reference examples.

Solution

There is generally no need to preserve space unless you have specified stripping it. This solution shows
two declarations: one removing it everywhere, including element-only content, the second preserving it
in mixed-content elements:

<xsl:strip-space elements="*"/>
<xsl:preserve-space elements="p description"/>

249

Appendix A: Answers to Exercises

Question 3

Using census.xml as source, write a transform to convert it back to the original CSV format.

Solution

In this solution I used the child: : axis to select each element under <person>, with a comma between
elements and a newline at the end:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="text"/>
<xsl:strip-space elements="*"/>

<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="person">
<xsl:for-each select="child: :node() ">
<xsl:value-of select="."/>
<xsl:text>,</xsl:text>
</xsl:for-each>
<xsl:text>
</xsl:text>
</xsl:template>

</xsl:stylesheet>

Chapter 9

This chapter showed how you could use identifiers and keys to locate related nodes in source data.

Question 1

Under what conditions will an XSLT processor recognize an xs: ID type and set the is-id property on a
source node when parsing an input document?

Solution

The following conditions will set this property:

QO The source document must contain a DTD declaring an attribute as having type ID.

Q If the processor is schema-aware, it must recognize the attribute as an xs: ID type or as one
derived from it.

Q The attribute must be named xm1:id.

Question 2

What is the purpose of the collation attribute on the <xsl:key> declaration?

250

Appendix A: Answers to Exercises

Solution

This attribute has an identical purpose to collation attributes on <xsl:sort> and on several string
functions. The collation determines the rules for making sting comparisons. It can be used to provide the
URI of a collation to use, other than the default collation in use by the processor. The range of supported
collations is implementation-dependent.

Question 3

How consistent would you expect the results to be for a given node from the generate-id() function on
the following?

Q A different processing run

Q A different processor

Solution

On a different processing run, there is no guarantee that a given processor will generate the same result
for a specified node, though it might do so.

There is no requirement in the XSLT specification that processors render the result in a given format,
but this is not a problem, as they are required to return the same results for a given node in the same
processing run.

Chapter 10

This chapter discussed debugging, validation, and documentation.

Question 1

Demonstrate how to incorporate an xsl-stylesheet processing instruction in an XML result
document.

Solution

If you want to create any processing instruction, you can use the <xsl:processing-instruction> ele-
ment to write a node to the output. In this case, you define the type of instruction in the name attribute,
and specify the remaining content inside an <xs1:text> instruction:

<xsl:processing-instruction name="xsl-stylesheet">

<xsl:text>href="stepl.xsl" type="text/xsl"</xsl:text>
</xsl:processing-instruction>

Question 2

Why can using <xs1:comment> rather than <xsl:message> sometimes make it easy to trace problems in
your stylesheet code?

251

Appendix A: Answers to Exercises

Solution

Not every XSLT processor handles message output in exactly the same sequence. For example, vari-
ables are often not evaluated until they are first used. This can mean that <xs1:message> content will be
recorded in an unpredictable order, and may not easily be related to problem code.

In contrast, <xs1:comment> instructions are always evaluated in context, and can often be more helpful
in resolving problems.

Chapter 11

No exercises

252

Extending XSLT

Having come this far and seen what is available in the standard features of XSLT, you might ask
why you’d need to extend it to add functionality.

There are several possible circumstances:

O You might want to access data in a source such as a database.

Q The functions you need are not available in XSLT or XPath — for example, you need to do
trigonometric calculations with functions such as tan()or cos ().

O Additional instructions or attributes are needed.

O

An application requires customized serialization encodings or parameters.

0O A collating sequence is necessary for a language that is not provided, and you also need to
localize numbers and dates in a way that is not supported.

There are a number of ways to make extensions. Some you can make yourself with stylesheet func-
tions, and there are also open-source XSLT function libraries that you can make use of. Processor
vendors may provide extensions of several kinds, including functions, instructions and declarations,
additional attributes, and types. It is also possible to define your own extension, usually written in
the language of the host XSLT processor.

Stylesheet Functions

A common approach to extending XSLT is to write new stylesheet functions using the
<xsl:function> declaration, whether these are user-written or defined by a third party. These
functions use XSLT and XPath, and they are called the same way as other extension functions.

The following is a schema definition. Note that as a declaration, it is a top-level element:

<xs:element name="function" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">

Appendix B: Extending XSLT

<XS:sequence>
<xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded" />
<xs:group ref="xsl:sequence-constructor-group" minOccurs=
"0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="override" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="as" type="xsl:sequence-type" default="item()*"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

To name a function you set the name attribute value to a lexical QName, which must have a namespace
prefix that ensures it is distinct from those in the XSLT namespaces. The namespace must also be declared
in the relevant <xs1:stylesheet> element.

You can use zero or more <xs1:param> elements in functions, but the required attribute should never
be defined for a function parameter.

You call stylesheet functions from an XPath expression using the function name and a matching number
of parameters, passed in as a series of comma-separated values.

Calling an Extension Function

The next example shows how to make use of a function in the FunctX stylesheet library, details of which
I'mention later in this appendix. You can download the XSLT 2.0—compatible version of the library from
www.xsltfunctions.com/xsl/download.html.

I suggest that you choose the commented version for your download, which you should save in a conve-
nient folder. It is advisable to retain the library intact, as there are some interdependencies.

The functx:contains-word() function works in a similar way to XPath contains (). It takes two string
parameters: the first is the containing text string, and the second is the word to match. If a match is found,
the function returns true. It is case-insensitive.

The word to match must be delimited by either ““non-word”” characters or the beginning or end of the
first parameter. Most punctuation and whitespace characters are considered non-word characters, while
letters and digits are word characters.

The function requires another function, functx:escape-for-regex (), which escapes regular expression
(regex) special characters. This function is not formally declared in the calling function, as sometimes
required in other languages.

Here is the code for functx:contains-word().
<xsl:function name="functx:contains-word" as="xs:boolean"
xmlns: functx="http://www. functx.com" >

<xsl:param name="arg" as="xs:string?"/>
<xsl:param name="word" as="xs:string"/>

254

Appendix B: Extending XSLT

<xsl:sequence select="
matches (upper-case ($Sarg),
concat ('~ (.*\W)?"',
upper-case (functx:escape-for-regex (Sword)),
C(\W.*)28))
||/>

</xsl:function>

It uses the XPath functions matches (), concat (), and upper-case (), and calls another library function,
functx:escape-for-regex (). The result is returned in an <xsl:sequence> instruction.

There is a lot of regex work going on here, and one attraction of using a library function is that you can
treat it as a black box. Basically, both strings are uppercase, escaped for regex special characters, and
anchored on word boundaries.

To call this function you need to ensure that the functx: namespace is declared in your stylesheet and
that the functx.xsl library file is referenced in an <xs1:include> declaration. The following snippet
illustrates how the function is called within an <xs1:when> test:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns: functx="http://www. functx.com" exclude-result-prefixes="functx"

version="2.0">

<xsl:include href="functx.xsl"/>

<xsl:template match="/">
<output>
<xsl:choose>
<xsl:when test="functx:contains-word('now is the time for
all good men...',6 'bad"')">
A match was found.</xsl:when>
<xsl:otherwise>No match in source.</xsl:otherwise>
</xsl:choose>
</output>
</xsl:template>
</xsl:stylesheet>

Function Libraries

There are several open-source function libraries that you can make use of. This section covers two that I
think you will find most useful.

EXSLT

EXSLT is a community initiative to define a standardized set of extension functions and extension ele-
ments that can be used across different XSLT processors. The functions are grouped into a number of

255

Appendix B: Extending XSLT

modules. Some are written as XSLT templates or functions. Others are in JavaScript or C, depending on
the platforms for which they are intended.

EXSLT developments date back to SLT 1.0 and some of its perceived weaknesses. Now, many EXSLT
functions have been superseded by those in XSLT 2.0. All of them are applicable in version-1.0 stylesheets,
and many are still useful in version 2.0, such as those dealing with mathematics and sets. You can down-
load the modules from www.exslt.org.

FunctX

The FunctX library website lists a wide range of extension functions: strings, numbers, dates, atomic
values, elements and attributes, and so on. You met one earlier in this appendix.

The library is listed A-Z and by category in both XSLT and XQuery syntax. It also includes a convenient
list of XPath and XSLT functions. You can explore the library and download an XSLT 2.0—compatible

version at www.xsltfunctions.com/xsl.

Vendor Extensions

The XSLT specification does not dictate how extension support should be provided by
XSLT-processor vendors, and each vendor will have its own approaches to developing exten-
sions. There may, for example, be different choices of languages, and a variety of language-binding
mechanisms.

This section gives examples from several categories of extension provided by the Saxon processor. Full
documentation can be accessed at www.saxonica.com/documentation/extensions/intro.html.

EXSLT Modules

Saxon provides an implementation of the EXSLT modules Common, Math, Sets, DatesAndTimes, and
Random, with some restrictions. Those that overlap XSLT 2.0 functionality are still supported except
where the semantics differ.

Functions

The saxon:file-last-modified() function takes an absolute file or HTTP URI and returns an
xs:dateTime value, which is usually in a specific time zone. The result can then be formatted using the
format-dateTime function, or input to arithmetic calculations or comparisons against other dates and
times. It takes the following form:

format-dateTime (file-last-modified('input.xml'))

Instructions

The <saxon:call-template> instruction is identical to <xsl:call-template> except that the template
name can be written as an attribute-value template, allowing the template that is called to be determined
at run time:

<saxon:call-template name="{S$template_name}"/>

256

Appendix B: Extending XSLT

Attributes

The saxon:memo-function attribute may be set on the <xs1:function> element. A value of "yes" will
cache the results of calling the function; and if it is called again with the same arguments, the previous
result is returned, rather than being recalculated.

Serialization Parameters

The saxon:indent-spaces attribute can be set on the <xs1:output> declaration. When the output
method is XML, HTML, or XHTML with indent="yes", setting an integer value will control the amount
of indentation. The default value in the absence of this attribute is 3.

User-Define Extensions

User-defined extensions (other than stylesheet functions) are generally best developed in the native
language of the XSLT processor you are using — for instance, Java for Saxon, and JavaScript or C# for
MSXML. The supporting facilities will depend on the processor concerned. For example, at the time of
writing, Saxon supported extension functions, but not extension instructions, on the .NET platform.

MSXML uses the top-level element <msxml:script> to bind extension functions, which are often
written inline in JavaScript, within the script element. For example, the following code provides the
EXSLT cos () function. Note the use of the extension-element-prefixes attribute in the containing
<xsl:stylesheet> declaration, which contains a space-separated list of the prefixes:

<xsl:stylesheet version="1.0" extension-element-prefixes="math msxsl">

<msxsl:script language="JavaScript" implements-prefix="math">
function cos(arg){ return Math.cos(arg);}
</msxsl:script>

</xsl:stylesheet>

Some Java-based processors implicitly support binding of functions to Java methods. For example, Saxon
recognizes the java: URI prefix as special and regards the value after the prefix as a Java class name. If
the method is available, then it is called and the result is returned as the value from a function call. The
next example shows how the external function Math:sgrt () would be called:

<xsl:template match="number">
<result>
<xsl:value-of select="Math:sqgrt(xs:double(.))"
xmlns:Math="java:java.lang.Math"/>
</result>
</xsl:template>

Before you jump in and try developing an extension, check carefully what is already available in XSLT
and XPath. Then examine the resources available in third-party XSLT function libraries. Many of these
are built with XSLT and XPath, and will serve as examples of what can be achieved. Maybe they can
serve as a starting point for further development work.

In addition, look at what can be done with vendor-provided extensions. As you have seen, these often
go beyond additional functions alone and can cover extension attributes, instructions, and serialization
properties.

257

XSLT Processing Model

Looked at in the abstract, the XSLT processing model can appear quite complex. I think the model
is much easier to understand after you have gained some knowledge about XSLT and XPath.

This appendix expands on the brief outline of XSLT processing contained in the introduction and
relates it to information that you have already encountered in several chapters of this book. While
it does not contain significant new information, I hope it will draw together what you have learned
in a convenient review format.

In outline, an XSLT processor parses an XML source document and a stylesheet into a source tree,
applies a transform to create a result tree, and serializes the content in the specified output format.

Quite often, the process is rather more complex. Multiple source documents can be loaded,
and stylesheets may be provided in modules. There may be more than one result, and multiple
serializations.

In every case, each document is processed as a separate tree. Initially, a source tree is created for
each input and the transformation takes place, creating one or more result trees. Finally, the result
trees are serialized to one or more of the possible output formats.

The Data Model

Often the source, the stylesheet, and the result documents are in XML format. But because other
input and output formats, MTML, XHTML, and text are supported, it does not make sense to use
XML as an internal representation, and to possibly convert to and from XML in addition to per-
forming the transforms. The XSLT data model therefore represents an XML document conceptually
as a tree. This model is shared with XPath.

You learned about this node structure in the introduction and about the node properties in
Chapter 2. Figure C-1 is a reminder of the kinds of node that are specified, in the form of a UML
(Unified Modeling Language) class diagram. The rectangles represent classes and the arrows show
the class relationships, in this case indicating that all the nodes are of type node.

Appendix C: XSLT Processing Model

Node
A
Document Element Attribute Text
Processing
Comment Instruction Namespace
Figure C-1

The XPath data model is flat, rather than showing a hierarchy based on a particular relationship or
property. Properties are defined for all nodes, even if they do not apply in every case. For example,
attribute and namespace properties apply only to element nodes.

Transforming

There are several ways to invoke a stylesheet processor. In Chapter 1 you applied three methods:
an xml-stylesheet processing instruction, the Oxygen IDE GUI, and the Saxon command line. The
XSLT specification says nothing about how this should happen, so various types of APIs and their
implementations can vary greatly.

However, the specification does say what can be passed across the interface. By now you’ll have seen
most of them in action: the name of the source document, the main stylesheet, and global parameters.
Other values allowed include an initial named template, an initial mode, and a base URI for output.

Parsing Inputs

The XML source document is parsed and a source tree is created. The main stylesheet is parsed and,
as you saw in Chapter 7, any additional stylesheets specified by <xsl:include> or <xsl:import>
declarations are also loaded.

Additional XML source documents may also be loaded with the XSLT document () function, or with

the XPath doc () or collection() functions. However, documents loaded this way are not part of the
initialization of the source trees; this processing takes place only when one of these functions is called in
a template.

At its simplest, these additional documents can be small lookup files, like the resource and subject meta-
data sources you used in the case study in Chapter 11. It is also possible to handle the aggregation of a
range of source documents using data values in a file that identifies the documents to process, like the
one used to build the Quick Reference website.

260

Appendix C: XSLT Processing Model

Template Rules

You've seen what happens in template processing, discussed in detail in Chapter 4. The root node of the
source tree is used as a starting point, unless an initial named template is specified.

The pattern in the match attribute value in an <xs1:template> rule is compared to those in the source
document. If there is no match with the document node of the source tree, then a built-in rule is invoked.

The content of the template is a series of instructions and text nodes known as a sequence constructor. The
sequence constructor is evaluated, and the result (which is also a sequence) is placed in the result tree in
the order of the instructions in the template.

It is possible to use modes and priorities to modify the basic operation of template rules.

A mode expressed in the mode attribute on an <xsl:template> element enables a node in a source tree
to be processed multiple times, each time producing a different result. Modes also allow different sets of
template rules to be active when processing different trees.

Priorities, set as numeric values on a template’s priority attribute, make it possible to resolve cases
where there are several possible candidates for a match. These values will override any defaults
calculated by the processor.

Variables and Parameters

Variables and parameters can be defined to have either global scope or local scope. Those with global
scope can be declared as top-level elements and accessed from within all templates.

Global parameters defined with <xs1:param> differ from global values specified with <xsl:variable>
in that they can be passed when the processor is invoked, and thus varied to suit the requirements of the
documents being processed.

Within templates, variables can contain locally scoped values, but may not be redefined once they are
set. The scope of such variables is the containing sequence constructor.

The <xs1:variable> instruction is also often used as a container for sequence constructors in the creation
of temporary trees to be used for further processing.

Templates can contain <xs1:param> declarations to specify the parameters to be passed to the tem-

plates when they are processed. The instructions <xs1:apply-templates> and <xsl:call template>
that invoke the templates can pass these parameter values in the <xs1:with-param> instruction.

Controlling Processing

Normally, source-tree nodes are processed in document order. However, as you learned in Chapter 4, it
is possible to define alternative sequences in which templates are invoked.

<xsl:apply-templates> can take several values in the select attribute to determine the processing
order, and can additionally specify the mode to use.

261

Appendix C: XSLT Processing Model

<xsl:call-template> calls a named template as though it were a subroutine. Whereas the context node
usually moves to a template as it is matched, the context does not change with <xsl:call-template>.

<xsl:1f> can be used to handle simple conditional processing. <xsl:choose> and the contained
<xsl:when> and <xsl:otherwise> instructions provide a way to handle more complex options.

<xsl:for-each> may be used to process a series of nodes anywhere in the source tree, and
<xsl:for-each-group> can be employed to group nodes in several ways.

Outputs and Serialization

In Chapter 7 you used the <xsl:result-document> instruction, which contains a tree of nodes, ready
to serialize into one of the four supported formats supported by <xsl:output>. The result-document
attribute values may also be set to override a named output format.

When you specify template processing using <xsl:apply-templates> or <xsl:call-template>, the
constructed sequences are written to nodes as a result tree. Serialization is a distinct step and is outside

the scope of the XSLT 2.0 specification.

Because serialization applies to both XSLT and XQuery, the process is the subject of a separate
recommendation. See www.w3c.org/TR/xslt-xquery-serialization.

In XSLT 2.0 the attributes on the <xs1:output> element provide some control, in addition to template
instructions, over how the result tree is turned into an output document.

262

XSLT 2.0 Quick Reference

This reference provides brief details of the XSLT 2.0 elements and functions.

The schema on which this reference is based is non-normative, which means that it is not strictly
part of the XSLT 2.0 recommendation as such. The recommendation is, of course, authoritative.

A copy of the schema is in Appendix E. The online version can be found at www.w3.org/2007
/schema-for-xslt20.xsd.

There are notes on the schema in the introduction to this book, and you will find further detailed
information on the use of both elements and functions in Michael Kay’s XSLT 2.0 and XPath 2.0
Programmer’s Reference, Fourth Edition (Wrox, 2008).

The content of this reference is derived from the same XML source as the material used in the case
study in Chapter 11. If you chose to build the reference website described there, you can make use
of the online version too.

This appendix is organized as described in the following sections.

Elements

In the schema, XSLT elements are broadly divided into two categories: declarations and instruc-
tions. These are specified as abstract elements, which never are used in stylesheets; rather, they are
elements for which other elements may be substituted.

In this reference, the XSLT elements are described in alphabetical order, with notes on their purpose,
their usage, and their place either in the schema content model or in the substitution spaces for
declarations and instructions.

A table of attributes follows, with name, description, and type information. Any optional values
and defaults are given, with a note indicating whether the attribute is required or optional.

Appendix D: XSLT 2.0 Quick Reference

Attribute Groups

Some attributes are common to a wide range of elements:

a Generic element attributes
QO Validation attributes

Q Version attributes

These are grouped together after the element entries, and referred to after the attribute listing in each
entry.

Types

The XSLT schema contains a number of simple, derived datatypes. Those that are used frequently, or
are complex, are described after the attribute group list, and referred to in the attribute Type column in
element entries. However, those that are easily explained in the attribute table are described in place.

I also refer to one Complex type representing sequence constructors.

Functions

There are several XSLT-specific functions that you can use along with those provided by XPath 2.0.

They are described following the schema type listing. XPath 2.0 functions themselves are described in
another quick reference in Appendix E.

XSLT Elements
xsl:analyze- string

Purpose

An instruction that processes a string using a regular expression.

Usage

This element is useful in handling structured text that is not marked up using XML.

Note that any curly brackets in a regular expression must be escaped by doubling them, as the value of
the regex attribute is an attribute value template.

Contains

xsl:matching-substring | xsl:non-matching-substring | xsl:fallback

In substitution group

xsl:instruction

264

Appendix D: XSLT 2.0 Quick Reference

Attributes

Name Description

flags Flags that determine how the
expression is interpreted

regex The regular expression used
to analyze the string

select The string to be analyzed

Attribute group

Type

xsl:avt

xsl:avt

xsl:expression

Generic element attributes | Version attributes

xsl:apply-imports

Purpose

Default

Options

i, m, s, x

Use
Optional

Required

Required

An instruction, used within a template body, to override an existing global variable or parameter, or a

template rule, with one of the same name in an imported module.

Usage

<xsl:apply-imports> is useful when you want to partially override a rule, rather than replace it entirely.

<xsl:next-match> provides an alternative method of achieving the same result.

Contains

xsl:with-param

In substitution group

xsl:instruction

Attribute group

Generic element attributes | Version attributes

See also

xsl:next-match

xsl:apply-templates

Purpose

An instruction that defines a set of nodes to process.

265

Appendix D: XSLT 2.0 Quick Reference

Usage

The optional select attribute defines the nodes to process. If this attribute is not set, then all the children
of the context node will be processed.

The mode attribute must match a mode attribute value on a matching template.

The <xs1:sort> element must follow immediately after the instruction.

Contains

xsl:with-param | xsl:sort

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
mode The processing xs1:QName | QOName, #default, Optional
mode to use xs: token #current
select The sequence of xsl:expression Optional
items to process
Attribute group

Generic element attributes | Version attributes

xsl:attribute

Purpose

An instruction that adds attributes to literal result elements or elements created by an instruction like
<xsl:element> Or <xsl:copy>.

Usage
This instruction must precede other instructions used to construct an element.
The node to be added is made up of the required name and the optional namespace attributes, each
of which may be expressed as attribute value templates; for example: <xsl:attribute name="href"
select="{Surl}"/>.

Either the select attribute or the element content should be used to define the attribute value.

Use this instruction, rather than an attribute on a literal result element, when you want the value be
determined at run time.

266

Appendix D: XSLT 2.0 Quick Reference

Use the optional type attribute when you need to validate the value’s datatype against a schema with a
schema-aware processor.

Contains

sequence-constructor

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
name The name of the attribute set. xsl:avt Required
namespace The namespace URL xsl:avt Optional
select The sequence of items to xsl:expression Optional
process.
separator Separator to be inserted xsl:avt Optional
between items generated in
the value sequence. The
default is a single space.
Attribute group

Generic element attributes | Version attributes | Validation attributes

xsl:attribute- set

Purpose

Declares a named set of attributes and values.

Usage

To use the named set, you refer to it in the use-attribute-sets attribute on the <xsl:element> element,
the <xs1:copy> elements, or on a literal result element.

A common use is to apply a set of fixed property values to an element, but you can also use the contained
<xsl:attribute> elements to select values or construct sequences.

Contains

xsl:attribute

267

Appendix D: XSLT 2.0 Quick Reference

In substitution group

xsl:declaration

Attributes
Name Description Type Default Options Use
name The name of the attribute set. =~ xs1:QName Required
use-attribute-sets Used to combine other sets xsl:QNames Optional
from the same stylesheet. The
value is a space-separated list
of QNames.
Attribute group

Generic element attributes | Version attributes

xsl:call-template

Purpose

An instruction that invokes a named template.

Usage

The name attribute must match the value of the name attribute on an <xs1:template> element. The context
remains in the node from which the template is called, rather than moving to the called template.

The <xs1:with-param> instruction may be used to supply parameter values.

Contains

xsl:with-param

In substitution group

xsl:instruction

Attribute

Name Description Type

name The name of the template to call xs1:QName
Attribute group

Generic element attributes | Version attributes

268

Default Options Use
Required

Appendix D: XSLT 2.0 Quick Reference

See also

xsl:template

xsl:character- map

Purpose

Declares a named character map that determines the way characters are serialized.

Usage

In the character map, one or more specific characters are replaced by a string, each of which is
defined in the contained <xsl:output-character> element. The character map is applied only when
a <xsl:output> or <xsl:result-document > declaration refers to the map in a use-character-maps
attribute.

Typically this element is used to create supported character entities in output.

Contains

xsl:output-character

In substitution group

xsl:declaration

Attributes
Name Description Type Default Options Use
name The name of the character xs1:QName Required
map
use-character-maps Space-separated list of the xsl:QNames Optional
names of additional character
maps to use
Attribute group

Generic element attributes | Version attributes

See also

xsl:output

xsl:result-document

xsl:choose

269

Appendix D: XSLT 2.0 Quick Reference

Purpose

An instruction that specifies a choice between alternatives, which are defined by multiple <xs1:when>
instructions, and an optional terminal <xs1:otherwise> element.

Usage

Each <xs1:when> instruction has a test attribute containing an expression to evaluate.

A single <xs1:when> has the same result, as though you had used <xs1:if> for a single test.

Contains

xsl:when | xsl:otherwise

In substitution group

xsl:instruction

Attribute group

Generic element attributes | Version attributes

See also

xsl:if

xsl:comment

Purpose

An instruction that renders a comment node.

Usage

The comment may be either the value of the select attribute or contained in the constructed sequence.

In substitution group

xsl:instruction

Attribute
Name Description Type Default Options Use
select The comment text xsl:expression Optional
Attribute group

Generic element attributes | Version attributes

270

Appendix D: XSLT 2.0 Quick Reference

xsl:copy

Purpose

An instruction that copies the context item to the result sequence.

Usage

This instruction is often used in transforms when two schemas have some element structures in common.

Specified element and attribute nodes in the enclosed <xs1:apply-templates> instruction are added to
the output as if they were created by the <xs1l:element> or <xsl:attribute> instructions.

No child elements of the context node are copied, nor are its existing attributes. To do this you must use
<xsl:copy-of>.

The selected text, processing instructions, comment, and namespace nodes are copied entirely.

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
copy-namespaces Whether or not to xs: token yes yes, no Optional
copy namespace
nodes
inherit-namespaces Whether or not xs:token yes yes, no Optional
children of a copied
node will inherit
copied namespaces
use-attribute-sets The space-separated xsl:QNames Optional
list of attribute
names to use for
elements
Attribute group

Generic element attributes | Version attributes | Validation attributes

See also

xsl:copy-of

xsl:copy- of

271

Appendix D: XSLT 2.0 Quick Reference

Purpose

An instruction that copies a sequence of nodes to the result sequence.

Usage

This instruction creates a deep copy of the current node and its descendants. It is useful for copying the
contents of a temporary tree to a result document or for copying a subtree of a source document to the
output directly.

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
copy-namespaces Whether or not to copy xs: token yes ves, no Optional
namespace nodes
select The sequence of items to xsl:expression Required
process
Attribute group
Generic element attributes | Version attributes | Validation attributes
See also
xsl:copy
xsl:decimal-format
Purpose

A declaration that determines the display format of a source data number, which has been converted to
a string by the XSLT format-number () function.

Usage

The element effectively localizes the number format for users, so you could, for example, have a group of
named formats in an imported stylesheet that are used with a locale parameter to determine the format-
ting for a particular instance.

Contained by

xsl:declaration

272

Appendix D: XSLT 2.0 Quick Reference

leading and trailing zeros

Attributes

Name Description Type Default Options Use

NaN The string used to represent xs:string NaN Optional
“not a number”

decimal-separator The character used as the xsl:char Optional
decimal point

digit The placeholder character for xsl:char # Optional
significant digits

grouping-separator The character that separates xsl:char , Optional
groups (hundreds,
thousands, and so on)

infinity The string used to represent xs:string infinity Optional
infinity

minus-sign The character used as the xsl:char - Optional
minus sign

name The name of this format xs1:QName Optional

pattern-separator Character used to separate xsl:char ; Optional
positive and negative number
patterns

per-mille The character for the per xsl:char % Optional
thousand sign, #x2030

percent The character for the percent ~ xsl:char % Optional
sign

zero_digit The placeholder character for ~ xsl:char 0 Optional

Attribute group

Generic element attributes | Version attributes

See also

format-number function

273

Appendix D: XSLT 2.0 Quick Reference

xsl:declaration

Purpose

An abstract element for which declaration elements may be substituted.

Usage

This element is part of the XSLT 2.0 schema, but is never used in a stylesheet.

Substitute

xsl:attribute-set | xsl:character-map | xsl:decimal-format | xsl:function |
xsl:import-schema | xsl:include | xsl:key | xsl:namespace-alias | xsl:output |
xsl:preserve-space | xsl:strip-space | xsl:template

xsl:document

Purpose

An instruction that explicitly creates a document node and adds it to the result sequence.

Usage

You should use this instruction when you need to validate a document structure in a temporary tree. In
contrast, the <xsl:result-document> instruction creates a distinct output.

In substitution group

xsl:instruction

Attribute group

Generic element attributes | Version attributes | Validation attributes

See also

xsl:result-document

xsl:element

Purpose

Creates a named element node and writes it to the result tree.

Usage

Because the name attribute is an attribute value template, it is suitable for the generation of a element
when the name is not known until run time.

When multiple namespaces are being used, you can use the namespace to provide the correct URI, with-
out worrying about multiple prefixes getting copied to the output unnecessarily.

274

Appendix D: XSLT 2.0 Quick Reference

In substitution group

xsl:instruction

Attributes

Name

inherit-namespaces

name
namespace

use-attribute-sets

Attribute group

Description Type

Whether or not children ofa ~ xs:token
copied node will inherit
copied namespaces

The name of the element to xsl:avt
create

The namespace URI of the xsl:avt
element

The space-separated list of xs1:QName

attribute set names to use for
this element

Default

yes

Generic element attributes | Version attributes | Validation attributes

xsl:fallback

Purpose

Options

yes, no

Use
Optional

Required

Optional

Optional

An instruction that defines fallback behavior when there is no implementation of a containing instruction.

Usage

Typically this element is useful when it is uncertain whether or not a particular vendor-implemented
extension is available, or to define alternative processing when a version 1.0 processor encounters the

version 2.0 instructions <xs1:next-match> or <xsl:analyze-string>.

In substitution group

xsl:instruction

See also

xsl:next-match

xsl:analyze-string

275

Appendix D: XSLT 2.0 Quick Reference

xsl:for-each

Purpose

An instruction that selects a sequence of items for uniform processing. The items may be either nodes or

atomic values.

Usage

Each iteration through the selected sequence changes the context, so you need to remember to use appro-

priate expressions when constructing the sequence.

Contains

xsl:sort | sequence-constructor

In substitution group

xsl:instruction

Attribute
Name Description Type
select The sequence of items to xsl:expression
process
Attribute group

Generic element attributes | Version attributes

xsl:for-each-group

Purpose

Default Options Use
Required

An instruction that selects a sequence of items for uniform processing, and then groups them according

to common values, adjacency, or in relation to other elements.

Usage

Grouping depends on which of the four attributes is specified. The attribute value is known as the

group key.

The XSLT functions current-group () and current-grouping-key () may be used to process grouped

items inside an <xs1: for-each> instruction.

Contains

xsl:sort | sequence-constructor

In substitution group

xsl:instruction

276

Appendix D: XSLT 2.0 Quick Reference

Attributes
Name Description Type Default Options Use
collation The URI of a collation to use xs:anyURI Optional
for string comparison
group-adjacent The common value to use if xsl:expression Optional
items are adjacent
group-by The common value or xsl:expression Optional
values to use
group-ending- The pattern that ends a xsl:pattern Optional
with group of preceding items
group-starting- The pattern that starts a xsl:pattern Optional
with group of following items
select The sequence of items to xsl:expression Required
group
Attribute group

Generic element attributes | Version attributes

See also

current-group function

current-grouping-key function

xsl:function

Purpose

Declares the name, parameters, and implementation of a custom stylesheet function.

Usage

The function may be invoked from any XPath expression.

Contains

xsl:param | sequence-constructor

In substitution group

xsl:declaration

277

Appendix D: XSLT 2.0 Quick Reference

Attributes

Name Description

as The datatype of the sequence

produced by the function

as Whether or not the function
overrides a vendor-specific
function of the same name

name The name of the function

Attribute group

Type Default Options Use

xsl:sequence-type item() Optional
xs:token yes yes, no Optional
xs1:QName Required

Generic element attributes | Version attributes

xsl:if

Purpose

An instruction that defines a test condition, and a sequence constructor to perform if the condition eval-

uates to true.

Usage

An empty sequence is returned if the test fails.

It is equivalent to if-then statements in other languages. If there are multiple conditions to test, then you

should use <xs1:choose>.

Contains

sequence-constructor

In substitution group

xsl:instruction

Attribute

Name Description

test The XPath expression to
evaluate

278

Type Default Options Use

xsl:expression Required

Appendix D: XSLT 2.0 Quick Reference

Attribute group

Generic element attributes | Version attributes

See also

xsl:choose

xsl:import

Purpose

Declaration used to import stylesheet modules, differing from <xs1:include> in that the declarations
and rules in the importing stylesheet have a higher import precedence than those in the imported
stylesheet.

Usage

<xsl:import> elements must precede all other declarations and user-defined data elements.

The declarations and template rules in the importing stylesheet have a higher precedence than those that
are imported.

<xsl:apply-imports> may be used to partially override the precedence of items in the importing
stylesheet.

Contained by

xsl:transform

In substitution group

xsl:declaration

Attribute
Name Description Type Default Options Use
href URI that identifies the xs:anyURT Required
stylesheet module to be
imported. The way that the
reference is resolved is
implementation-defined.
Attribute group

Generic element attributes | Version attributes

279

Appendix D: XSLT 2.0 Quick Reference

See also
xsl:apply-imports

xsl:include

xsl:import-schema

Purpose

Declaration, available only in a schema-aware processor, that identifies a schema defining the
user-defined types, elements, and attributes.

Usage

Schema modules that are imported or included in the referenced schema must be explicitly declared if
those definitions are required.

This element may include an inline XML schema, in which case the schema-location attribute must not

be used.

In substitution group

xsl:declaration

Attributes

Name

namespace

schema-location

Attribute group

Description Type

The namespace URI of the xs :anyURT
schema to be imported. This

information may be enough

on its own to enable an

implementation to locate the

required schema components.

Indicates where the schema
document is located. It is
likely that a schema-aware
XSLT processor will be able
to process a schema
document found at this
location.

xs:anyURI

Generic element attributes | Version attributes

280

Default Options Use

Optional

Optional

Appendix D: XSLT 2.0 Quick Reference

xsl:include

Purpose

A declaration used to include one stylesheet module within another.

Usage

The children of the included <xsl:stylesheet> element replace the <xsl:include> element in the
including document; in other words, they have the same import precedence.

Multiple includes are allowed, and included stylesheets may contain further includes.

<xsl:include> is useful for material that is standard content in outputs over a wide range of document
types.

In substitution group

xsl:declaration

Attribute
Name Description Type Default Options Use
href URI that identifies the xs :anyURT Required
stylesheet module to be
imported. The way that the
reference is resolved is
implementation-defined.
Attribute group

Generic element attributes | Version attributes

See also

xsl:import

xsl:instruction

Purpose

The abstract element for which instruction elements may be substituted.

Usage

This element is part of the XSLT 2.0 schema, but it is never used in a stylesheet.

281

Appendix D: XSLT 2.0 Quick Reference

Substitute

xsl:analyze-string | xsl:apply-imports | xsl:apply-templates | xsl:attribute

xsl:call-template | xsl:choose | xsl:comment | xsl:copy | xsl:copy-of | xsl:document |
xsl:element | xsl:fallback | xsl:for-each | xsl:for-each-group | xsl:if | xsl:message |

xsl:namespace | xsl:next-match | xsl:number | xsl:perform-sort | xsl:processing-instruction

| xsl:result-document | xsl:sequence | xsl:text | xsl:value-of

xsl:key

Purpose

Declares a named key to be used with the key () function.

Usage

Using the <xs1:key> declaration simplifies code and can increase performance, as most implementations
build an index the first time the key is processed.

Keys may be of any datatype, and values can be evaluated in a sequence constructor inside the <xs1:key>

instead of using a use attribute setting.

Contains

sequence-constructor

In substitution group

xsl:declaration

Attributes

Name Description

collation The name of a collation used
to compare the values of keys

match The pattern to match
name The name of the key
use An expression used to

determine the key value(s)

Attribute group

Type

xXs:anyURI

xsl:pattern
XS :QName

xsl:expression

Generic element attributes | Version attributes

282

Default

Options

Use
Optional

Required
Required

Optional

Appendix D: XSLT 2.0 Quick Reference

See also

key function

xsl:matching- substring

Purpose

Defines the processing for a match within the <xs1:analyze-string> instruction.

Usage

The output is added to the result of the <xs1l:analyze-string> instruction.

Contains

sequence-constructor

Contained by

xsl:analyze-string

Attribute group

Generic element attributes | Version attributes

See also

xsl:non-matching-substring

Xxsl:message

Purpose

An instruction that specifies a message to be output.

Usage

Either the select attribute or a sequence constructor or both may be used to create the message content.
If both are used, then the results are concatenated.

Stylesheet execution may be terminated by setting the terminate attribute to yes.

The output location is implementation-dependent, but is typically either the console or a log file.

Contains

sequence-constructor

283

Appendix D: XSLT 2.0 Quick Reference

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
select The expression to evaluate xsl:expression Required
terminate Whether or not to terminate xsl:avt no yes, no Optional
processing after the message
Attribute group

Generic element attributes | Version attributes

See also

xsl:comment

Xsl:namespace

Purpose

Creates a named namespace node and writes it to the result tree.

Usage

You cannot create a namespace using the <xsl:attribute> instruction. If you need to create a namespace
declaration that is not used for any element or attribute nodes, but, for example, is used in element
content, then you can use <xs1:namespace> for the purpose.

Contains

sequence-constructor

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
name The name of the namespace xsl:avt Required
node to create
select The expression to compute xsl:expression Optional

the namespace URI

284

Appendix D: XSLT 2.0 Quick Reference

Attribute group

Generic element attributes | Validation attributes
xsl:namespace- alias

Purpose

Declares a namespace from a stylesheet to be associated with a different namespace in the output.

Usage
This is typically required in transforms that output XSLT stylesheets.

In substitution group

xsl:declaration

Attributes
Name Description Type Default Options Use
result-prefix The prefix to output xs :NCName | Required
xs:token
stylesheet-prefix A prefix used in the xs :NCName | Required
stylesheet xs: token
Attribute group
Generic element attributes | Version attributes
xsl:next- match
Purpose

An instruction that allows more than one rule to apply to the same source node, within the same
stylesheet module.

Usage

The processor looks for a rule that matches the current node and mode, and has a lower import prece-
dence or priority than the current template.

This instruction provides considerably more flexibility than <xsl:apply-imports>.

Contains

xsl:fallback | xsl:with-param

In substitution group

xsl:instruction

285

Appendix D: XSLT 2.0 Quick Reference

Attribute groups

Generic element attributes | Version attributes

See also
XSLT elements

xsl:apply-imports

xsl:non-matching-substring

Purpose

Defines the processing for substrings that are not matched within the <xs1:analyze-string> instruction.

Usage

The output is added to the result of the <xs1l:analyze-string> instruction.

Contains

sequence-constructor

Contained by

xsl:analyze-string

Attribute group

Generic element attributes | Version attributes

See also

xsl:matching-substring

xsl:number

Purpose

An instruction that numbers nodes sequentially and formats the numbers.

Usage
If a node to number is not explicitly selected in the select attribute, the context node is numbered.
The level attribute determines the numbering method. The value single is used for sibling number-
ing, and any is used for nodes that can appear anywhere, regardless of hierarchy. The value multiple

indicates a hierarchy of numbers typical of legal documents, such as “4.2.7.”

The features for formatting numbers are expressed by attribute settings, and are distinct from those in
the <xsl:decimal-format> declaration and the format-number () function.

286

Appendix D: XSLT 2.0 Quick Reference

Contains

sequence-constructor

In substitution group

xsl:instruction

Attributes

Name

count

format

from

grouping-
separator

grouping-
size

lang
letter-
value
level

ordinal

select

value

Description

Specifies which nodes
are counted. The
default is the same
pattern as the start
node.

The output format.

Defines the point where
numbering starts. The
default is the root of the
tree containing the start
node.

The character that
separates groups
(hundreds, thousands,
and so on).

The number of digits in
each group.

Specifies the language
to use in formatting.

Defines the numbering
scheme.

The method of
numbering.

Whether or not an
ordinal number is used.

The node to number.

A user-supplied
number. If used, the
level, count, and from
attribute values should
be omitted.

Type

xsl:pattern

xsl:avt

xsl:pattern

xsl:avt

xsl:avt

xsl:avt

xsl:avt

xs :NCName

xsl:avt

xsl:expression

xsl:expression

Default

single

Options

alphabetical,
traditional

single,
multiple, any

Use
Optional

Optional
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional
Optional

287

Appendix D: XSLT 2.0 Quick Reference

Attribute group

Generic element attributes | Version attributes

See also

xsl:decimal-format

format-number function

xsl:otherwise

Purpose

An optional instruction inside an <xs1:choose> element that defines an action to take if none of the
preceding <xs1:when> tests are satisfied.

Contains

sequence-constructor

Contained by

xsl:choose

Attribute group

Generic element attributes | Version attributes

xsl:output

Purpose

A declaration that determines the format of a result document that is written to the output.

Usage

If multiple outputs are required, the name attribute must be used to identify the individual format defini-
tions, and to associate them with a format attribute value in a <xs1:result-document> instance.

Unnamed definitions and definitions with the same name are grouped together for processing.

In substitution group

xsl:declaration

288

Appendix D: XSLT 2.0 Quick Reference

Attributes
Name Description Type Default Options Use
byte- Defines whether or xs: token yes, no Optional
order- not a byte order
mark mark is written at
the start of the file.
cdata-section- Space-separated xs1:QName Optional
elements QNames of the
elements whose
content is to be
output inside
CDATA sections.
doctype- The public identifier =~ xs:string Optional
public to be used in any
DOCTYPE
declaration. Ignored
unless
doctype-systemis
also specified.
doctype- The system xs:string Optional
system identifier to be used
in any DOCTYPE
declaration.
encoding The character xs:string Optional
encoding of the
output.
escape- Whether or not URI xs:token yes, no Optional
uri- attributes should be
attributes escaped in HTML
and XHTML
output.
include- Whether or not a xs: token yes, no Optional
content- <meta> element
type should be should

included when the
method attribute is
HTML.

Continued

289

Appendix D: XSLT 2.0 Quick Reference

Name

indent

media-type

method

name

normalization-
form

Description

Whether or not to
indent the output.

The MIME type of

the output file.

The format to be
output. If it is not
one of the

recognized values, it
must be a prefixed

lexical QName.

The name of this
format.

Specifies how

Unicode characters

with multiple
representations

Type

Xs:

Xs:

token

string

xs1:QName |

Xs:

token

xs1 :QName

Xs:

NMTOKEN

Default

Options

yes, no

QName, xml,
html,
xhtml, text

NFC, NFD,
NFKC,
NFKD,
fully-

Use
Optional

Optional

Optional

Optional

Optional

should be
normalized.

normalized,
none

Whether or not to xs: token
output an XML
declaration.

omit-xml-
declaration

yes, no Optional

Sets the value of the xs:token
standalone attribute

in the XML

declaration.

standalone yes, no, omit

Optional

Whether or not xs:token
namespaces should

be undeclared when

out of scope.

Applies only if the

version attribute is

setto‘1.1'.

undeclare-
prefixes

yes, no Optional

use-character-
maps

Space-separated xs :QNames
names of the

<xsl:character-

map> elements used

in character

mapping.

Optional

The version of XML xs:NMTOKEN
in the output
document.

version

Optional

290

Appendix D: XSLT 2.0 Quick Reference

Attribute group

Generic element attributes

xsl:output- character

Purpose

Defines the substitution of a single Unicode character within an <xsl:character-map> declaration.

Contained by

xsl:character-map

Attributes
Name Description Type Default Options Use
character The Unicode character to be xsl:char Required
replaced
string The replacement string to xs:string Required
output
Attribute group

Generic element attributes | Version attributes

xsl:param

Purpose

A declaration used to define a global parameter to the transformation, or within <xs1:template> or
<xsl:function>.

Usage
The element must appear immediately after the parent element.
A parameter supplied to a template, using <xsl:call-template>, <xsl:apply-templates>,

<xsl:apply-imports> or <xsl:next-match>, is passed with <xsl:with-param>. A parameter, passed to
a stylesheet function, is contained in an XPath expression.

Contains

sequence-constructor

291

Appendix D: XSLT 2.0 Quick Reference

Contained by

xsl:transform | xsl:template | xsl:function

Attributes
Name Description Type Default Options Use
as The type of the parameter xsl:sequence-type Optional
name The parameter name xs1:QName Required
required Whether or not the parameter xs:token no ves, no Optional
is required
select The default parameter value xsl:expression Optional
tunnel Whether or not the parameter xs:token no ves, no Optional
is a tunnel parameter
Attribute group

Generic element attributes | Version attributes

See also

xsl:with-param

xsl:perform-sort

Purpose

Used as a standalone instruction to sort items without any immediate additional processing. The element
always contains one or more <xsl:sort> instructions.

Usage

You may use either the select attribute or a contained sequence constructor to define the sequence to be
processed.

Contains

xsl:sort | sequence-constructor

292

Appendix D: XSLT 2.0 Quick Reference

Attribute
Name Description Type Default Options Use
select The sequence of items to xsl:expression Optional
process
Attribute group

Generic element attributes | Version attributes

xsl:preserve-space

Purpose

A declaration that determines how whitespace nodes are handled.

Usage

The elements attribute lists the elements in which text-node whitespace is to be preserved.

In substitution group

xsl:declaration

Attribute
Name Description Type Default Options Use
elements A space-separated list of xsl:nametests Required
element names
Attribute group

Generic element attributes | Version attributes

See also

xsl:strip-space

293

Appendix D: XSLT 2.0 Quick Reference

Xxsl:processing- instruction

Purpose

An instruction that outputs a processing-instruction node.

Usage

The instruction is often useful for constructing xml-stylesheet processing instructions for visual check-
ing of XHTML output.

In substitution group

xsl:instruction

Attributes
Name Description Type Default Options Use
name The target of the processing xsl:avt Required
instruction
select The data part of the xsl:expression Optional
instruction
Attribute group

Generic element attributes | Version attributes

xsl:result-document

Purpose

A declaration that determines the format of a result document that is written to the output.

Usage

The href attribute specifies the absolute or relative URI of the output file.

The format attribute may be used to identify a matching output-format definition in the name attribute
value on an <xs1:output> declaration.

Several attributes have the same purpose as those in <xs1:output>, and may be used to override the
respective values. These values may be supplied as attribute-value templates, returning the appropriate

type.
Contains

sequence-constructor

In substitution group

xsl:instruction

294

Appendix D: XSLT 2.0 Quick Reference

Attributes

Name

byte-order-mark

cdata-section-
elements

doctype-public

doctype-system

encoding

escape-uri-
attributes

format

href

include-content-

type

indent

media-type

Description

Defines whether or not
a byte-order mark is
written at the start of
the file.

Space-separated names
of the elements whose
content is to be output

inside CDATA sections.

The public identifier to
be used in any
DOCTYPE declaration.
Ignored unless
doctype-system is also
specified.

The system identifier to
be used in any
DOCTYPE declaration.

The character encoding
of the output.

Whether or not URI
attributes should be
escaped in HTML and
XHTML output.

The name of an
<xsl:output>
declaration to use.

The location of the
output file.

Whether or not a
<meta> element should
be included when the
method attribute is
HTML.

Whether or not to
indent the output.

The MIME type of the
output file.

Type

xsl:

xsl

xsl

xsl

xsl

xsl

xsl

xsl

xsl

xsl

xsl

avt

ravt

ravt

ravt

ravt

ravt

ravt

ravt

ravt

ravt

ravt

Default Options

yes, no

yes, no

yes, no

yes, no

Use

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Continued

295

Appendix D: XSLT 2.0 Quick Reference

Name

method

normalization-
form

omit-xml-
declaration

output-version

standalone

type

undeclare-
prefixes

use-character-
maps

validation

Attribute group

Description

The format to be
output. If it is not one
of the recognized
values, it must be a
lexical QName.

Specifies how Unicode
characters with
multiple
representations should
be normalized.

Whether or not to
output an XML
declaration.

The version of XML in
the output document.

Sets the value of the
standalone attribute in
the XML declaration.

The schema type to use
in validation.

Whether or not
namespaces should be
undeclared when out of
scope. Applies only if
the output-version
attribute is set to “1.1'.

Space-separated
QNames of the
<xsl:character-map>
elements used in
character mapping.

How any validation
should be applied.

Type

xsl:avt

xsl:avt

xsl:avt

xsl:avt

xsl:avt

xs1 :QName

xsl:avt

xs1:QNames

xs:token

Generic element attributes | Version attributes

296

Default

Options

xml, html,
xhtml, text

NFC, NFD,
NFKC,

NFKD,
fully-
normalized,
none

yes, no

yes, no

yes, no, omit

strict, lax,
preserve,
skip

Use
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Appendix D: XSLT 2.0 Quick Reference

xsl:sequence

Purpose

An instruction that is commonly used to return the result of a stylesheet function.

Usage

The instruction also allows template rules to return atomic values.

Contains
xsl:fallback

In substitution group

xsl:instruction

Attribute
Name Description Type Default Options
select The value to be returned xsl:expression

Attribute group

Generic element attributes | Version attributes

xsl:sort

Purpose

A sort-key component, any number of which may be combined in a sort specification.

Usage

Use
Required

Each instruction is treated in order, with the result being processed by the containing instruction.

Contains

sequence-constructor

Contained by

xsl:apply-templates | xsl:for-each | xsl:for-each-group | xsl:perform-sort

297

Appendix D: XSLT 2.0 Quick Reference

Attributes

Name

case-order

collation

data-type

lang

order

select

stable

Description

Whether uppercase
or lowercase letters
are collated first. The
default value is
language-
dependent.

The URI of a
collation to use for
string comparison.

Whether the values
are collated
alphabetically or
numerically. The
default value is
'text'. Primarily
for use with XSLT
1.0 stylesheets.

Specifies the
language of the sort
key.

Whether the items
are arranged in
ascending or
descending

order.

The XPath
expression to
evaluate.

Specifies whether or
not the original
order of equal items
should be retained.
Applies only to the

first <xsl:sort> .

Attribute group

Generic element attributes | Version attributes

298

Type Default
xsl:avt

xsl:avt

xsl:avt text
xsl:avt

xsl:avt ascending

xsl:expression

xs:token ves

Options

upper-first,
lower-first

text, number

ascending,
descending

yes, no

Use
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Appendix D: XSLT 2.0 Quick Reference

xsl:strip-space

Purpose

A declaration that determines how whitespace nodes are handled.

Usage

The element attribute lists the elements in which whitespace in text nodes is not significant, and can be
removed.

In substitution group

xsl:declaration

Attribute
Name Description Type Default Options Use
elements A space-separated list of xsl:nametests Required
element names
Attribute group

Generic element attributes | Version attributes

See also

xsl:preserve-space

xsl:stylesheet

Purpose

The root element of a stylesheet.

Usage

The <stylesheet> is always the root element, even if a stylesheet is included in, or imported into,
another. It must have a version attribute, indicating the version of XSLT that the stylesheet requires.

For a version 2.0 stylesheet, the value should be “2.0.” For a stylesheet intended to execute under both
XSLT 1.0 and XSLT 2.0, create a core module for each version number; then use <xs1:include> or
<xsl:import> to incorporate common code, which should specify version="2.0" if it uses XSLT 2.0
features, or version="1.0" otherwise.

The <xsl:transform> element is allowed as a synonym. It is shown in the schema as the substitution
group for <xsl:stylesheet>, so see that section for details of the structure.

The namespace declaration xmlns:xsl="http//www.w3.0rg/1999/XSL/Transform by convention uses
the prefix xs1.

299

Appendix D: XSLT 2.0 Quick Reference

An element occurring as a child of the <stylesheet> element is called a declaration. Top-level elements
are all optional, and may occur zero or more times.

In substitution group

xsl:transform

xsl:template

Purpose

Templates are the building blocks of XSLT. This element is used to declare a template for generating
nodes in a result tree.

Usage

Either the match attribute or the name attribute must be present. The match attribute pattern is used to
match nodes in the source tree, and is invoked using the <xsl:apply-templates> instruction. The name
attribute explicitly names a template to call with the <xsl:call-template> element.

The mode and priority attributes must not be specified unless a match attribute is present.

Contains

xsl:param | sequence-constructor

In substitution group

xsl:declaration

Attributes

Name Description Type Default Options Use

as The datatype of the sequence xsl:sequence item() Optional
produced by the template.

match Contains a pattern to be xsl:pattern Optional
matched against nodes in the
source tree.

mode One or more mode names xs1:QName | QName, Optional
used to select a template rule xs:token #default,
among those with the same #all
pattern. The value #all
matches all modes.

name The name of the template. xs1:QName Optional

priority A positive or negative xs:decimal Optional

number that sets the priority
of the template in cases
where multiple templates
match the same node.

300

Appendix D: XSLT 2.0 Quick Reference

Attribute group

Generic element attributes | Version attributes

See also

xsl:apply-templates

xsl:call-template

xsl:text

Purpose

An instruction used to add a text node to the result sequence.

Usage

The instruction may be used to control the use of whitespace. You can also disable escaping of special
characters, though this usage is now deprecated because it may not work in certain cases.

In substitution group

xsl:instruction

Attribute
Name Description Type Default Options Use
disable-output- Whether or not to escape xs:token no ves, no deprecated
escaping special characters

Attribute group

Generic element attributes | Version attributes

xsl:transform

Purpose

The name is a synonym of <xsl:stylesheet>.

Usage

In the XSLT schema, <xsl:stylesheet> element is in this substitution group, and the structure is docu-
mented under this element.

<xsl:import> should always be the first contained declaration if present.

301

Appendix D: XSLT 2.0 Quick Reference

Contains

xsl:import | xsl:declaration | xsl:param | xsl:variable

Attributes
Name Description
default- The validation applied
validation to new elements and
attributes when
validation or type
attributes are not set on
an instruction
id Identifies an embedded
stylesheet
input-type- The method of
annotations handling type
annotations on input
documents
Attribute group

Type

xs:token

xs:1D

xs:token

Generic element attributes | Version attributes

xsl:value- of

Purpose

Default

strip

unspecified

An instruction used to add a text node to the result sequence.

Usage

Options

strip,
preserve

strip,
preserve,
unspecified

Use
Optional

Optional

Optional

The value to output may be obtained from the select attribute or from a contained sequence

constructor.

Disabling the escaping of special characters is deprecated because it may not work in certain

cases.

Contains

sequence-constructor

In substitution group

xsl:instruction

302

Appendix D: XSLT 2.0 Quick Reference

Attributes

Name

disable-
output-
escaping

select

Description

Whether or not to escape
special characters

The value to be output

separator A string used to separate

atomic values

Attribute group

Generic element attributes | Version attributes

xsl:variable

Purpose

Type

xs:string

xsl:expression

xsl:avt

Declares a global or local variable and assigns a value to it.

Usage

Default

no

Options

yes, no

Use
deprecated

Optional
Optional

The value to assign may be obtained from the select attribute or from a contained sequence constructor.

Contains

sequence-constructor

Contained by
xsl:transform
Attributes
Name Description
as The type of the variable
name The name of the variable
select The value of the variable
Attribute group

Type

xsl:sequence-type
xs1 : QName

xsl:expression

Generic element attributes | Version attributes

Default

Options

Use
Optional
Required

Optional

303

Appendix D: XSLT 2.0 Quick Reference

xsl:with-param

Purpose

Sets the value of a parameter supplied to a template.

Usage

The value to assign may be obtained from the select attribute or from a contained sequence
constructor.

Contains

sequence-constructor

Contained by
xsl:apply-imports | xsl:apply-templates | xsl:call-template | xsl:next-match
Attributes
Name Description Type Default Options Use
as The type of the parameter xsl:sequence-type Optional
name The name of the parameter xs1:QName Required
select The value of the parameter xsl:expression Optional
tunnel Whether or not the parameter xs:token no ves, no Optional
is a tunnel parameter
Attribute group

Generic element attributes | Version attributes

See also

xsl:param
Attribute Groups
Generic element attributes

Purpose

Generic element attributes, which may be expressed on any XSLT or literal result elements.

304

Appendix D: XSLT 2.0 Quick Reference

Attributes
Name Description Type Default Options Use
default- Used to apply styling to the xs :anyURI Optional
collation element
exclude- A space-separated list of xs :NCName Optional
result- namespace prefixes to
prefixes exclude from the output
extension- A space-separated list of xs :NCName Optional
element- namespace prefixes that
prefixes identify extension elements
use-when Whether or not this element xsl:expression Optional
and its children should be
included in the stylesheet
xpath_default_ The namespace URI to be xS :anyURI Optional
namespace assumed for unprefixed

names

Version attributes

Purpose

The version attribute, typically used on the <xsl:stylesheet> element. It may be used on XSLT instruc-
tions, literal result elements, and some declarations.

Attribute
Name Description Type Default Options Use
version The XSLT version number xs:decimal Optional

Validation attributes

Purpose

Validation attributes on elements.

Usage

Usually these attributes are used on the <xsl:stylesheet> element. If used on a literal result element,
they should have the xs1: prefix to distinguish them from attributes in other namespaces.

305

Appendix D: XSLT 2.0 Quick Reference

Attributes
Name Description Type
type The type declaration to use xs : NCName

for validation

validation How any validation should

be applied

Types

xs:token

Default

Options Use
Optional

strict, lax, Optional

preserve,

strip

The following table lists the simple types that either are used frequently in the XSLT schema or are
complex. Other type definitions may be found in the schema itself in Appendix E.

Name

avt

char

expression

mode

sequence-type

Description

The simple type for attributes that
allow an attribute value template

A string containing exactly one
character

An XPath 2.0 expression, conforming
to the pattern .4’

Allowed values for the mode
attribute of the
xsl:apply-templates instruction

The description of a datatype,
conforming to the XPath 2.0
SequenceType production at
http://www.w3.org/TR/xpath20
/#id-sequencetype-syntax

XSLT Functions

The following functions are specific to XSLT 2.0, as distinct from the XPath 2.0 functions listed in
Appendix F, which may also be used in XQuery.

306

Type

XS

XS

XS

XS

Xs

:string

:string

token

token

:token

Default Options

QName, #default,
#current

QName, #default,
#current

QName, #default,
#current

Appendix D: XSLT 2.0 Quick Reference

current

Purpose

Returns the current context item.

Signature

current ()

current-group

Purpose

Returns the sequence of items in the current group within an xs1: for-each-group instruction.

Signature

current-group ()
See also

xsl:for-each-group

current-grouping-key

Purpose

Returns the value of the group-by or group-adjacent expression for the group being processed with an
xsl:for-each-group instruction. There is no key when grouping by patterns.

Signature

current-grouping-key ()

See also

xsl:for-each-group

document

Purpose
Returns the document node of the XML document located at the URI provided in the href argument.

307

Appendix D: XSLT 2.0 Quick Reference

Signature

document (href, base)

Parameters
Name Description Type Use
href The URI of the file to be loaded xs:string | xs:anyURI Required
base The base URI to use for resolving the href parameter node () Optional
See also

unparsed-text, unparsed-text-available()

element-available

Purpose

Returns true if a named XSLT instruction is available for use.

Signature

element-available (name)

Parameter
Name Description Type Use
name The name of the element being tested xsl:QName Required

format-date, format-dateTime, format-time,

Purpose

Three functions that format date and time values.

Signature

format-date(value, picture, language, calendar, country)

308

Appendix D: XSLT 2.0 Quick Reference

Parameters
Name Description
value The date or time to format
picture A picture string composed of
special characters showing the
formatting and separators
language The language to be used in
formatting
calendar The calendar to use for formatting
the value
country The country code associated with
the value
format-number
Purpose

Formats numbers for display using a picture string.

Signature

format-number (value, picture, format)

Parameters

Name

value

picture

format

Description

The number to format

A picture string composed of
special characters showing the
grouping and separation of
digits

Identifies an <xs1:format>
declaration with further
formatting information

Type

xs:date | xs:dateTime | xs:time

xs:string

xsl:string

xsl:string

xsl:string

Type

xs:double | xs:float | xs:decimal

xXs:string

xs1:QName

Use

Required
Required
Optional

Optional

Optional

Use
Required

Required

Optional

309

Appendix D: XSLT 2.0 Quick Reference

function-available

Purpose

Returns true if a named XSLT, user-defined, or extension function is available for use.

Signature

function-available (name, arity)

Parameters
Name Description Type Use
name The name of the element being tested xsl:QName Required
arity The number of arguments of the function being tested xs:integer Optional

generate-id

Purpose

Generates an XML name that uniquely identifies a node.

Signature

generate-id (node)

Parameter
Name Description Type Use
node The input node. If this parameter is omitted, the context node is node () Optional
identified.

key

Purpose

Returns the nodes with a given value for a named key, which was defined using the xs1:key declaration.

Signature

key (name, value, top)

310

Appendix D: XSLT 2.0 Quick Reference

Parameters
Name Description Type Use
name The name of the key defined in a declaration xs1:QName Required
value The value of the key xs:anyAtomicType Required
top The document node to search node () Optional
See also
xsl:key
regex-group
Purpose

Identifies an ordered substring returned as part of a regular expression obtained from matching with
xsl:analyze-string.

Signature

regex-group (group)

Parameter

Name Description Type Use

group The substring matched by part of a regular expression, defined xs:integer Required
by the integer position of a substring contained in parentheses

See also

xsl:analyze-string

system-property

Purpose

Returns details about the current processor in a string containing the value of a named environment
property.

Signature

system-property (name)

311

Appendix D: XSLT 2.0 Quick Reference

Parameter
Name Description Type Use
name The name of the property required xsl:QName Required
type-available
Purpose

Tests whether a given schema type is available.

Signature

type-available (name)

Parameter
Name Description Type Use
name The name of the type to test for xsl:QName Required

unparsed-text, unparsed-text-available

Purpose

Two functions that test for the existence of a text file and then load it for processing.

Signature

unparsed-text (name)

Parameters
Name Description Type Use
href The URI of the file to be loaded xs:string Required
encoding The character encoding of the text xs:string Optional

312

Appendix D: XSLT 2.0 Quick Reference

See also

document()

unparsed-entity-public-id, unparsed-entity-uri

Purpose

Two functions that access the public and system identifiers of parsed entities in the DTD of a source
document.

Signature

unparsed-entity-public-id (name)

Parameter
Name Description Type Use
name The XML name of the entity xs:string Required

313

XSLT 2.0 Schema

This schema for XSLT 2.0 stylesheets is also published at www.w3.0rg/2007/schema-for-xs1t20.xsd.
The W3C Document License follows the schema text.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
targetNamespace="http://www.w3.0rg/1999/XSL/Transform"
elementFormDefault="qualified" >

<xs:annotation>
<xs:documentation>

This is a schema for XSLT 2.0 stylesheets.

It defines all the elements that appear in the XSLT namespace; it also
provides hooks that allow the inclusion of user-defined literal result elements,
extension instructions, and top-level data elements.

The schema is derived (with kind permission) from a schema for XSLT 1.0
stylesheets produced by Asir S Vedamuthu of WebMethods Inc.

This schema is available for use under the conditions of the W3C Software
License published at http://www.w3.org/Consortium/Legal/2002/
copyright-documents-20021231

The schema is organized as follows:

PART A: definitions of complex types and model groups used as the basis for
element definitions

PART B: definitions of individual XSLT elements

PART C: definitions for literal result elements

PART D: definitions of simple types used in attribute definitions

Appendix E: XSLT 2.0 Schema

316

This schema does not attempt to define all the constraints that apply to a
valid XSLT 2.0 stylesheet module. It is the intention that all valid stylesheet
modules should conform to this schema; however, the schema is non-normative and in the
event of any conflict, the text of the Recommendation takes precedence.

This schema does not implement the special rules that apply when a stylesheet has
sections that use forwards-compatible-mode. In this mode, setting version="3.0"
allows elements from the XSLT namespace to be used that are not defined in XSLT 2.0.

Simplified stylesheets (those with a literal result element as the outermost
element) will validate against this schema only if validation starts in lax mode.

This version is dated 2007-03-16
Authors: Michael H Kay, Saxonica Limited
Jeni Tennison, Jeni Tennison Consulting Ltd.

2007-03-15: added xsl:document element
revised xsl:sequence element
see http://www.w3.org/Bugs/Public/show_bug.cgi?id=4237

</xs:documentation>
</xs:annotation>
<!-- ++

s o

<l--

The declaration of xml:space and xml:lang may need to be commented out because of
problems processing the schema using various tools

-—>

<xs:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.0rg/2001/xml.xsd" />

<l--

An XSLT stylesheet may contain an in-line schema within an xsl:import-schema
element, so the Schema for schemas needs to be imported
-—>

<xs:import namespace="http://www.w3.o0rg/2001/XMLSchema"
schemaLocation="http://www.w3.0rg/2001/XMLSchema.xsd" />

<l==

b o>

<xs:annotation>
<xs:documentation>
PART A: definitions of complex types and model groups used as the basis for element
definitions
</xs:documentation>
</xs:annotation>
<!-- ++

b o>

<xs:complexType name="generic-element-type" mixed="true">
<xs:attribute name="default-collation" type="xsl:uri-list"/>

Appendix E: XSLT 2.0 Schema

<xs:attribute name="exclude-result-prefixes" type="xsl:prefix-list-or-all"/>

<xs:attribute name="extension-element-prefixes" type="xsl:prefix-list"/>

<xXs:attribute name="use-when" type="xsl:expression"/>

<xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>

<xXs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<xs:complexType name="versioned-element-type" mixed="true">
<xs:complexContent>
<xs:extension base="xsl:generic-element-type">
<xXs:attribute name="version" type="xs:decimal" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="element-only-versioned-element-type" mixed="false">
<xs:complexContent>
<xs:restriction base="xsl:versioned-element-type">
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="sequence-constructor">
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</xXs:extension>
</xs:complexContent>
</xs:complexType>

<XS:group name="sequence-constructor-group">
<xs:choice>
<xs:element ref="xsl:variable"/>
<xs:element ref="xsl:instruction"/>
<xs:group ref="xsl:result-elements"/>
</xs:choice>
</Xs:group>

<xs:element name="declaration" type="xsl:generic-element-type" abstract="true"/>
<xs:element name="instruction" type="xsl:versioned-element-type" abstract="true"/>

<!-- ++
++++++++++++++++++ -->
<xs:annotation>
<xs:documentation>
PART B: definitions of individual XSLT elements
Elements are listed in alphabetical order.
</xs:documentation>
</xs:annotation>

O O O O O O O O O O O |
. LS I A s I I A e I s A I A A A A I A A I I

Ft A o>

317

Appendix E: XSLT 2.0 Schema

<xs:element name="analyze-string" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:matching-substring" minOccurs="0"/>
<xs:element ref="xsl:non-matching-substring" minOccurs="0"/>
<xs:element ref="xsl:fallback" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="regex" type="xsl:avt" use="required"/>
<xs:attribute name="flags" type="xsl:avt" default=""/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="apply-imports" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<Xs:sequence>
<xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="apply-templates" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:sort"/>
<xs:element ref="xsl:with-param"/>
</xs:choice>
<xs:attribute name="select" type="xsl:expression" default="child::node()"/>
<xs:attribute name="mode" type="xsl:mode"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="attribute" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="namespace" type="xsl:avt"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>

</xs:extension>

318

Appendix E: XSLT 2.0 Schema

</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="attribute-set" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:attribute"/>
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xXs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="call-template" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:with-param" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="character-map" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:output-character" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="use-character-maps" type="xsl:QNames" default=""/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="choose" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:when" maxOccurs="unbounded" />
<xs:element ref="xsl:otherwise" minOccurs="0"/>
</Xs:sequence>
</xs:extension>

319

Appendix E: XSLT 2.0 Schema

</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="comment" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="copy" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="copy-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="copy-namespaces" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="document" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="decimal-format" substitutionGroup="xsl:declaration">

<xs:complexType>
<xs:complexContent>

320

Appendix E: XSLT 2.0 Schema

<xs:extension base="xsl:element-only-versioned-element-type">

<xs:attribute name="name" type="xsl:QName"/>

<xXs:attribute name="decimal-separator" type="xsl:char" default="."/>
<xs:attribute name="grouping-separator" type="xsl:char" default=","/>
<xs:attribute name="infinity" type="xs:string" default="Infinity"/>
<xs:attribute name="minus-sign" type="xsl:char" default="-"/>

<xXs:attribute name="NaN" type="xs:string" default="NaN"/>
<xs:attribute name="percent" type="xsl:char" default="%"/>
<xXs:attribute name="per-mille" type="xsl:char" default="‰"/>
<xs:attribute name="zero-digit" type="xsl:char" default="0"/>
<xXs:attribute name="digit" type="xsl:char" default="#"/>
<xs:attribute name="pattern-separator" type="xsl:char" default=";"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="element" substitutionGroup="xsl:instruction">
<xs:complexType mixed="true">
<xs:complexContent>
<xs:extension base="xsl:sequence-constructor">

<xs:attribute name="name" type="xsl:avt" use="required"/>

<xXs:attribute name="namespace" type="xsl:avt"/>

<xs:attribute name="inherit-namespaces" type="xsl:yes-or-no" default="yes"/>
<xXs:attribute name="use-attribute-sets" type="xsl:QNames" default=""/>
<xs:attribute name="type" type="xsl:QName"/>

<xs:attribute name="validation" type="xsl:validation-type"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="fallback" substitutionGroup="xsl:instruction"
type="xsl:sequence-constructor"/>

<xs:element name="for-each" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">

<XS:sequence>
<xs:element ref="xsl:sort" minOccurs="0" maxOccurs="unbounded" />
<xs:group ref="xsl:sequence-constructor-group"

minOccurs="0" maxOccurs="unbounded"/>

</Xs:sequence>
<xXs:attribute name="select" type="xsl:expression" use="required"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="for-each-group" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">

<Xs:sequence>

321

Appendix E: XSLT 2.0 Schema

<xs:element ref="xsl:sort" minOccurs="0" maxOccurs="unbounded" />
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression" use="required"/>
<xs:attribute name="group-by" type="xsl:expression"/>
<xs:attribute name="group-adjacent" type="xsl:expression"/>
<xs:attribute name="group-starting-with" type="xsl:pattern"/>
<xs:attribute name="group-ending-with" type="xsl:pattern"/>
<xs:attribute name="collation" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="function" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<Xs:sequence>
<xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="override" type="xsl:yes-or-no" default="yes"/>
<xs:attribute name="as" type="xsl:sequence-type" default="item()*"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="if" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="test" type="xsl:expression" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="import">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="href" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="import-schema" substitutionGroup="xsl:declaration">

<xs:complexType>
<xs:complexContent>

322

Appendix E: XSLT 2.0 Schema

<xs:extension base="xsl:element-only-versioned-element-type">

<XS:sequence>
<xs:element ref="xs:schema" minOccurs="0" maxOccurs="1"/>

</Xs:sequence>
<xs:attribute name="namespace" type="xs:anyURI"/>
<xs:attribute name="schema-location" type="xs:anyURI"/>

</xs:extension>

</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="include" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="href" type="xs:anyURI" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="key" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="match" type="xsl:pattern" use="required"/>
<xs:attribute name="use" type="xsl:expression"/>
<xs:attribute name="collation" type="xs:anyURI"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="matching-substring" type="xsl:sequence-constructor"/>

<xs:element name="message" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="terminate" type="xsl:avt" default="no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="namespace" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xXs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>

323

Appendix E: XSLT 2.0 Schema

</xs:complexType>
</xs:element>

<xs:element name="namespace-alias" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="stylesheet-prefix" type="xsl:prefix-or-default"
use="required"/>
<xs:attribute name="result-prefix" type="xsl:prefix-or-default"
use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="next-match" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:with-param"/>
<xs:element ref="xsl:fallback"/>
</xs:choice>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="non-matching-substring" type="xsl:sequence-constructor"/>

<xs:element name="number" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<xs:attribute name="value" type="xsl:expression"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="level" type="xsl:level" default="single"/>
<xs:attribute name="count" type="xsl:pattern"/>
<xs:attribute name="from" type="xsl:pattern"/>
<xs:attribute name="format" type="xsl:avt" default="1"/>
<xs:attribute name="lang" type="xsl:avt"/>
<xs:attribute name="letter-value" type="xsl:avt"/>
<xs:attribute name="ordinal" type="xsl:avt"/>
<xs:attribute name="grouping-separator" type="xsl:avt"/>
<xs:attribute name="grouping-size" type="xsl:avt"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="otherwise" type="xsl:sequence-constructor"/>

<xs:element name="output" substitutionGroup="xsl:declaration">
<xs:complexType>

324

Appendix E: XSLT 2.0 Schema

<xs:complexContent mixed="true">
<xs:extension base="xsl:generic-element-type">
<xXs:attribute name="name" type="xsl:QName"/>
<xs:attribute name="method" type="xsl:method"/>
<xXs:attribute name="byte-order-mark" type="xsl:yes-or-no"/>
<xs:attribute name="cdata-section-elements" type="xsl:QNames"/>
<xs:attribute name="doctype-public" type="xs:string"/>
<xs:attribute name="doctype-system" type="xs:string"/>
<xs:attribute name="encoding" type="xs:string"/>
<xs:attribute name="escape-uri-attributes" type="xsl:yes-or-no"/>
<xXs:attribute name="include-content-type" type="xsl:yes-or-no"/>
<xs:attribute name="indent" type="xsl:yes-or-no"/>
<xs:attribute name="media-type" type="xs:string"/>
<xs:attribute name="normalization-form" type="xs:NMTOKEN"/>
<xXs:attribute name="omit-xml-declaration" type="xsl:yes-or-no"/>
<xs:attribute name="standalone" type="xsl:yes-or-no-or-omit"/>
<xXs:attribute name="undeclare-prefixes" type="xsl:yes-or-no"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xXs:attribute name="version" type="xs:NMTOKEN"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="output-character">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="character" type="xsl:char" use="required"/>
<xs:attribute name="string" type="xs:string" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="param">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="as" type="xsl:sequence-type"/>
<xs:attribute name="required" type="xsl:yes-or-no"/>
<xs:attribute name="tunnel" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="perform-sort" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:sort" minOccurs="1" maxOccurs="unbounded" />

325

Appendix E: XSLT 2.0 Schema

<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="preserve-space" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="elements" type="xsl:nametests" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="processing-instruction" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:avt" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="result-document" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">

<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="format" type="xsl:avt"/>
<xs:attribute name="href" type="xsl:avt"/>
<xs:attribute name="type" type="xsl:QName"/>
<xs:attribute name="validation" type="xsl:validation-type"/>
<xs:attribute name="method" type="xsl:avt"/>
<xs:attribute name="byte-order-mark" type="xsl:avt"/>
<xs:attribute name="cdata-section-elements" type="xsl:avt"/>
<xs:attribute name="doctype-public" type="xsl:avt"/>
<xs:attribute name="doctype-system" type="xsl:avt"/>
<xs:attribute name="encoding" type="xsl:avt"/>
<xs:attribute name="escape-uri-attributes" type="xsl:avt"/>
<xs:attribute name="include-content-type" type="xsl:avt"/>
<xs:attribute name="indent" type="xsl:avt"/>
<xs:attribute name="media-type" type="xsl:avt"/>
<xs:attribute name="normalization-form" type="xsl:avt"/>
<xs:attribute name="omit-xml-declaration" type="xsl:avt"/>
<xs:attribute name="standalone" type="xsl:avt"/>
<xs:attribute name="undeclare-prefixes" type="xsl:avt"/>
<xs:attribute name="use-character-maps" type="xsl:QNames"/>
<xs:attribute name="output-version" type="xsl:avt"/>

</xs:extension>

326

Appendix E: XSLT 2.0 Schema

</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="sequence" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="xsl:fallback"/>
</Xs:sequence>
<xs:attribute name="select" type="xsl:expression"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="sort">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xXs:attribute name="lang" type="xsl:avt"/>
<xs:attribute name="data-type" type="xsl:avt" default="text"/>
<xs:attribute name="order" type="xsl:avt" default="ascending"/>
<xs:attribute name="case-order" type="xsl:avt"/>
<xXs:attribute name="collation" type="xsl:avt"/>
<xs:attribute name="stable" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="strip-space" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:element-only-versioned-element-type">
<xs:attribute name="elements" type="xsl:nametests" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="stylesheet" substitutionGroup="xsl:transform"/>

<xs:element name="template" substitutionGroup="xsl:declaration">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:versioned-element-type">
<XS:sequence>
<xs:element ref="xsl:param" minOccurs="0" maxOccurs="unbounded"/>
<xs:group ref="xsl:sequence-constructor-group" minOccurs="0"
maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="match" type="xsl:pattern"/>

327

Appendix E: XSLT 2.0 Schema

<xs:
:attribute

<XS

<XS:
<XS:

attribute

attribute
attribute

</xs:extension>

</xs:complexContent>

</xs:complexType>
</xs:element>

name="priority" type="xs:decimal"/>
name="mode" type="xsl:modes"/>
name="name" type="xsl:QName"/>

name="as"

type="xsl:sequence-type" default="item()*"/>

<xs:complexType name="text-element-base-type">
<xs:simpleContent>
<xs:restriction base="xsl:versioned-element-type">
<xs:simpleType>
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:anyAttribute namespace="##other" processContents="lax"/>

</xs:restriction>

</xXs:simpleContent>
</xs:complexType>

<xs:element name="text" substitutionGroup="xsl:instruction">
<xs:complexType>

<xs:simpleContent>

<xs:extension base="xsl:text-element-base-type">
<xs:attribute name="disable-output-escaping" type="xsl:yes-or-no"
default="no"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<xs:complexType name="transform-element-base-type">
<xs:complexContent>
<xs:restriction base="xsl:element-only-versioned-element-type">
<xs:attribute name="version" type="xs:decimal" use="required"/>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:element name="transform">
<xs:complexType>
<xs:complexContent>
<xs:extension base="xsl:transform-element-base-type">

<Xs:

sequence>

<xs:element ref="xsl:import" minOccurs="0" maxOccurs="unbounded" />
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="xsl:declaration"/>

<xs:element ref="xsl:variable"/>

<xs:element ref="xsl:param"/>

<xXs:any namespace="##other" processContents="lax"/>

<!-- weaker than XSLT 1.0 -->

</xs:choice>
</Xs:sequence>

<xs:attribute name="id"

328

type="xs:ID"/>

Appendix E: XSLT 2.0 Schema

<xs:attribute name="default-validation"

type="xsl:validation-strip-or-preserve" default="strip"/>
<xXs:attribute name="input-type-annotations"

type="xsl:input-type-annotations-type" default="unspecified"/>

</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="value-of" substitutionGroup="xsl:instruction">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="separator" type="xsl:avt"/>
<xs:attribute name="disable-output-escaping"
type="xsl:yes-or-no" default="no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="variable">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xXs:attribute name="select" type="xsl:expression" use="optional"/>
<xs:attribute name="as" type="xsl:sequence-type" use="optional"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="when">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="test" type="xsl:expression" use="required"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

<xs:element name="with-param">
<xs:complexType>
<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">
<xs:attribute name="name" type="xsl:QName" use="required"/>
<xs:attribute name="select" type="xsl:expression"/>
<xs:attribute name="as" type="xsl:sequence-type"/>
<xs:attribute name="tunnel" type="xsl:yes-or-no"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

329

Appendix E: XSLT 2.0 Schema

330

<l==

b o>

<xs:annotation>
<xs:documentation>
PART C: definition of literal result elements

There are three ways to define the literal result elements
permissible in a stylesheet.

(a) do nothing. This allows any element to be used as a literal
result element, provided it is not in the XSLT namespace

(b) declare all permitted literal result elements as members
of the xsl:literal-result-element substitution group

(c) redefine the model group xsl:result-elements to accommodate
all permitted literal result elements.

Literal result elements are allowed to take certain attributes

in the XSLT namespace. These are defined in the attribute group
literal-result-element-attributes, which can be included in the
definition of any literal result element.

</xs:documentation>
</xs:annotation>

<l== dtttt

b o>

<xs:element name="literal-result-element" abstract="true" type="xs:anyType"/>

<xs:attributeGroup name="literal-result-element-attributes">

<xs:attribute name="default-collation" form="qualified" type="xsl:uri-list"/>

<xs:attribute name="extension-element-prefixes" form="qualified"
type="xsl:prefixes"/>

<xs:attribute name="exclude-result-prefixes" form="qualified"
type="xsl:prefixes"/>

<xs:attribute name="xpath-default-namespace" form="qualified" type="xs:anyURI"/>

<xs:attribute name="inherit-namespaces" form="qualified" type="xsl:yes-or-no"
default="vyes"/>

<xXs:attribute name="use-attribute-sets" form="qualified" type="xsl:QNames"
default=""/>

<xXs:attribute name="use-when" form="qualified" type="xsl:expression"/>

<xs:attribute name="version" form="qualified" type="xs:decimal"/>

<xXs:attribute name="type" form="qualified" type="xsl:QName"/>

<xs:attribute name="validation" form="qualified" type="xsl:validation-type"/>
</xs:attributeGroup>

<xs:group name="result-elements">
<xs:choice>
<xs:element ref="xsl:literal-result-element"/>
<xXs:any namespace="##other" processContents="lax"/>
<xs:any namespace="##local" processContents="lax"/>
</xs:choice>
</Xs:group>

Appendix E: XSLT 2.0 Schema

<le=

P >

<xs:annotation>
<xs:documentation>
PART D: definitions of simple types used in stylesheet attributes
</xs:documentation>
</xs:annotation>

P O O O O O O O O O O O |
. LS I A s I I A e I s A I A A A A I A A I I

Ft ottt o>

<xs:simpleType name="avt">
<xs:annotation>
<xs:documentation>
This type is used for all attributes that allow an attribute value template.
The general rules for the syntax of attribute value templates, and the specific
rules for each such attribute, are described in the XSLT 2.0 Recommendation.
</xs:documentation>
</xXs:annotation>
<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="char">
<xs:annotation>
<xs:documentation>
A string containing exactly one character.
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:length value="1"/>
</xXs:restriction>
</xs:simpleType>

<xs:simpleType name="expression">
<xs:annotation>
<xs:documentation>
An XPath 2.0 expression.
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value=".+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="input-type-annotations-type">
<xs:annotation>
<xs:documentation>
Describes how type annotations in source documents are handled.
</xs:documentation>
</xXs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="preserve"/>
<xs:enumeration value="strip"/>
<xs:enumeration value="unspecified"/>
</xs:restriction>
</xs:simpleType>

331

Appendix E: XSLT 2.0 Schema

<xs:simpleType name="level">
<xs:annotation>
<xs:documentation>

The level attribute of xsl:number: one of single, multiple, or any.

</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:NCName">
<xs:enumeration value="single"/>
<xs:enumeration value="multiple"/>
<xs:enumeration value="any"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="mode">
<xs:annotation>
<xs:documentation>

The mode attribute of xsl:apply-templates: either a QName, or #current,

or #default.
</xs:documentation>
</xs:annotation>
<xXs:union memberTypes="xsl:QName">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="#default"/>
<xs:enumeration value="#current"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>

<xs:simpleType name="modes">
<xs:annotation>
<xs:documentation>
The mode attribute of xsl:template: either a list,
a QName or #default; or the value #all
</xs:documentation>
</xs:annotation>
<xs:union>
<xs:simpleType>
<xs:list>
<xs:simpleType>
<xs:union memberTypes="xsl:QName">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="#default"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>
</xs:list>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="#all"/>
</xs:restriction>

332

each member being either

Appendix E: XSLT 2.0 Schema

</xs:simpleType>
</xs:union>
</xs:simpleType>

<xs:simpleType name="nametests">
<xs:annotation>
<xs:documentation>

A list of NameTests, as defined in the XPath 2.0 Recommendation.

Each NameTest is either a QName, or "*", or "prefix:*", or
</xs:documentation>
</xs:annotation>
<xs:list>
<xs:simpleType>
<xs:union memberTypes="xsl:QName">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="*"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:pattern value="\i\c*:*"/>
<xs:pattern value="*:\i\c*"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xXs:simpleType>
</xs:list>
</xs:simpleType>

<xs:simpleType name="prefixes">
<xs:1list itemType="xs:NCName" />
</xs:simpleType>

<xs:simpleType name="prefix-list-or-all">
<xs:union memberTypes="xsl:prefix-list">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="#all"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>

<xs:simpleType name="prefix-list">
<xs:1list itemType="xsl:prefix-or-default"/>
</xs:simpleType>

<xs:simpleType name="method">
<xs:annotation>
<xs:documentation>
The method attribute of xsl:output:
Either one of the recognized names "xml", "xhtml", "html",
or a QName that must include a prefix.
</xs:documentation>

"*:localname"

"text",

333

Appendix E: XSLT 2.0 Schema

</xs:annotation>
<xs:union>
<xs:simpleType>
<xs:restriction base="xs:NCName">
<xs:enumeration value="xml"/>
<xs:enumeration value="xhtml"/>
<xs:enumeration value="html"/>
<xs:enumeration value="text"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xsl:QName">
<xs:pattern value="\c*:\c*"/>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>

<xs:simpleType name="pattern">
<xs:annotation>
<xs:documentation>
A match pattern as defined in the XSLT 2.0 Recommendation.
The syntax for patterns is a restricted form of the syntax for
XPath 2.0 expressions.
</xs:documentation>
</xs:annotation>
<xs:restriction base="xsl:expression"/>
</xs:simpleType>

<xs:simpleType name="prefix-or-default">
<xs:annotation>
<xs:documentation>
Either a namespace prefix, or #default.
Used in the xsl:namespace-alias element.
</xs:documentation>
</xs:annotation>
<xs:union memberTypes="xs:NCName">
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="#default"/>
</xs:restriction>
</xs:simpleType>
</Xs:union>
</xs:simpleType>

<xs:simpleType name="QNames">
<xs:annotation>
<xs:documentation>
A list of QNames.
Used in the [xsl:]use-attribute-sets attribute of various elements, and in the
cdata-section-elements attribute of xsl:output
</xs:documentation>
</xs:annotation>
<xs:1list itemType="xsl:QName" />
</xs:simpleType>

334

Appendix E: XSLT 2.0 Schema

<xs:simpleType name="QName">
<xs:annotation>
<xs:documentation>
A QName. This schema does not use the built-in type xs:QName, but rather defines
its own QName type. Although xs:QName would define the correct validation on these
attributes, a schema processor would expand unprefixed QNames incorrectly when
constructing the PSVI, because (as defined in XML Schema errata) an unprefixed
xs:QName is assumed to be in the default namespace, which is not the correct assumption
for XSLT.
The data type is defined as a restriction of the built-in type Name, restricted
so that it can only contain one colon which must not be the first or last character.
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:Name">
<xs:pattern value="([":14+:)2[":]1+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="seqguence-type">
<xXs:annotation>
<xs:documentation>
The description of a data type, conforming to the SequenceType production defined
in the XPath 2.0 Recommendation
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:pattern value=".+"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="uri-list">
<xs:1list itemType="xs:anyURI"/>
</xs:simpleType>

<xs:simpleType name="validation-strip-or-preserve">
<xs:annotation>
<xs:documentation>
Describes different ways of type-annotating an element or attribute.
</xs:documentation>
</xs:annotation>
<xXs:restriction base="xsl:validation-type">
<xs:enumeration value="preserve"/>
<xs:enumeration value="strip"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="validation-type">

<xs:annotation>

<xs:documentation>
Describes different ways of type-annotating an element or attribute.

</xs:documentation>

</xs:annotation>

<xXs:restriction base="xs:token">
<xs:enumeration value="strict"/>
<xs:enumeration value="lax"/>

335

Appendix E: XSLT 2.0 Schema

<xs:enumeration value="preserve"/>
<xs:enumeration value="strip"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="yes-or-no">
<xs:annotation>
<xs:documentation>
One of the values "yes" or "no".
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="yes"/>
<xs:enumeration value="no"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="yes-or-no-or-omit">
<xs:annotation>
<xs:documentation>
One of the values "yes" or "no" or "omit".
</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
<xs:enumeration value="yes"/>
<xs:enumeration value="no"/>
<xs:enumeration value="omit"/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

W3C® Document License

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that
you use:

1. Alink or URL to the original W3C document.

2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice
(hypertext is preferred, but a textual representation is permitted) of the form: “Copyright ©
[$date-of-document] World Wide Web Consortium, (Massachusetts Institute of Technology,

336

Appendix E: XSLT 2.0 Schema

European Research Consortium for Informatics and Mathematics, Keio University). All
Rights Reserved. http:/ /www.w3.org/Consortium/Legal /2002 /
copyright-documents-20021231"

3. [fitexists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you
create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE
FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE
OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

This formulation of W3C’s notice and license became active on December 31 2002. This version removes
the copyright ownership notice such that this license can be used with materials other than those owned
by the W3C, moves information on style sheets, DTDs, and schemas to the Copyright FAQ, reflects that
ERCIM is now a host of the W3C, includes references to this specific dated version of the license, and
removes the ambiguous grant of ““use.” See the older formulation for the policy prior to this date. Please
see our Copyright FAQ for common questions about using materials from our site, such as the translating
or annotating specifications. Other questions about this notice can be directed to site-policy@w3.org.

Joseph Reagle <site-policy@w3.org>

Last revised $Id: copyright-documents-20021231.html,v 1.6 2004/07 /06 16:02:49 slesch Exp $

337

XPath 2.0 Function
Reference

This reference provides brief details of the XPath 2.0 functions. These are distinct from functions
that apply only to XSLT, which are detailed in Appendix D.

For the authoritative source and for details of the XPath 2.0 operators, go to the W3C recommenda-
tion XQuery 1.0 and XPath 2.0 Functions and Operators at www.w3 .org/TR/xpath-functions.

You will find further detailed information on the use of these functions, together with additional
information on XPath 2.0, in Michael Kay’s XSLT 2.0 and XPath 2.0 Programmer’s Reference, Fourth
Edition (Wrox, 2008).

Functions
abs

Purpose

Returns the absolute value of a number, with the same type as the input.

Signature
abs (value)
Parameter
Name Description Type Use
value The supplied value xs:double | xs:float | Required

xs:decimal | xs:integer

Appendix F: XPath 2.0 Function Reference

avg

Purpose

Returns the average of a sequence of numbers or durations, with the same type as the input.

Signature

avg (sequence)

Parameter
Name Description Type Use
sequence The supplied value xs :anyAtomicType Required

adjust-date-to-timezone, adjust-dateTime-to-timezone,
adjust-time-to-timezone
Purpose

Three functions that return a supplied date, datetime, or time, with an altered time zone.

Signature

adjust-date-to-timezone (value, timezone)

Parameters
Name Description Type Use
value The date, dateTime, or time xs:date | xs:dateTime | xs:time Required
to adjust
timezone The time-zone value xs:dayTimeDuration Optional
See also

implicit-timezone()

base-uri

Purpose

Returns the base URI of a given document node.

340

Appendix F: XPath 2.0 Function Reference

Signature

base-uri (node)

Parameter

Name Description Type

node The specified node node ()

boolean

Purpose

Returns the effective Boolean value of a parameter.

Signature

boolean(value)

Parameter

Name Description Type

value The value to evaluate item()

ceiling

Purpose

Returns the input number rounded up to the nearest whole number.

Signature

ceiling(value)

Parameter

Name Description Type

value The supplied value xs:double | xs:float | xs:decimal

See also
floor()

Use
Required

Use
Required

Use
Required

341

Appendix F: XPath 2.0 Function Reference

codepoint-equal

Purpose

Compares two strings character by character and returns true if the strings contain the same sequence of
characters, regardless of the collation in use.

Signature

codepoint-equal (valuel, value2)

Parameter
Name Description Type Use
value The values to compare xs:string Required

codepoints-to-string

Purpose

Takes a sequence of integer codepoint values for Unicode characters and returns the equivalent string.

Signature

codepoints-to-string (codepoints)

Parameter
Name Description Type Use
codepoints The sequence of codepoints to convert xs:integer* Required
collection
Purpose

Returns a sequence of documents given a URI parameter.

Signature

collection (uri)

342

Appendix F: XPath 2.0 Function Reference

Parameter

Name Description Type

uri The URI that identifies the collection xs:string
compare
Purpose

Use

Optional

Compares two string values. Returns +1 if the first parameter has the higher value; zero if the strings are

equal; otherwise, -1.

Signature

compare (valuel, value2, collation)

Parameters
Name Description Type
value The strings to compare xs:string
collation A URI that identifies the collation to use xs:string

concat

Purpose

Constructs a string from two or more parameter values, joined end to end.

Signature

concat (value, value...)

Parameter

Name Description Type

value A supplied value xs:anyAtomicType
count
Purpose

Returns the number of items in a sequence.

Use
Required

Optional

Use
Required

343

Appendix F: XPath 2.0 Function Reference

Signature

count (sequence)

Parameter
Name Description Type Use
sequence The sequence to evaluate item() Required
See also
last ()

current-date, current-dateTime, current-time

Purpose

Three functions that return the current date, time, or both from the system clock.
Signature

current-date ()

data

Purpose

Explicitly atomizes the value of a sequence.

Signature

data (sequence)

Parameter
Name Description Type Use
sequence The supplied sequence item() Required
dateTime
Purpose

Constructs a dateTime from supplied date and time values.

344

Appendix F: XPath 2.0 Function Reference

Signature

dateTime (date, time)

Parameters
Name Description Type
date The supplied date xs:date
time The supplied time xs:time

day-from-date, day-from-dateTime

Purpose

Two functions that return the day of the month from a date or a dateTime.

Signature

day-from-date (date)

Parameter

Name Description Type

date The supplied date xs:date | xs:dateTime
days-from-duration
Purpose

Returns an integer representing the days component of a duration value.

Signature

days-from-duration (value)

Parameter
Name Description Type
value The supplied duration xs:duration

Use
Required

Required

Use
Required

Use
Required

345

Appendix F: XPath 2.0 Function Reference

deep-equal

Purpose

Compares two nodes or sequences to see if they have identical content.

Signature

deep-equal (sequencel, sequence2, collation)

Parameters

Name Description

sequence A sequence to compare

collation A URI that identifies the collation to use
default-collation
Purpose

Returns the URI of the default collation.
Signature

default-collation()

distinct-values

Purpose

Removes duplicate values from a sequence.

Signature

distinct-values (sequence, collation)

Parameters
Name Description
sequence The supplied value
collation A URI that identifies the collation to use

346

Type

item()

xs:string

Type

Xs:anyAtomicType

xs:string

Use
Required

Optional

Use
Required

Optional

Appendix F: XPath 2.0 Function Reference

doc, doc-available

Purpose

Two related functions: doc () loads an external document given a URI; doc-available () returns true if

a call to doc () with the same URI will succeed.

Signature

doc (uri)

Parameter

Name Description Type

uri The URI of the document to be loaded xs:string

document-uri

Purpose

Returns a URI of a document node.

Signature

document-uri (node)

Parameter
Name Description Type
node The document node node ()

empty

Purpose

Returns true if the argument is an empty sequence; otherwise, returns false.

Signature

empty (sequence)

Use
Required

Use
Required

347

Appendix F: XPath 2.0 Function Reference

Parameter
Name Description Type Use
sequence The supplied sequence item() Required
encode-for-uri
Purpose
Applies percent encoding to characters in a URL
Signature
encode-for-uri (value)
Parameter
Name Description Type Use
value The string to encode xs:string Required
ends-with
Purpose

Tests whether or not a string ends with another string.

Signature

ends-with(value, test, collation)

Parameters
Name Description Type Use
value The containing string xs:string Required
test The string to match xs:string Required
collation A URI that identifies the collation to use xs:string Optional

error

Purpose

Generates an error message using the supplied values. Causes evaluation of an XPath expression, or the
execution of an XSLT transform, to fail.

348

Appendix F: XPath 2.0 Function Reference

Use

Optional
Optional
Optional

Use

Required

Use

Signature
error (code, message, value)
Parameters
Name Description Type
code An error code xs :QName
message A message describing the error xs:string
value A value associated with the error item()
condition
escape-html-uri
Purpose
Applies percent encoding to non-ASCII characters in a URL
Signature
escape-html-uri (value)
Parameter
Name Description Type
value The string to encode xs:string
exactly-one
Purpose
Returns the input unchanged if it is a sequence containing a single item. Otherwise, an error is reported.
Signature
exactly-one (sequence)
Parameter
Name Description Type
sequence The input sequence item()

Required

349

Appendix F: XPath 2.0 Function Reference

exists

Purpose

Returns true only if the input sequence contains at least one item.

Signature

exists (sequence)

Parameter

Name Description

sequence The input sequence

false

Purpose

Returns the Boolean value false.

Signature
false()

See also

true()

floo

Purpose

Type

item()

Rounds down to the largest integer that is equal to or less than the input.

Signature

floor (value)

Parameter

Name Description

The supplied value

value

See also

ceiling()

350

Type

xs:double | xs:float | xs:decimal

Use
Required

Use
Required

Appendix F: XPath 2.0 Function Reference

hours-from-dateTime, hours-from-time

Purpose

Two functions that return the hours part of a datetime or time value.

Signature

hours-from-dateTime (datetime)

Parameter

Name Description

datetime The supplied datetime

See also

dateTime ()
id

Purpose

Type Use

xs:dateTime Required

Returns a sequence from a document containing all the element nodes with an xs: ID type attribute equal

to the input values.

Signature

id (values, node)

Parameters
Name Description
values The supplied ID values
node The document node to search
See also
idref ()

idref

Purpose

Type Use
xs:string Required
node () Optional

Returns a sequence from a document containing all the element nodes with an xs: IDREF or xs: IDREFS

type attribute equal to the input xs: ID value.

351

Appendix F: XPath 2.0 Function Reference

Signature

idref (value, node)

Parameters

Name

value

node

See also
id()

Description

The supplied ID values

The document node to search

implicit-timezone

Purpose

Type

xs:string

node ()

Returns an xs:dayTimeDuration value from the run-time context.

Signature

implicit-timezone ()

See also

Use
Required

Optional

adjust-date-to-timezone (), adjust-dateTime-to-timezone (), adjust-time-to-timezone ()

index-of

Signature

index-of (sequence, value, collation)

Purpose

Returns a sequence of integers providing the positions where a given value occurs.

Parameters

Name

sequence
value

collation

352

Description

The sequence to search
The value to find

A URI that identifies the collation to use

Type

XS :anyAtomicType
xs:anyAtomicType

xXs:string

Use
Required
Required

Optional

Appendix F: XPath 2.0 Function Reference

implicit-timezone

Purpose

Returns a xs:dayTimeDuration value from the run-time context.

Signature

implicit-timezone ()

See also

adjust-date-to-timezone (), adjust-dateTime-to-timezone (), adjust-time-to-timezone ()

in-scope-prefixe
Purpose

Returns the names (namespace prefixes) of the namespace nodes for an element.

Signature

in-scope-prefixes (element)

Parameter
Name Description Type Use
element The element name for which the prefix list is required element () Required
insert-before
Purpose

Returns a sequence containing items inserted at the specified position in an existing sequence.

Signature

insert-before (sequencel, position, sequence2)

Parameters
Name Description Type Use
sequencel The sequence to insert into item() Required
position The insertion point xs:integer Required
sequence? The items to insert item() Required

353

Appendix F: XPath 2.0 Function Reference

iri-to-uri
Purpose

Converts an IRI to a URI by percent encoding special characters.

Signature

iri-to-uri(value)

Parameter

Name Description Type Use

value The string to process xs:string Required

lang

Purpose

Returns true if the language parameter matches the xml :lang attribute value on the specified node. If
the node parameter is omitted, then the context node is tested.

Signature
lang (language, node)
Parameters
Name Description Type Use
language The language to test for ixs:string Required
node The node to test node Optional
last
Purpose

Returns the size of the context.

Signature
last ()

See also

count () ,position()

354

Appendix F: XPath 2.0 Function Reference

local-name

Purpose

Returns a string for the part after the colon of the specified node.

Signature

local-name (value)

Parameter

Name Description Type

node The node for which the name is required node ()

local-name-from-QName

Purpose

Returns a xs :NCName value for the local part of the specified xs :QName.

Signature

local-name-from-QName (value)

Parameter
Name Description Type
value The QName from which the local name is xs : QName
required
lower-case
Purpose

Converts uppercase characters to lowercase.

Signature
lower-case (value)
Parameter
Name Description Type
value The string to convert xs:string

Use
Optional

Use
Required

Use
Required

355

Appendix F: XPath 2.0 Function Reference

See also

upper-case ()

matches

Purpose

Returns true if an input string matches a regular expression.

Signature
matches (input, regex, flags)
Parameters
Name Description Type
flags Flags that determine how the string is interpreted xs:string
input The string to be analyzed xs:string
regex The regular expression used to analyze the string xs:string
max, min
Purpose
Two functions that return a maximum or minimum value in a sequence.
Signature
max (sequence, collation)
Parameters
Name Description Type
sequence The supplied sequence xs:anyAtomicType
collation A URI that identifies the collation to use xs:string

minutes-from-dateTime, minutes-from-time

Purpose

Two functions that return the minutes part of a datetime or time value.

356

Use
Optional
Required

Required

Use
Required

Optional

Appendix F: XPath 2.0 Function Reference

Signature

minutes-from-dateTime (datetime)

Parameter

Name Description Type Use

datetime The supplied datetime xs:dateTime | xs:time Required

See also

dateTime ()

minutes-from-duration

Purpose

Returns the minutes component of a duration value.

Signature

minutes-from-duration (value)

Parameter
Name Description Type Use
value The supplied duration xs:duration Optional

month-from-date, month-from-dateTime

Purpose
Two functions that return a month value as an integer from an xs:date or xs:dateTime.
Signature
month-from-date (date)
Parameter
Name Description Type Use
date The supplied datetime xs:date Required

357

Appendix F: XPath 2.0 Function Reference

See also

current-date (), current-dateTime (), current-time ()

months-from-duration

Purpose
Returns the months component of a duration value.
Signature
months-from-duration (value)
Parameter
Name Description Type Use
value The supplied duration xs:duration Required

month-from-date, month-from-dateTime

Purpose
Two functions that return a month value as an integer from an xs:date or xs:dateTime.
Signature
month-from-date (date)
Parameter
Name Description Type Use
date The supplied datetime xs:date Required
See also

current-date (), current-dateTime (), current-time ()

name

Purpose

Returns the name of the specified node as a lexical QName.

358

Appendix F: XPath 2.0 Function Reference

Signature

name (node)

Parameter
Name Description Type Use
node The node for which the name is required node Optional
namespace-uri
Purpose

Returns a namespace URI for the specified node.

Signature

namespace-uri (node)

Parameter
Name Description Type Use
node The node for which the URI is required node () Optional

namespace-uri-for-prefi

Purpose

Returns the namespace URI of an in-scope namespace for a given element, identified by its prefix.

Signature

namespace-uri-for-prefix(node)

Parameters
Name Description Type Use
prefix The prefix for which the URI is required xs:string Required
element The element to inspect for an in-scope declaration element () Required

359

Appendix F: XPath 2.0 Function Reference

namespace-uri-from-QName

Purpose

Returns a namespace URI for the specified xs : QName.

nilled

Purpose

Returns true if a validated element node has the xsi:nil attribute set to "true".

Signature
nilled (node)

Parameter

Name Description Type Use

node The element node to test node Required

normalize-unicode

Purpose

Applies the specified Unicode normalization algorithm to a string which may contain both fixed and
variable-length encodings for a given character.

Signature
normalize_unicode (value, normalization-form)
Parameters
Name Description Type Use
value The string to process xs:string Required
normalization-form The algorithm to use xs:string Optional
not
Purpose

Returns true if the input is false, and false if the effective Boolean value is true.

Signature

not (value)

360

Appendix F: XPath 2.0 Function Reference

Parameter
Name Description Type Use
value The input value item() Required
number
Purpose

Converts the input to a value of type xs:double.

Signature

number (value)

Parameter

Name Description Type Use

value The input value item() Optional

one-or-more

Purpose

Returns a sequence unchanged if it contains one or more items. If the sequence is empty, then an error is
raised.

Signature

one_or_more (value)

Parameter

Name Description Type Use

value The input value item() Required

position

Purpose

Returns the integer value of the context item’s position in a list of items.

Signature
position()

361

Appendix F: XPath 2.0 Function Reference

See also
last()
prefix from-QName
Purpose
Returns the xs :NCName prefix of a QName.
Signature
prefix-from-QName (value)
Parameter
Name Description Type Use
value The QName from which the prefix is required xs : QName Required

QName

Purpose

Returns an expanded xs : OName given a namespace URI and a lexical form of the name.

Signature

QName (namespace, lexical-gname)

Parameters
Name Description Type Use
namespace The namespace URI xs:string Required
lexical-gname The lexical QName xs:string Required

remove

Purpose

Removes the item at the specified position from a sequence.

Signature

remove (sequence, position)

362

Appendix F: XPath 2.0 Function Reference

Parameters
Name Description Type
sequence The input sequence item()
position The position of the item xs:integer

replace

Purpose

Use
Required

Required

Returns a string obtained by replacing occurrences of substrings that match a regular expression with a

replacement string.

Signature
replace (input, regex, flags)
Parameters
Name Description
flags Flags that determine how the string is interpreted
input The string to be analyzed
regex The regular expression used to analyze the string
replacement The string to be replaced
resolve-uri
Purpose

Converts a relative URI to an absolute URI.

Signature
resolve-uri (relative, base)
Parameters
Name Description Type
relative A URI reference xs:string
base The base URI to resolve against xs:string

Type Use
xs:string Optional
xs:string Required
xs:string Required
xs:string Required
Use
Required
Optional

363

Appendix F: XPath 2.0 Function Reference

resolve-QName

Purpose

Returns an expanded xs: QName containing the namespace URI corresponding to the prefix in the sup-
plied lexical oName.

Signature

resolve-QName (lexical-gname, element)

Parameters
Name Description Type Use
lexical-gname The lexical QName xs:string Required
element The name of the element node to examine element () Required

reverse

Purpose

Reverses the order of items in a sequence.

Signature

reverse (sequence)

Parameter
Name Description Type Use
sequence The input sequence item() Required
root
Purpose

Returns the root of the tree (usually the document node) to which the input node belongs.

Signature

root (node)

364

Appendix F: XPath 2.0 Function Reference

Parameter
Name Description Type Use
node A node in the tree node Optional
round
Purpose

Returns the closest integer to a numeric value of the same type as the input.

Signature

round (value)

Parameter
Name Description Type Use
value The supplied value xs:double | xs:float | Required
xs:decimal | xs:integer
round-half-to-even
Purpose
Returns the nearest value to the input that is a multiple of 107 where p is the value of the precision
argument.
Signature

round-half-to-even(value, precision)

Parameters
Name Description Type Use
value The supplied value xs:double | xs:float | Required
xs:decimal | xs:integer
precision The number of decimal digits after xs:integer Optional

the decimal point

365

Appendix F: XPath 2.0 Function Reference

seconds-from-dateTime, seconds-from-time

Purpose

Two functions that return the seconds part of a datetime or time value.

Signature

seconds-from-dateTime (datetime)

Parameter
Name Description Type
datetime The supplied datetime xs:dateTime | xs:time
See also
dateTime ()

seconds-from-duration

Purpose

Returns the seconds part of a duration value.

Signature

seconds-from-duration (value)

Parameter

Name Description Type

value The supplied duration xs:duration
starts-with
Purpose

Tests whether or not a string begins with another string.

Signature

starts-with(value, test, collation)

366

Use
Optional

Use

Required

Appendix F: XPath 2.0 Function Reference

Parameters
Name Description Type
value The containing string xs:string
test The string to match xs:string
collation A URI that identifies the collation to use xs:string

static-base-uri

Purpose

Use
Required
Required

Optional

Returns the base URI of the static context of an XPath expression — in XSLT terms, the element contain-

ing the expression.
Signature

static-base-uri ()

string

Purpose

Converts the input value to a string.

Signature

string(value)

Parameter
Name Description Type
value The input value item()
string-join
Purpose

Concatenates the strings in the input sequence, using an optional separator.

Signature

string-join(sequence, separator)

Use
Optional

367

Appendix F: XPath 2.0 Function Reference

Parameters
Name Description Type
sequence The input sequence xs:string
separator The separator to be used for output xs:string
See also
concat ()

string-length

Purpose

Returns the number of characters in a string.

Signature

string-length (value)

Parameter
Name Description Type
value The input value item()

string-to-codepoints

Purpose

Converts a string to the equivalent Unicode-character codepoints.

Signature

string-to-codepoints (value)

Parameter
Name Description Type
value The string to convert xs:string

368

Use
Required

Required

Use
Optional

Use
Required

Appendix F: XPath 2.0 Function Reference

subsequence
Purpose
Returns a part of a sequence identified by the start and number parameters.
Signature
subsequence (sequence, start, number)
Parameters
Name Description Type
sequence The input sequence item()
start The first item’s position xs:double
number The number of items to be included xs:double
substring
Purpose

Returns a part of a string identified by the start and number parameters.

Signature
substring(value, start, number)

Parameters
Name Description Type
value The contained string xs:string
start The first character’s position xs:double
number The number of characters to be xs:double

included
substring-after
Purpose

Returns the part of a string after the specified substring.

Use
Required
Required

Optional

Use
Required
Required

Optional

369

Appendix F: XPath 2.0 Function Reference

Signature

substring-after (value, match, collation)

Parameters

Name Description

value The contained string

match The string to match

collation A URI that identifies the collation to use
substring-before
Purpose

Returns the part of a string before the specified substring.

Signature

substring-before(value, start, collation)

Parameters

Name Description

value The contained string

start The string to match

collation A URI that identifies the collation to use
sum
Purpose

Type

Xs:string
xs:string

xs:string

Type

xs:string
xs:string

xs:string

Use
Required
Required

Optional

Use
Required
Required

Optional

Returns the total of a sequence of numbers or durations in the same type as the supplied sequence.

Signature

sum (sequence)

370

Appendix F: XPath 2.0 Function Reference

Parameters
Name Description
sequence The items to include

zero-value
sequence is empty

The value and type to return if the

timezone-from-date, timezone-from-dateTime,

timezone-from-time

Purpose

Three functions that return a time-zone part from a supplied date, datetime, or time.

Signature

timezone-from-date (value, timezone)

Parameter
Name Description
value The value from which the time
zone will be returned
See also

implicit-timezone ()

tokenize

Purpose

Type Use

xs:anyAtomicType Required

xs:anyAtomicType Optional
Type Use
xs:date | xs:dateTime | Required

Xs:time

Splits a string into substrings, marked with separators, matching the regex parameter.

Signature

matches (input, regex, flags)

371

Appendix F: XPath 2.0 Function Reference

Parameters

Name

flags
input

regex

trace

Purpose

Description

Flags that determine how the string is interpreted
The string to be analyzed

The regular expression used to analyze the string

Produces diagnostic output that is implementation-defined.

Signature

trace(value, message)

Parameters

Name

value

message

translate

Purpose

Description

A value associated with the error condition

A message describing the error

Substitutes the specified characters with replacements.

Signature

translate(value, from, to)

Parameters

Name

value
from

to

372

Description Type

Type

xs:string
xs:string

xs:string

Type

item()

xs:string

The input string
The characters to replace

The replacement characters

xs:string
xs:string

xs:string

Use
Optional
Required

Required

Use
Required

Required

Use
Required
Required

Required

Appendix F: XPath 2.0 Function Reference

true

Purpose

Returns the value true.

Signature

true()

See also
false()

unordered

Purpose

Specifies that a sequence need not be ordered, which is a hint to the processor that it might avoid the cost
of sorting.

Signature

unordered (sequence)

Parameter
Name Description Type Use
sequence The input sequence xs:anyAtomicType Required
upper-case
Purpose

Converts lowercase characters to uppercase.

Signature

upper-case (value)

Parameter
Name Description Type Use
value The string to convert xs:string Required

373

Appendix F: XPath 2.0 Function Reference

See also

lower-case ()

year-from-date, year-from-dateTime

Purpose

Returns the year part of a date or datetime value.

Signature

yvear-from-date (date)

Parameter
Name Description Type Use
date The supplied datetime xs:date | xs:dateTime Required
See also

current-date (), current-dateTime (), current-time ()

years-from-duration

Purpose

Returns the years part of a duration value.

Signature

years-from-duration (value)

Parameter
Name Description Type Use
value The supplied duration xs:duration Required
Zero-or-one
Purpose

Returns a sequence unchanged if it contains no more than one item. Otherwise, an error is raised.

374

Appendix F: XPath 2.0 Function Reference

Signature

zero-or-one (value)

Parameter
Name Description
value The input value

Type

item()

Use
Required

375

References

This short reference to online resources consolidates the references found in various chapters and
adds further useful information. The descriptions are lightly edited versions of the abstracts or other
information on the websites concerned.

Specifica ions

Associating Style Sheets with XML Documents Version 1.0. Defines how a stylesheet can
be associated with an XML document by including one or more processing instructions with
the target of xml-stylesheet in the document’s prolog. www.w3.org/TR/xml-stylesheet

Atom Publishing Protocol. A web-application-level protocol for publishing and editing
resource metadata in Atom format, using HTTP and XML. www.atomenabled.org/
developers/protocol

Atom Syndication Format. Specifies Atom 1.0, an XML-based web content and metadata
syndication format. www.atomenabled.org/developers/syndication/atom-format
-spec.php

Cascading Style Sheets, level 2 CSS2 Specification. Defines Cascading Style Sheets, level 2
revision 1. CSS 2.1 is a stylesheet language that enables authors and users to attach styles to
structured documents. www.w3 . org/TR/CSS2

Character Model for the World Wide Web 1.0: Normalization. Provides authors of
specifications, software developers, and content developers with a common reference on
the use of normalization for text and string identity matching on the Web. www.w3.org/TR/
charmod-norm

DCMI metadata terms. Specifies all the metadata terms maintained by the Dublin Core
Metadata Initiative, including properties, vocabulary encoding schemes, syntax encoding
schemes, and classes. http://dublincore.org/documents/dcmi-terms

Date and Time Formats. Defines a profile of ISO 8601, the International Standard for the
representation of dates and times. ISO 8601 describes a large number of date/time formats.
To reduce the scope for error and the complexity of software, it is useful to restrict the
supported formats to a small number. This profile defines a few date/time formats likely to
satisfy most requirements. www.w3 .org/TR/NOTE-datetime.html

Appendix G: References

378

Extensible Markup Language (XML) 1.0 (Fifth Edition). The Extensible Markup Language (XML)
is a subset of SGML. Its goal is to enable generic SGML to be served, received, and processed on the
Web in the way that is now possible with HTML. XML has been designed for ease of implementa-
tion and for interoperability with both SGML and HTML. www.w3 . org/TR/REC-xml

HyperText Markup Language (HTML). This specification defines the HyperText Markup
Language (HTML), the publishing language of the World Wide Web. HTML 4 supports more
multimedia options, scripting languages, stylesheets, better printing facilities, and documents that
are more accessible to users with disabilities. www.w3c.org/TR/html4

ISO Schematron. A language for making assertions in XML documents. Versions are available for
both version 1 and version 2 processors. www. schematron.com

P5: Guidelines for Electronic Text Encoding and Interchange. The Text Encoding Initiative
(TEI) is a consortium that collectively develops and maintains a standard for the representa-
tion of texts in digital form. Its chief deliverable is a set of guidelines that specify encoding
methods for machine-readable texts, chiefly in the humanities, social sciences, and linguistics.
www.tei-c.org.uk/release/doc/tei-p5-doc/html

RDF Site Summary (RSS) 1.0. RDF Site Summary (RSS) is a lightweight, multipurpose
extensible metadata description and syndication format. RSS is an XML application, conforms
to the W3C’s RDF specification, and is extensible via XML-namespace and/or RDF-based
modularization. http://web.resource.org/rss/1.0/spec

RFC 4151 - The “tag” URI Scheme. Describes the “tag’” Uniform Resource Identifier (URI) scheme.
Tag URIs (also known as tags) are designed to be globally unique while being useful to humans.
They are distinct from most other URIs in that they have no authoritative resolution mechanism. A
tag may be used purely as an entity identifier. www. fags.org/rfcs/rfc4151 . html

RSS 2.0 Specification. RSS is a Web-content-syndication format. Its name is an acronym
for Really Simple Syndication. All RSS files must conform to the XML 1.0 specification.
http://cyber.law.harvard.edu/rss/rss.html

Tag URI. The tag algorithm enables people to create globally unique identifiers that no one else
using the same algorithm could ever create. The identifiers conform to the URI (URL) Syntax.
http://taguri.org

Unicode Normalization Forms. Specifications for four normalized forms of Unicode text. When
implementations keep strings in a normalized form, they can be assured that equivalent strings
have a unique binary representation. www.unicode.org/reports/trl5

Uniform Resource Identifiers (URI): Generic Syntax. Defines the generic syntax of URI,
including both absolute and relative forms, and guidelines for their use; it revises and replaces the
generic definitions in RFC 1738 and RFC 1808. www.ietf.org/rfc/rfc2396.txt

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. Part 2 of the specification of
the XML Schema language. It defines facilities for defining datatypes to be used in XML Schemas
as well as other XML specifications. The datatype language, which is itself represented in XML,
provides a superset of the capabilities found in XML document type definitions (DTDs) for speci-
fying datatypes on elements and attributes. www.w3.org/TR/xmlschemall-2

XHTML 1.0 (Second Edition). Defines the Second Edition of XHTML 1.0, a reformulation of
HTML 4 as an XML 1.0 application, and three DTDs corresponding to the ones defined by HTML
4. www.w3 .org/TR/xhtmll

Appendix G: References

XHTML Role Attribute Module. Role Attribute allows authors to annotate XML
languages with semantic information about the purpose of an element. Use cases include
accessibility, device adaptation, server-side processing, and complex data description.
www.w3 .0rg/TR/2007 /WD-xhtml-role-20071004

XHTML Vocabulary Namespace. A vocabulary collection utilized by XHTML Family
modules and document types using XHTML Modularization, including XHTML Role and XHTML
+ RDFa. www.w3 .0rg/1999/xhtml /vocab

XQuery 1.0 and XPath 2.0 Functions and Operators. Defines constructor functions, operators,
and functions on the datatypes defined in XML Schema Part 2: Datatypes, Second Edition, and
the datatypes defined in XQuery 1.0 and XPath 2.0 Data Model. It also discusses functions and
operators on nodes and node sequences as defined in the XQuery 1.0 and XPath 2.0 Data Model.
www.w3.0rg/TR/xpath-functions

XSL Transformations (XSLT) Version 2.0. Defines the syntax and semantics of XSLT 2.0,

a language for transforming XML documents into other XML documents. XSLT 2.0 is designed to
be used in conjunction with XPath 2.0. It shares the same data model as XPath 2.0, and it uses the
library of functions and operators. www.w3.org/TR/xs1t20

XSLT 2.0 and XQuery 1.0 Serialization. Defines serialization of an instance of the data
model as defined in XQuery 1.0 and XPath 2.0 Data Model into a sequence of octets. Seri-
alization is designed to be a component that can be used by other specifications such

as XSL Transformations (XSLT) Version 2.0 or XQuery 1.0: An XML Query Language.

www.w3.0org/TR/xslt-xquery-serialization

XSLT 2.0 Schema. Defines all the elements that appear in the XSLT namespace as a schema,
rather than a W3C recommendation. It also provides hooks that enable the inclusion of
user-defined literal result elements, extension instructions, and top-level data elements.
www.w3.0rg/2007/schema-for-xslt20.xsd

xml:id Version 1.0. Defines the meaning of the attribute xml:id as an ID attribute in
XML documents and defines processing of this attribute to identify IDs in the absence of
validation, without fetching external resources, and without relying on an internal subset.
www.w3 .org/TR/xml-id/

Tools and Resources

EXSLT. A community initiative to provide extensions to XSLT 1.0. The extensions are broken
down into a number of modules, such as date, string, and math. Many functions are superseded
by equivalent XSLT 2.0 or XPath functions. www.exslt.org

FunctX XSLT Functions. Lists functions alphabetically and by category in both XSLT
and XQuery syntax, and conveniently lists closely related XSLT and XPath functions too.
www.xsltfunctions.com/xsl/

Jeni’s XSLT Pages. The website of Jeni Tennison, which is dedicated to helping people understand
and make the most of using XSLT. Includes tutorials and utilities. www.jenitennison.com/xslt/
index.html

Saxonica: XSLT and XQuery Processing. Documentation that lists the standard XSLT
elements, all of which are supported in Saxon stylesheets, and provides brief descriptions of

379

Appendix G: References

380

their functions. In some cases the text offers information specific to the Saxon implementation.
www . saxonica.com/documentation/index.html

XSL List. The open forum for the discussion of XSL — Extensible Stylesheet Language.
www.mulberrytech.com/xsl/xsl-1list

XSLTdoc: A Code Documentation Tool for XSLT. XSLTdoc works with all versions of XSLT.
It defines conventions to document XSL “code elements’” directly in the source code. These are
extracted to form several linked HTML pages. The XSLT source code is available with syntax
highlighting. www . pnp-software.com/XSLTdoc

Glossary

This glossary of terms is based on a selection of those published for XSLT 2.0 and XPath 2.0 from
the W3C Glossary and Dictionary. You can see the original entries at www.w3.0rg/2003/glossary.
- Links to the individual glossaries are at the end of this page.

Attribute set A named collection of attribute definitions that can be reused, defined by an
xsl:attribute-set element.

Attribute value template A type of attribute that may contain an expression surrounded with
curly brackets {}, usually used to set a value with information that is available only at run time.

Axis step An axis step has an axis that specifies a direction of travel in the node tree in relation to
the context node, such as parent: : or child: :.It also specifies a node test, which defines the nodes
to select using the node name or type.

Character map A character map allows a given character in the final result tree to be substituted
by a string of characters during serialization.

Collation A set of rules for determining whether two string values are equivalent, and how they
should be ordered. Collations, which are language- or application-specific, are specified by a URL

Constructor function The constructor function for a given type is used to convert instances of
other atomic types into the given type.

Context item The item, an atomic value or node, currently being processed. When the context
item is a node, it is also called the context node.

Context position The position of the context item in the sequence of items being processed. The
position changes whenever the context item changes, and is used to evaluate a predicate such as
para[1]. The position() function may be used to return the position’s value.

Glossary

Current group The collection of related items that are processed by an xsl:for-each-group
instruction.

Current grouping key The grouping key shared in common by all the items within the current
group.

Declaration Top-level elements in the XSLT namespace and defined in the XSLT specification
are known as declarations. Any top-level elements specified by implementers or users are called
user-defined data elements.

Empty sequence A sequence containing zero items.

Extension function A function defined by a user, a vendor, or a third party, distinct from built-in
functions specified in XSLT or XPath.

Filter expression A primary expression, such as a literal or function call, followed by zero or more
predicates. The result consists of the items returned by the primary expression, filtered by applying
each predicate in turn.

Function parameter A parameter defined in an xs1: function element. Its value can be set when
the function is called in an XPath expression.

Global variable A top-level xs1:variable declares a global variable that is visible everywhere in
a stylesheet.

Grouping keys When the group-by or group-adjacent attributes are set on the xs1:for-each-
group element, key values are calculated for each item in the population. Those with common val-
ues are then grouped together.

Import precedence A stylesheet module loaded using xs1:import has a lower import precedence
than a module containing the import declaration. Any matching template rules in the importing

module override those in the imported stylesheet.

Instruction An XSLT element, allowed inside a sequence constructor, that causes the processor to
create a result-tree fragment.

Lexical QName A qualified name with two parts: an optional namespace prefix and a colon, fol-
lowed by the so-called local part of the name. For example, in <xsl:param>, xsl: is the prefix and

param is the local name.

Literal result element An element name that is not in the XSLT namespace, written directly in a
stylesheet; for example, one of the XHTML element names.

Local variable A variable defined with the xs1:variable element in a sequence constructor.
Mode Modes allow a node in a source tree to be processed multiple ways by the same stylesheet,
each time producing a different result. They also allow different sets of template rules to be active

when processing different trees.

Named template An xsl:template element identified with a name attribute.

382

Glossary

Node One of the node types defined in XPath 2.0 — for example, document, element, or attribute.

Parameter The xsl:param element declares a parameter, the value of which can be set by the
caller.

Path expression An XPath expression used to locate nodes within trees, which consists of one or
more steps, separated by ““/” or ““//”.

Pattern A pattern specifies a set of matching conditions on a node.

Picture string A sequence of characters used to specify digit, grouping, and separator signs when
formatting numbers.

Population A sequence of items to be grouped defined in the select attribute on an
xsl:for-each-group instruction.

Predicate An expression contained in square brackets, [|, that filters the nodes selected in a step
expression.

Primary expression Expressions that are the basic primitives of the XPath language, such as a lit-
eral, variable reference, or function call.

Priority ~ Each template rule is allocated a numeric priority value by the processor, based on
the match pattern. This value is used to select which rule to evaluate when several rules match
the same source node. The default priority may be overridden by explicitly setting the priority
attribute value on the <xs1:template> element.

QName A node name written as a local name.

Result tree Any temporary or final result tree constructed as the result of transforming a source
tree. The result tree can be either used as a source for another transformation or serialized.

Sequence An ordered collection of zero or more items.

Sequence constructor A sequence of zero or more nodes in a stylesheet that can be evaluated to
return another sequence.

Serialization The process of outputting a final result tree in XML or other document formats.
Sort key component An <xsl:sort> element in a sort key specification.

Sort key specification A sequence of one or more xs1:sort elements that define the rules for sort-
ing the items.

Source tree Any node tree provided as input to the transformation, including the document con-
taining the initial context node, documents containing nodes supplied as parameter values, or doc-
uments returned from the results of functions.

Step Part of an XPath expression that specifies how to generate a sequence of items. The

sequence may be filtered by zero or more predicates. A step may be either an axis step or a filter
expression.

383

Glossary

Stylesheet A transformation in the XSLT language containing one or more modules.

Stylesheet function A function that can be called from an XPath expression within the stylesheet,
defined in an xs1: function declaration.

Stylesheet module A stylesheet may consist of one or more modules, each contained by an
xsl:stylsheet or xsl:transform element.

Stylesheet parameter A global xs1:param element, the value of which can be set when a transfor-
mation is invoked.

Template An xsl:template declaration defines a template, which contains a sequence construc-
tor for creating nodes or atomic values in a result document. It can be either a template rule contain-
ing a pattern to match, or a named template, invoked by name.

Template parameter A local variable defined by an xs1:parameter element. The parameter value
can be set when the template is called.

Template rule A stylesheet contains a set of template rules. Each rule has a pattern that is
matched against nodes, an optional set of template parameters, and a sequence constructor.

Temporary tree Any node tree, usually constructed inside a variable, other than the source tree or
a final result tree.

Tunnel parameter A parameter that is recursively passed on by a called template to any further
called templates.

Variable The xsl:variable element declares a variable, which may be a global variable or a local
variable.

Variable reference A variable reference is a QName specified in an <xsl:variable> or
<xsl:param> element, and referred to in an XPath expression. It is preceded by a $ sign to

distinguish it from a reference to a source-document element name.

Whitespace text node A text node consisting entirely of the whitespace characters #x09, #x03,
#x0D, or #x20.

384

[1 (square brackets), 99

A

abs() function, 339
absolute paths, 29
adjacent items, grouping, 85-90
adjust-date-to-timezone() function,
340
adjust-dateTime-to-timezone() function,
340
adjust-time-to-timezone() function, 340
analyzers, 29-30
arithmetic operators, 33
Associating Style Sheets with XML
Documents Version 1.0, 377
Atom 1.0 schema, 14-16
Atom-Feed tree, 131-132
Atom Publishing Protocol, 377
Atom Syndication Format, 377
atomic values, 27
attribute groups
generic element attributes, 304-305
validation attributes, 305-306
version attributes, 305
attribute sets, 64-69
attribute tokens, formatting, 104
attribute value template, 381
attributes
case study, 202
encoding, 5
format, 128
groups, 264
method, 5
specifying, 18
use-attribute-sets, 64
validating, 194-195

Index

vendor extensions, 257
avg() function, 340
axes, 30-32
axis step, 381

base-uri() function, 340-341

boolean() function, 341

Boolean expressions, 34

browsers, XML documents to Web pages,
2-11

built-in rules, templates and, 3

C

calling, templates, 49
capturing content, 69
Cascading Style Sheets, level 2 CSS2
Specification 377
case study
block elements, 202-203
common attributes, 202
inline elements, 203
link container elements, 205-206
link module
function module, 223
link parameters, 220-222
link verification, 208-209
metadata schemas, 209-210
resource metadata, 210-214
property elements, 206-208
quick-reference schema, 204-209
reference stylesheets, 217-219
schema overview, 201-202
site building, 227-228
glossary page, 233-234
landing page, 233-234

Index

case study (continued)

case study (continued)
reference page generation, 228-233
sitemap creation, 234-237
subject metadata, 214-216
term module, 223-224
inline terms, 226-227
term parameters, 225-226
CDATA, processing, 71
ceiling() function, 341
<channel> element, 14, 18
character map, 381
Character Model for the World Wide
Web 1.0: Normalization, 377
chunking source files 136-138
CLI (command-line interface), 13
codepoints, 96
codepoints-equal() function, 97, 342
codepoints-to-string() function, 96, 342
collating sequences, 80
collation, 381
collection() function, 126-127,
342-343
collections, loading, 127
command-line interface, 13-14
common values, grouping, 84-85
compare() function, 97, 343
comparing strings, 97
concat() function, 97, 343
concatenation
functions, 35-36
strings, 97
conditional processing, 61-64
conditional validation, 195
conditions
ending, 93
starting, 91-93
constructor function, 381
contains() function, 98
content
capturing, 69
copying, 9-11
source content, selecting, 8
context
changing, 127

386

monitoring, 69-70

setting, 127
context item, 381
context position, 381
contextual dates, 37-38, 109
controlling processing, data model,

261-262

converting numbers, 107-108
copying

content, 9-11

deep copy, 10

shallow copy, 9
count() function, 71, 343-344
CSV to XML conversion, 148-150
current() function, 69, 307
current-date() function, 344
current-dateTime() function, 344
current group, 381
current-group() function, 307
current grouping key, 382

current-grouping-key () function, 307

current-time() function, 344

D

data() function, 344
data model, 259-260
parameters, 261
variables, 261
data-type attribute, 79
datatypes, 79-80, 264
ID datatypes, 159-160
dates
combining values, 111-112
contextual, 37-38, 109
converting values, 111-112
Date and Time Formats, 377
durations, 38, 112
formatting, 38, 109-111
picture strings, 110
tokens, 110-111
dateTime() function, 344-345
day-from-date() function, 345
day-from-dateTime() function, 345
days-from-duration() function, 345

feed updates, preparing

DCMI metadata terms, 377
debugging, XSLT, 181-184
commenting output, 187-188
messages, 186-187
profiling, 184-185
XHTML output verification, 185-186
declaration, 263, 382
deep copy, 10
deep-equal() function, 346
default-collation() function, 346
delimited text, converting from XML,
144-146
distinct-values() function, 346
DITA (Darwin Information Typing
Architecture), 2
<div> element, 81
doc() function, 125-126, 347
doc-available() function, 347
document() function, 123-125, 307-308
document-uri() function, 347
documentation, stylesheets, 195-199
documents, output, 127-138
DTDs (Document Type Definitions)
datatypes
ID, 159-160
IDREF, 159-160
IDREFS, 159-160
duplicates, collation and, 96

element-available() function, 308
elements
attributes, 264
case study, 202-203
datatypes, 264
declarations, 263
entry elements, 20-22
feed elements, 19
functions, 264
instructions, 263
literal result elements, 7
validating, 194-195
empty() function, 347-348
empty sequence, 382

encode-for-uri() function, 348
encoding attribute, 5
ending conditions, 93
ends-with() function, 98, 348
entry elements, 20-22
error() function, 188, 348-349
escape-html-uri() function, 349
exactly-one() function, 349
<examples > element, 70
Excel, XML data in, 156-157
exists() function, 350
expressions, 99-100
anchoring, 99
filter expressions, 382
flags, 99-100
matching, 100
normalization, 101
primary expressions, 383
replacing, 101
square brackets in, 99
subexpressions, 99
tokenizing, 100
Unicode values, 101-102
URIs, 102-103
whitespace, 101
EXSDL function library, 255-256
EXSLT, 379
EXSLT modules, 256
Extensible Markup Language (XML) 1.0
(Fifth Edition), 378
extension functions, 382
calling, 254-255
extensions
function libraries, 255-256
stylesheet functions, 253-255
user-defined, 257
vendor extensions, 256-257

F

false() function, 350

family tree, 171-179

<feed> element, 14, 16

feed elements, 19

feed updates, preparing, 129-136

387

Index

file extensions, .xsl

fil extensions, .xsl, 3

files source files chunking, 136-138

filte expression, 382
flags expressions, 99-100
floor) function, 350
format attribute, 128

format-date() function, 109, 308-309

format-dateTime() function, 109,
308-309
format-number() function, 309

format-time() function, 109, 308-309

formatting
attribute tokens, 104
dates, 38
FreeCEN project, 147
function-available() function, 310
function libraries
EXSLT, 255-256
FunctX, 256
function module, case study, 223
function parameters, 382
functions, 306
abs(), 339
adjust-date-to-timezone(), 340
adjust-dateTime-to-timezone(), 340
adjust-time-to-timezone(), 340
avg(), 340
base-uri(), 340-341
boolean(), 341
ceiling(), 341
codepoints-equal(), 97, 342
codepoints-to-string(), 96, 342
collection(), 126-127, 342-343
compare(), 97, 343
concat(), 97, 343
contains(), 98
count(), 71, 343-344
current(), 69, 307
current-date(), 344
current-dateTime(), 344
current-group(), 307
current-grouping-key (), 307
current-time(), 344
data(), 344

388

dates

contextual, 37-38

durations, 38

formatting, 38
dateTime(), 344-345
day-from-date(), 345
day-from-dateTime(), 345
days-from-duration(), 345
deep-equal(), 346
default-collation(), 346
distinct-values(), 346
doc(), 125-126, 347
doc-available(), 347
document(), 123-125, 307-308
document-uri(), 347
element-available(), 308
elements, 264
empty(), 347-348
encode-for-uri(), 348
ends-with(), 98, 348
error(), 188, 348-349
escape-html-uri(), 349
exactly-one(), 349
exists(), 350
extension, 382

calling, 254-255
false(), 350
floor(), 350
format-date(), 109, 308-309
format-dateTime(), 109, 308-309
format-number(), 309
format-time(), 109, 308-309
function-available(), 310
generate-id(), 165-167, 310
hours-from-dateTime(), 351
hours-from-time(), 351
id(), 160-162, 351
idref(), 351-352
implicit-timezone(), 352, 353
in-scope-prefixes(), 353
index-of(), 352
insert-before(), 353
iri-to-uri(), 354
key(), 162, 163-165, 310-311

global variables

lang(), 354

last(), 69, 354

local-name(), 355
local-name-from-QName(), 355
lower-case(), 355

matches(), 100, 356

max(), 356

min(), 356

minutes-from-dateTime(), 356-357

minutes-from-duration(), 357
minutes-from-time(), 356-357
month-from-date(), 357, 358

month-from-dateTime(), 357, 358

months-from-duration, 358
name(), 358-359
namespace-uri(), 359
namespace-uri-for-prefix(), 359

namespace-uri-from-QName(), 360

nilled(), 360

nodes, documents, 38-39
normalize-unicode(), 360
not(), 360-361

number(), 361

numbers, 39

one-or-more(), 361
position(), 69, 361-362
prefix-from-QName(), 362
QName(), 362
regex-group(), 311
remove(), 362-363
replace(), 101, 363
resolve-QName(), 364
resolve-uri(), 363

reverse(), 364

root(), 364-365

round(), 365
round-half-to-even(), 365
seconds-from-dateTime(), 366
seconds-from-duration(), 366
seconds-from-time(), 366
starts-with(), 98, 366-367
static-base-uri(), 367
string(), 96, 367
string-join(), 97, 367-368

string-length(), 96, 368
string-to-codepoints(), 96, 368
strings, 96
concatenation, 35-36
substrings, 36-37

stylesheets, 253-255, 384
subsequence(), 369
substring(), 369
substring-after(), 98, 369-370
substring-before(), 98, 370
sum(), 370-371
system-property(), 311-312
timezone-from-date(), 371
timezone-from-dateTime(), 371
timezone-from-time(), 371
tokenize(), 100, 371-372
trace(), 372
translate(), 98, 372
true(), 373
type-available (), 312
unordered(), 373
unparsed-entity-public-id(), 313
unparsed-entity-uri(), 313
unparsed-text(), 146, 312-313
unparsed-text-available(), 312-313
upper-case(), 373
vendor extensions, 256
year-from-date(), 374
year-from-dateTime(), 374
years-from-duration(), 374
zero-or-one(), 374-375

FunctX function library, 254-255,

256
FunctX XSLT Functions, 379

G

GEDCOM XML, 170-179

general operators, 34

generate-id() function, 165-167, 310

generating numbers, 103-107

generic element attributes, 304-305

global parameters, 55-57, 116
imported stylesheets, 119-120

global variables, 43, 382

389

Index

glossary, creating

glossary, creating, 225-226
glossary terms, 124
GMT (Greenwich Mean Time), 113
group-adjacent attribute, 85, 87
group-ending-with attribute, 93
group-starting-with attribute, 91
grouping, 83-84
adjacent items, 85-90
common values, 84-85
tabulation, 87-88
grouping keys, 382
groups
attributes, 264
current, 381

H

hours-from-dateTime() function, 351

hours-from-time() function, 351

href pseudo-attribute, 3

HyperText Markup Language (HTML),
378

id() function, 160-162, 351
ID datatypes, 159-160
identifiers generating

GEDCOM XML, 170-179

indexing lines, 165-170
idref() function, 351-352
IDREF datatype, 159-160
IDREFS datatype, 159-160
implicit-timezone() function, 352, 353
import precedence, 382
in-scope-prefixes) function, 353
index-of() function, 352
indexing lines, 165-170
inline terms, 226-227
insert-before() function, 353
instructions, 263, 382

vendor extensions, 256
invoking template rules, 45-46
IRI (International Resource Identifiers)

102

390

iri-to-uri() function, 354
ISO Schematron, 378
<item> element, 18
item listings, 19-20
iteration, 64-70

J

Jeni’s XSLT Pages, 379

K

key() function, 162, 163-165,
310-311
keys, 162-165
current grouping key, 382
grouping keys, 382
multiple values, 164-165

L

lang() function, 354
language settings, sorts, 80-81
languages, 111
last() function, 69, 354
Lexical QName, 382
lines
indexing, 165-170
numbering, 105-106
<link> element, 19
link module, link parameters
labeling headings, 220-221
scheme selection, 221-222
links, case study
container elements, 205-206
function module, 223
link parameters, 220-222
verification, 208-209
literal result elements, 7, 382
local-name() function, 355

local-name-from-QName() function,

355
local variables, 43, 382
location expressions, 29
lower-case() function, 355

numeric sort

main stylesheet module, 115
main template, 6-7
matches() function, 100, 356
matching expressions, 100
max() function, 356
messages, XSLT debugging, 186-187
metadata, DCMI metadata terms, 377
metadata schemas, case study,
209-210
resource metadata, 210-211
authors and contributors, 212-213
collection, 211-212
content, 214
dates, 213-214
identifiers, 212
language values, 212
method attribute, 5
methods, output, defining 4-6
min() function, 356
minutes-from-dateTime() function,
356-357
minutes-from-duration() function, 357
minutes-from-time() function, 356-357
modes, 382
templates, 46-48
modular stylesheets
creating modules, 116-118
customization layer, 119
datetime module, 118-119
global parameters, 116
imported, 119-123
global parameters, 119-120
including modules, 116-119
main stylesheet module, 115
menus, 116
overlay layer, 119
parameterized content, 116
principal stylesheet module, 115
styling information, 116
month-from-date() function, 357, 358
month-from-dateTime() function, 357,
358
months-from-duration function, 358

multiple choices, 62-64
multiple-level numbers, 106-107

name() function, 358-359
name tests, nodes, 32
named templates, 44, 49-50, 382
namespace-uri() function, 359
namespace-uri-for-prefix) function, 359
namespace-uri-from-QName() function,
360
namespaces, xsl, 4
nilled() function, 360
nodes, 25-26, 382
documents and
counting, 39
external, 39
position, 39
properties, 38
node sets, combining, 34-35
properties, 26-27
tests
name tests, 32
type tests, 32
types, 26
normalization
Character Model for the World Wide
Web 1.0: Normalization, 377
expressions, 101
normalize-unicode() function, 360
not() function, 360-361
number() function, 361
numbering lines, 105-106
numbers
generating, 103-107
multiple-level, 106-107
single-level, 104-106
source
converting numbers, 107-108
declaring format, 108-109
numeric functions, 39
numeric sort, 79-80

391

Index

one-or-more() function

0

one-or-more() function, 361
operators
arithmetic, 33
Boolean expressions, 34
general, 34
node sets, combining, 34-35
value comparison, 33-34
output documents, 127-128
feed update, 129-136
splitting, 136-138
output methods, defining 4-6
outputs, data model, 262
Oxygen IDE, 29-30

P

P5: Guidelines for Electronic Text
Encoding and Interchange, 378
parameterized content, 116
parameters
data model, 261
definition, 383
function parameters, 382
functions and, 43
global, 43, 55-57
imported stylesheets, 119-120
passing, 122
template parameters, 57-59
templates and, 43
term parameters, 225-226
tunnel parameters, 59
<xsl:param>, 55-57
parsers, whitespace, 142
passing parameters, 122

passing values to templates, 58-59

path expressions, 28-35, 383
patterns, 45, 383

percent encoding, 102

picture strings, 110, 383
population, 83, 383

position() function, 69, 361-362
predicates, 33, 383
prefix-from-QName) function, 362

392

preserving whitespace, 143
primary expressions, 383
principal stylesheet module, 115
priorities, 383

templates, 48-49
profiling debugging XSLT, 184-185
<properties> element, 67
property elements, case study,

206-208

pseudo-attributes, href, 3

Q

QName, 383
QName() function, 362

R

RDF Site Summary (RSS), 378

reference stylesheets, case study,
217-219

regex-group() function, 311

regular expressions (regex), 99

anchoring, 99

remove() function, 362-363

replace() function, 101, 363

replacing expressions, 101

resolve-QName() function, 364

resolve-uri() function, 363

result trees, 383

reverse() function, 364

RFC 4151 The ‘““tag” URI Scheme,
378

root() function, 364-365

root element stylesheet, 3-4

round() function, 365

round-half-to-even() function, 365

RSS 2.0 Specification 378

RSS (RDF Site Summary), 14-16, 378

rules
importing, activating, 121-122
template rules, 44-45, 261
built-in, 49
invoking, 45-46
modes, 46-48

stylesheets

parameters, 45
patterns, 45
sequence constructor, 45

S

Saxon CLI, 13, 126
Saxonica: XSLT and XQuery Processing,
379
schema, XSLT 2.0 stylesheets, 315-336
schema-aware processors, 189-195
seconds-from-dateTime() function, 366
seconds-from-duration() function, 366
seconds-from-time() function, 366
select attribute, XPath expression, 76
sequence constructor, 383
sequences, 27, 383
serialization, 383
data model, 262
serialization parameters, vendor
extensions, 257
shallow copy, 9
single-level numbers, 104-106
site building, case study, 227-228
glossary page, 233-234
landing page, 233-234
reference page generation, 228-230
content section, 232
function reference pages, 232-233
navigation tabs, 230-231
table of contents, 231-232
sitemap creation, 234-237
sort key components, 75, 383
sort key specifications 75, 383
sorting, 75-77
datatypes, 79-80
language settings, 80-81
numeric sorts, 79-80
<xsl:perform-sort>, 81-83
source content, selecting, 8
source documents
document() function, 123-125
validation, 193-194
source elements, processing, 8—9
source files chunking, 136-138

source numbers, formatting
converting numbers, 107-108
declaring format, 108-109
source tree, 383
splitting documents, 136-138
starting conditions, 91-93
starts-with() function, 98, 366-367
static-base-uri() function, 367
step expressions, 29
steps, 383
string() function, 96, 367
string-join() function, 97, 367-368
string-length() function, 96, 368
string-to-codepoints() function, 96, 368
strings
codepoints, 96
collating, 95-96
comparison, 97
concatenation, 97
expressions, 99-100
functions, 96
picture strings, 383
substrings, 36-37, 98
stripping whitespace, 142-143
stylesheet functions, 384
stylesheet modules, 384
stylesheet parameters, 384
stylesheets, 384
Associating Style Sheets with XML
Documents Version 1.0, 377
Cascading Style Sheets, level 2 CSS2
Specification, 377
documentation, 195-199
functions, 253-255
imported, 119-123
global parameters, 119-120
modular, 115-123
creating modules, 116-118
customization layer, 119
datetime module, 118-119
global parameters, 116
imported, 119-123
including modules, 116-119
main stylesheet module, 115

393

Index

stylesheets (continued)

stylesheets (continued)
menus, 116
overlay layer, 119
parameterized content, 116
principal stylesheet module, 115
styling information, 116
reference, case study, 217-219
root element stylesheet, 3-4
schema, 315-336
XML data to XML, 17-23
subexpressions, 99
subject metadata case study, 214-216
subsequence() function, 369
substring() function, 369
substring-after() function, 98, 369-370
substring-before() function, 98, 370
substrings, 98
sum() function, 370-371
system-property() function, 311-312

T

Tag URI, 378
template parameters, 57-59, 384
template rules, 384
templates, 43, 384
attribute value template, 381
built-in rules, 3
calling, 49
importing, 120-121
main, 6-7
match attribute, 44
name attribute, 44
named, 44, 49-50, 382
passing values to, 58-59
priorities, 48—-49
priority, 123
rules, 44-45, 261
built-in, 49
invoking, 45-46
modes, 46-48
parameters, 45
patterns, 45
sequence constructor, 45
stylesheets, 44

394

temporary trees, 384
term module, case study, 223-224
inline terms, 226-227
term parameters, 225-226
text
converting from XML, 144-146
converting to XML, loading unparsed text,
146
time
Date and Time Formats, 377
durations, 112
formatting, picture strings, 110
GMT (Greenwich Mean Time), 113
timezones, 112-113
UTC (Coordinates Universal Time),
113
timezone-from-date() function, 371
timezone-from-dateTime() function,
371
timezone-from-time() function, 371
timezones, 112-113
tokenize() function, 100, 371-372
tokenizing expressions, 100
trace() function, 372
transform
creating, 3—4
locally, 11-14
transformations, configuration 11-12
transforming
parsing inputs, 260
template rules, 261
translate() function, 98, 372
trees
Atom-Feed, 131-132
result trees, 383
source tree, 383
temporary, 129-130, 384
true() function, 373
tunnel parameters, 59, 384
type-available () function, 312
type definitions 306
importing, 189-190
type tests, nodes, 32
types, XSLT, validation, 188-189

XPath

U

Unicode Normalization Forms, 378
Unicode values, expressions, 101-102
Uniform Resource Identifier (URIs),
123-124,378
expressions, 102-103
unordered() function, 373
unparsed-entity-public-id() function, 313
unparsed-entity-uri() function, 313
unparsed-text() function, 146, 312-313
unparsed-text-available() function,
312-313
upper-case() function, 373
use-attribute-sets attribute, 64
user-define extensions, 257
user-define types, specifying, 192-193
UTC (Coordinates Universal Time), 113

Vv

validation

attributes, 194-195

conditional, 195

elements, 194-195

source documents, 193-194

XSLT types, 188-189
validation attributes, 305-306
value comparison operators, 33-34
values, grouping, 84-85
variable refence, 384
variables, 384

data model, 261

global, 43, 382

local, 43, 382

select attribute, 50

using, 51-55

<xsl:variable>, 50
vendor extensions

attributes, 257

EXSLT modules, 256

functions, 256

instructions, 256

serialization parameters, 257
version attributes, 305

W

W3C document license, 336-337
W3C XML Schema Definitio Language
(XSD) 1.1 Part 2: Datatypes, 378

whitespace

controlling, 141-144

in expressions, 101

preserving, 143

stripping, 142-143

<xsl:text>, 143-144
whitespace text node, 384

X

XHTML, output
validation, 190-192
verification, 185-186
XHTML 1.0 (Second Edition), 378
XHTML Role Attribute Module, 379
XHTML Vocabulary Namespace, 379
XML declarations, 4
output methods, 5
XML (Extensible Markup Language)
code processing, 70-71
converting from text, loading unparsed
text, 146
converting to delimited text, 144-146
data in Excel, 156-157
documents
Associating Style Sheets with XML
Documents, 377
transforming to Web page, 1-14
GEDCOM XML, 170-179
input, validation, 194
transforming XML data to XML, 14-23
XML maps, 154-156
xml:id Version 1.0, 379
XPath
alternatives, 125-127
conditional tests, 64
functions, strings, 35-37
nodes, 25-26
properties, 26-27
types, 26

395

Index

XQuery 1.0 and XPath 2.0 Functions and Operators

XQuery 1.0 and XPath 2.0 Functions
and Operators, 379

xsl fil extension, 3

XSL List, 380

XSL Transformations (XSLT) Version 2.0,
379

<xsl:analyze-string >, 146, 264-265

<xsl:apply-imports >, 121, 265

<xsl:apply-templates >, 45-46, 265-266

<xsl:attribute >, 266-267
<xsl:attribute-set >, 64, 267-268
XSLT schema definition, 65
<xsl:call-template >, 67, 268-269
<xsl:character-map >, 269
<xsl:choose >, 61, 62-64, 269
<xsl:comment >, 187-188, 269
<xsl:copy >, 9, 271
<xsl:copy-of >, 271-272
<xsl:copy-of > element, 19
<xsl:decimal-format>, 272-273
<xsl:declaration >, 274
<xsl:doc >, 197
<xsl:element >, 274-275
<xsl:fallback >, 275
<xsl:for-each >, 64, 276
<xsl:for-each-group >, 65, 83, 219,
276-277
<xsl:function >, 253, 277-278
<xsl:if>, 61, 278-279
test attribute, 61-62
<xsl:import >, 279
<xsl:import-schema >, 189, 280
<xsl:include >, 116, 281
<xsl:instruction >, 281-282
<xsl:key >, 162, 282
<xsl:matching-substring >, 283
<xsl:message >, 186, 283-284
<xsl:namespace >, 284-285
<xsl:namespace-alias >, 285
<xsl:next-match >, 122-123, 285-286
<xsl:non-matching-substring >, 286
<xsl:number>, 103, 286-288
<xsl:otherwise >, 63, 288
<xsl:output >, 128, 288-291

396

<xsl:output-character >, 291
<xsl:param >, 55-57, 254, 291-292
<xsl:perform-sort >, 81-83, 292-293
<xsl:preserve-space >, 143, 293
<xsl:processing-instructions >, 294
<xsl:result-document >, 127, 129,
294-296
<xsl:sequence >, 297
<xsl:isort >, 75, 297-298
<xsl:strip-space >, 142, 299
<xsl:stylesheet >, 12-13, 116, 254,
299-300
XSLT
alternatives to, 153-154
XML maps, 154-156
debugging, 181-184
commenting output, 187-188
messages, 186-187
profiling, 184-185
XHTML output verification, 185-186
output, validating, 190-192
types, 306
XSLT 2.0 and XQuery 1.0 Serialization,
379
XSLT 2.0 Schema, 379
XSLT elements
<xsl:analyze-string>, 264-265
<xsl:apply-imports>, 265
<xsl:apply-templates>, 265-266
<xsl:attribute>, 266-267
<xsl:attribute-set>, 267-268
<xsl:call-template>, 268-269
<xsl:character-map>, 269
<xsl:choose>, 270
<xsl:comment>, 270
<xsl:copy>, 271
<xsl:copy-of>, 271-272
<xsl:decimal-format>, 272-273
<xsl:declaration>, 274
<xsl:document>, 274
<xsl:element>, 274-275
<xsl:fallback>, 275
<xsl:for-each>, 276
<xsl:for-each-group>, 276-277

zero-or-one() function

<xsl:function>, 277-278
<xsl:if>, 278-279

<xsl:import>, 279
<xsl:import-schema>, 280
<xsl:include>, 281
<xsl:instruction>, 281-282
<xsl:key>, 282
<xsl:matching-substring>, 283
<xsl:message>, 283-284
<xsl:namespace>, 284-285
<xsl:namespace-alias>, 285
<xsl:next-match>, 285-286
<xsl:non-matching-substring>, 286
<xsl:number>, 286-288
<xsl:otherwise>, 288
<xsl:output>, 288-291
<xsl:output-character>, 291
<xsl:param>, 291-292
<xsl:perform-sort>, 292-293
<xsl:preserve-space>, 293
<xsl:processing-instruction>, 294
<xsl:result-document>, 294-296
<xsl:sequence>, 297
<xsl:sort>, 297-298
<xsl:strip-space>, 299

<xsl:stylesheet>, 299-300
<xsl:template>, 300-301
<xsl:text>, 301
<xsl:transform>, 301-302
<xsl:value-of>, 302-303
<xsl:variable>, 303
<xsl:with-param>, 304
XSLTdoc, 196-199
XSLTdoc: A Code Documentation Tool for
XSLT, 380
<xsl:template >, 6-7, 43, 300-301
<xsl:itext >, 143-144, 301
<xsl:transform >, 301-302
<xsl:value-of >, 8, 19, 302-303
<xsl:variable >, 43, 50, 303
<xsl:when >, 63

Y

year-from-date() function, 374
year-from-dateTime() function, 374
years-from-duration() function, 374

y 4

zero-or-one() function, 374-375

397

Index

Programmer to Programmer™
{

ae your library
wherever y ou go.

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description, « ASP.NET « NET
screen capture, and code sample is available with your * C#/C++ * Open Source

Find books on

i . * Database + PHP/MySQL
subscription to the Wrox Reference Librar y. For answers when « General . SQL/sery ver

and where you need them, go to wrox.books24x7.com and * Java * Visual Basic

. * Mac * Web
subscribe today! * Microsoft Office « XML

WWW.wrox.com

Beginning,

Wrox Programmer to Programmerm™

XSLT and X path

Transforming XML Documents and Data

Extensible Stylesheet Language Transformations (XSLT)

is a language for transforming XML documents and data
from one format to another. Answering the demand for an
introductory book on XSLT processing, lan Williams presents
a clear, concise resource on XSLT concepts and methods
and explains how and why XSLT relies on the XML Path
language (XPath).

As you gain a solid foundation in XSLT processing, you'll learn
the basic node tree structure that is used in the data model
and discover how XSLT differs from the approach used in
other programming languages. Example-laden chapters

What you will learn from this book
@ How to define templates, the basic building blocks of XSLT

@ The way to construct XPath expressions and use a range of
powerful XPath and XSLT functions

@ The role of variables and parameters in XSLT

® Making use of control structures and iteration
® How to generate and format numbers, dates, and times

® Methods for working with multiple source and stylesheet
documents

include both versions 1.0 and 2.0 features and demonstrate
how to transform one XML data format to another. The book
covers the key structural elements of an XSLT file and shows
you how to use simple XPath expressions to match and
select source file content. Along the way, you'll uncover a rich
set of XPath functions that will benefit you again and again
as you develop your XSLT skills.

@ Ways to debug XSLT, validate types in XSLT, and document
your stylesheets

@ Tips for indexing and linking items using identifiers and
keys

@ Techniques for controlling whitespace and processing
plain text

Who this b ook is f or

This book is for web developers, authors, and designers who
understand XML basics, and are interested in gaining a solid
understanding of XSLT processing.

Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing
a structured, tutorial format that will guide you through all the techniques involved.

p2p,wrox.com WWW.Wrox.com
ey XL 54999
Wrox-
$49.99 USA An Imprint of

$WILEY

9780470477250

$59.99 CANADA

	Beginning XSLT and XPath: Transforming XML Documents and Data
	About the Author
	Contents
	Introduction
	Who This Book Is For
	XSLT in Outline
	What You Need to Use This Book
	How This Book Is Structured
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: First Steps with XSLT
	Transforming an XML Document to a Web Page
	Transforming XML Data to XML
	Summary

	Chapter 2: Introducing XPath
	Nodes
	Data Model
	Path Expressions
	XPath Functions
	Summary
	Exercises

	Chapter 3: Templates, Variables, and Parameters
	About Templates
	Template Rules
	Named Templates
	Variables
	Parameters
	Summary
	Exercises

	Chapter 4: Using Logic
	Conditional Processing
	Iteration
	Processing XML Code
	Summary
	Exercises

	Chapter 5: Sorting and Grouping
	Sorting Content
	Grouping
	Summary
	Exercises

	Chapter 6: Strings, Numbers, Dates, and Times
	String Processing
	Numbers
	Dates and Times
	Summary
	Exercises

	Chapter 7: Multiple Documents
	Modular Stylesheets
	Source Documents
	Output Documents
	Summary
	Exercises

	Chapter 8: Processing Text
	Controlling Whitespace
	XML to Text
	Text to XML
	Alternatives to XSLT
	Summary
	Exercises

	Chapter 9: Identifiers and Keys
	ID Datatypes
	Using the id() Function
	Keys
	Generating Identifiers
	Summary
	Exercises

	Chapter 10: Debugging, Validation, and Documentation
	Debugging XSLT
	Type and Schema Validation
	Documenting Your Stylesheets
	Summary
	Exercises

	Chapter 11: A Case Study
	Schema Overview
	Common Elements and Attributes
	The Quick-Reference Schema
	Metadata Schemas
	Reference Stylesheets
	Link Module
	Term Module
	Building the Site
	Summary

	Appendix A: Answers to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

	Appendix B: Extending XSLT
	Stylesheet Functions
	Function Libraries
	Vendor Extensions
	User-Defined Extensions

	Appendix C: XSLT Processing Model
	The Data Model
	Transforming

	Appendix D: XSLT 2.0 Quick Reference
	Elements
	XSLT Elements
	Attribute Groups
	Types
	XSLT Functions

	Appendix E: XSLT 2.0 Schema
	W3C Document License

	Appendix F: XPath 2.0 Function Reference
	Functions

	References
	Specifications
	Tools and Resources

	Glossary
	Index

